

AD AO 66345

FILE COPY

30

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

GENERATION OF NON-HOMOGENEOUS POISSON PROCESSES BY THINNING: PROGRAMMING CONSIDERATIONS AND COMPARISON WITH COMPETING ALGORITHMS

by

John Scott Redd

December 1978

Thesis Advisor:

P.A.W. Lewis

79 03 26 054

Approved for public release; distribution unlimited.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS **REPORT DOCUMENTATION PAGE** BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER REPORT NUMBER 4. TITLE (and Butweet) Generation of Non-Homogeneous Poisson TYPE OF REPORT & BERIDD COVERED 6 Master's Thesis Processes by Thinning: Programming December 1978 Considerations and Comparison with 6. PERFORMING ORG. REPORT NUMBER Competing Algorithms, S. CONTRACT OR GRANT NUMBER(4) AUTHORITY 10 John Scott/Redd 10. PROGRAM ELEMENT, PROJECT, TASK 9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 11. CONTROLLING OFFICE NAME AND ADDRESS 12 BERGET DATE December 1978 Naval Postgraduate School 13. NUMBER OF PAGES Monterey, California 93940 100 14. MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office) 18. SECURITY CLASS. (of this report) Unclassified 10201 SA. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Poisson processes thinning algorithm 20. AUSTRACT (Continue on reverse side if necessary and identify by block member) In this thesis we study several computer implementations of the thinning algorithm, a new method for generating nonhomogeneous Poisson processes. The methody developed by Professor Q.A.W. Lewis, Naval Postgraduate School, Monterey, California, and G.S. Shedler, IBM Research Laboratory, San Jose, California, is valid for Poisson processes with any given intensity function. The basic thinning algorithm is modified DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED S/N 0102 251 4501 SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

SECUMTY CLASSIFICATION OF THIS PAGE/When Dele Entered

(20. ABSTRACT Continued)

to exploit several refinements which reduce computer execution time by approximately one-third. The basic and modified thinning programs are <u>compared with</u>) a previous algorithm of Lewis and Shedler, the Poisson decomposition and gap-statistics algorithm, which is easily implemented for Poisson processes with intensity functions of the form

 $exp(a_0 + a_1t + a_2t^3)$. The thinning programs are competitive

in both execution time and computer memory requirements. One program implementation generates the events in a Poisson process one at a time; another program implements the algorithmic refinements which improve efficiency.

NTIS		ł
DDC	Bill Scener .	-
RINNMAG. MOL	0	Э
JUS 1 103-10	4	
Distantia Lion,		1L
1		
N		

DD Form 1473 5/N 0102-014-6601

UNCLASSIFIED

2

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

La real shak

Approved for public release; distribution unlimited.

Generation of Non-Homogeneous Poisson Processes by Thinning: Programming Considerations and Comparison with Competing Algorithms

by

John Scott Redd Lieutenant Commander, United States Navy B.S., United States Naval Academy, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the NAVAL POSTGRADUATE SCHOOL December 1978

Author

Approved by:

hesis Advisor Second Reader Operations Research

In Aust bledd

Information and Policy Sciences of

3

79 03 26 054

ABSTRACT

In this thesis we study several computer implementations of the thinning algorithm, a new method for generating non-homogeneous Poisson processes. The method, developed by Professor P.A.W. Lewis, Naval Postgraduate School, Monterey, California, and G.S. Shedler, IBM Research Laboratory, San Jose, California, is valid for Poisson processes with any given intensity function. The basic thinning algorithm is modified to exploit several refinements which reduce computer execution time by approximately one-third. The basic and modified thinning programs are compared with a previous algorithm of Lewis and Shedler, the Poisson decomposition and gap-statistics algorithm, which is easily implemented for Poisson processes with intensity functions of the form $exp(a_0+a_1t+a_2t^2)$. The thinning programs are competitive in both execution time and computer memory requirements. One program implementation generates the events in a Poisson process one at a time; another program implements the algorithmic refinements which improve efficiency.

TABLE OF CONTENTS

I.	INT	RODUCTION	10
II.	THE	THINNING THEOREM	15
III.	ALG	ORITHMS CONSIDERED	20
	Α.	POISSON DECOMPOSITION AND GAP-STATISTICS ALGORITHM	20
		1. Usage	20
		2. Algorithm Statement	21
	в.	THE BASIC THINNING ALGORITHM	22
		1. Usage	22
		2. Algorithm Statement	23
	с.	THE ONE-AT-A-TIME THINNING ALGORITHM	23
		1. Usage	23
		2. Algorithm Statement	24
IV.	MET	HODOLOGY FOR ALGORITHM COMPARISON	26
	Α.	MEASURES OF EFFECTIVENESS	26
		1. Computational Speed	26
		2. Computer Memory Requirements	28
	в.	MEASUREMENT CONSIDERATIONS	28
	c.	TEST SETUP	29
		1. Computational Speed	29
		2. Computer Memory Requirements	30
		3. Test Cases Utilized	31
v.	EFF	ICIENCY AND PROGRAMMING CONSIDERATIONS	38
	А.	GENERAL	38
	в.	UTILIZATION OF ARRAYS OF RANDOM VARIATES	39

с.	UTILIZATION OF INTENSITY FUNCTION LOWER BOUND	42
D.	UTILIZATION OF EXPONENTIAL VARIATES FOR THINNING OF EXPONENTIAL POLYNOMIAL INTENSITY FUNCTIONS	43
E.	RECYCLING OF THINNING VARIATES	45
	1. Recycling of Uniform Variates	45
	2. Recycling of Exponential Variates	47
F.	FINAL PROGRAM	50
VI. RES	SULTS, CONCLUSIONS AND RECOMMENDATIONS	52
А.	GENERAL	52
в.	MEASURE OF EFFECTIVENESS RESULTS	54
	1. The Basic Thinning Algorithm	54
	2. The Modified Thinning Algorithm (Final Program)	54
	3. The One-At-A-Time Thinning Algorithm	59
с.	CONCLUSIONS	62
D.	RECOMMENDATIONS	65
APPENDIX	A: GENERATION OF DEGREE-ONE EXPONENTIAL POLYNOMIAL NON-HOMOGENEOUS POISSON PROCESSES	67
APPENDIX	B: RESULTS OF EFFICIENCY MODIFICATIONS	69
COMPUTER	PROGRAMS	76
LIST OF H	REFERENCES	98
INITIAL I	DISTRIBUTION LIST	99

LIST OF TABLES

I.	Generation Times for Arrays of Shuffled	
	Random Variates from LLRANDOM	41
11.	Comparison of Two Algorithms	55
III.	Comparison of Poisson Decomposition and Gap-Statistics and Basic Thinning Algorithms	56
IV.	Comparison of Best Case for Both Algorithms	58
۷.	Comparison of Poisson Decomposition and Gap- Statistics and One-At-A-Time Algorithms	61
VI.	Computer Memory Requirements	63
VII.	Comparison of Gap-Statistics and Thinning Algorithms for Generation of Processes with Degree-One Exponential Polynomial Intensity Functions	68
VIII.	Lower Bound Versus No Lower Bound; Uniform Thinning Variates	70
IX.	Exponential Thinning Variates Versus Uniform Thinning Variates for Exponential Polynomial Intensity Functions	71
х.	Recycling Versus No Recycling; Uniform Thinning Variates	72
XI.	Recycling Versus No Recycling; Exponential Thinning Variates	73
XII.	Final Thinning Program Versus Basic Thinning Program	75

LIST OF FIGURES

1.	Sample Intensity Functions of Bounding and Desired Poisson Processes for Degree-Two Exponential Polynomial Case	19
2.	Case I - Sample Intensity Function	32
3.	Case II - Sample Intensity Function	33
4.	Case III - Sample Intensity Function	34
5.	Case IV - Sample Intensity Function	35
6.	Case V - Sample Intensity Function	36
7.	Case VI - Sample Intensity Function	37

ACKNOWLEDGMENT

I am deeply indebted to Professor Peter A.W. Lewis. His excellent classroom presentations of subjects in simulation were responsible for my initial interest in this area. As my thesis advisor, his guidance, assistance and interest were, of course, invaluable.

I am particularly pleased to give richly deserved recognition to Donna, my wonderful wife. Her support has always been fundamental to the success of my undertakings.

Finally, none of this would have been possible without the graciousness of Him who knows all things with probability one.

I. INTRODUCTION

The Poisson process is a widely known and studied stochastic process. It is frequently used to describe random arrivals at some type of service facility such as a service station fuel pump or a bank teller's window. In its most common form, the "rate" of these arrivals is considered to be constant over time. This is the homogeneous Poisson process which has the familiar property that times between arrivals (or events) are exponentially distributed with mean equal to the inverse of the rate.

The assumption of a constant rate, or homogeneity, is at best tenuous when applied to real world data. For example, the rate of arrivals at a traffic light typically varies from very high during rush hours to very low in the early morning. In addition to this cyclic time-of-day effect, arrival rates may exhibit longer term increases or decreases. Further, these effects may be superimposed upon shorter term effects to produce a more complex rate which varies with time. These processes for which arrival rates vary with time may often be represented by a non-homogeneous Poisson process, that is, a Poisson process with a time dependent rate of arrival.

The generic term of Poisson process includes then both homogeneous and non-homogeneous Poisson processes. LEWIS and SHEDLER [Ref. 1] define the Poisson process generally in

terms of a monotone non-decreasing right-continous function $\Lambda(t)$ which is bounded in any finite interval. Then the number of points, N(t'',t'), in any finite interval has a Poisson distribution with parameter $\mu(t'',t') = \Lambda(t') - \Lambda(t'')$. Thus, for example in (0,t'], with $t' \ge 0$, $P\{N(t'',t') = n\}$ $\equiv P\{N_{t},=n\} = \mu_0^n e^{-\mu_0}/n!$, where $\mu_0 = \mu(0,t') = \Lambda(t') - \Lambda(0)$.

The right derivative $\lambda(t)$ of $\Lambda(t)$ will be assumed to exist and is called the rate function or intensity function of the process. $\Lambda(t)$ is called the integrated rate function and has the interpretation that for $t \ge 0$, $\Lambda(t) - \Lambda(0) = E[N_t]$. For the homogeneous Poisson process $\lambda(t)$ is a constant, e.g. λ , and thus the integrated rate function is simply the product of λ and t, i.e. the expected value of $N_t \equiv N(0,t)$.

While simulation of homogeneous Poisson processes is relatively straightforward, the non-homogeneous Poisson process is more problematical. Times between events are not exponential in the general case and simulation has typically been tailored to specific classes of intensity functions. LEWIS and SHEDLER [Ref. 1] list three general methods for simulating non-homogeneous Poisson processes and one method for a special rate function. The general methods include the time scale transformation method and the conditioning and order-statistics method. The special method is the gap-statistics method, a method which is particular to the degree-one exponential polynomial intensity fucction, i.e. those of the form $\lambda(t) = \exp(b_0 + b_1 t)$.

Implementation of the general methods on a computer may pose special problems. Often the inverse of the integrated rate function is not explicit and must be computed numerically. Other problems in implementation generally result in lower efficiency, as measured by execution time or computer storage requirements or both.

One class of intensity functions which is of general interest is the degree-two exponential polynomial family. That is, those with intensity function of the form $\lambda(t) = \exp(a_0 + a_1 t + a_2 t^2)$. This family of functions has the property of being positive for all values of t, a necessary condition for an intensity function. Additionally, by varying the magnitude and sign of the coefficients, the exponential polynomial of degree two can be made to be monotone increasing or decreasing over time, as well as increasing and then decreasing, or vice versa. Use of this type of intensity function also leads to statistical procedures which are relatively simple.

LEWIS and SHEDLER [Ref. 2] proposed a new method of generating the non-homogeneous Poisson process with degreetwo exponential polynomial intensity function. It involves decomposition of the degree-two exponential polynomial intensity function, $\lambda(t)$, into two functions, a degree-one exponential polynomial function, $\lambda_{\rm L}(t)$, and a difference function, $\lambda_{\rm D}(t) = \lambda(t) - \lambda_{\rm L}(t)$. This procedure allows the points in the degree-one exponential polynomial event stream

to be generated using the gap-statistics method, which is highly efficient when implemented on a computer. The remaining points with intensity function $\lambda_{\rm D}(t)$ are generated by other methods and then merged with the other events.

PATROW [Ref. 3] implemented two algorithms, the time scale transformation algorithm and the Poisson decomposition and gap-statistics technique, and compared them for computational speed and computer memory requirements. His results indicated that the Poisson decomposition and gapstatistics technique was from two to seven times faster than the time scale transformation algorithm, although the former required about thirty percent more computer memory.

PATROW's work [Ref. 3] is also an excellent selfcontained reference on Poisson processes, bringing many references together under one cover.

A recent result of LEWIS and SHEDLER [Ref. 1] develops a new method for generation of points in a non-homogeneous Poisson process. This method, called "thinning", is similar to the general conditioning-acceptance-rejection method but has subtle differences which are computationally significant. The thinning method is straightforward in both an analytical and a computational sense, and is valid for any type of intensity function. The thinning theorem is presented in Section II.

This thesis is, in a sense, a sequel to PATROW's work [Ref. 3]. Its purpose is to implement the thinning algorithm

in computer program form and to compare it to the Poisson decomposition and gap-statistics algorithm implemented by PATROW [Ref. 3]. The latter implementation was designed for a specific subset of intensity functions, degree-two exponential polynomials. Since the Poisson decomposition and gap-statistics method outperformed a general case algorithm (time scale transformation) by a significant margin, comparing the thinning method to the Poisson decomposition and gap-statistics method should give a reasonable indication of the thinning algorithm's performance in generating non-homogeneous Poisson processes with other than degree-two exponential polynomial intensity functions.

Section III lists the two algorithms considered, as well as a special application of the thinning process which will be of interest to those involved in event-step simulation. Section IV describes the methodology used in comparing the algorithms while Section V deals with aspects of the thinning procedure which may be exploited to enhance its overall effectiveness in a variety of situations. Finally, Section VI presents the results and conclusions of the comparisons of the algorithms. Appendices A and B contain secondary results and computer program listings following the appendices.

II. THE THINNING THEOREM

The underlying concept of the thinning method involves the use of a "bounding" Poisson process, $\{N_{+}^{\star} : t \geq 0\}$, where N_{+}^{*} is the number of points in the bounding process in the interval (0,t]. This process may be either homogeneous or non-homogeneous Poisson, but should be one which is easy to simulate on a computer. It is called bounding because its intensity function, denoted $\lambda^{\star}(t)$, bounds the intensity function $\lambda(t)$, of the nonhomogeneous Poisson process which is to be simulated over the fixed interval (0,t']. That is, $\lambda^{*}(t) \geq \lambda(t)$ for all t in (0,t']. Points at T_{i}^{*} , $i = 1, \ldots, N_{t}^{*}$, are generated for the bounding process over the interval (0,t']. These points are then deleted, or "thinned", with independent probabilities equal to 1 - $(\lambda(T_i)/\lambda^*(T_i))$. Thus the probability that a point of the bounding process, T_i^* , is a point of the process being generated is equal to the ratio of the intensity functions evaluated at that point, i.e. $\lambda(\mathbf{T}_i)/\lambda^*(\mathbf{T}_i)$.

More formally:

<u>Theorem 1</u>. Consider the one-dimensional non-homogeneous Poisson process { N_t^* : $t \ge 0$ } with rate function $\lambda^*(t)$. The number of events, N_t^* , in the fixed interval (0,t'] has a Poisson distribution with parameter $\mu^*(0,t') = \mu^*$ = $\Lambda^*(t') - \Lambda^*(0)$.

Let T_1^* , T_2^* , T_3^* , ..., $T_{N_t'}^{**}$, be the times of the events of the process in the interval (0,t'].

Suppose that for $0 \le t \le t'$, $\lambda(t) \le \lambda^*(t)$. For $i = 1, 2, ..., N_t^*$, delete the event at T_i^* with independent probability $1 - \lambda(T_i^*)/\lambda^*(T_i^*)$.

Then the remaining times form a non-homogeneous Poisson process with rate function $\lambda(t)$ in the interval (0,t']. Proof:

We assume that $\lambda(t)$ is continuous and use the definition of the Poisson process based on incremental probabilities. Thus we need to show that the occurrence of an event in (t,t+dt] is independent of the number or times of occurrence of events before t, and that

 $P\{N_{t+dt} - N_{t} = 0\} = 1 - \lambda(t)dt + o(dt),$

 $P\{N_{t+dt} - N_{t} = 1\} = \lambda(t)dt + o(dt),$

and

$$P\{N_{t+dt} - N_{t} > 1\} = o(dt).$$

Now we have that

 $P\{no event from \{N_t : t \ge 0\} in (t,t+dt]\}$

= P{no event from {N_t^{*} : t ≥ 0} in (t,t+dt]}+ P{event from {N_t^{*} : t ≥ 0} in (t,t+dt] and it is "thinned"} = 1 - λ^* (t)dt + [λ^* (t)dt] · [1 - λ (t)/ λ^* (t)] + o(dt) = 1 - λ^* (t)dt + λ^* (t)dt - λ^* (t) · λ (t)/ λ^* (t) · dt + o(dt) = 1 - λ (t)dt + o(dt).

Similarly:

P{one event from $\{N_t : t \ge 0\}$ in $\{t, t+dt\}$

= P{event from $\{N_t^* : t \ge 0\}$ in (t,t+dt] which is not "thinned"}

= $\lambda^{*}(t) dt \cdot \lambda(t) / \lambda^{*}(t) + o(dt)$

= $\lambda(t)dt + o(t)$

Also it follows directly that

 $P\{\text{more than one event in } (t,t+dt]\} = o(dt)$

Moreover, an event in (t,t+dt] is independent of what happens before t because:

1. $\{N_t^* : t \ge 0\}$ is a Poisson process and therefore has independent increments, and

2. The thinning uniform random variate is independent of other thinning variates, and is independent of the Poisson process $\{N_t^*: t \ge 0\}$.

Q.E.D.

Figure 1 shows a graphical representation of a particular case of bounding and object intensity functions.

III. ALGORITHMS CONSIDERED

A. POISSON DECOMPOSITION AND GAP-STATISTICS ALGORITHM

1. Usage

This algorithm is the one found by PATROW [Ref. 3] to be most efficient in simulation of the degree-two exponential polynomial class of intensity functions and its implementation by PATROW was confined to that group. Basically, the approach is to decompose the intensity function (which is of the form $\lambda(t) = \exp(a_0 + a_1 t + a_2 t^2)$ into a degreeone exponential polynomial function, $\lambda_{I}(t) = \exp(b_0 + b_1 t)$, and a difference function, $\lambda_{D}(t) = \lambda(t) - \lambda_{T}(t)$. The points or events in the process with the degree-one exponential polynomial function, $\lambda_{r}(t)$, are generated over the interval (0,t'] utilizing the computationally fast gap-statistics algorithm. The points in the process with intensity function $\lambda_{D}(t)$ are generated using conditioning-acceptancerejection techniques. The two event streams are then superposed to produce the event stream for the non-homogeneous Poisson process with the intensity function $\lambda(t)$.

In the case where $\lambda(t)$ has an internal maximum or minimum in the interval (0,t'], the interval is partitioned and treated as two separate intervals for simulation with the event streams being merged in the final step.

Efficiency is optimized by maximizing the area under the degree-one exponential polynomial intensity

function, $\lambda_{L}(t)$, subject, of course, to the constraint $\lambda_{L}(t) \leq \lambda(t)$ for $0 \leq t \leq t'$. This maximizes the use of the faster gap-statistics algorithm and minimizes the use of the conditioning-acceptance-rejection algorithm which is slow relative to the gap-statistics algorithm.

PATROW [Ref. 3] deals extensively with the details of this algorithm and it is consequently presented here only in outline form.

2. Algorithm Statement

a. Categorize the intensity function, $\lambda(t)$, into one of six cases by examination of the coefficients a_1 and a_2 in $\lambda(t) = \exp(a_0 + a_1 t + a_2 t^2)$. Examples of each of these cases are shown in Figures 2 through Figure 7 located in Section IV.

b. (1) If $\lambda(t)$ is monotone increasing or monotone decreasing over the interval (Cases I, II, IV and V; see Figures 2,3,5 and 6), decompose $\lambda(t)$ into $\lambda_{L}(t)$, which is degree-one exponential polynomial, and $\lambda_{D}(t) = \lambda(t) - \lambda_{L}(t)$. Thus the decomposed functions have the forms:

$$\lambda_{1}(t) = \exp(b_{0} + b_{1}t)$$

$$\lambda_{D}(t) = \exp(a_{0} + a_{1}t + a_{2}t^{2}) - \exp(b_{0} + b_{1}t)$$

and

$$\lambda(t) = \lambda_{T}(t) + \lambda_{D}(t).$$

Choose b_0 and b_1 so as to maximize the area under $\lambda_L(t)$ subject to $\lambda_L(t) \leq \lambda(t)$ for all t in (0,t'].

(2) If $\lambda(t)$ is not monotone over the interval (Cases III and VI; see Figures 4 and 7), partition the interval (0,t'] into two disjoint, contiguous subintervals, (0,b] and (b,t']. Choose b as the (unique) point where λ (b) is a maximum (minimum) of λ (t) over (0,t']. Treat each subinterval as in b.(1), applying subsequent steps on each subinterval separately, and combining results as the final step.

c. Generate points in the Poisson process with degree-one exponential polynomial intensity function, $\lambda_{\rm r}$ (t), using the gap-statistics method.

d. Generate and order points in the Poisson process with intensity function $\lambda_{D}(t)$ using the conditioning-acceptance-rejection method.

e. Merge (superpose) the two event streams from Step 3 and Step 4. The merged stream is from the nonhomogeneous Poisson process with intensity function $\lambda(t)$.

B. THE BASIC THINNING ALGORITHM

1. Usage

The thinning theorem is implemented in a straightforward manner. Typically, the bounding process used is homogeneous Poisson with constant rate λ^* , where λ^* is an

upper bound of $\lambda(t)$ over (0,t']. In this case efficiency is optimized if λ^* is the least upper bound (LUB) of $\lambda(t)$ over (0,t'].

2. Algorithm Statement

a. Generate events in the Poisson process $\{N_t^* : t \ge 0\}$ with rate function $\lambda^*(t)$ in the fixed interval $(0,t^*]$. If the number of events generated, n^* , is such that $n^* = 0$, exit; there are no events in the process $\{N_t : t \ge 0\}$.

b. Denote the (ordered) events by $T_1^*, T_2^*, \ldots, T_n^{**}$. Set i = 1 and k = 0.

c. Generate U_i , uniformly distributed between 0 and 1. If $U_i \leq \lambda(T_i^*)/\lambda^*(T_i^*)$, set k equal to k+1 and $T_k = T_i^*$. d. Set i equal to i+1. If $i \leq n^*$, go to c.

e. Return T_1 , T_2 , ..., T_n , where n = k, and also n.

C. THE ONE-AT-A-TIME THINNING ALGORITHM

1. Usage

In some event-step simulations, it is customary or necessary to generate only one event at a time, rather than an array of events. The thinning algorithm is easily modified to generate the next event in the non-homogeneous Poisson process with intensity function $\lambda(t)$. In this case, the algorithm utilizes the time of the last event, T_{i-1} ; the right hand limit, t', of the fixed interval over which the process is being simulated; and the bounding process intensity function, $\lambda^*(t)$. All variates are generated

one at a time, thus no arrays are required for storage. The output is T_i , the time of the next event, if any, in the interval $(T_{i-1}, t']$.

The algorithm is stated here for the case in which the bounding process is homogeneous Poisson, i.e., $\lambda^{*}(t) = \lambda^{*}$, a constant and an upper bound of $\lambda(t)$. Specifically:

 T_i is obtained by generating and cumulating exponential (mean = $1/\lambda^*$) random variates $E_{i,1}^*, E_{i,2}^*, \dots$, for i = 1, 2, ..., until for the first time,

 $U_{i,j} \leq \lambda (T_{i-1} + E_{i,1}^{\star} + \ldots + E_{i,j}^{\star})/\lambda^{\star}$

A detailed algorithmic statement of this procedure follows.

2. Algorithm Statement

If i = 1, set $T_{i-1} = 0$ (i.e. the left end point of the interval), otherwise, T_{i-1} is known. Then for each i = 1, 2, ..., the time, T_i , of the event in the nonhomogeneous Poisson process is given by the following:

a. Set j = 1

b. Generate $E_{i,j}^{\star}$, an exponential random variate with mean $1/\lambda^{\star}$. If $T_{i-1} + \sum_{k=1}^{j} E_{i,k}^{\star}$ is greater than t', exit; there are no more points in the interval (T_{i-1}, t') .

c. Generate U_j, uniformly distributed between 0 and 1. If

$$U_{j} \leq \lambda (T_{i-1} + \sum_{k=1}^{j} E_{i,k}^{*}) / \lambda^{*}$$

set

$$T_{i} = T_{i-1} + \sum_{k=1}^{j} E_{i,k}^{*}$$

and exit.

d. Otherwise set j = j+1; go to b.

Note: $U_{i,j}$ and U_j are uniformly distributed between 0 and 1.

IV. METHODOLOGY FOR ALGORITHM COMPARISON

A. MEASURES OF EFFECTIVENESS

Two quantifiable measures of effectiveness were chosen as yardsticks for algorithm comparison. These were computational speed and computer memory requirements. Some other considerations, such as programming ease and robustness, are discussed in Section VI. It must also be recalled that the classes of intensity functions for which the two algorithms are usable are different. The Poisson decomposition and gap-statistics algorithm is only easily implemented for a restricted set of intensity functions, those of the form $\lambda(t) = \exp(a_0 + a_1 t + a_2 t^2)$, i.e. the degree-two exponential polynomial. Conversely, the thinning algorithm is valid for any positive intensity function. Thus a direct comparison can only be made in that subset of intensity functions for which both algorithm implementations are valid, the degree-two exponential polynomials.

PATROW [Ref. 3] developed six sample intensity functions, all special cases of the degree-two exponential polynomial, and these are used herein as the test cases. These are described in Section IV.C.3 below.

1. Computational Speed

Typically, computer time is a costly commodity in economic terms. It may also be a significant factor in determining more mundane considerations such as job priority and thus turn-around time. Thus computer run time is a natural candidate as a measure of effectiveness for comparing competing algorithms.

PATROW [Ref. 3] utilized a procedure in which event streams from each of six sample intensity functions were replicated several times in "packages". The number of replications was large if the expected number of events in the event stream was small, and vice versa. Thus the product of the number of events times the number of replications was kept on the same order of magnitude. For simplicity, the same technique was used here although results showed a wide variation in the run times for the six packages.

Programming of the thinning algorithm was done so as to minimize run time while maintaining parity with the Poisson decomposition and gap-statistics algorithm wherever direct comparison could be made. For example, shuffled random numbers are called in both programs and both are dimensioned to accommodate event streams of up to 5000 events.

Undoubtedly further programming refinements exist which might increase slightly the speed of one or the other algorithm. Also, different computers might have unique features which could be exploited. The overall purpose here was to obtain a relative order of magnitude comparison and it believed that this objective was accomplished in every meaningful sense.

2. Computer Memory Requirements

This is the second obvious means of comparing two algorithms. Again, some core reduction could undoubtedly be made by a sophisticated programmer. Most notably, core requirements can be reduced substantially if only one nonhomogeneous Poisson variate is generated at a time (the one-at-a-time algorithm) but this has the predictable effect of increasing execution time considerably (see Tables IV, V, and VI).

B. MEASUREMENT CONSIDERATIONS

Measurement of computer memory requirements is straightforward and deterministic.

Measurement of computational speed, more specifically Central Processing Unit (CPU) time, is quite another matter. First of all, the number of events in each replication of the non-homogeneous Poisson process varies causing CPU time to be a random variable. More important, however, are the effects of internal computer procedures.

In the first place, the so-called CPU time printed out on the normal IBM-360 output has only a general relationship to the actual computational time required by the CPU. This is caused by the addition of certain "overhead" time. This overhead time is a function of the number of other programs in the system as well as such factors as compilation and linkage times. Thus the same program run at two different times may differ in "CPU time" by a factor of two or more.

Program execution times were isolated from compilation and linkage times by the use of a system subroutine, GETIME. This subroutine allows the user to initialize an internal timer within the program and read cumulative time at various points in the program. Although this method is not exact, it does measure actual elapsed CPU time to within a small fraction of a second. This does not, however, entirely alleviate the time-of-day effect experienced when running the same program at different times. That is, although the elapsed CPU time can be measured accurately, the same program will generally have somewhat different execution times each time it is run [Ref. 4]. Theoretically, the execution times would be constant for stand-alone runs, i.e. runs with no other competing programs in the system. This is rarely realized in practice.

These considerations lead to the development and use of the side-by-side setup described below. This method appears to be statistically sound as a means of dealing with the problems of time measurement. Due to the differences in execution times noted, the best measure of effectiveness was determined to be a ratio of execution times for the respective algorithms, rather than absolute times.

C. TEST SETUP

1. Computational Speed

The central idea here was to equalize the effects of non-essential processes on each algorithm. This was accomplished by the following algorithm:

1. Set k = 1.

2. Zero internal time clock.

3. Call Algorithm A. Replicate M times.

4. Read internal time clock. Store time.

5. Zero internal time clock.

6. Call Algorithm B. Replicate M times.

7. Read internal time clock. Store time.

8. Set k = k + 1. If k is greater than k_{max} , go to 9. Otherwise go to 2.

9. Compute mean and variance of the k_{max} execution times for each algorithm.

10. Compute ratio of means.

This procedure was used in all comparisons. M, the number of replications per package, varied between 30 and 100 as discussed above. K_{max}, the number of times each package was replicated, was typically set equal to thirty.

2. Computer Memory Requirements

To measure computer memory requirements, a small main program was written, calling the subroutine which implemented the program being measured. Total program length in bytes was obtained from the standard computer output and the core alloted to the main program was subtracted to obtain the desired figure. This includes all library routines and arrays for storage of event times and arrays of random variates.

The core requirements are deterministic in that they do not change from one run to another but are strictly a function of the program coding.

3. Test Cases Utilized

PATROW [Ref. 3] developed six sample intensity functions representing the possible variations in sign and relative magnitude of the coefficients a_1 and a_2 in the exponential polynomial, $exp(a_0 + a_1t + a_2t^2)$.

Since the sample intensity functions were designed to test different aspects of the Poisson decomposition and gap-statistics algorithm, they were also used for comparison here. Although each algorithm is affected by different considerations, the test cases do, coincidentally, put the thinning algorithm through its paces.

For continuity, the six test cases, or sample intensity functions, are presented below in Figures 2 through 7.

V. EFFICIENCY AND PROGRAMMING CONSIDERATIONS

A. GENERAL

This section deals with factors which affect the performance of the thinning algorithm. Four specific areas are presented in which significant gains in terms of computational speed may be realized. With the exception of Section V.D (which applies only to the case of exponential polynomial intensity functions) these considerations apply to the general class of intensity functions.

In general application, one of the primary indicators of efficiency is the relative size of the area under the intensity function to that of the bounding function, i.e. the ratio, R, given by:

 $R = \int \lambda(t) dt / \int \lambda^{*}(t) dt$ $0 \qquad 0$

Since both numerator and denominator are simply the respective integrated rate functions, $\Lambda(t)$, evaluated at either end of the interval, R is the ratio of the expected number of events in the two processes, i.e. $E[N_t,]/E[N_t^*,]$.

Case 1 of the sample intensity functions is particularly illustrative (see Figure 2). The intensity function $\lambda(t) = \exp(1.6 + 0.015t + 0.0005t^2)$ is bounded on the interval (0,100] by a least upper bound (LUB) of 3294.47. If a homogeneous Poisson process with rate equal to the LUB is used as the bounding function, $E[N_t,] = 329,447$ points will be generated on the average. Of these, all but 1464 will be rejected on the average (i.e. $E[N_t,])$. The ratio of the respective expected values is thus 1464/329,447 = 0.0044 = the ratio of the areas under the intensity functions.

Thus a rough relative measure of the efficiency of the thinning process in a particular situation can be gained by examining a graph of the two intensity functions, even if the expected values are not easily calculated. This procedure may also be an indicator in deciding whether to partition the interval and use different bounding functions on each subinterval.

B. UTILIZATION OF ARRAYS OF RANDOM VARIATES

Computer generated random variates are used both in generating the points of the bounding process $\{N_t^* : t \ge 0\}$ and in the actual thinning process itself. Since the number of variates required is typically large, efficient generation becomes a programming consideration for medium to large scale simulations.

The basic thinning program presented herein requires both exponential and uniform random variates. Both types are obtained utilizing the random number package, LLRANDOM, developed by LEARMONTH and LEWIS [Ref. 5]. Shuffled

exponential random variates of mean 1.0 are generated using the SEXPON subroutine while shuffled uniform (0,1) random variates are obtained from the SRAND subroutine. Both of these routines offer considerable "economies of scale" in terms of time when multiple numbers or arrays of variates are generated at once, as opposed to one-at-a-time generation. Using the test setup of Section IV.C, average times to generate varying quantities of random numbers were determined. Table I reveals the relative savings realized by calling large arrays of random numbers. Thus considerable time can be saved by generating all required random numbers from one subroutine call. Programming difficulties involve deciding how many variates to generate. The general goal is to generate as many as needed while keeping the unused excess to a minimum. The balance used was to generate the expected number required plus an excess of four standard deviations. For example, in the generation of the bounding process, the expected number of points, $E[N_{+}^{*}]$ is $\lambda^{*} \cdot t'$ and the variance is the same. Thus the number of exponentials called was $y + 4\sqrt{y}$ where $y = \lambda^* \cdot t'$. Provision is made for the unlikely (1 in 40,000) case that more are required.

For specific applications this procedure could be improved slightly. For example, if the expected number of points, $E[N_t^*]$, is small, e.g. 100, then the expected excess (four standard deviations) comprises forty percent

Type of Variate	Number Called	Total Time (µsec)	Mean Time Per Variate (µsec)	0
Exponential	1	784	784	
Exponential	10	1293	129	
Exponential	100	7343	73	
Exponential	1000	68046	68	
Uniform	1	1213	1213	
Uniform	10	1381	138	
Uniform	100	3276	33	
Uniform	1000	21544	22	

Sample Size = 200 (each grouping)

Table I

Generation Times for Arrays of Shuffled Random Variates From LLRANDOM

of the total whereas for large $E[N_t^*]$, e.g. 4000, the expected "waste" is only about six percent. In the former case, reducing the "padding" to one or two standard deviations would, on the average, increase efficiency slightly although the probability of a second subroutine call for more random variates would increase.

As an example, if we were to call 100 exponential variates one at a time, the total time is 78,400 µsec, compared to 7,343 µsec for 100 exponential variates called in an array. For 100 + $4\sqrt{100}$ = 140 variates, the time is still small compared to 78,400 µsec.

C. UTILIZATION OF INTENSITY FUNCTION LOWER BOUND

One of the most time consuming repetitive operations is the computation of the intensity function value, $\lambda(t)$, during the thinning process. In the case of the exponential polynomial intensity function, this involves one power, two multiplications, two additions, and one exponentiation for each point generated in the bounding process. Since points are accepted for the non-homogeneous Poisson process whenever the uniform (0,1) thinning variate is less than the ratio $\lambda(t)/\lambda^{*}(t)$, considerable time savings result if the intensity function has a positive lower bound, say λ , since points are always accepted when the uniform (0,1) variate is less than the ratio λ/λ^* . In the general case, this ratio must be calculated only once. The expected number of intensity function computations which are alleviated by the use of the lower bound is given by $(\lambda/\lambda^*) E[N_+^*]$ where $\underline{\lambda}$ is a lower bound of the intensity function; $\underline{\lambda}^{\star}$ is an upper bound of the intensity function (both bounds are over the interval (0,t'] and $E[N_{+}^{*}]$ is the average number of points to be thinned, i.e. the average number of events in the bounding process.

It is clear that the closer $\underline{\lambda}$ is to being the greatest lower bound (GLB) and the closer λ^* is to being the LUB, the more efficient the program.

If the intensity function is strictly non-decreasing a further (and potentially great) improvement is realized by initially setting λ equal to λ , and then setting it

subsequently equal to the last value of the intensity function, $\lambda(t)$. This results in a monotone increasing lower bound and thus a decreasing probability of evaluating the intensity function.

Test cases II through VI were run side by side with and without the use of a lower bound for the intensity function. On the average, the program which did not utilize a lower bound required twenty percent more time than the program using a lower bound. Please see Appendix B for case-bycase comparison.

D. UTILIZATION OF EXPONENTIAL VARIATES FOR THINNING OF EXPONENTIAL POLYNOMIAL INTENSITY FUNCTIONS

The time requirements for evaluating $\lambda(t)$ were discussed in Section V.C above. In the case of exponential polynomial intensity functions, e.g. $\lambda(t) = \exp(a_0 + a_1 t + a_2 t^2)$, the major contributor to computation time is the exponentiation operation. Exponentiation can be avoided by utilizing the following relationship:

 $U_{i} \leq \lambda(t)/\lambda^{*}$ if and only if

 $E_{i} = -\ln U_{i} \ge \ln \lambda^{*} - \ln \lambda(t) = \ln \lambda^{*} - (a_{0} + a_{1}t + a_{2}t^{2}),$

where:

U_i is a uniform (0,1) random variate, E_i is an exponential random variate with mean one. Thus the thinning test to accept points from the bounding process becomes:

If $E_i \ge \ln \lambda^* - (a_0 + a_1 t + a_2 t^2)$, for $t = T_i^*$, accept T_i^* as a point in the non-homogeneous Poisson process with rate $\lambda(t)$; otherwise, reject T_i^* (i.e. thin it).

The key to this relationship lies in the fact that if U is distributed uniform (0,1), then -ln U is distributed as a unit exponential variate, i.e. an exponential variate with mean one. This is shown by the following:

Let U be uniform (0,1).

Then $P\{U \le x\} \equiv P\{\ln U \le \ln x\} \equiv P\{-\ln U \ge -\ln x\}$ but $P\{U \le x\} = x$, thus let $y = -\ln x$, then $P\{-\ln U \ge y\} = \exp(-y)$.

Thus -ln U is distributed as a unit exponential variate.

Although more time is required to generate the exponential random variates for thinning than the uniforms, the alleviation of the exponentiation operation more than compensates for the additional generation time. This is because SEXPON, the portion of LLRANDOM which generates exponentials, generates exponential variates by the Marsaglia "rectanglewedge-triangle" method, which is faster than taking logarithms.

Since exponential random variates are used in the generation of the bounding homogeneous Poisson process, an additional time savings can be realized by using the variates

which are left over (i.e. not used) from generating the bounding process (these are generated in arrays).

For the test cases considered, use of exponentials for thinning resulted in an average time savings of ten percent. Please see Appendix B for case-by-case results.

E. RECYCLING OF THINNING VARIATES

As mentioned above, a uniform or exponential random variate is required for each point to be "thinned". Each of these variates requires a significant amount of time for generation. Obviously a time savings would be realized if fewer variates were required.

1. Recycling of Uniform Variates

Assume U_i is uniform (0,1) but that its value is unknown. Assume then that further information becomes available that U_i is less than a ($0 \le a \le 1$), but its value is still unknown. Then U_i is uniformly distributed over the interval (0,a). If U_{i+1} is then computed by "scaling up" U_i , i.e. dividing U_i by a, then U_{i+1} is uniform (0,1). Similarly, if U_i is uniform (0,1) and subsequent information places it somewhere above a, then $U_{i+1} = (U_i - a)/(1 - a)$ is uniform (0,1). Thus by conditioning on whether the variate is greater than or less than a given value, a new variate can be computed with the desired properties. Moreover, this variate is independent of its predecessor.

In the thinning algorithm, each point is tested using a uniform (0,1) variate. Specifically, if $U_i \leq \lambda(T_i)/\lambda^*$

the point T_i^* is accepted as a point in the non-homogeneous Poisson process. Since the ratio $\lambda(T_i^*)/\lambda^*$ is between zero and one, and the only test is whether U_i is less than or greater than the ratio $\lambda(T_i^*)/\lambda^*$, the next uniform (0,1) variate, U_{i+1} , can be generated using the rules above. The algorithm is:

1. Let U_i be uniform (0,1). If U_i is less than $a = \lambda(T_i^*)/\lambda^*$, let $U_{i+1} = U_i/(\lambda(T_i^*)/\lambda^*)$; exit. 2. Otherwise let $U_{i+1} = [U_i - (\lambda(T_i^*)/\lambda^*)/[1-(\lambda(T_i^*)/\lambda^*)]$ U_{i+1} is uniform (0,1).

In theory, only one uniform random variate is required for the entire thinning process! In computational practice, however, care must be exercised because of the finite capacity of the computer to represent numbers. After ten to twenty divisions the scaled uniform number will consist only of low-order bits of the random number and these are usually not uniformly distributed.

If the intensity function has a positive lower bound, further efficiencies can be gained, in combination with the procedures of Section V.C above. Since multiplication is computationally faster than division, the value $1/(\underline{\lambda}/\lambda^*) = \lambda^*/\underline{\lambda}$ can be precomputed and stored. Thus if $U_i \leq \underline{\lambda}/\lambda^*$, $U_{i+1} = U_i \cdot \lambda^*/\underline{\lambda}$ can be computed as the next thinning variate. Note that no intensity function calculation is required. However, if $U_i > \underline{\lambda}/\lambda^*$, the thinning method proceeds with the next step, evaluating the intensity function at the point T_i^* and determining whether or not to thin the point.

Now, further information is known about U_i . Specifically, either $U_i > \lambda(T_i^*)/\lambda^*$, in which case T_i^* is thinned, or $\lambda/\lambda^* < U_i \le \lambda(T_i^*)/\lambda^*$. In either case U_{i+1} can be computed by "scaling up" U_i .

Thus, the algorithm for recycling uniform random variates for thinning is as follows:

1. If $U_i \leq \frac{\lambda}{\lambda^*}$, let $U_{i+1} = U_i \cdot \frac{\lambda^*}{\lambda}$ and exit.

2. If $\underline{\lambda}/\lambda^* < U_{\underline{i}} \leq \lambda(\underline{T}_{\underline{i}}^*)/\lambda^*$, let $U_{\underline{i+1}} = (\lambda^* \cdot U_{\underline{i}} - \underline{\lambda})/(\lambda(\underline{T}_{\underline{i}}^*) - \underline{\lambda})$ and exit.

3. Otherwise, $U_i > \lambda(T_i^*)/\lambda^*$, let $U_{i+1} = (\lambda^* \cdot U_i - \lambda(T_i^*))/(\lambda^* - \lambda(T_i^*)).$

By precomputing $\lambda^*/\underline{\lambda}$, this recycling procedure requires only one multiplication in the case where $U_i \leq \underline{\lambda}/\lambda^*$. Otherwise one multiplication, two subtractions and one division are required. In either case the recycling procedure is generally faster than generating uniform random variates from a random number generator, even when a logical IF statement is added to check for extreme values ("small bits").

2. Recycling Of Exponential Variates

This section applies only where the intensity function is exponential polynomial. Here the possibilities are less promising. In the general case where no lower bound, $\underline{\lambda}$ is used, the following algorithm would apply:

If $E_i \ge \ln \lambda^* - \ln \lambda(T_i^*)$, let $E_{i+1} = E_i - \ln \lambda^* + \ln \lambda(T_i^*)$ Otherwise

Let $E_{i+1} = \ln (\lambda^* - \lambda(T_i^*)) / (\lambda^* \cdot \exp(-E_i) - \lambda(T_i^*))$ where E_i is a unit exponential random variate. In the first case, $E_i \ge \ln \lambda^* - \ln \lambda(T_i^*)$, a time savings would generally be realized since $\ln \lambda^*$ could be computed once and stored and $\ln \lambda(T_i^*)$ is simply the value of the polynomial, i.e. $a_0 + a_1 T_i^* + a_2 T_i^{*2}$, which must be computed in any event. In the second case, however, the cure is truly worse than the illness. It is faster to simply generate another exponential variate, assuming they are called in arrays.

For there to be a time savings, however, it must be possible to make a reasonable prediction of the number of exponentials which must be generated. Otherwise an excessive number of calls to the random number generation subroutine may destroy the gains made through recycling.

In the case where a lower bound, $\underline{\lambda}$, for the intensity function exists and is positive, it is possible to determine the expected number of exponentials which must be generated. Variates are reused if they are greater than $\ln(\lambda^*/\underline{\lambda})$. That is, if $E_i > \ln(\lambda^*/\underline{\lambda})$, then $E_{i+1} = E_i - \ln(\lambda^*/\underline{\lambda})$. Otherwise, a new (i.e. non-recycled) variate is used. Thus the probability of not recycling, p, is $\underline{\lambda}/\lambda^*$ and the number of variates required is binomial with mean n*p, where n* is the number of points to be thinned.

Empirical results for the five test cases considered are shown in Appendix B. Using the calling rule of expected number plus four standard deviations for generating thinning exponentials yielded inconclusive results as compared with

the procedure in which exponential thinning variates are generated in arrays with no recycling. As expected, for larger N₊, (Cases II, III and V), recycling provided a slight time advantage (seven percentage maximum) while for small N₊, (Cases IV and VI) recycling was slower. In case VI, recycling caused run time to be approximately five percentage greater than that without recycling. Using a calling rule of expected number plus two standard deviations reduced the disadvantage slightly to four percent. The reason that recycling can cause longer run times than not recycling is that an additional logical IF statement is required for the recycling program. Again, when exponentials are used for thinning and the mean number of points to be thinned is on the order of two or three hundred, it is probably not worth the effort to recycle. If several thousand "thinnings" are required, the savings may indeed be worthwhile.

Results were somewhat surprising in the general class of intensity functions for which uniform variates are used for thinning. It was expected that a significant savings would be realized since the uniform variates can be recycled in all situations. In fact, test runs were run in which only one uniform variate was generated for the entire run with recycling used throughout. The only program statement which added time was a logical IF statement to preclude dividing by zero and to diminish the probability of small bit usage. As expected, some bias was experienced in the mean and an unusually high variance was noted, indicating a

low degree of "fidelity" to the true non-homogeneous Poisson process being simulated. Of particular interest however, were the results on execution time. Since this setup essentially gives the lower bound on execution time for recycling of uniform variates. it was expected that significant time savings would be realized in comparison to no recycling. In practice, however, the savings were minimal, with a maximum of only three percent savings. This is attributed to the efficiency of the LLRANDOM package in generating uniform variates with the logical IF statement being only a secondary cause to longer execution time.

Appendix B shows results for both exponential and uniform thinning variates.

The key point to keep in mind here is that the above results reflect the case where thinning variates are called in arrays, i.e. many at a time. Thus the comparison is between a very "fast" variate and recycling. As discussed above, calling by arrays results in considerable time savings compared to one-at-a-time generation (up to fifty times faster). Thus, in the case where a slower random number generator is utilized or where variates are called one at a time, use of the lower bound may indeed result in considerable time savings.

F. FINAL PROGRAM

A general program was developed which incorporated the efficiency considerations discussed above. The program is

general in that it can be used with any of the general class of intensity functions, whether exponential polynomial or not. The program is essentially four programs, each used in a specific case. The program classifies simulations into the four classes by asking two questions:

1. Is the intensity function exponential polynomial?

2. Does the intensity function have a positive lower bound?

The first of these determines whether uniform variates (general case) or exponential variates (exponential polynomial case) are used for thinning. The second consideration merely deletes an unnecessary logical IF statement in the case where no lower bound is used.

The computer program, NHPP, is listed after the appendices, and requires a user supplied subprogram FUNCTION FCN(T) to compute the intensity function values for each value of t. If the intensity function is exponential polynomial, only the exponent portion should be calculated, i.e. the statement FCN = $a_0 + a_1 t + a_2 t^2$ (for degree-two polynomial) should appear in the subprogram. Otherwise the entire intensity function should be evaluated.

Empirical results showed that the final program, utilizing the efficiency considerations mentioned in this chapter, resulted in a program which ran in two-thirds the time of the basic thinning program.

Please see Appendix B for case-by-case results.

VI. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL

This section presents the results of comparison of the Poisson decomposition and gap-statistics algorithm with three variations of the thinning algorithm. These variations are the basic thinning algorithm, the modified thinning algorithm (final program) and the special case one-at-a-time algorithm. Section B presents the performance of each of the algorithms when measured by the two measures of effectiveness, computational speed and computer memory requirements. Section C examines the results with a view toward identifying the strong and weak points of each algorithm. Section D recommends further avenues of study.

Again, in comparing the two classes of algorithms, one basic distinction must be kept in mind. That is that the Poisson decomposition and gap-statistics algorithm as implemented by PATROW [Ref. 3] is limited to a special class of intensity functions, i.e. exponential polynomial of degree two (or less). Although the algorithm could be adapted to higher order polynomials (by further bisection of intervals), the already complex programming considerations would grow significantly. In contrast, the thinning algorithm is a completely general method which is analytically valid for any functional form of permissible intensity functions (positive and right continuous).

The results presented here are necessarily limited to that class of intensity functions for which both algorithms can be compared, i.e. the degree-two exponential polynomial class. The purpose was to determine the relative performance of the thinning algorithm on this piece of common turf with the heretofore champion, Poisson decomposition and gapstatistics.

The basic result is that the thinning algorithm is indeed quite competitive with the Poisson decomposition and gap-statistics algorithm in the area of mutual validity. This, combined with its ease of programming and ability to generate variates from any intensity function, make the thinning algorithm a highly attractive tool for generating non-homogeneous Poisson processes of any type.

One shortcoming of the thinning program was revealed by the first test case considered (see Section IV.C). This is a fast rising exponential polynomial which rises from a value of five to almost 3300 over the interval (0,100]. For $\lambda^* = 3294.47$, the expected number of points in the bounding process is 329,447 while the non-homogeneous Poisson process being simulated has an expected number of only 1464 points. Thus all but one point in about 200 are thinned out. The thinning algorithm could be more efficiently adapted to this case by partitioning the interval, alleviating the necessity to store over 300,000 bounding process points. However, the efficiency involved would still be low, and the

best solution appears to be to utilize the Poisson decomposition and gap-statistics approach. The key point here is that the problem is easily recognized beforehand, as discussed in Section V.A, and avoidable.

Table II presents a general comparison of the two algorithms.

B. MEASURES OF EFFECTIVENESS RESULTS

Chapter four details the comparison procedure utilized to develop the following results.

1. The Basic Thinning Algorithm

Salient features for this case include the use of uniform variates for thinning and one-at-a-time generation of exponential and uniform variates.

Table III presents the results for each of the five test cases run. Algorithm A is computer program DEGTWO, the Poisson decomposition and gap-statistics program developed by PATROW and listed at the end of this paper. Algorithm B is computer program NHPTHN, the basic thinning algorithm, also listed.

The thinning algorithm was fastest in two out of the five test cases run and required eighty percent of the core space required for the gap-statistics algorithm.

Table VII lists core storage requirements for each algorithm.

2. The Modified Thinning Algorithm (Final Program)

This section compares the best case performance for both algorithms.

	AREA T	HINNING ALGORITHM MPLEMENTATION	POISSON DECOMPOSITION AND GAP-STATISTICS ALGORITHM IMPLEMENTED BY PATROW [REF. 3]
ι.	Valid intensity functions	all	degree-two exponential polynomial
2.	Programming complexity	simple	complex
ю.	Storage requirements a	. fastest algorithm - moderate	moderate
	a	 one-at-a-time algorithm - small 	
4.	Computational speed		
	a. log quadratic intensity function	wins 3 out of 6	wins 3 out of 6
	<pre>b. log linear intensity function</pre>	slow	fast (2-5 times faster than thinning)
		TABLE 1 COMPARISON OF TWO	I ALGORITHMS

.

COMPARISON OF POISSON DECOMPOSITION AND GAP-STATISTICS AND BASIC THINNING ALGORITHMS TABLE III

Poisson Decomposition and Gap-Statistics (Program DEGTWO) Basic Thinning Algorithm (Program NHPTHN)

Case	E(N)	Algorithm	Replications Per Package	N	a 2	Time(Sec) Per Package	Ratio of Times (A ÷ B)
11	1612	A	30	1610	1546	19.7272	
:		В	30	1613	1734	38.2158	79TC-0
111	576	А	75	526	543	17.5183	0.00.0
		В	75	526	557	28.9547	0600.0
TV	ח 7 ש	А	100	175	176	17.2034	
		В	100	175	174	14.5081	8681.1
Ν	20.8	А	100	207	207	18.0211	
	2	В	100	208	204	16.9440	1.U030
VT	1 2 1	A	100	124	124	13.2313	
:		В	100	124	122	9.7222	т.3009
Note:	Case I	not run due 1	to thinning alg	gorithm	ineffi	ciency (see Se	sction IV.C.)

Algorithm A: Algorithm B:

The modified thinning algorithm includes:

1. Use of exponentials for thinning of exponential polynomial intensity functions

2. Use of lower bounds

3. Partial recycling of exponential thinning variates

 Use of exponential variates left over from generation of the bounding process.

Each of these refinements are discussed in Section V.

The Poisson decomposition and gap-statistics algorithm used was again the implementation by PATROW [Ref. 3], program DEGTWO. In addition to the normal running of the program, a second set of comparisons was made utilizing separately calculated values for c^{*}, the bound for the conditioning-acceptance-rejection routine. This is discussed by PATROW [Ref. 3]. These runs are indicated by asterisk (*) in Table IV.

In the first case, the thinning algorithm was faster in four out of the five test cases, with the best relative performance occurring in Case VI.

When the improved values of c[°] were incorporated for Cases IV, V, and VI, the Poisson decomposition and gapstatistics algorithm improved substantially, winning in three out of the five test cases.

The relative advantage in computational speed was less than a factor of two in all cases with a maximum of 1.83 to 1 in favor of the thinning algorithm in case VI.

COMPARISON OF BEST CASE FOR BOTH ALGORITHMS

TABLE IV

Poisson Decomposition and Gap-Statistics (Program DEGTWO) Modified Thinning Algorithm (Final Program) (Program NHPP) Algorithm A: Algorithm B:

Case I not run due to thinning algorithm inefficiency (see Section IV.C.)

1.8299 (1.2221)*

8.2083 * (6.7303) *

127

124

100

B

(8.2251)*

15.0207

134

124

100

A

124

IV

Note:

(.6734)*

1.5988

*

(6.8877) 11.9336

19.0798

208

208

100

A

208

>

*

10.2284)

191

208

100

B

*

1.6606

(8.1610)*

164

175

100

A

174

NI

18.3944 18.4107

*

(9.5474)

153

175

100

8

11.0771

1.0137

Second Run with Better c* Value for DEGTWO (Determined Graphically) *

58

Ratio of Times

÷ B)

(A

Per Package

Time(Sec)

2 < 0

1Z

Replications Per Package

Algorithm

E(N)

Case

.8127

23.2458

1562

1612

30

B

1612

II

18.6622

543

526

75

A

526

III

485

524

75

B

18.8917

1546

1612

30

Core storage for the thinning algorithm was determined by using only the part of the algorithm which used exponential thinning variates. This precluded the requirement for storing 5000 uniform variates which are not used. The Poisson decomposition and gap-statistics program (DEGTWO) required about 88,000 bytes of core storage as compared to about 94,000 for the thinning program (NHPP modified to exclude unused uniform variate array). Detailed results are listed in Tables IV and VI.

3. The One-At-A-Time Thinning Algorithm

As discussed in Section II.C, the one-at-a-time algorithm was developed only to test the relative efficiency of the algorithm used to generate the next event in a nonhomogeneous Poisson process. This latter requirement may arise in event-step simulation where only the next event in a non-homogeneous Poisson process is desired rather than an array containing all events in a specified interval.

Computationally, the one-at-a-time algorithm is quite similar to the basic thinning algorithm. The only essential difference is that the basic thinning algorithm generates and stores all the points in the bounding process (intensity function λ^*) before thinning, whereas the oneat-a-time algorithm generates a point in the bounding process and thins that point before continuing. The latter method removes the requirement for an additional array to store the bounding process points. This in turn saves about

20,000 bytes of core storage requirement when the programs are dimensioned to accept 5000 points.

As implemented here, the one-at-a-time algorithm simply generates the next point in the non-homogeneous Poisson process and stores it, stopping when the last point generated lies outside the interval. All variates in this program are generated one at a time. The results shown in Table V are thus a good indicator of the relative efficiency of using this method. As can be seen, the one-at-a-time algorithm (program NHPOAT) is faster than the Poisson decomposition and gap-statistics algorithm (program DEGTWO) in three of the five test cases run. This is true despite the fact that DEGTWO generates all variates in arrays, taking advantage of the time economies of scale mentioned in Section V. The one-at-a-time algorithm also requires forty percent less core space.

From the tables one can also see that since both the best case thinning algorithm (Table IV) and the one-at-atime thinning algorithm (Table V) are compared to the Poisson decomposition and gap-statistics algorithm, it is possible to obtain a reasonable comparison of the best case thinning algorithm and the one-at-a-time thinning algorithm. For example, for the sample intensity function used in Case II (see Figure 3), the ratio (.8127/.5541) = 1.47 indicates that execution time for the one-at-a-time thinning algorithm is almost fifty percent greater than that of the

Ratio of Times (A ÷ B)		196C.		. 62/4		F.3109	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.1096		016.1
Time(Sec) Per Package	21.8808	39.4873	18.8685	30.0744	16.0667	12.2567	18.7335	16.0167	14.1217	9.3550
ά 2 σ	1546	1692	531	545	172	181	215	199	127	120
N	1610	1614	526	526	175	175	208	208	124	124
Replications Per Package	30	30	75	75	100	100	100	100	100	100
Algorithm	A	В	A	B	A	В	A	В	A	В
E(N)	CLAT	1612 - 526 -		174		208		124		
Case	F	1	111	111	ΝL	47	Λ		TV	:

Note: Case I not run due to thinning algorithm inefficiency (see Section IV.C.)

Poisson Decomposition and Gap-Statistics (Program DEGTWO) One-At-A-Time Thinning Algorithm (Program NHPOAT) Algorithm A: Algorithm B:

COMPARISON OF POISSON DECOMPOSITION AND GAP-STATISTICS AND ONE-AT-A-TIME THINNING ALGORITHM

TABLE V

61

to a state of the second s

best case thinning algorithm. The ratios for Cases III, IV, V and VI are 1.62, 1.27, 1.37, and 1.21 respectively.

The tables also demonstrate the time-of-day effect discussed in Section IV. That is, the execution time for a given program is not the same each time it is run. For example, program DEGTWO took 21.8808 seconds for the run recorded in Table V compared to 18.8917 seconds for the run recorded in Table IV. For this reason, ratios of execution times were chosen as the measure of effectiveness rather than absolute times.

A FORTRAN program listing, NHPNXT, is provided at the end of this thesis. This program generates the next point in a non-homogeneous Poisson process with a user supplied intensity subprogram, FUNCTION FCN. This program can be used in conjunction with event-step simulation programs, including SIMSCRIPT, where it is desired to minimize core space (at the expense of speed) or where only one event is desired at a time. Core requirements are shown in Table VI.

C. CONCLUSIONS

Both the thinning algorithm and the Poisson decomposition and gap-statistics algorithm include two general types of operations: a "generating" process and a "second stage". For the Poisson decomposition and gap-statistics algorithm, the generating process is the non-homogeneous Poisson process with degree-one exponential polynomial intensity function.

Computer Memory in Bytes 87,752 70,134 114,110 30,104 Thinning Algorithm Which Generates Next Point (NHPNXT) Modified Thinning Algorithm (NHPP) Basic Thinning Algorithm (NHPTHN) Poisson Decomposition and Gap-Statistics (DEGTWO) Algorithm (Program Name) . 2. ë. 4.

a contraction of the second second second

TABLE VI

COMPUTER MEMORY REQUIREMENTS

For the thinning algorithm (as implemented herein) the generating process is homogeneous Poisson.

The second stage for the Poisson decomposition and gapstatistics algorithm is the actual decomposition and generation of variates by the conditioning-acceptance-rejection method. For the thinning algorithm, the second stage consists of the thinning of the points in the bounding process. Thus one algorithm generates events and adds more events from a second process while the other generates events and subtracts some out.

The strongest point in the Poisson decomposition and gap-statistics algorithm is the highly efficient generation of the events in the degree-one exponential polynomial intensity function process. This is done with the gap-statistics algorithm which is two to five times faster than the thinning algorithm for this type of process (see Appendix A). At the same time, the conditioning-acceptance-rejection routine is relatively quite inefficient.

There are many considerations in predicting the relative success of the two algorithms, i.e. which will be faster in a given situation. For example, the Poisson decomposition and gap-statistics algorithm is affected by factors such as whether or not partitioning is required, the percentage of the total number of variates which come from the degreeone exponential polynomial process, and whether time reversal is required. For the thinning algorithm, the fraction

of the lower bound divided by the upper bound λ/λ^2 , would seem to be a good indicator of success.

For the test cases considered, however, the only consistent indicator was the expected number of events in the nonhomogeneous Poisson process being simulated. The smaller the number of events in the non-homogeneous Poisson process being simulated, the better the relative performance of the thinning algorithm over the Poisson decomposition and gap-statistics algorithm. Thus it appears that each algorithm has a fixed and variable part in terms of time. The thinning algorithm has a shorter "setup" cost in terms of time but the variable cost or "cost per additional variate" seems to be smaller for the Poisson decomposition and gap-statistics algorithm.

The exact cause of this phenomenon is not known although it appears to be centered in the conditioning-acceptancerejection routine.

In the larger spectrum of non-homogeneous Poisson process generation, it seems clear that the thinning algorithm is the best all-around method available.

D. RECOMMENDATIONS

Two specific areas for further study are recommended.

First, the thinning algorithm as implemented here uses only homogeneous Poisson processes for bounding. It might be worthwhile to investigate the possibility of using other processes, such as non-homogeneous Poisson processes with degree-one exponential polynomial intensity functions, as

bounding processes. This would allow the efficient gapstatistics algorithm to be utilized although function evaluation would in general become more time consuming.

The second area is in finding the optimum method for generating the degree-two exponential polynomial class of intensity function. These will undoubtedly remain of interest due to their statistical properties. Here, it seems clear that the best features of the two algorithms can be combined. Specifically, the Poisson decomposition and gap-statistics algorithm can be modified to use thinning rather than conditioning-acceptance-rejection for generating the points in the difference function process, i.e. the process with intensity function $\lambda_{D} = \lambda(t) - \lambda_{T}(t)$. Also the criterion for the decomposition might preferably be that the intensity function of the remainder be monotonically increasing. This would make it easy to find the upper bound for the function, and the most efficient version of the thinning algorithm, that where the number of computations of the intensity function is minimized, could be used.

APPENDIX A

GENERATION OF DEGREE-ONE EXPONENTIAL POLYNOMIAL INTENSITY FUNCTIONS

The generating process for the Poisson decomposition and gap-statistics algorithm is a non-homogeneous Poisson process with degree-one exponential polynomial intensity function. This is generated by using the gap-statistics method, which is subroutine NHPP2 in the DEGTWO program (see listing below).

To determine the relative speed of the thinning algorithm compared to the gap-statistics algorithm, two simple degreeone exponential polynomial intensity functions were developed and simulated.

Table VII presents the results. Case A is a monotone decreasing intensity function, $\lambda(t) = \exp(3.4 - 0.02 \cdot t)$ over the interval (0,100]. Case B is a monotone increasing intensity function, $\lambda(t) = \exp(.693 + 0.03 \cdot t)$ over the interval (0,50].

Results show that the gap-statistics algorithm is from two and a half (Case B) to four and a half (Case A) times faster than the thinning algorithm.

IO (NHPP ÷ NHPP2	100	0 0 7		4.04	
RAT					
TIME (SEC)	26.9560	6.0058	13.2448	5.4415	
IZ	1296	1294	232	232	
PROGRAM	AHN	NHPP2	NHPP	NHPP2	
E (N)	1 2 9 6	C () T		262	
CASE	A	¢	ſ	9	

Program NHPP is the final thinning program

Program NHPP2 is the gap-statistics algorithm program

TABLE VII

COMPARISON OF GAP-STATISTICS AND THINNING ALGORITHMS FOR GENERATION OF DEGREE-ONE EXPONENTIAL POLYNOMIAL INTENSITY FUNCTION PROCESSES

APPENDIX B

RESULTS OF EFFICIENCY MODIFICATIONS

This appendix presents, in tabular form, the results of comparison of the programming modifications listed in Section V.

Table VIII shows the effects of utilizing lower bounds for the intensity function. Test conditions include:

1. Use of uniform thinning variates

2. Recycling of thinning variates

3. Use of arrays of variates

Table IX shows the gains realized by employing exponential thinning variates in contrast to uniform thinning variates for exponential polynomial intensity functions. Test conditions include:

1. Use of arrays of variates

2. Recycling of thinning variates

3. Use of lower bounds for intensity function

Table X shows the results of recycling versus no recycling where uniform variates are used for thinning while Table XI shows the same comparison when exponential variates are used for thinning. For both cases, test conditions include:

1. Use of arrays of random variates

2. Use of lower bounds for intensity function

LOWER BOUND VERSUS NO LOWER BOUND; UNIFORM THINNING VARIATES

TABLE VIII

Lower Bound Utilized Lower Bound = 0.0 Algorithm A: Algorithm B:

M = number of replications of each package

Case I not run due to inefficiency of thinning algorithm (see Section IV.C).

Note:

Ratio of Times (A ÷ B) .7751 . 7374 .9052 .8428 .9528 Per Package Time(sec) 34.2876 17.4560 23.6733 10.7023 11.8233 15.3282 8.0800 8.4800 26.5771 12.9191 124 159.8 526 527 175 175 206 207 1604 124 Z ¥W 2 2 N N 2 2 2 2 3 2 Replications Per Package 75 100 100 100 100 100 100 30 30 75 Algorithm A m 2 8 A A A B A -1612 E(N) 526 174 208 124 Case III II NI IV >
FOR	
VARIATES	
THINNING	FUNCTION
UNIFORM	INTENTISY
VERSUS	IOMIAL]
VARIATES	IAL POLYN
DNINNIHL	EXPONENT
EXPONENTIAL	

TABLE IX

Case I not run due to inefficiency of thinning algorithm (see Section IV.C)

Exponential Thining Variates (Program NHPP, NTYPE = 1) Uniform Thinning Variates (Program NHPP, NTYPE = 0)

M = number of replications of each package

Algorithm A: Algorithm B:

.9016

VT AMOUT

71

Ratio of Times (A ÷ B)

Time(sec) Per Package

2

*W

Replications Per Package

Algorithm

E(N)

Case

.9175

18.5615

527

30

75

×

526

III

20.2297

526

30

75

B

28.4658

1578

30

30

2

.9034

25.7170

1614

30

30

4

1612

II

.9049

10.5615

175

30

100

A

174

IV

11.6719

175

30

100

B

11.3416

208

30

100

A

208

>

12.4561

208

30

100

-

7.4170

124

30

100

A

124

IV

Note:

*

8.2265

124

30

100

B

.9105

Ratio of Times (A ÷ B)	9095		2090	1606.	1080		6228	2116.	.9811	
Time(sec) Per Package	28.6048	29.0842	20.1999	20.8305	11.7644	11.8902	11.2612	11.5240	7.5126	7.6574
N	1572	1613	525	525	174	178	207	208	124	124
M*	4	. 4	9	9	11	11	12	12	18	18
Replications Per Package	30	30	75	75	100	100	00İ	100	100	100
Algorithm	А	В	A	В	A	В	A	В	А	B
E(N)	6191		526	272	174		806	202	1 2 1	1.77
Case	11	1	TTT		τv		V 2		ΛT	:

RECYCLING VERSUS NO RECYCLING; UNIFORM THINNING VARIATES

TABLE X

Case I not run due to inefficiency of thinning algorithm (see Section IV.C).

Recycling Used (NHPP with NTYPE = 0) No Recycling (Modified NHPP with NTYPE = 0)

Algorithm A: Algorithm B:

M = number of replications of each package

Note:

*

RECYCLING VERSUS NO RECYCLING; EXPONENTIAL THINNING VARIATES

TABLE XI

* Recycling Used (NHPP with NTYPE = 1) No Recycling (Modified NHPP with NTYPE = 1) Algorithm A: Algorithm B:

0

20 vice 40 excess exponentials called for recycling

M = number of replications of each package

Ratio of Times (A ÷ B)		. 9498	0100	. 9349	5210 1	0/10.1	. 9913	(.9952)	1.0531	(1.0434)*	ee Section IV.C).
Time(sec) Per Package	25.2592	26.5950	20.5533	21.9927	11.0176	10.8271	10.0599	10.1479	7.5407	7.1601	r algorithm (s
12	1614	1604	527	524	175	175	207	208	125	124	inning
* W	30	30	30	30	30	30	30	30	30	30	of th
Replications Per Package	30	30	75	75	100	100	100	100	100	100	n inefficiencv
Algorithm	А	В	A	В	A	В	A	B	A	B	ot run due to
E(N)	6131	7101	5 D.F.	070	יורר	5	000	007	124		n T ase
Case	1	1	TTT	1	ΤU	4	Λ	•	ΛT	1	lote: C

Table XII presents the results of incorporating all of the programming improvements into program NHPP. The final thinning program, NHPP, is compared to the basic thinning program without modifications, NHPTHN. The essential differences are:

NHPP (final program)

NHPTHN (basic program)

Arrays of variates generated

Exponential variates used for thinning

Lower bound of intensity functions utilized

Thinning variates recycled

Variates generated one at a time

Uniform variates used for thinning

Lower bound = 0.0

No recycling used

FINAL THINNING PROGRAM VERSUS BASIC THINNING PROGRAM

TABLE XII

Algorithm A: Final Thinning Program (NHPP) Algorithm B: Basic Thinning Program (NHPTHN)

* M = number of replications of each package

Case I not run due to inefficiency of thinning algorithm (see Section IV.C). Note:

Case	E(N)	Algorithm	Replications Per Package	# W	N	Time(sec) Per Package	Ratio of Times (A ÷ B)
E	6131	А	30	30	1612	25.5728	605
	7707	B	30	30	1612	42.2534	
111	5 7 E	A	75	30	526	18.2078	576
	070	В	75	30	526	31.6105	200
τv	п 7 п	A	100	30	175	10.4186	UCL
47	1.17	В	100	30	175	14.4654	
P	900	A	00T	30	208	11.1811	.676
•	007	B	100	30	207	16.5307	
τΛ	II C L	A	100	30	124	7.3525	. 765
1	L7T	В	100	30	124	9.6104	

SUBROUT INE NI	1PP	
SUBROUTINE	NHPP	
PURPOSE SIMULATES WITH INT INTERVAL	S A NON-HOMOGENEOUS POISSON PRI ENSITY FUNCTION FON(X) OVER A USING THE THINNING ALGORITHM.	OCESS GIVEN
USAGE CALL NHPF	(IS, EL, ER, UB, XMIN, NTYPE, N, IER)
DESCRIPTION IS - RAN NINE EL - LEF ER - RIG UB - UPP UB - UPP CLOF XMIN - LC OVE NTYPE - 1 N - THE	OF PARAMETERS OM NUMBER SEED. ANY INTEGER OR LESS DIGITS. FEND POINT OF INTERVAL TEND POINT OF INTERVAL TEND POINT OF INTERVAL TEND POINT OF INTERVAL TEND POINT OF INTERVAL THE STOTHE INTERVAL (EL,ER). SER UB IS TO THE LUB, THE MORE ICIENT THE PROGRAM WER BOUND OF THE INTENSITY FUNCTION WER BOUND OF THE INTENSITY FUNCTION IS EXPONENTIAL POLYNOMIAL, I.E. THE FORM EXP(A + A *X + A2*X OTHERWISE TOTAL NUMBER OF EVENTS IN THE	WITH TION THE NCTION IN IS TO ROGRAM. OF **2 +)
NON-I IER - ERI 1 2 3 4 5	HOMOGENEOUS POISSON PROCESS RER FLAG. IER HAS FOLLOWING M .ER IS LESS THAN EL .UB IS NON-POSITIVE .XMIN IS NEGATIVE .MORE THAN 5000 EVENTS REQUIR BOUNDING PROCESS: STORAGE CAN EXCEEDED. .XMIN IS GREATER THAN UB	EANINGS: ED FOR PACITY
COMMENTS CALLING DENNA, D	PROGRAM MUST HAVE & COMMON REG. F DIMENSION (5000)	ION,
EX AMPLE:	DIMENSION T (5000) Common/Donna/T	
CELLS TO	EVENTS WILL BE STORED IN L) THROUGH T(N)	
THE INTE IF THE IN POLYNOMI, INTENSIT	VSITY FUNCTION IS USER SUPPLIE NTENSITY FUNCTION IS NOT EXPON AL, I.E. IF NTYPE = 0, THE ENT Y FUNCTION IS EVALUATED.	D. ENTIAL IRE
EX AMPL E:	FUNCTION FCN(X) A = 1.0 FCN = B*X RETURN END	
IF THE II POLYNOMI PCLYNOMI	NTENSITY FUNCTION IS EXPONENTIAL, I.E. NTYPE = 1, ONLY THE AL IS EVALUATED.	AL
EXAMPLE:	FUNCTION FCN(X) A = 1.0 A1 = 0.5 A2 = 0.05 FCN = A + A1*X + A2*X**2 RETLRN	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

END CCCC PROGRAMMER: LCDR JOHN SCOTT REDD, LSN SEPTEMBER 1978 SUBROUTINE NHPP (IS,EL,ER,UB,XMIN,NTYPE,N,IER) DIMENSION U(5000), TIMES(5000), TT(5000), EE(5000) COMMON /DCNNA/ TT COMMON /ANNE/ TIMES,EE EXTERNAL FCN CALL OVFLOW CCC INITIALIZE VARIABLES IER = 0 2K = .0001 ZL = 10E-6 PCTMIN = .05 CCCC CHECK FOR PARAMETER ERRORS (EL.GE.ER) IER = 1 (UB.LE.O.O) IER = 2 (XMIN.LT.O.O) IER=3 (UB-XMIN.LT.ZL) IER=5 (IER.NE.O) GO TO 14 IF ÎF COCC GENERATE POINTS IN HOMOGENEOUS POISSON PROCESS WITH RATE = UB CALL HPP (IS, EL, ER, UB, NTYPE, NSTAR, NLEFT, NEXP, IEP) IF (IER. EQ. 4) GO TO 14 CCC IS INTENSITY FUNCTION OTHER THAN LOG CLADRATIC? IF (NTYPE.EQ.0) GO TO 9 COCOCO LOG QUADRATIC INTENSITY FUNCTION DOES IT HAVE A MINIMUM OR IS MINIMUM LESS THAN PCTMN OF MAX? PCT = XMIN/UB IF (PCT.LT.PCTMIN) GD TD 6 COCOCOC USE MINIMUM CCMPUTE EXPECTED NUMBER OF EXPONENTIALS NEEDED, TAKING INTO ACCOUNT REUSEING OF THOSE IN MIN P = 1.0-PCT Q = PCT XNSTAR = FLOAT(NSTAR) NCHK = IFIX(XNSTAR*P+4.0*SQRT(XNSTAR*P*0)) NCHK = MINO(NCHK,NSTAR) CALL REORD (NCHK,NEXP,NLEFT) NCALL = NCHK-NLEFT IF (NCALL.LE.0) GO TO 1 CALL SEXPON (IS,EE,NCALL) K = 0 KK = 1 EB = EE(KK) UBLN = ALOG(UB) BND = ALOG(UB/XMIN) KKK = 0 1 **UUUUUUU** I COUNTS THE HPP EVENTS K COUNTS THE NHPP EVENTS KK COUNTS THE CURRENT UNIT EXPONENTIALS (FOR THINNING) KKK COUNTS THE TOTAL NUMBER OF UNIT EXPONENTIALS (FOR THINNING)

```
THIS PAGE IS BEST QUALITY PRACTICABLE
           DO 5 I=1, NSTAR

IF (EB.LT.BND) GO TO 2

K = K+1

TT(K) = TIMES(I)

EB = EB-BND

GO TO 5

VAL = -FCN(TIMES(I))+UBLN

IF (EB.LT.VAL) GO TO 3

K = K+1
                                                                THON COPY FURMISHED TO DDC
        2
       K = K+1
TT(K) = TIMES(I)
3 KK = KK+1
CCC
     CHECK TO SEE IF MORE UNIT EXPON NEEDED
            IF (KK.LE.NCHK) GD TO 4
CCC
      GENERATE MORE UN IT EXPONENTIALS FOR THINNING
           KKK = KKK+KK

FN = P*FLGAT(NSTAR-KKK)

NEB = MAXO(1, IFIX(PN+4.0*SQRT(PN*C)))

CALL SEXPON (IS,EE,NEB)

KK = 1
           NCHK = NEB
EB = EE(KK)
CONTINUE
            N = K
G) TO 14
CCC
     LOG QUADRATIC WITH NO MINIMUM
          CONTINUE
CALL REORD (N STAR, N EXP, NLEFT)
NCALL = NSTAR-NLEFT
IF (NCALL.LE.O) GO TO 7
CALL SEXPON (IS, EE, NCALL)
        6
CCC
      SET VARIABLES
       7 K = 0
UBLN = ALOG(UB)
CCCC
     I COUNTS HPP EVENTS
K COUNTS NHPP EVENTS
       DO 8 I=1.NSTAR
VAL = -FCN(TIMES(I))+UBLN
IF (EE(I).LT.VAL) GC TO 8
K = K+1
TT(K) = TIMES(I)
8 CONTINUE
N = K
            N = K
GO TC 14
COCOCO
      INTENSITY FUNCTION IS NOT LOG QUADRATIC
     DOES IT HAVE A MINIMUM OR IS MINIMUM LESS THAN PCTMN OF MAX?
       9 PCT = XMIN/UB
IF (PCT.LT.PCTMIN) GD TO 12
CCCCC
     USE MINIMUM
      INITIALIZE VARIABLES
           NUNIF = NSTAR
CALL SRAND (IS,U, NUNIF)
K = 0
FF = 1.0/UB
č
      I COUNTS HPP EVENTS
```

```
THIS PAGE IS BEST QUALITY PRACTICABLE
      K COUNTS NHPP EVENTS
ç
                                                                               FROM COPY FURMISHED TO DDC
     DO 11 I=1.NSTAR

IF (U(I).GT.PCT) GO TO 10

K = K+1

TT(K) = TIMES(I)

GO TO 11

10 VAL = FCN(TIMES(I))*FF

IF (U(I).GT.VAL) GO TO 11

K = K+1

TT(K) = TIMES(I)

10 CONTINUE

N = K
             GO TO 14
CCC
      NO MINIMUM
      12 NUNIF = NSTAR
CALL SRAND (IS,U, NUNIF)
K = 0
             FF = 1.0/UB
DO 13 I=1.NSTAR
VAL = FCN(TIMES(I))*FF
IF (U(I).GT.VAL) GO TO 13
CCCC
      ACCEPT POINT
             K = K+1
TT(K) = TIMES(I)
CCCC
       REJECT POINT
      13 CONTINUE
      14 RETURN
END
       SUBROUTINE HPP
CCCCCC
      SUBROUTINE HPP GENERATES PCINTS IN A HEMOGENEOUS
POISSON PROCESS WITH INTENSITY FUNCTION = UB
             SUBROUTINE HPP(IS, EL, ER, UB, NTYPE, NSTAR, NL EFT, NEXP, IER)
DIMENSION TIMES(5000), EE(5000)
COMMON /ANNE/ TIMES, EE
CCC
       INITIALIZE VARIABLES
             EXMEAN = 1.0/LB
NEXP = IFIX(UB*(ER-EL)+4.0*SQRT(UB*(ER-EL)))
IF (NEXP.GT.5000) NEXP=5000
CALL SEXPON (IS,EE,NEXP)
SUM = EL
ISTART = 0
ISTOP = NEXP
C
        DO 1 JJ=1,NEXP

E = EXMEAN*EE(JJ)

SUM = SUM+E

TIMES(JJ) = SLM

IF (SUM.LT.ER) GO TO 1

NSTAR = JJ-1

GO TO 5

1 CONTINUE
CCC
       EXCEPTIONAL NUMBER OF POINTS NEEDED
         2 ISTART = ISTART+JJ
NEXP = IFIX(UB*(ER-SUM)+4.0*SQRT(UB*(ER-SUM)))
IF (NEXP.EQLO) NEXP=1
```

79

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC ISTCP = ISTART+NEXP IF (ISTOP.GT.5000) GO TO 4 CALL SEXPON (IS,EE,NEXP) CO 3 JJ=1.NEXP E = EXMEAN*EE(JJ) SUM = SUM+E KK = JJ+ISTART TIMES(KK) = SUM IF (SUM.LT.ER) GO TO 3 NSTAR = KK-1 GO TO 5 CONTINUE 3 CONTINUE С GO TO 2 CCC MORE THAN 5000 EXPONENTIALS NEEDED 4 IER = 4 GJ TO 6 CCCC CALCULATE NUMBER OF EXPONENTIALS NOT USED 5 NLEFT = NEXP-JJ 6 RETURN ENC C...SUBROUTINE REORD C SUBROUTINE REORD REORDERS EXPONENTIALS LEFT OVER FROM C SUBROUTINE HPP FOR USE AS THINNING VARIATES IN NHPP C SUBROUTINE RECRD (NCHK, NEXP, NLEFT) DIMENSION EE(5000), TIMES(5000) COMMON /ANNE/ TIMES, EE ç ARE ENOUGH EXPONENTIALS LEFT OVER FROM HPP? č IF (NLEFT.GE.NCHK) GO TO 4 CCCCC MCRE EXPONENTIALS NEEDED REORDER TOP TO BOTTOM OR VICE VERSA? IF (NEXP.LT.NCHK) GO TO 2 CCC RECRDER BOTTOM TO TOP N1 = NCHK-NLEFT N2 = NEXP-NLEFT С $\begin{array}{rrr} \text{CO 1 I=1, NLEFT} \\ \text{J = N1+I} \\ \text{K = N2+I} \\ \text{EE(J) = EE(K)} \\ \text{1 CONTINUE} \\ \text{GO TO 6} \end{array}$ CCC REORDER TOP TO BETTOM 2 NCHKO = NCHK+1 NEXPO = NEXP+1 DO 3 I=1, NLEFT J = NCHKO-I K = NEXPO-I EE(J) = EE(K) 3 CONTINUE GO TO 6 CCC ENOUGH LEFT OVER FROM HPP FOR ALL THINNING N1 = NEXP-NLEFT D0 5 I=1, NCHK 4

J = N1+IEE(I) = EE(J) 5 CONTINUE 6 RETURN END THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURAISHED TO DDC

FROM COPY FURMISHED TO DDC

SUBROUT INE NHPTHN PURPOSE SIMULATES A NONHOMOGENEOUS POISSON PROCESS WITH INTENSITY FUNCTION FCN(X) USING . THE THINNING ALGORITHM USAGE CALL NHPT HN (IS, EL, ER, UB, N, IER) DESCRIPTION OF PARAMETERS IS - RANDOM NUMBER SEED. ANY INTEGER WITH NINE OR LESS DIGITS. EL - LEFT END POINT OF INTERVAL ER - RIGHT END POINT OF THE INTERVAL UB - UPPER BOUND OF THE INTENSITY FUNCTION,FCN(X), OVER THE INTERVAL (EL,ER). THE CLOSER UB IS TO THE LEAST UPPER BOUND,LUB, THE MORE EFFICIENT THE PROGRAM. UB MUST BE STRICTLY POSITIVE N - THE TOTAL NUMBER OF EVENTS IN THE NON-HOMOGENEOUS PCISSON PROCESS. IER - ERROR FLAG. IER HAS FOLLOWING MEANINGS; 1...ER IS LESS THAN EL 2...UB IS NON-POSITIVE COMMENTS CALLING PROGRAM MUST HAVE A COMMON REGION, SCOTT, OF DIMENSION (5000) EXAMPLE: DIMENSION T (5000) COMMON/SCOTT/T TIMES TO EVENTS WILL BE STORED IN CELLS T(I) THROUGH T(M). LCDR JOHN SCOTT REDD, USN AUGUST 1978 PROGRAMMER: SUBROUTINE NHPTHN (IS, EL, ER, UB, N, IER) DIMENSION TIMES(5000), TTT(5000) COMMEN /SCOTT/ TTT EXTERNAL FCN CALL OVFLOW INITIALIZE VARIABLES IER = 0 IF (EL.GE.ER) IER = 1 (EL.GE.ER) IER = 1 (UB.LE.O.O) IER = (IER.NE.O) RETURN IF IF L C C C C C GENERATE POINTS IN HOMOGENEOUS POISSON PROCESS WITH RATE UB . EXMEAN = 1.0/LB EXMEAN = 1.0/LB I = 1 SUM = EL CONTINUE CALL EXPON (IS, E, 1) E = E * EXMEAN SUM = SUM + E IF (SUM.GT.ER) GO TO 2 TI MES(I) = SUM I = I + 1 GO TO 1 CONTINUE NSTAR = I - 12 CCC COMMENCE THINNING THE NSTAR POINTS F1 = 1.0/UB

С

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

K = 0 IF (NSTAR.EQ.0) GO TO 4 DO 3 I=1, NSTAR CALL SRAND (IS,U,1) RATIO = FCN(TIMES(I))*F1 IF (U.GT.RATIO) GO TO 3 K = K+1 TTT(K) = TIMES(I) 3 CONTINUE A N = K RETURN 4 N = C RETURN END

C

C

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC SUBROUTINE NHPOAT SUBROUTINE NEPOAT PURPOSE SIMULATES A NON-HOMOGENEOUS POISSON PROCESS WITH INTENSITY FUNCTION FON(X) OVER THE INTERVAL (EL, ER) USING THE ONE-AT-A-TIME THINNING ALGORITHM .. USAGE CALL NHPOAT (IS, EL, ER, UB, N, IER) ... DESCRIPTION D.F. PARAMETERS IS - RANDOM NUMBER SEED. ANY INTEGER WITH NINE CR LESS CIGITS. EL - LEFT END POINT OF INTERVAL ER - RIGHT END POINT OF THE INTERVAL UB - UPPER BOUND OF THE INTERSITY FUNCTION.FCN(X), OVER THE INTERVAL (EL.ER). THE CLOSER UE IS TO THE LEAST UPPER BOUND,LUB, THE MORE EFFICIENT THE FROGRAM. UB MUST BE STRICTLY POSITIVE N - THE TOTAL NUMBER OF EVENTS IN THE NON-HOMOGENEOUS PCISSON PROCESS. IER - ERROR FLAG. IER HAS FOLLOWING MEANINGS; 1...ER IS LESS THAN EL 2...UB IS NON-POSITIVE ...COMMENTS CALLING PREGRAM MUST HAVE A COMMON REGION, DONNA, OF DIMENSION(5COO) DIMENSION TT (5000) COMMON/DONNA/TT EXAMPLE: TIMES TO EVENTS WILL BE STORED IN CELLS T(1) THROUGH T(N) SUBROUTINE NHPOAT (IS, EL, ER, UB, N, IER) DIMENSION TT(5000) COMMEN /DENNA/ TT EXTERNAL FCN CALL OVFLOW .INITIALIZE VARIABLES IER = C IF (EL.GE.ER) IER = 1 IF (UB.LE.0.0) IER = 2 IF (IER.NE.0) RETURN С I = 1 EXMEAN = 1.0/UB SUM = EL CCC GENERATE POINT IN BOUNDING PROCESS 1 CONTINUE CALL EXPON (IS,E,1) E = E*EXMEAN SUM = SUM+E IF (SUM.GT.ER) GO TO 2 THIN THE POINT CALL RANDOM (IS, U, 1) RAT IO = FCN(SUM) * EXMEANIF (U.GT.RATIC) GO TO 1 TT(I) = SUM I = I+1 GO TO 1 2 N = I-1

į,

SUBROUTINE NHPNXT
SUBROUTINE NHPNXT GENERATES THE TIME OF THE NEXT Event in a non-homogeneous poisson process with rate function fcn(x) (User Supplied).
USAGE: CALL NHPNXT(IS,UB,GLB,XLAST,ER,XNEXT,IER)
DESCRIPTION OF PARAMETERS: IS - RANDOM NUMBER SEED. ANY INTEGER WITH NINE OR LESS DIGITS. UB - UPPER BOUND OF THE INTENSITY FUNCTION OVER THE INTERVAL (XLAST,ER). GLE - GREATEST LOWER BOUND OF THE INTENSITY FUNCTION OVER THE INTERVAL (XLAST,ER). SET = 0 IF UNKNOWN. XLAST - THE TIME OF THE LAST EVENT IN THE PROCESS ER - RIGHT END POINT OF THE INTERVAL XN EXT - THE NEXT POINT IN THE PROCESS. IF THERE ARE NO MCRE POINTS IN THE INTERVAL (XLAST,ER), XNEXT - THE NEXT POINT IN THE PROCESS. IF THERE ARE NO MCRE POINTS IN THE INTERVAL (XLAST,ER), XNEXT IS ASSIGNED THE VALUE ER + 1.0 AND IER IS SET AT 5. IER - ERROR FLAG. IER HAS THE FCLLOWING MEANINGS: 1UB IS NON-POSITIVE 2XLAST IS GREATER THAN ER 3GLB IS NEGATIVE 5XNEXT IS NEGATIVE
COMMENTS THE INTENSITY FUNCTION, FCN, IS USER SUPPLIED. EXAMPLE: FUNCTION FCN(X) FCN = 1.0 + EXP(-X) RETURN END
PROGRAMMER: LCDR JOHN SCOTT REDD, USN AUG 1978
SUBROUTINE NH FNXT (IS,UE,GLB,XLAST,ER,XNEXT,IER) EXTERNAL FCN CALL CVFLCW DATA EXPO/0.0/,U/0.0/ RMIN = GLB/UB IER = 0 IF (UB.LE.0.0) IER = 1 IF (XLAST.GE.ER) IER=2 IF (GLB.LT.0.C) IER=3 IF (IER.EC.1.OR.IER.EQ.2) RETURN IF (IER.EQ.3) GLB = 0.0
GENERATE E*(I,J): CHECK TO SEE IF ADDITION OF E*(I,J) EXCEEDS ER
EXMEAN = 1.0/UB XNEW = XLAST
GENERATE GNE EXFONENTIAL AND SCALE
1 CALL EXPON (IS, EXPO, 1) EXPG = EXPO*EXMEAN XNEW = XNEW+EXPO IF (XNEW.GT.ER) GO TO 3
GENERATE UNIFORM(0,1) THINNING VARIATE
CALL RANDOM (IS,U,1)
TEST LOWER BOUND FOR THINNING

000 000

000 00

C IF (U.LE.RMIN) GD TO 2 C TEST FOR THINNING RATIO = FCN(XNEW)/UB IF (U.LE.RATIO) GO TO 2 GO TO 1 C ARRIVAL HERE INDICATES SUCCESSFUL THINNING 2 XNEXT = XNEW RETURN C ARRIVAL HERE INDICATES NO MORE POINTS IN INTERVAL 3 IER = 5 XNEXT = ER+1.0 RETURN END

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC SUBROUTINE DEGTWO SUBROUTINE DEGTWO PURFOSE SIMULATES A NON-HOMOGENEOUS POISSON PROCESS WITH QUADRATIC EXPONENTIAL INTENSITY FUNCTION OVER A GIVEN INTERVAL USING THE POISSON-DECOMPOSITION AND GAP STATISTIC ALGORITHM. USAGE CALL DEGTWO(IS, A, A1, A2, EL, ER, II, N, IER) DESCRIPTION OF PARAMETERS IS - RANDOM NUMBER SEED. ANY INTEGER WITH NIL OR LESS DIGITS. A - CONSTANT IN INTENSITY FUNCTION A1 - 1ST DEGREE COEFF IN INTENSITY FUNCTION. A2 - 2ND DEGREE COEFF IN INTENSITY FUNCTION. A2 - 2ND DEGREE COEFF IN INTENSITY FUNCTION. EL - LEFT END POINT OF INTERVAL. ER - RIGHT END POINT OF INTERVAL. II - O FOR TIMES OF EVENTS. N - A VECTOR OF LENGTH 5. N(1) THROUGH N(4) CONTAIN NUMBERS OF EVENTS FROM VARIOUS COMPONENTS OF THE DECOMPOSED INTENSITY FUNCTION. N(5) CONTAINS THE TOTAL NUMBER OF EVENTS IN THE NON-HOMOGENEOUS POISSON PROCESS. ANY INTEGER WITH NINE COMMENTS CALLING PREGRAM MUST HAVE A COMMON REGION, HOLD, OF DIMENSION (50C0), AND AN INTEGER ARRAY OF DIMENSION (5). DIMENSION T(5000),N(5) COMMON/HOLD/T EXAMPLE: CALLING PROGRAM MUST CONTAIN THE FOLLWOING ASSIGNMENT STATEMENT: M=N(5) CALLING PROGRAM MUST USE THE FOLLOWING JOL CARDS // EXEC FORTCLG, IMSL = DP //FORT.SYSIN DD * TIMES TO EVENTS OR TIMES BETWEEN EVENTS WILL BE STORED IN CELLS T(1) THROUGH T(M). SUBROUTINE DEGTWO (IS,A,A1,A2,EL,ER,II,N,IER) DIMENSION TIMES(5000), T(5000), N(5), P(5) COMMON /MIKE/ TIMES/HOLD/T CALL OVFLOW INITIALIZE VARIABLES P(1) = A P(2) = A1 P(3) = A2 P(4) = 0 P(5) = 0DO 1 I=1,51 N(I) = 0 IF RATE FUNCTION IS LESS THAN DEGREE THO, USE NHPP2 ROUTINE ONLY

CCC

č

CCCC

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

```
С
          IF (A2.EQ.0.) GO TO 2

GO TO 4

2 CALL NHPP2 (IS, EL, ER, A, A1, II, N1, IER)

N(5) = N1

IF (N1.EQ.0) RETURN
ç
          \begin{array}{c} DO & 3 & I=1, N1 \\ TIMES(I) & = T(I) \\ 3 & CONTINUE \end{array}
С
                RETURN
CCCC
          DETERMINE COEFFICIENTS FOR MODIFIED DEGREE ONE RATE FUNCTION
          4 TEST = -A1/(2.*A2)

TINT = ER-EL

IF (A1.GE.O..AND.A2.GT.O.) GO TO 5

GO TO 6

5 8 = A-A2*TINT**2

B1 = A1+2.*A2*TINT

GO TO 10

6 8 = A
          6 B = A

IF ((A1.LE.0..AND.A2.LT.0.).OR.(A1.GT.0..AND.A2.LT.0..

1TINT)) GO TO 7

GO TO 8

- AND - A2.LT.0.).OR.(A1.GT.0..AND.A2.LT.0..
          7 B1 = A1+A2*TINT

G0 TC 10

8 IF (A1.GT.0..AND.A2.LT.0..AND.TEST.LT.TINT) GC TO 9

E1 = A1
          E1 = A1

GO TO 10

9 B1 = A1/2.
CCC
          MUST THE INTERVAL BE PARTITIONED?
       10 IF (A1*A2.LT.G..AND.TEST.LT.TINT) GD TO 11
ERNEW = ER
GO TO 12
11 ERNEW = TEST+EL
CCC
          GENERATE DEGREE ONE NHPP ON INTERVAL
       12 BB = 8

BB1 = B1

CALL NHPP2 (IS,EL,ERNEW,BB,BB1,0,N1,IER)

N(1) = N1

IF (N(1).EQL0) GO TO 14
ç
       DO 13 I=1,N1
TIMES(I) = T(I)
13 CONTINUE
CCCCC
          COMPUTE LENGTH OF INTERVAL AND DETERMINE VALUE
OF CSTAR FOR USE IN REJECTION ROUTINE
              0
                   = ERNEW-EL
        14
               Q = ERNEW-EL

E1 = A

E2 = A2*0**2

E3 = A1*Q

E4 = A1 **2/(4.*A2)

E5 = A1**2/(2.*A2)

IF (A1.GE.O.AND.A2.GT.O.) GO TO 15

IF (A1.LT.O.AND.A2.GT.O.AND.TEST.GE.TINT) GC TO 16

IF (A1.LT.O.AND.A2.GT.O.AND.TEST.LT.TINT) GC TO 17

IF (A1.LE.O.AND.A2.LT.O.) GO TO 18

IF (A1.GT.O.AND.A2.LT.O.AND.TEST.GE.TINT) GO TO 19

CSTAR = EXP(E1-E4) - EXP(E1)

GO TO 20
```

THIS PAGE IS BEST QUALITY PRACTICABLE TROM COPY FURNISHED TO DDC 15 CSTAR = EXP(E1)-EXP(E1-E2) GO TO 20 16 CSTAR = EXP(E1+E2+E3)-EXP(E1+ GJ TO 20 17 CSTAR = EXP(E1-E4)-EXP(E1-E5) GJ TO 20 18 CSTAR = EXP(E1)-EXP(E1+E3+E2) GO TC 20 19 CSTAR = EXP(E1+E3+E2)-EXP(E1) E XP(E1+E2+E3) - EXP(E1+E3)CCCC COMPUTE INTEGRAL OF MCCIFIED DEGREE TWO RATE FUNCTION OVER INTERVAL 20 CALL HELP (A,A1,A2,EL,ERNEW,PMTR) PMTR = PMTR-(EXP(B)*(EXP(B1*ERNEW)-EXP(B1*EL)))/B1 CCC IDENTIFY AS FIRST SUBINTERVAL NOTE = 1CCC GENERATE REALIZATION ON POISON (PMTR) VARIATE 21 CALL PVAR (IS, PMTR, M) IF (NOTE.EQ.1) GO TO 22 GO TO 25 CCC REJECTION ROUTINE USED ON FIRST SUBINTERVAL N(2) = M P(4) = B P(5) = B1 IF (N(2).EQ.0) GO TO 24 CALL REJECT (IS,EL,CSTAR,P,Q,N(2)) 22 CC DO 23 I=1,M TIMES(N(1)+1) = T(I) 23 CONTINUE CCCC HAS THE INTERVAL BEEN PARTITIONED? 24 IF (ERNEW.EQ.ER) GO TO 34 GO TO 27 CCC USE REJECTION ROUTINE ON SECOND PART OF INTERVAL 25 N(4) = M P(4) = B P(5) = B1CCC IF NO EVENTS OCCURRED BYPASS REJECTION ROUTINE IF (N(4).EQ.O) GO TO 35 Q = ER-ELNEW CALL REJECT (IS, ELNEW, CSTAR, P,Q,N(4)) CCC COPY TIMES OF EVENTS INTO 'TIMES' ARRAY N4 = N(1) + N(2) + N(3)CC $\begin{array}{r} DO \quad 26 \quad I = 1 \ M \\ TIMES(N4+I) = T(I) \\ 26 \quad CONTINUE \end{array}$ CCCCCC GENERATION OF VARIATES COMPLETE. GO TO 35 С

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

```
INTERVAL PARTITION WAS REQUIRED. MUST NOW CONSIDER SECOND SUBINTERVAL
CCCCCC
         DETERMINE COEFFICIENTS FOR MODIFIED DEGREE ONE RATE FUNCTION
      27 IF (A1.GT.0..AND.A2.LT.0.) GO TO 28

E = A-A2*TINT **2

B1 = A1+2.*A2*TINT

GO TO 29

28 B = A+(A1/2.)*TINT

B1 = A1/2.+A2*TINT

29 ELNEW = ERNEW
CCC
         GENERATE DEGREE ONE NHPP ON INTERVAL
             BB = B

BB1 = B1

(ALL NHPP2 (IIS,ELNEW,ER,BB,BB1,0,N3,IER)

N(3) = N3

IF (N(3).EQ.C) GO TO 31

N3 = N(1)+N(2)
CCCC
         TRANSFER TIMES BETWEEN ARRAYS
      \begin{array}{r} 00 \ 30 \ I=1,N3\\ TIMES(N3+I) = T(I)\\ 30 \ CONTINUE \end{array}
C
       31 G = TINT
COCC
         DETERMINE VALUE OF CSTAR FOR USE IN
THE REJECTION ROUTINE
      E2 = A2+0 **2
E3 = A1+0
IF (A1.GT.0..AND.A2.LT.0.) G0 T0 32
CSTAR = EXP(E1-E4)-EXP(E1-E5-E3-E2)
G0 TC 33
32 CSTAR = EXP(E1-E4)-EXP(E1+E3+E2)
CCCC
         COMPUTE INTEGRAL CF MOCIFIED DEGREE TWO RATE FUNCTION OVER SECOND INTERVAL
       33 CALL HELP (A, A1, A2, ELNEW, ER, PMTR)
PMTR = PMTR-(EXP(B)*(EXP(B1*ER)-EXP(B1*ELNEW)))/B1
CCC
       IDENTIFY AS SECOND SUBINTERVAL
              NOTE = 2
GJ TO 21
CCCC
         PARTITION OF INTERVAL NOT REQUIRED. COMPUTE TOTAL EVENTS AND SUPERPOSE TWO EVENT STREAMS
      34 N(5) = N(1)+N(2)
IF (N(2).EQ.0) GO TO 38
LBGN = N(1)+1
              JBGN = 1
CALL COLATE (LBGN, N(5), 1)
GO TO 38
CCCC
      PARTITION WAS REQUIRED.
AMOUNT OF SURTING NEEDED
                                                                   DETERMINE
      \begin{array}{rcl} 35 & N(5) &= & N(1) + N(2) + N(3) + N(4) \\ IF & (N(2) \cdot EQ \cdot 0 \cdot AND \cdot N(4) \cdot EQ \cdot 0) & GO & TC & 38 \\ IF & (N(4) \cdot EQ \cdot 0) & GO & TO & 36 \\ IF & (N(2) \cdot EQ \cdot 0) & GO & TO & 37 \end{array}
C
```

FROM COPY FURSISHED TO DDC

```
MUST SUPERPOSE FOUR EVENT STREAMS
ç
           LBGN = N(1)+1

LFIN = N(1)+N(2)

CALL COLATE (LBGN,LFIN,1)

LBGN = LFIN+N(3)+1

JBGN = LFIN+1

CALL COLATE (LBGN,N(5),JBGN)

GD TO 38
CCC
       MUST SUPERPOSE FIRST HALF OF ARRAY ONLY
      36 N2 = N(1)+N(2)
LBGN = N(1)+1
CALL COLATE (LBGN, N2,1)
GO TO 38
CCC
        MUST SUPERPOSE SECOND HALF OF ARRAY ONLY
     37 KK = N(1) + N(2) + 1

LBGN = N(1) + N(2) + N(3) + 1

LFIN = N(5)

CALL COLATE (LBGN, N(5), KK)

GO TO 38
CCCC
        ARE TIMES OF EVENTS OF TIMES BETWEEN EVENTS REQUESTED?
      38 IF (II.EQ.0.) RETURN
CCC
        CALCULATE TIMES BETWEEN EVENTS
            S = TIMES(1)
TIMES(1) = TIMES(1)-EL
N5 = N(5)
CC
            CO 39 I=2,N5
S1 = TIMES(I)
TIMES(I) = TIMES(I)-S
      39 CONTINUE
C
            RETURN
        END
SUBROUTINE NHPP 2 SIMULATES A NON-HOMCGENEOUS
PCISSON PROCESS WITH A LOG-LINEAR INTENSITY
(RATE) FUNCTION
CCCC
            SUBROUTINE NHFP2 (IS, EL, ER, A, A1, II, N, IER)
DIMENSION T(5000)
COMMON /HOLD/ T
С
            CALL OVFLOW
CCC
        INITIALIZE VARIABLES
            IER = 0
TINT = ER-EL
A = EXP(A+A1*EL)
CC
      IS THE POISSON PROCESS HOMOGENEOUS?
       IF (A1.EQ.0.) GO TO 3
PAR = (A*(EXP(TINT*A1)-1.))/A1
IF (A1.GT.O.) GO TO 1
IFLAG = 3
GO TO 2
1 A = A*EXP(TINT*A1)
A1 = -A1
IFLAG = 2
C
```

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

CC COMPUTE PARAMETERS OF BOTH POISSON RANCOM VARIABLES 2 THETA = -A/A1 GD TD 4 COMPUTE RATE AND SCALING PARAMETERS FOR HOMOGENEOUS PCISSON PROCESS CCC 3 PAR = TINT*A IFLAG = 1 AINVRS = 1./A C COMPUTE NUMBER OF EXPONENTIAL VARIATES REQUIRED Ĉ 4 NMAX = PAR+6. *SQRT(PAR) CCC IS THIS A HOMOGENEOUS POISSON PROCESS? IF (IFLAG .EQ.1) GO TO 17 CCC GENERATE REALIZATION ON POISSON (THETA) VARIATE 5 CONTINUE CALL PVAR (IS,THETA,M) IF (M.EQ.O) GC TO 7 CCC CALCULATE TIMES OF EVENTS CALL SEXPON (IS, T, NMAX) B = -A1= 0. JMAX = NMAX+1ç DO 6 I=1, JMAX CCCC HAVE NUMBER OF EVENTS EXCEEDED THE MAXIMUM NUMBER THAT THE ARRAY CAN HOLD? IF (I.GT.NMAX) GD TO 8
V = V+T(I)/((M-I+1)*B)
IF (V.GT.TINT) GD TO 9
T(I) = V
IF (I.EQ.M) GD TO 10
6 CONTINUE CCCCC NO EVENTS OCCURRED 7 N = O RETURN CCCC TOO MANY EVENTS FOR ARRAY. INCREMENT ERROR CODE AND TRY AGAIN 8 IER = IER+1 GO TO 5 CCCC THE NUMBER OF EVENTS OBSERVED TO OCCUR IN THIS NON-HOMOGENEOUS POISSON PROCESS IS 'N' N = I - 1IF (N - EQ - 0) RETURN
G0 T0 11
N = M 9 10 N = M 11 CONTINUE CCC IS THE RATE FUNCTION INCREASING OR DECREASING? IF (IFLAG.EC.3) GO TO 13 CCC TIME REVERSAL TECHNIQUE IS NECESSARY DETERMINE WHETHER N IS EVEN OR ODD

c		THIS PAGE IS BEST QUALITY PRACTICABLE ISIG = MOD(N,2) NLOOP = N/2 NL = N+1
č	12	CD 12 I=1,NLOCP S = T(I) T(I) = ER-T(N1-I) T(N1-I) = ER-S CONTINUE
50 000	AR	IF (ISIG.EQ.1) T(NLCOP+1)=ER-T(NLOOP+1) E TIMES OF EVENTS REQUESTED? IF (II.EQ.0) FETURN TO 15 0) CD TO 15
с с	14	IF (II.NE.G) GO IO IS IF (EL.EQ.O.) RETURN OO 14 I=1.N I(I) = EL+T(I) CONTINUE RETURN
000 00	C# 15	CULATE TIMES BETWEEN EVENTS S = T(1)
C CC	16 TH	DO 16 I=2,N SI = T(I) T(I) = T(I)-S S = SI CONTINUE RETURN E PCISSON PROCESS IS HOMOGENEOUS
Ċ	17 18	I = 1 J = 0. CALL SEXPCN (IS,T,NMAX) U = U+T(I) IF (U.GT.PAR) GO TO 20 I = I+1 IF (I.GT.NMAX) GO TO 19 GO TG 18
000 000	IN 19 Tf 20	CREMENT ERROR CODE IER = IER+1 Y AGAIN WITH NEW STRING OF VARIATES GO TO 17 N = I-1
ç	21	IF ($N \cdot EQ \cdot O$) RETURN IF (II \cdot EQ \cdot I) GO TO 22 DO 21 I=1.N EL = EL+AINVRS*T(I) T(I) = EL CONTINUE
ç		RETURN

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

C		FROM COFI FURMISHED TO DOG	-
Č	22 DO 23 I=1,N T(I) = T(I) *AINVRS		
С	23 CONTINUE		
	RETURN END		
S	SUBROUTINE PVAR GENERATES A	POISSON (THETA)	
č	CURPOUT IN E DY AD / IS THETA	M1	
	DIMENSION T(5000) COMMON /HOLD/ T K = 0	, ri ,	
	C = 16.0		
	1 IF (THETA.LT.C) GO TO 2		
	CTN = EXP(-THETA) MMAX = THETA+6.*SORT(THET)	A)	
	3 I = 1 (ALL SRAND (IS.T. MMAX)		
	4 U = U * T (I)		
	I = I + 1		
	K = K+1 IF (I.GT.MMAX) GO TO 3		
	GO TO 4 5 NP = INT(D*THETA)		
	AN = FLCAT(NP)		
	IF (G.GT.THETA) GO TO 6		
	THETA = THETA-G		
	GU TU 1 6 L = THETA/G		
	NP = NP-1 Call Srand (IS.T.NP)		
ç			
·	$\begin{array}{c} \text{CO 7 I=1,NP} \\ \text{IF} (T(I) \cdot LT \cdot U) & \text{K} = \text{K+1} \\ \text{7 CONTINUE} \end{array}$		
ç			
ç	THE VALUE M IS ASSUMED BY T	HE POISSON (THETA) VARIAT	E
Č	8 M = K		-
	RETURN		
ç	SLEROUTINE REJECT GENERATES	AN ORGERED SAMPLE	
č	OF THE ORIGINAL INTENSITY F	UNCTION	
ç	USING A REJECTION-ACCEPTANC	E ALGORITHM	
	SUBROUTINE REJECT (IS, EL, DIMENSIÓN V(500) - PVEC (5)	CSTAR, PVEC, Q, L)	
	DIMENSION T (5000)		
	$L_{20} = L_{10}$		
	L1 = L+1		
	1) = 0		
c	CALL SRAND (IS,V,L20)		
C	00 2 I=1.L20		
	J = J+1		

T(K) = Q*V(J)+EL J = J+1 IF (V(J).LT.CALC(PVEC,T(K))/CSTAR) K=K+1 IF (K.EQ.L1) GO TO 3 IF (J.GE.L20-1) GO TO 1 2 CONTINUE ç IF (K.LT.L) GC TO 1 3 CALL PXSORT (T,1,L) RETURN END SUBROUTINE COLATE SUPERPOSES TWO ORDERED EVENT STREAMS OVER THE SAME INTERVAL CCC SUBROUT INE COLATE (LBGN, LFIN, JBGN) DIMENSION TIMES(5000), T(5000) COMMON /MIKE/ TIMES/HOLD/T I = JBGN J = I K = LBGN J = I K = LBGN I IF (TIMES(I).LT.TIMES(K)) GO TO 2 T(J) = TIMES(K) J = J+1 K = K+1 IF (K.GT.LFIN) GO TO 3 GO TO 1 Z T(J) = TIMES(I) J = J+1 I = I+1 IF (I.EQ.LBGN) GO TO 5 GO TO 1 I = LBGN-1C $\begin{array}{l} \begin{array}{l} \text{LO} \ 4 \ N=1, \ II \\ \text{T(J)} \ = \ \text{TIMES(N)} \\ \text{J} \ = \ J+1 \\ \text{4 CONTINUE} \end{array}$ C 5 CONTINUE С $\begin{array}{r} DD & 6 & N=K, LF-IN \\ T(N) & = TIMES(N) \\ 6 & CONTINUE \end{array}$ c RETURN END SUBROUTINE HELP EVALUATES THE INTEGRATED INTENSITY FUNCTION OVER THE INTERVAL (EL, ER) CCC SUBROUT INE HELP (A, A1, A2, EL, ER, SUBROUT INE HELP (A, A1, A2, EL, ER, XX) DOUBLE PRECISION MMCAW, EB, AA Z = SQRT(ABS(A2)) Y = (A1*Z)/(2.*A2) AA = Z*EL+Y BB = Z*ER+Y CC = A-A1*A1/(4.*A2) CC = EXP(CC)/Z IF (A2.LT.O.) GO TO 1 O1 = DEXP(AA**2)*MMDAW(AA) O2 = DEXP(BB**2)*MMDAW(BB) XX = CC*(Q2-Q1) RETURN 1 CC = CC*.8862269 XX = CC*(DERF(BB)-DERF(AA)) RETURN END FUNCTION CALC EVALUATES THE SECOND COMPONENT OF THE DECOMPOSED INTENSITY FUNCTION ê

ç

FOR ANY INPUT VALUE.

FUNCTION CALC (P,ABSA) DIMENSION P(5) X = P(1)+P(2)*ABSA+P(3)*ABSA**2 XX = P(4)+P(5)*ABSACALC = EXP(X)-EXP(XX) RETURN END

LIST OF REFERENCES

- Lewis, P.A.W., and Shedler, G.S., <u>Simulation of Non-Homogeneous Poisson Processes by Thinning</u>, Naval Postgraduate School, June 1978.
- Lewis, P.A.W., and Shedler, G.S., <u>Simulation of Non-Homogeneous Poisson Processes With Degree-Two</u> Exponential Rate Function, IBM Research Division, 1977.
- 3. Patrow, M.L., <u>A Comparison of Two Algorithms for</u> the Simulation of Non-homogeneous Poisson Processes with Degree-Two Exponential Polynomial Intensity <u>Function</u>, Masters Thesis, Naval Postgraduate School, 1977.
- IBM System/360 Operating System Supervisor Services and Macro Instructions (GC28-6646-7), 8th ed., p. 51, International Business Machines, 1974.
- 5. Naval Postgraduate School Report NPS55Lw73061A, Naval Postgraduate School Random Number Generator Package LLRANDOM, by G. Learmouth and P.A.W. Lewis, 1973.

INITIAL DISTRIBUTION LIST

South and the second
		No.	Copies
1.	Defense Documentation Center Cameron Station	•	2
	Alexandria, Virginia 22314		
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940		2
4.	Assoc. Professor A.F. Andrus, Code 55As Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
5.	Professor D.P. Gaver, Jr., Code 55Gv Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
6.	Assoc. Professor P.A. Jacobs, Code 55Jc Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
7.	Professor P.A.W. Lewis, Code 55Lw Department of Operations Research Naval Postgraduate School Monterey, California 93940		3
8.	CAPT M.L. Patrow, USMC 13119 Orleans Street Woodbridge, Virginia 22192		1
9.	Mr. G.S. Shedler IBM Research Laboratory IBM Building San Jose, California 95193		1
10.	Assoc. Professor A.R. Washburn, Code 55Ws Department of Operations Research Naval Postgraduate School Monterey, California 93940		1

No. Copies

2

11. LCDR J.S. Redd, USN
7313 Essex Avenue
Springfield, Virginia 22150