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ABSTRACT

In this thesis we study several computer implementa-
tions of the thinning algorithm, a new method for generating
non-homogeneous Poisson processes. The method, developed
by Professor P.A.W. Lewis, Naval Postgraduéte School,
Monterey, California, and G.S. Shedler, IBM Research
Laboratory, San Jose, California, is valid for Poisson
processes with any given intensity function. The basic
thinning algorithm is modified to exploit several refine-
ments which reduce computer execution time by approximately
one-third. The basic and modified thinning programs are
compared with a previous algorithm of Lewis and Shedler,
the Poisson decomposition and gap-statistics algorithm,
which is easily implemented for Poisson processes with

intensity functions of the form exp(a0+alt+a t2). The

2
thinning programs are competitive in both execution time
and computer memory requirements. One program implementa-
tion generates the events in a Poisson process one at a

time; another program implements the algorithmic refinements

which improve efficiency.
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I. INTRODUCTION

The Poisson process is a widely known and studied
stochastic process. It is frequently used to describe

random arrivals at some type of service facility such as

b s

a service station fuel pump or a bank teller's window.

In its most common form, the "rate" of these arrivals is
considered to be constant over time. This is the homogeneous
Poisson process which has the familiar property that times
between arrivals (or events) are exponentially distributed
with mean equal to the inverse of the rate.

The assumption of a constant rate, or homogeneity, is

at best tenuous when applied to real world data. For exam-
ple, the rate of arrivals at a traffic light typically

varies from very high during rush hours to very low in the

early morning. In addition to this cyclic time-of-day
effect, arrival rates may exhibit longer term increases or
decreases. Further, these effects may be superimposed upon
shorter term effects to produce a more complex rate which

varies with time. These processes for which arrival rates

vary with time may often be represented by a non-homogeneous
Poisson process, that is. a Poisson process with a time
dependent rate of arrival.

The generic term of Poisson process includes then both
homogeneous and non-homogeneous Poisson processes. LEWIS

and syeEDLER [(Ref. 1] define the Poisson process generally in

W TP P 3y o g 4 8 e
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terms of a monotone non-decreasing right-continous function

R

A(t) which is bounded in any finite interval. Then the
number of points, N(t'',t'), in any finite interval has a

Poisson distribution with parameter p(t'',t') = A(t') - A(t'').

Thus, for example in (0,t'], with t' > 0, P{N(t'',t') = n}

=M
= P(N_,=n} = 13 e O/n!, where uy = u(0,t') = A(t') - A(0).
The right derivative A(t) of A(t) will be assumed to

exist and is called the rate function or intensity function

D 1A e AT AR ST T TR .34 3 e

of the process. A(t) is called the integrated rate function
and has the interpretation that for t > 0, A(t) - A(0) = E[Nt]‘
For the homogeneous Poisson process A (t) is a constant,

e.g. A, and thus the integrated rate function is simply the

product of A and t, i.e. the expected value of N_ = N(O,t).

t
While simulation of homogeneous Poisson processes is
relatively straightforward, the non-homogeneous Poisson
process is more problematical. Times between events are
not exponential in the general case and simulation has
H typically been tailored to specific classes of intensity
: functions. 1EwISs and SHEDLER [Ref. 1] list three general
methods for simulating non-homogeneous Poisson processes
and one method for a special rate function. The general
methods include the time scale transformation method and
the conditioning and order-statistics method. The special
method is the gap-statistics method, a method which is f

particular to the degree-one exponential polynomial intensity

fucntion, i.e. those of the form A(t) = exp(bo * blt).

11 e,
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Implementation of the general methods on a computer may

pose special problems. Often the inverse of the integrated
rate function is not explicit and must be computed numerically.
Other problems in implementation generally result in lower
efficiency, as measured by execution time or computer storage
requirements or both.

One class of intensity functions which is of general
interest is the degree-two exponential polynomial family.
That is, those with intensity function of the form
A(t) = exp(a0 +at + a2t2). This family of functions has
the property of being positive for all values of t, a
necessary condition for an intensity function. Additionally,
by varying the magnitude and sign of the coefficients, the
exponential polynomial of degree two can be made to be mono-
tone increasing or decreasing over time, as well as increasing
and then decreasing, or vice versa. Use of this type of
intensity function also leads to statistical procedures
which are relatively simple.

LEWIS and SHEDLER [Ref. 2] proposed a new method of
generating the non-homogeneous Poisson process with degree-
two exponential polynomial intensity function. It involves
decomposition of the degree-two exponential polynomial
intensity function, A(t), into two functions, a degree-one
exponential polynomial function, AL(t), and a difference
function, AD(t) = A(t) - AL(t). This procedure allows the

points in the degree-one exponential polynomial event stream

12
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to be generated using the gap-statistics method, which is
highly efficient when implemented on a computer. The
remaining points with intensity function AD(t) are generated
by other methods and then merged with the other events.

PATROW [Ref. 3] implemented two algorithms, the time
scale transformation algorithm and the Poisson decomposi-
tion and gap-statistics technique, and compared them for
computational speed and computer memory requirements. His
results indicated that the Poisson decomposition and gap-
statistics technique was from two to seven times faster than
the time scale transformation algorithm, although the former
required about thirty percent more computer memory.

PATROW's work [Ref. 3] is also an excellent self-
contained reference on Poisson processes, bringing many
references together under one cover.

A recent result of LEWIS and SHEDLER [Ref. 1] develops
a new method for generation of points in a non-homogeneous
Poisson process. This method, called "thinning", is similar
to the general conditioning-acceptance-rejection method
but has subtle differences which are computationally signi-
ficant. The thinning method is straightforward in both an
analytical and a computational sense, and is valid for any
type of intensity function. The thinning theorem is
presented in Section II.

This thesis is, in a sense, a sequel to PATROW's work

[Ref. 3]. 1Its purpose is to implement the thinning algorithm

Y I . W AR TS 4L M a8 - N L S s 5 ath.
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in computer program form and to compare it to the Poisson
decomposition and gap-~statistics algorithm implemented by
PATROW [Ref. 3]. The latter implementation was designed
for a specific subset of intensity functions, degree~two
exponential polynomials. Since the Poisson decomposition
and gap-statistics method outperformed a general case
algorithm (time scale transformation) by a significant
margin, comparing the thinning method to the Poisson
decomposition and gap-statistics method should give a
reasonable indication of the thinning algorithm's performance
in generating non-homogeneous Poisson processes with other
than degree-two exponential polynomial intensity functions.
Section III lists the two algorithms considered, as well
as a special application of the thinning process which will
be of interest to those involved in event-step simulation.
Section IV describes the methodology used in comparing the
algorithms while Section V deals with aspects of the thinning
procedure which may be exploited to enhance its overall
effectiveness in a variety of situations. Finally, Section
V1 presents the results and conclusions of the comparisons
of the algorithms. Appendices A and B contain secondary

results and computer program listings following the

appendices.
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II. THE THINNING THEOREM

The underlying concept of the thinning method involves
*
the use of a "bounding" Poisson process, {Nt T8

*
where N, is the number of points in the bounding process in

~the interval (0,t]. This process may be either homogeneous

or non-homogeneous Poisson, but should be one which is easy
to simulate on a computer. It is called bounding because
its intensity function, denoted A*(t), bounds the intensity
function A(t), of the nonhomogeneous Poisson process which
is to be simulated over the fixed interval (0,t']. That

* *
is, & (€) > X(t) for all t in (0,t']. Points at Ti’
*
tll
over the interval (0,t']. These points are then deleted,

g =l SN are generated for the bounding process
or "thinned", with independent probabilities equal to

%* * *
X - (A(Ti)/k (Ti)). Thus the probability that a point of

%*
the bounding process, T., is a point of the process being

2
generated is equal to the ratio of the intensity functions
evaluated at that point, i.e. A(TI)/X*(T;).

More formally:
Theorem 1. Consider the one-dimensional non-homogeneous
Poisson process {N: : t > 0} with rate function A*(t).

*
The number of events, Nt" in the fixed interval (0,t']

* *
has a Poisson distribution with parameter u (0,t') =

* *
= A (') - A (0).

15
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Let T;, T;, T;, AP T;:', be the times of the events
of the process in the interval (0,t'].

Suppose that for 0 < t < t', A(t) < A*(t). For
s b9 oot N:, delete the event at T; with independent
probability 1 - A(Ty) /A" (1)),

Then the remaining times form a non-homogeneous Poisson
process with rate function A(t) in the interval (0,t'].
Proof:

We assume that A(t) is continuous and use the definition
of the Poisson process based on incremental probabilities.
Thus we need to show that the occurrence of an event in

(t,t+dt] is independent of the number or times of occurrence

of events before t, and that

P{ N_ = 0}

Nt+dt = Ry 1 = A(t)dt + o(dE),

P{ N, =1}

Nevge = M

A(t)dt + o(dt),
and

Now we have that




P{no event from {N_ : t > 0} in (t,t+dt]}

* :
= P{no event from {N_ : t > 0} in (t,t+dt]}+ P{event

7 WO T TS

*
from {N_ : t > 0} in (t,t+dt] and it is "thinned"}

2O

1 - 2" mae + Nwatl-i - AT @)1 + o(at)

* * * *
1= X {(t)dt + X (t)dt - X (E):A(E)/A (t)-at + o (dt)

1 = x(t)dt + o(de).

Similarly:

P{one event from {Nt t £ > 0} in (&, t+de]l}

*
P{event from {N_ : t > 0} in (t,t+dt] which is not "thinned"}

5 EElabeLIR) A% B8] £ Gtae)

Alt)at * o(t)

Also it follows directly that

P{more than one event in (t,t+dt]} = o(dt)

Moreover, an event in (t,t+dt] is independent of what

happens before t because:

|
17 i
|
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1. {N: : t > 0} is a Poisson process and therefore has
independent increments, and
2. The thinning uniform random variate is independent
of other thinning variates, and is independent of the
Poisson process {N: : £t > 0}.
Q.E.D.
Figure 1 shows a graphical representation of a particu-

lar case of bounding and object intensity functions.

18
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III. ALGORITHMS CONSIDERED

A. POISSON DECOMPOSITION AND GAP-STATISTICS ALGORITHM
1. Usage

This algorithm is the one found by PATROW [Ref. 3]
to be most efficient in simulation of the degree-two exponen-
tial polynomial class of intensity functions and its imple-
mentation by PATROW was confined to that group. Basically,
the approach is to decompose the intensity function (which
is of the form A(t) = exp(ao + alt + aztz)) into a degree-
one exponential polynomial function, AL(t) = exp(b0 + blt).
and a difference function, AD(t) = A(t) - AL(t). The points
or events in the process with the degree-one exponential
polynomial function, AL(t), are generated over the interval
(0,t'] utilizing the computationally fast gap-statistics
algorithm. The points in the process with intensity func-
tion AD(t) are generated using conditioning-acceptance-
rejection techniques. The two event streams are then
superposed to produce the event stream for tne non-homogeneous
Poisson process with the intensity function A(t).

In the case where A(t) has an internal maximum
or minimum in the interval (0,t'], the interval is par-
titioned and treated as two separate intervals for simula-
tion with the event streams being merged in the final step.

Efficiency is optimized by maximizing the area

under the degree-one exponential polynomial intensity

20
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function, AL(t), subject, of course, to the constraint

Ap(t) < A(t) for 0 < t < t'. This maximizes the use of
the faster gap-statistics algorithm and minimizes the use
of the conditioning-acceptance-rejection algorithm which
is slow relative to the gap-statistics algorithm.

PATROW [Ref. 3] deals extensively with the details
of this algorithm and it is consequently presented here
only in outline form.

2. Algorithm Statement

a. Categorize the intensity function, A(t), into
one of six cases by examination of the coefficients a;
and a, in A (t) = exp(a0 Sk alt + aztz). Examples of each
of these cases are shown in Figures 2 through Figure 7

located in Section IV.

b. (1) If A(t) is monotone increasing or monotone
decreasing over the interval (Cases I, II, IV and V; see
Figures 2,3,5 and 6), decompose A(t) into AL(t), which is
degree-one exponential polynomial, and AD(t) = A(t) - AL(t).

Thus the decomposed functions have the forms:
AL(t) = exp(bo + blt)
— 2 -
Aplt) = exp(a, + a;t + a,t ) exp(b, + blt)
and

A(E) = AL(t) - AD(t).

21
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Choose b0 and b1 sSo as to maximize the

area under A, (t) subject to A;(t) < A(t) for all t in
(0,t'1.

(2) If A(t) is not monotone over the interval
(Cases III and VI; see Figures 4 and 7), partition the
interval (0,t'] into two disjoint, contiguous subintervals,
(0,b] and (b,t']. Choose b as the (unique) point where
A(b) is a maximum (minimum) of A(t) over (0,t']. Treat
each subinterval as in b.(l), applying subsequent steps on
each subinterval separately, and combining results as the
final step.

c. Generate points in the Poisson process with
degree~-one exponential polynomial intensity function,
AL(t). using the gap-statistics method.

d. Generate and order points in the Poisson process
with intensity function AD(t) using the conditioning-
acceptance-rejection method.

e. Merge (superpose) the two event streams from
Step 3 and Step 4. The merged stream is from the non-

homogeneous Poisson process with intensity function A(t).

B. THE BASIC THINNING ALGORITHM
1. Usage
The thinning theorem is implemented in a straight-
forward manner. Tvpically, the bounding process used is

* %*
homogeneous Poisson with constant rate A , where A is an




upper bound of A(t) over (0,t']. In this case efficiency
*
is optimized if A is the least upper bound (LUB) of A (t)

over (0,t'].

2.

(O't']o

Algorithm Statement

a. Generate events in the Poisson process
*
> 0} with rate function A (t) in the fixed interval

*
If the number of events generated, n , is such

*
that n = 0, exit; there are no events in the process

t
*
1 b. Denote the (ordered) events by Tl’ T

{(N_ : t > 0}. |
* * 1
2, e o o Tn*o |
Set i =1 and k = 0. ¥
c. Generate Ui' uniformly distributed between 0 |

* %* %* *
and 1. If Ui & A(Ti)/A (Ti), set k equal to k+1 and Tk = Ti‘

*
4. Set i egual to i+1l. If i <n , go teo ¢.

e. Return Tl' T2, ety Tn' where n = k, and also n.

C. THE ONE-AT-A-TIME THINNING ALGORITHM

—

1. Usage

In some event-step simulations, it is customary or
necessary to generate only one event at a time, rather than
an array of events. The thinning algorithm is easily
| modified to generate the next event in the non-homogeneous
‘ Poisson process with intensity function A(t). In this case,
the algorithm utilizes the time of the last event, T, ,:
the right hand limit, t', of the fixed interval over which

the process is being simulated; and the bounding process

. *
i intensity function, A (t). All variates are generated

e 3
¥
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one at a time, thus no arrays are required for storage.

; % The output is T;+ the time of the next event, if any, in

the interval (T;_ ,.t'l.
The algorithm is stated here for the case in which
the bounding process is homogeneous Poisson, i.e.,
A*(t) = A*, a constant and an upper bound of A(t).
Specifically:
T; is obtained by generating and cumulating
exponential (mean = 1/A*) random variates E;,l' E*

i'2, eeoe g

for i=1, 2, ..., until for the first time,

%* *
U E vow. ¥ B Y/

*
< MT;_; +E; i3

i'j _— l

A detailed algorithmic statement of this procedure

follows.

2. Algorithm Statement

I 1= 1, 'set T,

j-1 = 0 (i.e. the left end point

of the interval), otherwise, T 1 is known. Then for each

-

i=13, 2, i.0 , the time, Ti’ of the event in the non-

homogeneous Poisson process is given by the following:
a. Set j =1

*
b. Generate Ei K an exponential random variate
’ .
* *
with mean 1/X . If T, * E E, is greater than t',
L= k=1 i,k
exit; there are no more points in the interval (Ti_l,t'].

c. Generate Uj’ uniformly distributed between 0

and 1. 1If
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set
3
k=1
and exit.

d. Otherwise set j = j+l1; go to b.

Note: Ui 3 and Uj are uniformly distributed

’

between 0 and 1.




IV. METHODOLOGY FOR ALGORITHM COMPARISON

A. MEASURES OF EFFECTIVENESS

.
g

Two quantifiable measures of effectiveness were chosen
as yardsticks for algorithm comparison. These were compu-

tational speed and computer memory requirements. Some other

A AT S RO s oy

considerations, such as programming ease and robustness,

are discussed in Section VI. It must also be recalled that
the classes of intensity functions for which the two
algorithms are usable are different. The Poisson decomposi-
tion and gap-statistics algorithm is only easily implemented
for a restricted set of intensity functions, those of the
form A (t) = exp(a0 + alt + aztz), i.e. the degree-two

exponential polynomial. Conversely, the thinning algorithm

is valid for any positive intensity function. Thus a direct
comparison can only be made in that subset of intensity
functions for which both algorithm implementations are
valid, the degree-two exponential polynomials.
l PATROW [Ref. 3] developed six sample intensity functions,
all special cases cf the degree-two exponential polynomial,
and these are used herein as the test cases. These are
described in Section IV.C.3 below.

1. Computational Speed

Typically, computer time is a costly commodity

in economic terms. It may also be a significant factor

in determining more mundane considerations such as job

26
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i priority and thus turn-around time. Thus computer run

E | time is a natural candidate as a measure of effectiveness

for comparing competing algorithms.

i ; PATROW [Ref. 3] utilized a procedure in which
event streams from each of six sample intensity functions
were replicated several times in "packages". The number

é of replications was large if the expected number of events

3 in the event stream was small, and vice versa. Thus the

o N

product of the number of events times the number of replica-
tions was kept on the same order of magnitude. For simplicity,
the same technique was used here although results showed a
wide variation in the run times for the six packages. ‘;
Programming of the thinning algorithm was done so as ;

to minimize run time while maintaining parity with the

Poisson decomposition and gap-statistics algorithm wherever
direct comparison could be made. For example, shuffled
random numbers are called in both programs and both are
dimensioned to accommodate event streams of up to 5000 events.
Undoubtedly further programming refinements exist
which might increase slightly the speed of one or the other
algorithm. Also, different computers might have unique
features which could be exploited. The overall purpose here
was to obtain a relative order of magnitude comparison and

it believed that this objective was accomplished in every ¥

meaningful sense.
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2. Computer Memory Requirements

This is the second obvious means of comparing two
algorithms. Again, some core reduction could undoubtedly
be made by a sophisticated programmer. Most notably, core
requirements can be reduced substantially if only one non-
homogeneous Poisson variate is generated at a time (the
one-at-a-time algorithm) but this has the predictable
effect of increasing execution time considerably (see

Tables IV, V, and VI).

B. MEASUREMENT CONSIDERATIONS

Measurement of computer memory requirements is straight-
forward and deterministic.

Measurement of computational speed, more specifically
Central Processing Unit (CPU) time, is quite another matter.
First of all, the number of events in each replication of
the nor-homogeneous Poisson process varies causing CPU time
to be a random variable. More important, however, are the
effects of internal computer procedures.

In the first place, the so-called CPU time printed out
on the normal IBM-360 output has only a general relationship
to the actual computational time required by the CPU. This
is caused by the addition of certain "overhead" time. This
overhead time is a function of the number of other programs
in the system as well as such factors as compilation and
linkage times. Thus the same program run at two different

times may differ in "CPU time" by a factor of two or more.
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Program execution times were isolated from compilation
and linkage times by the use of a system subroutine,

GETIME. This subroutine allows the user to initialize an
internal timer within the program and read cumulative time
at various points in the program. Although this method is
not exact, it does measure actual elapsed CPU time to within
a small fraction of a second. This does not, however,
entirely alleviate the time-of-day effect experienced when
running the same program at different times. That is,
although the elapsed CPU time can be measured accurately,
the same program will generally have somewhat different
execution times each time it is run [Ref. 4]. Theoretically,
the execution times would be constant for stand-alone runs,
i.e. runs with no other competing programs in the system.
This is rarely realized in practice.

These considerations lead to the development and use of
the side-by-side setup described below. This method appears
to be statistically sound as a means of dealing with the
problems of time measurement. Due to the differences in
execution times noted, the best measure of effectiveness
was determined to be a ratio of execution times for the

respective algorithms, rather than absolute times.

C. TEST SETUP

1l. Computational Speed

The central idea here was to equalize the effects
of non-essential processes on each algorithm. This was

accomplished by the following algorithm:
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l. Set k = 1.

2. 2Zero internal time clock.

3. Call Algorithm A. Replicate M times.

A T P

4. Read internal time clock. Store time. j
5. 2Zero internal time clock. E

6. Call Algorithm B. Replicate M times.
7. Read internal time clock. Store time. fh

8. Set k =k + 1. If k is greater than k

|
i

Otherwise go to 2.

9. Compute mean and variance of the kmax execution times %f

for each algorithm.
10. Compute ratio of means.
This procedure was used in all comparisons. M, ';
the number of replications per package, varied between 30 4
and 100 as discussed above. Koian? the number of times each :
package was replicated, was typically set equal to thirty. '

2. Computer Memory Requirements

To measure computer memory requirements, a small

< 2
e S

main program was written, calling the subroutine which
implemented the program being measured. Total program length
in bytes was obtained from the standard computer output and
the core alloted to the main program was subtracted to

obtain the desired figure. This includes all library rou-

tines and arrays for storage of event times and arrays of 1

random variates.

30
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The core requirements are deterministic in that

they do not change from one run to another but are strictly
a function of the program coding.

3. Test Cases Utilized

PATROW [Ref. 3] developed six sample intensity
functions representing the possible variations in sign and
relative magnitude of the coefficients a; and a, in the
exponential polynomial, exp(a0 + alt + aztz).

Since the sample intensity functions were designed
to test different aspects of the Poisson decomposition
and gap-statistics algorithm, they were also used for com-

parison here. Although each algorithm is affected by

different considerations, the test cases do, coincidentally,

put the thinning algorithm through its paces.

For continuity, the six test cases, or sample

intensity functions, are presented below in Figures 2 through

7.
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V. EFFICIENCY AND PROGRAMMING CONSIDERATIONS

A. GENERAL
This section deals with factors which affect the per- :
formance of the thinning algorithm. Four specific areas

are presented in which significant gains in terms of com- &

putational speed may be realized. With the exception of
Section V.D (which applies only to the case of exponential
polynomial intensity functions) these considerations apply
to the general class of intensity functions.

In general application, one of the primary indicators
of efficiency is the relative size of the area under the

intensity function to that of the bounding function, i.e.

the ratio, R, given by:

g %"
*
R = [ xqeyae/f x (v)de
0 0

Since both numerator and denominator are simply the respec-
tive integrated rate functions, A(t), evaluated at either
end of the interval, R is the ratio of the expected number
of events in the two processes, i.e. E[Nt.]/E[N:.].

Case 1 of the sample intensity functions is particularly

illustrative (see Figure 2). The intensity function

A(t) = exp(l.6 + 0.015t + 0.0005t%) is bounded on the

38




interval (0,100] by a least upper bound (LUB) of 3294.47.

If a homogeneous Poisson process with rate equal to the
*

tl]
points will be generated on the average. Of these, all

LUB is used as the bounding function, E[N = 329,447

but 1464 will be rejected on the average (i.e. E[Nt'])'

The ratio of the respective expected values is thus
1464/329,447 = 0.0044 = the ratio of the areas under the
intensity functions.

Thus a rough relative measure of the efficiency of the
thinning process in a particular situation can be gained by
examining a graph of the two intensity functions, even if
the expected values are not easily calculated. This pro-
cedure may also be an indicator in deciding whether to
partition the interval and use different bounding functions

on each subinterval.

B. UTILIZATION OF ARRAYS OF RANDOM VARIATES
Computer generated random variates are used both in

*
generating the points of the bounding process {N_ : t > 0}

t
and in the actual thinning process itself. Since the
number of variates required is typically large, efficient
generation becomes a programming consideration for medium
to large scale simulations.
The basic thinning program presented herein requires
both exponential and uniform random variates. Both types

are obtained utilizing the random number package, LLRANDOM,

developed by LEARMONTH and LEWIS [Ref. 5]. Shuffled
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exponential random variates of mean 1.0 are generated using
the SEXPON subroutine while shuffled uniform (0,1l) random
variates are obtained from the SRAND subroutine. Both of
these routines offer considerable "economies of scale" in
terms of time when multiple numbers or arrays of variates
are generated at cnce, as opposed to one-at-a-time genera-
tion. Using the test setup of Section IV.C, average times
to generate varying quantities of random numbers were
determined. Table I reveals the relative savings realized
by calling large arrays of random numbers. Thus considerable
time can be saved by generating all required random numbers
from one subroutine call. Programming difficulties involve
deciding how many variates to generate. The general goal
is to generate as many as needed while keeping the unused
excess to a minimum. The balance used was to generate the
expected number required plus an excess of four standard
deviations. For example, in the generation of the bounding
process, the expected number of points, E[N:.] is x*-t'
and the variance is the same. Thus the number of exponen-
tials called was y + 4/y where y = A*-t'. Provision is
made for the unlikely (1 in 40,000) case that more are
required.

For specific applications this procedure could be

improved slightly. For example, if the expected number of
*
t.]l

excess (four standard deviations) comprises forty percent

points, EI[N is small, e.g. 100, then the expected

40
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L\
}i Type of Number Total Time Mean Time Per
’é Variate Called (usec) Variate (usec)
‘. % : Exponential 1 784 784
) Exponential 10 1293 129 4
Exponential 100 7343 73 ;
Exponential 1000 68046 68 %
Uniform 1 1213 1213 |
Uniform 10 1381 138
Uniform 100 3276 33 |
Uniform 1000 21544 22

Sample Size = 200 (each grouping)

Table I

Generation Times for Arrays of Shuffled Random Variates
From LLRANODOM

s

%*
of the total whereas for large E[Nt.], e.g. 4000, the

expected "waste" is only about six percent. In the former

case, reducing the "padding" to one or two standard devia-
tions would, cn the average, increase efficiency slightly
although the probability of a second subroutine ca2l1ll for
more random variates would increase.

As an example, if we were to call 100 exponential
variates one at a time, the total time is 78,400 usec,
compared to 7,343 usec for 100 exponential variates called

- in an array. For 100 + 4/100 = 140 variates, the time

[ is still small compared to 78,400 usec.
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C. UTILIZATION OF INTENSITY FUNCTION LOWER BOUND

One of the most time consuming repetitive operations
is the computation of the intensity function value, A(t),
during the thinning process. In the case of the exponential
polynomial intensity function, this involves one power, two
multiplications, two additions, and one exponentiation for
each point generated in the bounding process. Since points
are accepted for the non-homogeneous Poisson process when-
ever the uniform (0,1) chinning variate is less than the
ratio A(t)/k*(t), considerable time savings result if the
intensity function has a positive lower bound, say A,
since points are always accepted when the uniform (0,1)
variate is less than the ratio A/A*. In the general case,
this ratio must be calculated only once. The expected num-
ber of intensity function computations which are alleviated
by the use of the lower bound is given by (/A )EIN,,] where
A is a lower bound of the intensity function; A* is an upper
bcund of the intensity function (both bounds are over *he
interval (0,t']) and E[N:.] is the average number of points
to be thinned, i.e. the average number of events in the
bounding process.

It is clear that the closer A is to being the greatest
lower bound (GLB) and the closer x* is to being the LUB,
the more efficient the program.

If the intensity function is strictly non-decreasing
a further (and potentially great) improvement is realized

by initially setting A equal to )\, and then setting it

42
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subsequently equal to the last value of the intensity
function, A(t). This results in a monotone increasing
lower bound and thus a decreasing probability of evaluating
the intensity function.

Test cases II through VI were run side by side with and
without the use of a lower bound for the intensity function.

On the average, the program which did not utilize a lower

bound required twenty percent more time than the program
using a lower bound. Please see Appendix B for case-by-

case comparison.

D. UTILIZATION OF EXPONENTIAL VARIATES FOR THINNING OF
3 EXPONENTIAL POLYNOMIAL INTENSITY FUNCTIONS

The time requirements for evaluating A (t) were discussed

in Section V.C above. In the case of exponential polynomial

intensity functions, e.g. A(t) = exp(ao + alt + aztz), the
major contributor to computation time is the exponentiation E,
operation. Exponentiation can be avoided by utilizing the

following relationship:

*
U; < A(E)/2A if and only if

* * 2
E; = =ln U, > 1nx - lnA(t) = lnx = (a, + a;t + ast ).

where:

Ui is a uniform (0,1l) random variate,

Ei is an exponential random variate with mean one.
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Thus the thinning test to accept points from the

bounding process becomes:

* 2 *
If Ei 2. 1Inx -~ (aO + alt + azt ), for t = Ti' accept

*
Ti as a point in the non-homogeneous Poisson process

%*
with rate A(t); otherwise, reject Ti (i.e. thin it).

The key to this relationship lies in the fact that if
U is distributed uniform (0,1), then -ln U is distributed
as a unit exponential variate, i.e. an exponential variate

with mean one. This is shown by the following:

Let U be uniform (0,1).

Then PlU < x} = P{la U < 1n x} = Pl=la U > =-1n x}

but P{U < x} = x, thus lety = -ln x, {
4

then P{-1n U > y} = exp(~y).

Thus -1ln U is distributed as a unit exponential variate.

Although more time is required to generate the exponential
random variates for thinning than the uniforms, the alle-

viation of the exponentiation operation more than compen- 3

e

sates for the additional generation time. This is because ; j

SEXPON, the portion of LLRANDOM which generates exponentials,
generates exponential variates by the Marsaglia "rectangle-
wedge-triangle" method, which is faster than taking logarithms.
Since exponential random variates are used in the genera-
tion of the bounding homogeneous Poisson process, an addi-~

tional time savings can be realized by using the variates




1 : which are left over (i.e. not used) from generating the
bounding process (these are generated in arrays).

For the test cases considered, use of exponentials

Ll e i

for thinning resulted in an average time savings of ten

—
.

percent. Please see Appendix B for case-by-case results.

E. RECYCLING OF THINNING VARIATES

5 As mentioned above, a uniform or exponential random
variate is required for each point to be "thinned". Each

: of these variates requires a significant amount of time for
generation. Obviously a time savings would be realized if
fewer variates were required.

- 1. Recycling of Uniform Variates

Assume Ui is uniform (0,1) but that its value is

unknown. Assume then that further information becomes

available that Ui is less than a (0 < a<1l), but its value
is still unknown. Then U is uniformly distributed over

the interval (0,a). If Uiy is then computed by "scaling

1
; up" U;, i.e. dividing U; by a, then U, , is uniform (0,1).

T P

Similarly, if Ui is uniform (0,1) and subsequent information
places it somewhere above a, then Ui+l = (Ui -a)/(1 - a)

is uniform (0,1). Thus by conditioning on whether the
variate is greater than or less than a given value, a new
variate can be computed with the desired properties.
Moreover, this variate is independent of its predecessor.

In the thinning algorithm, each point is tested

* *
using a uniform (0,1) variate. Specifically, if Ui < A(Ti)/x




T T e

*
the point Ti is accepted as a point in the non-homogeneous

Poisson process. Since the ratio A(T;)/A* is between zero
and one, and the only test is whether Ui is less than or
greater than the ratio A(T;)/k*, the next uniform (0,1)
variate, Ui+1' can be generated using the rules above.
The algorithm is:

l. Let Ui be uniform (0,1). 1If Ui is less than
a = MTH/AT, let Uy = U/ /A" exit.

2. Otherwise let U, = [U; - (A(Tp)/A"1/11-(A(T})/A)]

U is uniform (0,1).

i+l
In theory, only one uniform random variate is

required for the entire thinning process! In computational

practice, however, care must be exercised because of the

finite capacity of the computer to represent numbers. After

ten to twenty divisions the scaled uniform number will

consist only of low-order bits of the random number and

these are usually not uniformly distributed.

If the intensity function has a positive lower bound,
further efficiencies can be gained, in combination with the
procedures of Section V.C above. Since multiplication is
computationally faster than division, the value l/(ﬁ/x*) = A*/l
can be precomputed and stored. Thus if U; < l/k*,

*
9] = U;*A /A can be computed as the next thinning variate.

i+l

Note that no intensity function calculation is required.
*

However, if v > A/A , the thinning method proceeds with

the next step, evaluating the intensity function at the

*
point T, and determining whether or not to thin the point.

s
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Now, further information is known about Ui‘ Specifically,
* *
either Ui > A(Ti)/x , in which case TI is thinned, or
* * *
A/X < Ui < A(Ti)/x . In either case Ui+l can be computed
by "scaling up" u;.
Thus, the algorithm for recycling uniform random
variates for thinning is as follows:
* *
* * * * *
2. If MM < Uj < AMT/A, let Uy = (X U=}/ (A(T;)-])

and exit.

* *
3. Otherwise, Ui > MTi)/A 2o llet

* * * *
U (A =U;=A(T;))/ (A =2 (T;)).

i+l
By precomputing A*/A, this recycling procedure

requires only one multiplication in the case where

Ui < A/A*. Otherwise one multiplication, two subtractions

and one division are required. 1In either case the recycling

procedure is generally faster than generating uniform

random variates from a random number generator, even when

a logical IF statement is added to check for extreme

values ("small bits").

2. Recycling Of Exponential Variates

This section applies only where the intensity func-
tion is exponential polynomial. Here the possibilities
are less promising. In the general case where no lower
bound, A is used, the following algorithm would apply:

* * * *
If Ei 2in A = 1n A(Ti), let Ei+ = Ei - 1ln A + 1ln A(Ti)

1
Otherwise
5 A* * * A *
Let E, , = In ( - A(Ti))/(A -exp(-Ei) - (Ti))
where Ej is a unit exponential random variate.
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* *
In the first case, E; 21lna =-1n A(T;), a time
*
savings would generally be realized since ln A could be
computed once and storea and 1ln A(T;)~is simply the value

- z ® *2
of the polynomial, i.e. a, + alTi + az'ri

, Wwhich must be
computed in any event. In the second case, however, the
cure is truly worse than the illness. It is faster to
simply generate another exponential variate, assuming they
are called in arrays.

For there to be a time saviﬁgs, however, it must
be possible to make a reasonable prediction of the number
of exponentials which must be generated. Otherwise an
excessive number of calls to the random number generation
subroutine may destroy the gains made through recycling.

In the case where a lower bound, A, for the inten-
sity function exists and is positive, it is possible to
determine the expected number of exponentials which must
be generated. Variates are reused if they are greater than

*
1n(A"/A). That is, if E; > 1n(X'/A), then E;,; = E; - In(A"/A).

1
Otherwise, a new (i.e. non-recycled) variate is used. Thus
the probability of not recycling, p, is A/A* and the number
of variates required is binomial with mean n*p, where n*
is the number of points to be thinned.

Empirical results for the five test cases considered
are shown in Appendix B. Using the calling rule of expected

number plus four standard deviations for generating thinning

exponentials yielded inconclusive results as compared with




the procedure in which exponential thinning variates are
generated in arrays with no recycling. As expected, for
larger Nt' (Cases II, III and V), recycling provided a slight
time advantage (seven percentage maximum) while for small

N (Cases IV and VI) recycling was slower. 1In case VI,

£
recycling caused run time to be approximately five percen-
tage greater than that without recycling. Using a calling
rule of expected number plus two standard deviations reduced
the disadvantage slightly to four percent. The reason that
recycling can cause longer run times than not recycling is
that an additional logical IF statement is required for the
recycling program. Again, when exponentials are used for
thinning and the mean number of points to be thinned is
on the order of two or three hundred, it is probably not
worth the effort to recycle. 1If several thousand "thinnings"
are required, the savings may indeed be worthwhile.

Results were somewhat surprising in the general
class of intensity functions for which uniform variates are
used for thinning. It was expected that a significant savings
would be realized since the uniform variates can be recycled
in all situations. In fact, test runs were run in which
only one uniform variate was generated for the entire run
with recycling used throughout. The only program statement
which added time was a logical IF statement to preclude
dividing by zero and to diminish the probability of small
bit usage. As expected, some bias was experienced in the

mean and an unusually high variance was noted, indicating a
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low degree of "fidelity" to the true non-homogeneous Poisson
process being simulated. Of particular interest however,
were the results on execution time. Since this setup
essentially gives the lower bound on execution time for
recycling of uniform variates. it was expected that signi-
ficant time savings would be realized in comparison to no
recycling. In practice, however, the savings were minimal,
with a maximum of only three percent savings. This is
attributed to the efficiency of the LLRANDOM package in
generating uniform variates with the logical IF statement
being only a secondary cause to longer execution time.

Appendix B shows results for both exponential and
uniform thinning variates.

The key point to keep in mind here is that the above
results reflect the case where thinning variates are called
in arrays, i.e. many at a time. Thus the comparison is
between a very "fast" variate and recycling. As discussed
above, calling by arrays results in considerable time savings
compared to one-at-a-time generation (up to fifty times
faster). Thus, in the case where a slower random number

generator is utilized or where variates are called one at

a time, use of the lower bound may indeed result in con-

siderable time savings.

F. FINAL PROGRAM

A general program was developed which incorporated the

efficiency considerations discussed above. The program is




general in that it can be used with any of the general
class of intensity functions, whether exponential polynomial
or not. The program is essentially four programs, each
used in a specific case. The program classifies simulations
into the four classes by asking two questions:

1. Is the intensity function exponential polynomial?

2. Does the intensity function have a positive lower bound?

The first of these determines whether uniform variates
(general case) or exponential variates (exponential poly-
nomial case) are used for thinning. The second consideration
merely deletes an unnecessary logical IF statement in the
case where no lower bound is used.

The computer program, NHPP, is listed after the appen-
dices, and requires a user supplied subprogram FUNCTION FCN(T)
to compute the intensity function values for each value of
t. If the intensity function is exponential polynomial,
only the exponent portion should be calculated, i.e. the
statement FCN = a, + alt + azt2 (for degree-two polynomial)
should appear in the subprogram. Otherwise the entire
intensity function should be evaluated.

Empirical results showed that the final program,
utilizing the efficiency considerations mentioned in this
chapter, resulted in a program which ran in two-thirds the
time of the basic thinning program.

Please see Appendix B for case-by-case results.
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VI. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

GENERAL

This section presents the results of comparison of
the Poisson decomposition and gap-statistics algorithm
with three variations of the thinning algorithm. These

variations are the basic thinning algorithm, the modified

thinning algorithm (final program) and the special case

one-at-a-time algorithm. Section B presents the performance
of each of the algorithms when measured by the two measures
of effectiveness, computational speed and computer memory
requirements. Section C examines the results with a view
toward identifying the strong and weak points of each
algorithm. Section D recommends further avenues of study.
Again, in comparing the two classes of algorithms, one
basic distinction must be kept in mind. That is that the
Poisson decomposition and gap-statistics algorithm as imple-
mented by PATROW [Ref. 3] is limited to a special class of
intensity functions, i.e. exponential polynomial of degree
two (or less). Although the algorithm could be adapted to
higher order polynomials (by further bisection of inter-
vals), the already complex programming considerations would
grow significantly. 1In contrast, the thinning algorithm
is a completely general method which is analytically valid
for any functional form of permissible intensity functions

(positive and right continuous).
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The results presented here are necessarily limited to
that class of intensity functions for which both algorithms
can be compared, i.e. the degree-two exponential polynomial
class. The purpose was to determine the relative performance
of the thinning algorithm on this piece of common turf with
the heretofore champion, Poisson decomposition and gap-
statistics.

The basic result is that the thinning algorithm is
indeed quite competitive with the Poisson decomposition and
gap-statistics algorithm in the area of mutual validity.
This, combined with its ease of programming and ability to
generate variates from any intensity function, make the

hinning algorithm a highly attractive tool for generating
non-homogeneous Poisson processes of any type.

One shortcoming of the thinning program was revealed by
the first test case considered (see Section IV.C). This is
a fast rising exponential polynomial which rises from a
value of five to almost 3300 over the interval (0,100]. For
A* = 3294.47, the expected number of points in the bounding
process is 329,447 while the non-homogeneous Poisson process
being simulated has an expected number of only 1464 points.
Thus all but one point in about 200 are thinned out. The
thinning algorithm could be more efficiently adapted to
this case by partitioning the interval, alleviating the
necessity to store over 300,000 bounding process points.

However, the efficiency involved would still be low, and the
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best solution appears to be to utilize the Poisson
decomposition and gap-statistics approach. The key point
here is that the problem is easily recognized beforehand,
as discussed in Section V.A, and avoidable.

Table II presents a general comparison of the two

algorithms.

B. MEASURES OF EFFECTIVENESS RESULTS
Chapter four details the comparison procedure utilized
to develop the following results.

1. The Basic Thinning Algorithm

Salient features for this case include the use of
uniform variates for thinning and one-at-a-time generation
of exponential and uniform variates.

Table III presents the results for each of the five
test cases run. Algorithm A is computer program DEGTWO,
the Poisson decomposition and gap-statistics program
developed by PATROW and listed at the end of this paper.
Algorithm B is computer program NHPTHN, the basic thinning
algorithm, also listed.

The thinning algorithm was fastest in two out of
the five test cases run and required eighty percent of
the core space required for the gap-statistics algorithm.

Table VII lists core storage requirements for each
algorithm.

2. The Modified Thinning Algorithm (Final Program)

This section compares the best case performance

for both algorithms.

54

e e




- L

]

i

SWHLIYOOIY OML J0 NOSI¥VdWOD

(butuutyy ueYy3l I93SRF SAUWTI G-Z) 3IseJ

9 JO 3INO £ SUuTM

IT 9T9YdL

MOTS uoT3ouny A3rsuajut
Ieautry bor °q

9 JO 3INO € SUTM uoTt3iouny A3rsuajuTr
otjeapenb Hor e

paads
Teuotjeandwo)
ITews - wyjtxobye
autT3j-e-3je-3auo °q
93eIapow 9jevIapow -
wyjtxobre 3sajsey -e sjusauwaxtnbax
abexols g
x9a1dwoo a1duts K3 1x91dwoo
butumrexboxgd -z
suoT3ouny
Tetwoudtod Terjusauodxs omil-aaabap T1® K3tsusajur prieA 1
[€ “d3¥] MO¥MIVd A9 QILNIWATAWI WHILINOOTIV NOILVINAWIATAWI

SOILSILVLS-dVD dNV NOILISOdWOOdd NOSSIOd

WHLIYODTIVY ONINNIHL VI




SWHLIYOOIV SNINNIHL DJISVd ANV SOILSILVIS-dVD ANV NOILLISOdWODdd NOSSIOd 40 NOSIYVJIWOO
III d9749dVYL

(NHLJHN wexboxg) wy3ztaobry Butuutyl OoTsed :4 WY3TIObTVY
(OMI93a weaboid) soTisTtiels-dey pue uor3iTsodwodsag UOSSTOd ¥ WYITIOBTY

(*3°AI uOT1O3g 33s) ADUSTOTIJAUT WY3lTao3Te BUTUUTY] O} SNP UNJ 30U ] 2SB) :3I0N

ceeLe (A4 vet 00T !

609€°T h
ETEC ET . [¥2T vt 00T v i ]
0vv6°9T1 voc 80¢ 00T |

9€90°1 80¢ A
112081 Loz Loz 00T v
180S°¥T | VLI SLT 00T g ; b

8G8T°1 LT AI -4
PEOT LT 9LT SLT 00T v
L¥S6°8¢C LSS 9¢s SL g

0S09°0
€81S° LT 158 4 9¢s SL v
8STZ°8¢t VELT g9t o€ q

¢9TS°0
cLTL 6T 9vST 019T 0€ v

(94 = V) afexoed a4 a8exord uad
SauT] Jo oTiey (03g)aUWT] z 0 N suotieotiday Wy Tao3 1Y

R e -




The modified thinning algorithm includes:

1. Use of exponentials for thinning of exponential
polynomial intensity functions

2. Use of lower bounds

3. Partial recycling of exponential thinning variates

4. Use of exponential variates left over from generation
of the bounding process.
Each of these refinements are discussed in Section V.

The Poisson decomposition and gap-statistics
algorithm used was again the implementation by PATROW
[Ref. 3], program DEGTWO. In addition to the normal running
of the program, a second set of comparisons was made uti-
lizing separately calculated values for c*, the bound for
the conditioning-acceptance-rejection routine. This is
discussed by PATROW [Ref. 3]. These runs are indicated
by asterisk (*) in Table IV.

In the first case, the thinning algorithm was faster
in four out of the five test cases, with the best relative
performance occurring in Case VI.

When the improved values of c* were incorporated
for Cases 1V, V, and VI, the Poisson decomposition and gap-
statistics algorithm improved substantially, winning in
three out of the five test cases.

The relative advantage in computational speed was
less than a factor of two in all cases with a maximum of

1.83 to 1 in favor of the thinning algorithm in case VI.
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Core storage for the thinning algorithm was determined
by using only the part of the algorithm which used exponen-
tial thinning variates. This precluded the requirement for
storing 5000 uniform variates which are not used. The
Poisson decomposition and gap-statistics program (DEGTWO)
required about 88,000 bytes of core storage as compared to
about 94,000 for the thinning program (NHPP modified to
exclude unused uniform variate array). Detailed results
are listed in Tables IV and VI.

3. The One-At-A-Time Thinning Algorithm

As discussed in Section II.C, the one-at-a-time
algorithm was developed only to test the relative efficiency
of the algorithm used to generate the next event in a non-
homogeneous Poisson process. This latter requirement may
arise in event-step simulation where only the next event
in a non-homogeneous Poisson process is desired rather than
an array containing all events in a specified interval. 1

Computationally, the one-at-a-time algorithm is
quite similar to the basic thinning algorithm. The only
essential difference is that the basic thinning algorithm
generates and stores all the points in the bounding process
(intensity function A*) before thinning, whereas the one-

at-a-time algorithm generates a point in the bounding process

and thins that point before continuing. The latter method
removes the requirement for an additional array to store

the bounding process points. This in turn saves about
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20,000 bytes of core storage requirement when the programs
are dimensioned to accept 5000 points.

As implemented here, the one-at-a-time algorithm
simply generates the next point in the non-homogeneous Poisson
process and stores it, stopping when the last point generated
lies outside the interval. All variates in this program are
generated one at a time. The results shown in Table V are
thus a good indicator of the relative efficiency of using
this method. As can be seen, the one-at-a-time algorithm
(program NHPOAT) is faster than the Poisson decomposition
and gapQStatistics algorithm (program DEGTWO) in three of
the five test cases run. This is true despite the fact that
DEGTWO generates all variates in arrays, taking advantage
of the time economies of scale mentioned in Section V. The
one-at-a-time algorithm also requires forty percent less
core space.

From the tables one can also see that since both the
best case thinning algorithm (Table IV) and the one-at-a-
time thinning algorithm (Table V) are compared to the
Poisson decomposition and gap-statistics algorithm, it is
possible to obtain a reasonable comparison of the best case
thinning algorithm and the one-at-a-time thinning algorithm.
For example, for the sample intensity function used in
Case II (see Figure 3), the ratio (.8127/.5541) = 1.47
indicates that execution time for the one-at-a-time thinning

algorithm is almost fifty percent greater than that of the
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best case thinning algorithm. The ratios for Cases III,

d IV, V and VI are 1.62, 1.27, 1.37, and 1.2l respectively.
The tables also demonstrate the time-of-day effect
discussed in Section IV. That is, the execution time for
a given program is not the same each time it is run. For
example, program DEGTWO took 21.8808 seconds for the run
recorded in Table V compared to 18.8917 seconds for the run
recorded in Table IV. For this reason, ratios of execution

times were chosen as the measure of effectiveness rather

e i

than absolute times.

A FORTRAN program listing, NHPNXT, is provided at
the end of this thesis. This program generates the next
point in a non-homogeneous Poisson process with a user

supplied intensity subprogram, FUNCTION FCN. This program

can be used in conjunction with event-step simulation
programs, including SIMSCRIPT, where it is desired to mini-
mize core space (at the expense of speed) or where only one
event is desired at a time. Core requirements are shown

in Table VI.

C. CONCLUSIONS
Both the thinning algorithm and the Poisson decomposition
E | and gap-statistics algorithm include two general types of

operations: a "generating" process and a "second stage".

For the Poisson decomposition and gap-statistics algorithm,
E | the generating process is the non-homogeneous Poisson process

'; with degree-one exponential polynomial intensity function.
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For the thinning algorithm (as implemented herein) the
generating process is homogeneous Poisson.

The second stage for the Poisson decomposition and gap-
statistics algorithm is the actual decomposition and genera-
tion of variates by the conditioning-acceptance-rejection
method. For the thinning algorithm, the second stage con-
sists of the thinning of the points in the bounding process.
Thus one algorithm generates events and adds more events
from a second process while the other generates events and
subtracts some out.

The strongest point in the Poisson decomposition and
gap-statistics algorithm is the highly efficient generation
of the events in the degree-one exponential polynomial inten-
sity function process. This is done with the gap-statistics
algorithm which is two to five times faster than the thinning
algorithm for this type of process (see Appendix A). At
the same time, the conditioning-acceptance-rejection routine
is relatively quite inefficient.

There are many considerations in predicting the relative
success of the two algorithms, i.e. which will be faster in
a given situation. For example, the Poisson decomposition
and gap-statistics algorithm is affected by factors such
as whether or not partitioning is required, the percentage
of the total number of variates which come from the degree-
one exponential polynomial process, and whether time rever-

sal is required. For the thinning algorithm, the fraction

64

et LB I PR A NP 1 T T @ o et




of the lower bound divided by the upper bound A/A*, would

seem to be a good indicator of success.

For the test cases considered, however, the only con-
sistent indicator was the expected number of events in the non-
homogeneous Poisson process being simulated. The smaller the number
of events in the non-homogeneous Poisson process being simu-
lated, the better the relative performance of the thinning
algorithm over the Poisson decomposition and gap-statistics
algorithm. Thus it appears that each algorithm has a fixed
and variable part in terms of time. The thinning algorithm
has a shorter "setup" cost in terms of time but the variable
cost or "cost per additional variate" seems to be smaller
for the Poisson decomposition and gap-statistics algorithm.

The exact cause of this phenomenon is not known although
it appears to be centered in the conditioning-acceptance-
rejection routine.

In the larger spectrum of non-homogeneous Poisson process
generation, it seems clear that the thinning algorithm is

the best all-around method available. ﬁ

D. RECOMMENDATIONS
Two specific areas for further study are recommended.
First, the thinning algorithm as implemented here uses
only homogenecus Poisson processes for bounding. It might
be worthwhile to investigate the possibility of using other H
processes, such asnon- homogeneous Poisson processes with

degree-one exponential polynomial intensity functions, as
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bounding processes. This would allow the efficient gap-
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statistics algorithm to be utilized although function

-y

evaluation would in general become more time consuming.

The second area is in finding the optimum method for
generating the degree-two exponential polynomial class of
intensity function. These will undoubtedly remain of
interest due to their statistical properties. Here, it
seems clear that the best features of the two algorithms
can be combined. Specifically, the Poisson decomposition
and gap-statistics algorithm can be modified to use thinning
rather than conditioning-acceptance-rejection for generating
the points in the difference function process, i.e. the
process with intensity function AD = A(t) - AL(t). Also
the criterion for the decomposition might preferably be
that the intensity function of the remainder be monotonically
increasing. This would make it easy to find the upper

bound for the function, and the most efficient version of

the thinning algorithm, that where the number of computations

of the intensity function is minimized, could be used. p:
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APPENDIX A

GENERATION OF DEGREE-ONE EXPONENTIAL
POLYNOMIAL INTENSITY FUNCTIONS

The generating process for the Poisson decomposition
and gap-statistics algorithm is a non-homogeneous Poisson
process with degree-one exponential polynomial intensity
function. This is generated by using the gap-statistics
method, which is subroutine NHPP2 in the DEGTWO program
(see listing below).

To determine the relative speed of the thinning algorithm
compared to the gap-statistics algorithm, two simple degree-
one exponential polynomial intensity functions were developed
and simulated.

Table VII presents the results. Case A is a monotone
decreasing intensity function, A(t) = exp(3.4 - 0.02-t)
over the interval (0,100]. Case B is a monotone increasing
intensity function, A(t) = exp(.693 + 0.03-t) over the
interval (0,50].

Results show that the gap-statistics algorithm is from
two and a half (Case B) to four and a half (Case A) times

faster than the thinning algorithm.
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APPENDIX B

RESULTS OF EFFICIENCY MODIFICATIONS

This appendix presents, in tabular form, the results
of comparison of the programming modifications listed in
Section V.

Table VIII shows the effects of utilizing lower bounds
for the intensity function. Test conditions include:

l. Use of uniform thinning variates
2. Recycling of thinning variates
3. Use of arrays of variates

Table IX shows the gains realized by employing exponen-
tial thinning variates in contrast to uniform thinning
variates for exponential polynomial intensity functions.
Test conditions include:

1. Use of arrays of variates
2. Recycling of thinning variates
3. Use of lower bounds for intensity function

Table X shows the results of recycling versus no
recycling where uniform variates are used for thinning
while Table XI shows the same comparison when exponential
variates are used for thinning. For both cases, test
conditions include:

1. Use of arrays of random variates

2. Use of lower bounds for intensity function
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Table XII presents the results of incorporating all
of the programming improvements into program NHPP. The
final thinning program, NHPP, is compared to the basic
thinning program without modifications, NHPTHN. The

essential differences are:

NHPP (final program) NHPTHN (basic program)

Arrays of variates generated Variates generated one
at a time

Exponential variates used Uniform variates used
for thinning for thinning

Lower bound of intensity Lower bound = 0.0
functions utilized

Thinning variates recycled No recycling used

,,...,A
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: DO 5 I=1,NSTAR
'T IF (Egid‘.snm GO TO 2 F508 COPY FURALSHED 70 D00 oo
: =
: TT(K) = TIMES(I)
: EB = EB-BND
2 GO TO S
2 VAL = =FCN(TIMES(I))+UBLN
IF (EB.LT.VAL) GO TO 3
K = K¢l
TT(K) = TIMES(I)
¢ 3 KK =TkKel
C CHECK TO SEE IF MORE UNIT EXPON NEEDED
IF (KK<LE.NCHK) GO TQ 4
§ GENERATE MORE UNIT EXPONENTIALS FOR THINNING
KKK = KKK+KK
PN = P*FLCAT (NST AR=KK
NEB = MAXO(1,IFIX(PA+4e0%SQRT (PN*C)))
CALL fexpon {Is,EE,NEB
3
NCHK = NEB
4 EB = EE(KK)
5 CONTINUE
N = K
’ ¢ 10 14 ,
€ LOG QUADRATIC WITH NO MINIMUM
6 CONTINUE
CALL REORD (NSTAR yNEXP ,NLEFT)
NCALL = NSTAR=NLEFT
IF (NCALLoLE.O) GO TQ 7
CALL SEXPON (ISyEE,NCALL)
¢ SET VARIABLES
7 K=0
; UBLN = ALOG(UB)
C L COUNTS HPP EVEATS
€ K COUNTS NHPP EVENTS
DO & I=1,NSTAR
VAL = —FCNCTIMES(I))+UBLN
IF (EE(I)<LT.VAL) GC TG 8
K = K+l
TT(K) = TIMES(I)
8 CONTINUE
N = K
| : Ga TC 14
€ INTENSITY FUNCTION IS NOT LOG QUADRATIC
¢ DOES IT HAVE A MINIMUM CR IS MINIMUM LESS THAN
¢ PCTMN OF MAX?
9 PCT = XMIN/UB
g IF (PCT.LT.PCTMIN) GO TO 12
C USE MINIWUM
C INITIALIZE VARIABLES
NJNIF = NSTAR
CALL SRAND (1SyUysNUNIF)

K =
FF = 1.,0/U8
u & [ CcOUNTS HPP EVENTS
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IF (U.LE.RMIN) GO TO 2
TEST FOR THINNING

RATIQ = FCN(XNEW) /U
18 (U.Les RATTATYE
6 101

ARRIVAL HERE INCICATES SUCCESSFUL THINNING

2 XNEXT = XNEW
RETURN

8
10 2

ARRIVAL HERE INDICATES NO MORE POINTS IN INTERVAL

3 IER = 5
XNEXT = SR#1,.0
RETURN
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15 CSTAR = EXPELI-EXP (E1-E2)
16 CSTAR = EXP(EL+E2+E31-EXP(EL+E3)
17 CSTAR = EXP(E1-E4)-EXP(E1-E5)
63,70 20
18 CGSTAR = EXP(ELI-EXP (EL+E3HE2)
19 CSTAR = EXP(E1+E3+E2)-EXP(EL)
CGMPUTE INTEGRAL OF MCCIFIED DEGREE TWO RATE FUNCTION
OVER INTERVAL
20 CALL HELP (A,Al ERNEW, PMTR)
A%k HELR 21 8kst81f CEX LB SE RN BW ) ~EXP (BLXEL) ) ) /81
IDENTIFY AS FIRST SUBINTERVAL
NOTE = 1

GENERATE REALIZATION ON PQISON (PMTR) VARIATE
21 CALL PVAR (IS PMTR
iF (N ealt P esR 48 22

REJECTICN RQUTINE USED ON FIRST SUBINTERVAL

4
CSTAR,PyQyN(2))
IV = T

HAS THE INTERVAL BEEN PARTITIONEOD?
24 IF (ERNEW.EQ.ER) GO TO 34
Gl 10 27

USE REJECTICON ROQUTINE CON SECOND PART CF INTERVAL
25 N(4) = M
P(4) =8
P(5) = B1
IF NO EVENTS OCCURRED BYPASS REJECTICN ROUTINE
%F (N(4).EQ.0) GO TO 35
= =ELNEW
ALL REJECT (ISyELNEWyCSTARyPyQyN(4))
COPY TIMES OF EVENTS INTO *TIMES' ARRAY

N4 = N(1)+N(2)+N(3)

g COMPLETE.
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161§ PAGE IS BEST QUALITY PRACTICABIE
FRON 0OPY FURKISHED TODDC
MUST SUPERPOSE FOUR EVENT STREAMS

L8GN = N(1)+1

LEIMN = N(1)+N(2)

CALL COLATE (LBGNsLFINy1)
LBGN = LFINeN(3)+]1

JOGN = LFlN#%

CALL COLATE (LBGNsN(5),JBGN)
G) TO 28

MUST SUPERPOSE FIRST HALF OF ARRAY ONLY
36 N2 = N(13+N(
L3GN (1)+
CALL COLATE LBGNoNZyll
GO TO 38
MLST SUPERPOSE SECOND KALF OF ARRAY ONLY

37 KK = N(1)#N(2)+1
Y#N(2)+N(3)+1

L3GN = N(1
LFIN = N(5)
CALL COLATE (LBGNyN(5)yKK)
GO TO 38
ARE TIMES OF EVENTS OR TIMES BETWEEN EVENTS REQUESTED?

38 IF (II.EQ.0d RETURN
CALCULATE T IMES BETWEEN EVENTS

n—-
2 ey
L X 4
Ui~m
- N

(1)
= TIMES(1L)-EL

Z-N

W=
X

nm

8

maui

[l and
0

)
TIMES(I) =S

w
0
o

~oWn
2N C
OOn PeOmon Owunn-inn

QrcC —HnXIZm
ZTm Moo+ ZI1=

CALL OVFLOW
INITIALIZE VARIABLES
LER 0
TINT = ER-E
A= EXP(A#AI*EL)
IS THE POISSON PROCESS HOMCGENEOUS?
IF (Al.EQ.Q.) GO TO 3
PAR = (A*(EXP(TINT*AI) 1.)) /A1
IF (Al .GT.0.) GO 1
IFLAG = 3
GO TO 2
1 2 = A*EXP(TINT*AL)
A% = =A
IFLAG = 2
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THIS PAGE IS BEST QUALITY PRACTICABLE
FROM OOPY FURKISHED TODDC __-

COMPUTE PARAMETERS OF BOTH POISSON RANCOM VARIABLES
2 THETA = -A/Al
G0 70 4
TE RATE AND SCALING FARAMETERS FOR HOMOGENEQUS
ON PROCESS
TINT®A
=1
S = 1./A
COMPUTE NUMBER OF EXPONENTIAL VARIATES REQUIRED
4 NMAX = PAR+6.*SQRT (PAR)
IS THIS A HCMGGENEOUS POISSON PROCESS?
IF (IFLAG .EQ.1) GO TO 17 ‘
GENERATE REALIZATION ON PQISSON (THETA) VARIATE
5 CONTINUE
CALL PVAR (IS,THETA,M)
IF (M.EQ.0) GCL TO 7
CALCULATE TIMES OF EVENTS

CALL SEXPON (IS,TsNMAX)
8 = =AL

vV = Qe
JMAX = NMAX+]

U
S
R =
LAG
NVR

CEEDED THE MAXIMUM NUMBER

NO EVENTS OCCURRED

N=20
RE TURN

TOO _MANY EVENTS FOR ARRAY. INCREMENT ERROR

CODE AND TRY AGAIN

8 1
G

E ER+1
0T

S THE RATE FUNCTION INCREASING OR DECREASING?
F (IFLAG.EQ.3) GO TOQ 13

EVERSAL TECENIQUE I

I
E R S N
TERMINE WHETHER N IS EVEN

iM
0E
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12

IHSIMGEHSMBTQWHJTYR&MHHGHEI
- FROM OOPY FURKISHED TO DDC

———

IF {ISIG.EQ.1) TINLCOP+1)=ER~T(NLOOP+1)

ARE TIMES OF EVENTS REGQUESTED?

13

14

CALCULATE TIMES BETWEEN EVENTS

15

THE PCISSON PROCESS IS HOMOGENEQUS

17

18

15

TRY AGAIN WITH NEW STRING OF VARIATES

20

21

IF (II.EQ.0) FETURN
0 701

G 5
IF (I1.NE.Q) GO _TO 15
IF (EL.EQ.0.) RETURN

1N
L+T(I)

mma

S = T(1)

I =1
=
CALL N (IST¢NVMAX)

=
AR) GO TO 20

«NMAX) GO TO 19

PC
I)
{ oP
{
-
EVMENT ERROR CODE
IER = IER+]1

——
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gOTO
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