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ABSTRACT

- 

In this thesis we study several computer implementa—

• tions of the thinning algorithm, a new method for generating

non-homogeneous Poisson processes. The method, deve loped

by Professor P.A.W. Lewis, Naval Postgraduate School,

Monterey, California, and G.S. Shedler, IBM Research

Laboratory , San Jose, California, is valid for Poisson

processes with any given intensity function. The basic

thinning algorithm is modified to exploit several ref m e —

ments which reduce computer execution time by approximately

one-third. The basic and modified thinning programs are

compared with a previous algorithm of Lewis and Shedler,

the Poisson decomposition and gap-statistics algorithm,

• . which is easily implemented for Poisson processes with

intensity functions of the form exp (a0+a1t+a2t
2). The

thinning programs are competitive in both execution time

and computer memory requirements. One program implementa—

tion generates the events in a Poisson process one at a

time; another program implements the algorithmic refinements

which improve efficiency.
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I. INTRODUCTION

The Poisson process is a widely known and studied

stochastic process. It is frequently used to describe

random arrivals at some type of service facility such as

a service station fuel pump or a bank teller ’s window.

In its most common form, the “rate” of these arrivals is

considered to be constant over time. This is the homogeneous

Poisson process which has the familiar property that times

between arrivals (or events) are exponentially distributed

with mean equal to the inverse of the rate.

The assumption of a constant rate, or homogeneity , is

at best tenuous when applied to real world data. For exam-

pie, the rate of arrivals at a traffic light typically

varies from very high during rush hours to very low in the

early morning. In addition to this cyclic time—of-day

effect, arrival rates may exhibit longer term increases or

decreases. Further, these effects may be superimposed upon

shorter term effects to produce a more complex rate which

varies with time. These processes for which arrival rates

vary with time may often be represented by a non-homogeneous

Poisson process, that is. a Poisson process with a time

dependent rate of arrival.

The generic term of Poisson process includes then both

homogeneous and non—homogeneous Poisson processes. LEWIS

and SHEDLER (Ref. 1] define the Poisson process generally in

10 
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terms of a monotone non-decreasing right-contiiious function

A(t) which is bounded in any finite interval. Then the

• number of points, N(t’’ ,t’), in any finite interval has a

Poisson distribution with parameter i.t(t’’,t’) = A ( t ’ )  — A(t’’).

Thus, for example in (0,t’], with t’ > 0, P{N(t’’,t’) = n}

PCN~ ,=n} = Ii~~ e °/n~ , where = ~(0,t’) = A (t’) — A(0).

The right derivative A (t) of A(t) will be assumed to

exist and is called the rate function or intensity function

of the process. A ( t )  is called the integrated rate function

and has the interpretation that for t > 0, A(t) - A(0) = E(Nt).

For the homogeneous Poisson process X(t) is a constant,

e.g. A , and thus the integrated rate function is simply the

product of A and t, i.e. the expected value of Nt N(0,t).

• While simulation of homogeneous Poisson processes is

relatively straightforward , the non—homogeneous Poisson

process is more problematical. Times between events are

not exponential in the general case and simulation has

typically been tailored to specific classes of intensity

functions. LEWIS and SHEDLER (Ref. 1] list three general

methods for simulating non—homogeneous Poisson processes

• and one method for a special rate function. The general

methods include the time scale transformation method and

the conditioning and order-statistics method. The special

• method is the gap-statistics method, a method which is - - 
-

particular to the degree-one exponential polynomial intensity

fucntion, i.e. those of the form A (t) = exp(b0 + b1t).

11
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Implementation of the general methods on a computer may

pose special problems. Often the inverse of the integrated

• 
. rate function is not explicit and must be computed numerically.

Other problems in implementation generally result in lower

• efficiency, as measured by execution time or computer storage

requirements or both. -

One class- of intensity functions which is of general

interest is the degree-two exponential polynomial family.

That is, those with intensity function of the form

A (t) = exp (a0 + a
1
t + a2t

2). This family of functions has

the property of being positive for all values of t, a

necessary condition for an intensity function. Additionally ,

by varying the magnitude and sign of the coefficients, the

exponential polynomial of degree two can be made to be mono-

tone increasing or decreasing over time, as well as increasing

and then decreasing , or vice versa. Use of this type of

intensity function also leads to statistical procedures

which are relatively simple.

LEWIS and SIIEDLER [Ref. 2] proposed a new method of

generating the non—homogeneous Poisson process with degree—

two exponential polynomial intensity function . It involves

decomposition of the degree-two exponential polynomial

intensity function, A (t), into two functions, a degree—one

exponential polynomial function, AL(t), and a difference

function, AD(t) = A ( t )  - AL(t). This procedure allows the

points in the degree-one exponential polynomial event stream

12

i:~~~~~~ ~~~~~~~~~~~~~~~~~



r - -  - - - -

to be generated using the gap-statistics method, which is

highly efficient when implemented on a computer. The

• remaining points with intensity function AD(t) are generated

by other methods and then merged with the other events.

PATROW (Ref. 3] implemented two algorithms, the time

scale transformation algorithm and the Poisson decomposi-

tion and gap—statistics technique, and compared them for

computational speed and computer memory requirements. His

results indicated that the Poisson decomposition and gap-

statistics technique was from two to seven times faster than

the time scale transformation algorithm, although the former

required about thirty percent more computer memory.

PATROW’s work [Ref. 3] is also an excellent self-

contained reference on Poisson processes, bringing many

references together under one cover.

A recent result of LEWIS and SHEDLER [Ref. 1] develops

a new method for generation of points in a non—homogeneous

Poisson process. This method , called “thinning”, is similar

to the general conditioning—acceptance—rejection method

but has subtle differences which are computationally signi-

ficant. The thinning method is straightforward in both an

analytical and a computational sense , and is valid for any

type of intensity function. The thinning theorem is

presented in Section II.

This thesis is, in a sense, a sequel to PATROW’s work
• [Ref. 3]. Its purpose is to implement the thinning algorithm

13

- - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

____________________________ - 

~~~- — - - -  — -- - - - - -- • •• --

____ —---—-“—--- --- - __~~~~~~~~~~~A~~~ 
- --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- —-- .~-~~~ - - ~~~~~~~~~~~~~~~ 
__

~
_ __ •_ -~

__
~
.__-11_.,_•~~_ —-~~~~ - — --- .- — - - - - - • T

in computer program form and to compare it to the Poi sson

decomposition and gap-statistics algorithm implemented by

PATROW (Ref. 3]. The latter implementation was designed

for a specific subset of intensity functions, degree—two

exponential polynomials. Since the Poisson decomposition

and gap—statistics method outperformed a general case

algorithm (time scale transformation) by a significant

margin, comparing the thinning method to the Poisson

• decomposition and gap-statistics method should give a

reasonable indication of the thinning algorithm ’s performance

in generating non-homogeneous Poisson processes with other

than degree-two exponential polynomial intensity functions.

Section III lists the two algorithms considered, as well

as a special application of the thinning process which will

be of interest to those involved in event-step simulation .

Section IV describes the methodology used in comparing the

algorithms while Section V deals with aspects of the thinning

procedure which may be exploited to enhance its overall

-- 
- effectiveness in a variety of situations. Finally, Section

VI presents the results and conclusions of the comparisons

of the algorithms. Appendices A and B contain secondary

results and computer program listings following the

appendices.

1.,
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II. THE THINNING THEOREM

- The underlying concept of the thinning method involves

the use of a “bounding ” Poisson process, {Nt : t ~
where N is the number of points in the bounding process in

the interval (0,t). This process may be either homogeneous

ornon-homogeneous Poisson, but should be one which is easy

- 
- 

to simulate on a computer. It is called bounding because

its intensity function , denoted A (t), bounds the intensity

function X(t), of the nonhomogeneous Poisson process which

is to be simulated over the fixed interval (0,t’]. That

* *
- 

- is , A (t) > A(t) for all t in (0,t’]. Points at

i = 1, ..., Nt.i are generated for the bounding process

over the interval (O,t’). These points are then deleted ,

or “thinned”, with independent probabilities equal to

* * *1 — (X(T~)/A (Ti)). Thus the probability that a point of

the bounding process, T , is a point of the process being

generated is equal to the ratio of the intensity functions

evaluated at that point, i.e. A (T~)/A (T~).

More formally:

: ~
- Theorem 1. Consider the one—dimensional non-ho~ ogeneous

Poisson process {N : t > 0} with rate function A *(t ) .

The number of events , Nt,s in the fixed int:rval (0,t ’]

has a Poisson distribution with parameter ~ (0 ,t ’)  = u

= A *(tI) - A (0)

_ _-  

~~~~~~~~~~

- 
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* * * *Let T1, T2, T3, . . .,  TN* , be the times of the events

- 

- 

of the process in the interval (0,t’].

I . Suppose that for 0 < t < t ’ , A C t )  < A *(t). For

- 

i = 1, 2 , . . .,  N , delete the event at T~ with indepen dent

- . - probability 1 - A(T
~
)/A (Ti).

- I Then the remaining times form anon-homogeneous Poisson 4
process with rate function ACt ) in the interval (0,t’].

Proof:

We assume that A (t) is continuous and use the definition

1 of the Poisson process based on incremental probabilities.

Thus we need to show that the occurrence of an event in

(t,t+dt] is independent of the number or times of occurrence

of events before t, and that

- 

: . 

P{Nt+dt 
- Nt = 0} = 1 

- A (t)dt + o (dt),

I
P{Nt+dt 

— Nt = l} = A(t)dt + o(dt),

and

P{Nt+dt - Nt > l} = o (dt) .

- 
Now we have that

16
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P{ no event from (Nt : t > 0) in (t,t+dt] }

= P{no event from { N~ : t > 0) in (t,t+dt]}+ P(event

*from (Nt : t > 0} in (t,t+dt] and it is “thinned”)

= I — A~ (t)dt + [A* (t)dt]• El — A (t)/A* (t)] + o (dt )

* * * *= 1 — A (t)dt + A (t)dt — A ( t )~~A ( t ) / A  ( t ) dt + o (dt)

= 1 - A (t)dt + o(dt).

Similarly:

P {one event from (Nt : t > 0) in (t,t+dt]}

= P{event from {N : t > 0) in (t,t+dt3 which is not “thinned”)

* *= A (t) d t .A ( t ) / A  (t) + o(dt)

F
= A(t)dt + 0(t)

Also it follows directly that

Pfmore than one event in (t,t+dt]} = o(dt)

Moreover , an event in (t,t+dtj is independent of what

happens before t because :

17 
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1. {N : t > 0) is a Poisson process and therefore has

independent increments , and

2. The thinning uniform random variate is independent

of other thinning variates, and is independent of the

Poisson process {N ~ : t > 0) .

Q .E.D.

Figure 1 shows a graphical representation of a particu—

lar case of bounding and object intensity functions. I

I- 
-

I
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III. ALGORITHMS CONSIDERED

A. POISSON DECOMPOSITION AND GAP-STATISTICS ALGORITHM

1. Usage

This algorithm is the one found by PATROW [Ref. 3]

to be most efficient in simulation of the degree-two exponen-

tial polynomial class of intensity functions and its imple-

mentation by PATROW was confined to that group. Basically ,

the approach is to decompose the intensity function (which

is of the form A (t) = exp(a0 + a1t + a2t
2)) into a degree—

one exponential polynomial function, At(t) = exp (b0 +

and a difference function, AD(t) = A ( t )  — AL(t). The points

or events in the process with the degree-one exponential

polynomial function, AL(t), are generated over the interval

(0,t’] utilizing the computationally fast gap—statistics

algorithm. The points in the process with intensity func-

tion XD(t) are generated using conditioning—acceptance—

rejection techniques. The two event streams are then

superposed to produce the event stream for tne non-homogeneous

Poisson process with the intensity function A ( t ) .

In the case where A(t) has an internal maximum

or minimum in the interval (0,t’], the interval is par—

titioned and treated as two separate intervals for simula—

tion with the event streams being merged in the final step.

Efficiency is optimized by maximizing the area

under the degree-one exponential polynomial intensity

20
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function , AL(t), subject, of course, to the constraint

AL(t) < A C t )  for 0 < t < t’. This maximizes the use of
- 

• • the faster gap—statistics algorithm and minimizes the use

of the conditioning-acceptance-rejection algorithm which
- 

is slow relative to the gap—statistics algorithm.

PATROW [Ref. 3) deals extensively with the details

of this algorithm and it is consequently presented here

only in outline form .

2. Algorithm Statement

a. Categorize the intensity function, A (t) , into

one of six cases by examination of the coefficients a1
and a2 in A (t) = exp (a0 + a1t + a2t

2). Examples of each

of these cases are shown in Figures 2 through Figure 7

- located in Section IV.

b. (1) If ACt) is monotone increasing or monotone

decreasing over the interval (Cases I, II, IV and V; see

Figures 2,3,5 and 6), decompose ACt) into AL(t), which is

degree—one exponential polynomial, and AD(t) = A ( t )  - A L ( t ) .

Thus the decomposed functions have the forms:

- _ 
AL(t) = exp(b0 + b1t)

AD(t) = exp(a 0 + a1t + a2t
2) - exp(b 0 + b1t)

and

A (t) = A L(t) + XD(t).

2 
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Choose b0 and b1 so as to maximize the

area under AL(t) subject to AL(t) < A(t) for all t in

(0,t’].

(2 ) If .A (t )  is not monotone over the interval
• - (Cases III and VI; see Figures 4 and 7), partition the

interval (0,t’] into two disjoint, contiguous subintervals,

(0,b] and (b,t’]. Choose b as the (unique) point where

A (b) is a maximum (minimum) of X(t) over (0,t’3 . Treat

each subinterval as in b.(l), applying subsequent steps on

each subinterval separately , and combining results as the

final step.

c. Generate points in the Poisson process with

degree—one exponential polynomial intensity function ,

XL(t), using the gap—statistics method.

d. Generate and order points in the Poisson process

with intensity function AD(t) using the conditioning-

acceptance—rejection method .

e. Merge (superpose) the two event streams from

— Step 3 and Step 4. The merged stream is from the non-

homogeneous Poisson process with intensity function A (t).

B. THE BASIC THINNING ALGORITHM

1. Usage

• 
The thinning theorem is implemented in a straight-

forward xi~anner. Typically , the bounding process used is

homogeneous Poisson with constant rate X~ , where A * is an

- 
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upper bound of A ( t )  over (0 ,t ’] .  In this case efficiency
*is optimized if A is the least upper bound (LUB) of X (t)

over (0 , t ’] .

2. Algorithm Statement

a. Generate events in the Poisson process

(N : t > o} with rate function A *(t) in the fixed interval

(0,t’]. If the number of events generated, n , is such
*that n = 0, exit; there are no events in the process

{N ~ : t > 0}.

b. Denote the (ordered) events by T1, T2, . . .,  T~*.

Set i =  l and k =  0.

c. Generate U~ , uniformly distributed between 0

and 1. If U~ 
< X(T~)/A (T~), set k equal to k+l and Tk = T1.

d. Set 1 equal to i+l. If i < n , go to c.

e. Return T1, T2 , . . .,  T1~, where n = k , and also n.

C. THE ONE-AT-A--TIME THINNING ALGORITHM

1. Usage

In some event-step simulations , it is customary or

necessary to generate only one event at a time, rather than

an array of events . The thinning algorithm is easily

modified to generate the next event in the non-homogeneous

Poisson process with intensity function A C t ) . In this case ,

the algorithm utilizes the time of the last event, T~~1;

the right hand limit, t’, of the fixed interval over which

the process is being simulated ; and the bounding process
• ;- *intensity function, A (t). All variates are generated

23
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one at a time , thus no arrays are required for storage.

The output is 
~~~ the time of the next event , if any , in

the interval (T1_1, t’] .

The algorithm is stated here for the case in which

. the bounding process is homogeneous Poisson, i.e.,
* *A Ct ) = A , a constant and an upper bound of A ( t ) .

Specifically:

T1 is obtained by generating and cumulating

exponential (mean = 1/A ) random variates ~~~~~ ~~~~~ ...
for i = 1, 2, ..., until for the f i rs t  time ,

~~~ ~ 
A (T

~_1 
+ E~~,1 + ... + E~~,~~) / A

A detailed algorithmic statement of this procedure

follows .

2. Algorithm Statement

If i = 1, set T~~1 = 0 (i.e. the left end point

of the interval) , otherwise, T~~ 1 is known . Then for each

i = 1, 2 , . . .  , the time , ~~~ of the event in the non-

homogeneous Poisson process is given by the following :

a. S e t j= l
*b. Generate E . ., an exponential random variate1,J

* !L *
with mean 1/A . If T~_1 + ) E~ k is greater than t’ ,k=l
exit; there are no more points in the interval (T~_1~t’].

c. Generate U~ , uniformly distributed between 0

and l. If

24
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U~ ~ A (T~_~ + 

k=l

set

• . 3
T~ = T~...1 + 

k=l 
Ej ,k

and exit.

- 
- d. Otherwise Set j = j+l; go to b.

Note : U. • and U. are uniformly distributed
1,3 3

between 0 and 1.

- 
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IV. METHODOLOGY FOR ALGORITHM COMPARISON

-

- • A. MEASURE S OF EFFECTIVENESS

Two quantifiable measures of effectiveness were chosen

• as yardsticks for algorithm comparison. These were compu-

tational speed and computer memory requirements. Some other I:

considerations, such as programming ease and robustness,

are discussed in Section VI. It must also be recalled that

the classes of intensity functions for which the two

algorithms are usable are different. The Poisson decomposi-

tion and gap-statistics algorithm is only easily implemented

for a restricted set of intensity functions, those of the

f orm X(t) = exp(a0 + a1t + a2t
2), i.e. the degree-two

exponential polynomial. Conversely , the thinning algorithm

is valid for any positive intensity function . Thus a direct

comparison can only be made in that subset of intensity

functions for which both algorithm implementations are

valid, the degree-two exponential polynomials .

PATROW [Ref. 3] developed six sample intensity functions,

all special cases of the degree—two exponential polynomial,

and these are used herein as the test cases. These are

described in Section IV.C.3 below.

1. Computational Speed

Typically , computer time is a costly commodity

in economic terms. It may also be a significant factor

in determining more mundane considerations such as job

26
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priority and thus turn-around time. Thus computer run

time is a natural candidate as a measure of effectiveness

for comparing competing algorithms.

• PATROW (Ref. 3] utilized a procedure in which

- 
•~~ event streams from each of six sample intensity functions

were replicated several times in “packages”. The number

of replications was large if the expected number of events

in the event stream was small, and vice versa. Thus the

product of the number of events times the number of replica-

tions was kept on the same order of magnitude. For simplicity ,

the same technique was used here although results showed a

wide variation in the run times for the six packages.

Programming of the thinning algorithm was done so as

to minimize run time while maintaining parity with the

Poisson decomposition and gap-statistics algorithm wherever

direct comparison could be made. For example, shuffled

random numbers are called in both programs and both are
• - dimensioned to accommodate event streams of up to 5000 events.

Undoubtedly further programming refinements exist

which might increase slightly the speed of one or the other

algorithm. Also, different computers might have unique

features which could be exploited . The overall purpose here

was to obtain a relative order of magnitude comparison and

it believed that this objective was accomplished in every

meaningful sense.
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2. Computer Memory Requirements

This is the second obvious means of comparing two

algorithms. Again, some core reduction could undoubtedly

be made by a sophisticated programmer. Most notably, core

requirements can be reduced substantially if only one non-

homogeneous Poisson variate is generated at a time (the

one-at-a-time algorithm) but this has the predictable

effect of increasing execution time considerably (see

Tables IV, V, and VI).

B. MEASUREMENT CONSIDERATIONS

Measurement of computer memory requirements is straight-

forward and deterministic.

Measurement of computational speed, more specifically

Central Processing Unit (CPU) time, is quite another matter.

- - 
. First of all, the number of events in each replication of

-

~ 

- 

the ncn~-homogeneous ~oisson process varies causing CPU time

to be a random variable. More important, however, are the

- 

effects of internal computer procedures.

In the first place, the so—called CPU time printed out

on the normal IBM—360 output has only a general relationship

to the actual computational time required by the CPU. This

is caused by the addition of certain “overhead” time. This

overhead time is a function of the number of other programs

in the system as well as such factors as compilation and

linkage times. Thus the same program run at two different

times may differ in “CPU time” by a factor of two or more.
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Program execution times were isolated from compilation

and linkage times by the use of a system subroutine ,

GETIME. This subroutine allows the user to initialize an

internal timer within the program and read cumulative time

at various points in the program. Although this method is

not exact, it does measure actual elapsed CPU time to within

a small fraction of a second. This does not, however,

entirely alleviate the time-of-day effect experienced when

running the same program at different times. That is,

although the elapsed CPU time can be measured accurately ,

the same program will generally have somewhat different

h execution times each time it is run (Ref. 41. Theoretically ,

the execution times would be constant for stand—alone runs,

i.e. runs with no other competing programs in the system.

This is rarely realized in practice.

These considerations lead to the development and use of

the side-by-side setup described below. This method appears

to be statistically sound as a means of dealing with the

problems of time measurement. Due to the differences in

execution times noted, the best measure of effectiveness

was determined to be a ratio of execution times for the

respective algorithms, rather than absolute times.

C. TEST SETUP

1. Computational Speed

The central idea here was to equalize the effects

of non-essential processes on each algorithm. This was

accomplished by the following algorithm:

29
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1. Set k = 1 .
- 2. Zero internal time clock .

• . 3. Call Algorithm A. Replicate M times .

4. Read internal time clock . Store time .
- j  - 5. Zero internal time clock.

6. Call Algorithm B. Replicate N times.

7. Read internal time clock. Store time.

- 8. Set k = k + 1. If k is greater than kmax~ 
go to 9.

Otherwise go to 2.

9. Compute mean and variance of the kmax execution times

for each algorithm.

10. Compute ratio of means.

This procedure was used in all comparisons. M,

the number of replications per package, varied between 30
-

~ and 100 as discussed above. Kmax l the number of times each

package was replicated , was typically set equal to thirty.

2. Computer Memory Requirements

To measure computer memory requirements, a small

-
~ main program was written , calling the subroutine which

implemented the program being measured . Total program length

in bytes was obtained from the standard computer output and

the core alloted to the main program was subtracted to

obtain the desired figure. This includes all library rou—

tines and arrays for storage of event times and arrays of

-: random variates.

30
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— The core requirements are deterministic in that

- - I they do not change from one run to another but are strictly

- 
a function of the program coding.

1 3. Test Cases Utilized

PATROW [Ref. 3] developed six sample intensity

functions representing the possible variations in sign and

relative magnitude of the coefficients a1 and a2 in the

exponential polynomial, exp(a0 + a1t + a2t
2).

Since the sample intensity functions were designed

to test different aspects of the Poisson decomposition

and gap—statistics algorithm, they were also used for corn—

parison here. Although each algorithm is affected by

different considerations, the test cases do, coincidentally ,

put the thinning algorithm through its paces.
- 

- 
- 

For continuity, the six test cases , or sample

intensity functions, are presented below in Figures 2 through

- 7.
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V. EFFICIENCY AND PROGRAMMING CONSIDERATIONS

• - A. GENERAL

This section deals with factors which affect the per-

formance of the thinning algorithm. Four specific areas

are presented in which significant gains in terms of corn-

putational speed may be realized. With the exception of

Section V.0 (which applies only to the case of exponential

polynomial intensity functions) these considerations apply

to the general class of intensity functions .

In general application, one of the primary indicators

of efficiency is the relative size of the area under the

intensity function to that of the bounding function, i.e.

the ratio, R, given by:

R = f X (t ) d t/ f  X * (t )d t
0 0

— 
—

Since both numerator and denominator are simply the respec-

tive integrated rate functions, A ( t ) , evaluated at either

end of the interval, R is the ratio of the expected number

of events in the two processes, i.e. E(Nt,]/E[N ,].

Case 1 of the sample intensity functions is particularly

illustrative (see Figure 2). The intensity function

X(-t) = exp(l.6  + 0.015t + 0.0005t2) is bounded on the 

38 
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r
interval (0,100] by a least upper bound (LUB) of 3294.47.

If a homogeneous Poisson process with rate equal to the —

LUB is used as the bounding function, E(Nt,] = 329,447

points will be generated on the average. Of these, all

but 1464 will be rejected on the average (i.e. E(Nt,]).

The ratio of the respective expected values is thus

1464/329 ,447 = 0.0044 = the ratio of the areas under the

intensity functions.

Thus a rough relative measure of the efficiency of the

thinning process in a particular situation can be gained by

examining a graph of the two intensity functions , even if

the expected values are not easily calculated. This pro—

cedure may also be an indicator in deciding whether to

partition the interval and use different bounding functions

on each subinterval.

— B. UTILIZATION OF ARRAYS OF RANDOM VARIATES

Computer generated random variates are used both in

generating the points of the bounding process {N : t > 0}

and in the actual thinning process itself. Since the

number of variates required is typically large, efficient

generation becomes a programming consideration for medium

to large scale simulations.

The basic thinning program presented herein requires

both exponential and uniform random variates . Both types

are obtained utilizing the random number package , LLRAN DOM ,

developed by LEARMONTH and LEWIS [Ref. 5]. Shuffled

~ 
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exponential. random variates of mean 1.0 are generated using

the SEXPON subroutine while shuffled uniform (0,1) random

variates are obtained from the SRAND subroutine . Both of

these routines offer considerable “economies of scale” in

• - terms of time when multiple numbers or arrays of variates

are generated at once, as opposed to one-at-a-time genera-

tion. Using the test setup of Section IV.C, average times

to generate varying quantities of random numbers were

determined. Table I reveals the relative savings realized

by calling large arrays of random numbers. Thus considerable

time can be saved by generating all required random numbers

• from one subroutine call. Programming difficulties involve

deciding how many variates to generate. The general goal

is to generate as many as needed while keeping the unused

excess to a minimum. The balance used was to generate the

- 
- expected number required plus an excess of four standard

deviations. For example, in the generation of the bounding

process , the expected number of points , E[N , ]  is

and the variance is the same . Thus the number of exponen—
*tials called was y + 4i~ where y = A .t’ . Provisi.on is

made for the unlikely (1 in 40,000) case that more are

required .

For specific applications this procedure could be

improved slightly. For example, if the expected number of

points, E [N t,], is small , e.g. 100, then the expected

excess (four standard deviations) comprises forty percent

40 
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- ~ I Type of Number Total Time Mean Time Per
Variate Called (~.‘sec) Variate ( i.isec)

Exponential 1 784 784

Exponential 10 1293 129

Exponential 100 7343 73

Exponential 1000 68046 68

Uniform 1 1213 1213

Unif orm 10 1381 138
- 

t Unif orm 100 3276 33

Uniform 1000 21544 22

Sample Size = 200 (each grouping)

Table I

Generation Times for Arrays of Shuffled Random Variates
From LLRANL OM

of the total whereas for large E(Nt,], e.g. 4000, the

expected “waste” is only about six percent. In the former

F case, reducing the “padding” to one or two standard devia-

tions would, on the average, increase efficiency slightly

although the probability of a second subroutine c~ l-l for

more random variates would increase.

As an example , if we were to call 100 exponential

variates one at a time , the total time is 78,400 usec ,

compared to 7,343 psec for 100 exponential variates called

in an array . For 100 + 4 /T5~ = 140 variates , the time ~
- 

-

is still small compared to 78 ,400 psec .

_ _ _ _ _ _ _  _ _ _ _
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C. UTILIZATION OF INTENSITY FUNCTION LOWER BOUND

One of the most time consuming repetitive operations

is the computation of the intensity function value, ACt) ,

during the thinning process . In the case of the exponential

- . 
. polynomial intensity function, this involves one power, two

multiplications, two additions , and one exponentiation for

each point generated in the bounding process. Since points

are accepted for the non~homogeneous Poisson process when—

ever the uniform (0,1) chinning variate is less than the

ratio A (t ) / A * (t) , considerable time savings result if the

intensity function has a positive lower bound , say A ,

since points are always accepted when the uniform (0,1)

*variate is less than the ratio A/A . In the general case ,

this ratio must be calculated only once. The expected num—

ber of intensity function computations which are alleviated

by the use of the lower bound is given by (A/A *)E[Nt,] where

A is a lower bound of the intensity function; A is an upper

bound of the intensity function (both bounds are over the

interval (0,t’]) and E[Nt,] is the average number of points

to be thinned , i.e. the average number of events in the

bounding process.

It is clear that the closer A is to being the greatest

lower bound (GLB) and the closer is to being the LUB,

the more efficient the program.

If the intensity function is strictly non—decreasing

a further (and potentially great) improvement is realized

by initially setting A equal to A , and then setting it

42
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subsequently equal to the last value of the inten3ity

function , A (t). This results in a monotone increasing

lower bound and thus a decreasing probability of evaluating

• the intensity function. —

- Test cases II through VI were run side by side with and

without the use of a lower bound for the intensity function.

On the average , the program which did not utilize a lower

bound required twenty percent more time than the program

using a lower bound. Please see Appendix B for case—by--

case comparison.

D. UTILIZATION OF EXPONENTIAL VARIATES FOR THINNING OF
EXPONENTIAL POLYNOMIAL INTENSITY FUNCTION S

The time requirements for evaluating A ( t )  were discussed

in Section V.C above. In the case of exponential polynomial

intensity functions, e.g. X(t) = exp(a0 + a1t + a2t
2), the

major contributor to computation time is the exponentiation

operation. Exponentiation can be avoided by utilizing the

following relationship:

U
~ 

< A (t)/A if and only if

* * 2E
~ 

= -ln U
~ 

> m A  — lnA (t) = m A  — (a 0 + a1t + a2t ) ,

where :

U1 is a uniform (0,1) random variate,

E~ is an exponential random variate with mean one.

43
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Thus the thinning test to accept points from the

bounding process becomes :

* 2 *If E~ > lnA — (a o + a1t + a2t ) ,  for t = T
~
, accept

as a point in the non—homogeneous Poisson process

with rate A C t ) ; otherwise , reject T~ 
(i.e. thin it) .

The key to this relationship lies in the fact that if

U is distributed uniform (0,1), then -in U is distributed

as a unit exponential variate , i.e. an exponential variate

with mean one. This is shown by the following:

Let U be uniform (0,1).

Then P {u < x} P{ln U < in x} E P{-ln U > -ln x}

but P{U < xl = x, thus let y = -in x ,

then P{-ln U > y} = exp(-y) .

Thus —ln U is distributed as a unit exponential variate.

Although more time is required to generate the exponential

random variates for thinning than the uniforms, the alle—

viation of the exponentiation operation more than compen-

sates for the additional generation time. This is because

SEXPON, the portion of LLRANDOM which generates exponentials,

generates exponential variates by the Marsaglia “rectangle—

wedge—triangle” method, which is faster than taking logarithms.

Since exponential random variates are used in the genera—

tion of the bounding homogeneous Poisson process, an addi-

tional time savings can be realized by using the variates

1 _ 
_ _ _ _ _ _ _ _  

_ _ _
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which are left over (i.e. not used) from generating the

bounding process (these are generated in arrays).

For the test cases considered, use of exponentials

for thinning resulted in an average time savings of ten

percent . Please see Appendix B for case—by—case results.

E. RECYCLING OF THINNING VARIATES

As mentioned above, a uniform or exponential random

variate is required for each point to be “thinned” . Each

of these variates requires a significant amount of time for

generation. Obviously a time savings would be realized if

fewer variates were required.

1. Recycling of Uniform Variates

Assume U~ is uniform (0,1) but that its value is

unknown . Assume then that further information becomes

available that U~ is less than a (0 < a < 1), but its value

is still unknown. Then U~ is uniformly distributed over

the interval (0,a). If U~41 is then computed by “scaling

up” U1, i.e. dividing U~ by a, then U~~1 is uniform (0,1).

Similarly, if U~ is uniform (0,1) and subsequent information

places it somewhere above a, then U
~+i 

= (U~ - a)/(l — a)
is uniform (0,1). Thus by conditioning on whether the

variate is greater than or less than a given value, a new

variate can be computed with the desired properties.

Moreover , this variate is independent of its predecessor .

In the thinning algorithm, each point is tested

using a uniform (0,1) variate. Specifically , if U~ <
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the point T~ is accepted as a point in the non-homogeneous

* *Poisson process. Since the ratio A (T
~
)/X is between zero

and one, and the only test is whether U~ is less than or

* *greater than the ratio A(T~)/A , the next uniform (0,1)

• 
- variate, U1~1, can be generated using the rules above.

The algorithm is:

1. L:t U~ be uniform (0,1). If U~ is less than

a = A (T
~
)/A , let Ui.~1 

= U
~
/(A(T

~
)/A );  exit. 

* *2. Otherwise let U~~1 = [U
~ 

— (A(T~ )/A ]/(l—(A(T
~
)/X ) ]

U~_~1 is uniform (0,1).

In theory, only one uniform random variate is

required for the entire thinning process~ In computational

practice, however , care must be exercised because of the

finite capacity of the computer to represent numbers. After

ten to twenty divisions the scaled uniform number will

consist only of low—order bits of the random number and ~

- 

-

these are usually not uniformly distributed.

If the intensity function has a positive lower bound,

further efficiencies can be gained , in combination with the

procedures of Section V.C above. Since multiplication is

* *computationally faster than division, the value 1/CA/A ) = A /X

can be precomputed and stored. Thus if U~ < A/A ,

= U1
.A /A can be computed as the next thinning variate.

Note that no intensity function calculation is required.

However , if U~ > A/A , the thinning method proceeds with -

•

• the next step, evaluating the intensity function at the

point T~ and determining whether or not to thin the point.
i i
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• Now, further information is known about U~. Specifically ,

* * *
- - either U~ > A (T~)/A , in which case T~ is thinned, or

A/A * < U~ < A(T~)/A *. In either case U
~+i 

can be computed

by “ scaling up ” U1.

Thus, the algorithm for recycling uniform random

variates for thinning is as follows:

1. If U~ < A/A*, let U
~+1

-. U~ .A */A and exit. 
*2. If A/A < U~ < A ( T

~
) / A  , let U~~1 = (A .U —A)/ (A (T ) A )

and exit.

3. Otherwise, U~ 
> A(T~ )/A *, let

* * * *U~+i = (A .U~~A(T))/ (A —A(T~
)).

By precomputing A /A , this recycling procedure

requires only one multiplication in the case where

< A/A
t
. Otherwise one multiplication , two subtractions

and one division are required. In either case the recycling

. procedure is generally faster than generating uniform

random variates from a random number generator, even when

a logical IF statement is added to check for extreme

values (“small bits”).

2. Recycling Of Exponential Variates

This section applies only where the intensity func-

tion is exponential polynomial. Here the possibilities

are less promising . In the general case where no lower

bound , A is used , the following algorithm would apply :

IfE i > l n A * _ l n A(Tj), let Ej+l = E j
_ l n A * + ln A ( T )

-

. I Otherwise
* * * *

Let E~+i = in (A — A(T .))/(A •exp (—E1) 
— A(T~))

where E~ is a unit exponential random variate.
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* *In the first case , E
~ > in A — ln A(T~), a time

savings would generally be realized since ln A could be

• computed once and stored and ln X (T~) -is simply the value

of the polynomial, i.e. a0 + a1T + a2T~
2, which must be

computed in any event . In the second case , however , the

cure is truly worse than the illness. It is faster to

simply generate another exponential variate , assuming they

are called in arrays. -

For there to be a time savings, however, it must

be possible to make a reasonable prediction of the number

of exponentials which must be generated. Otherwise an

excessive number of calls to the random number generation

subroutine may destroy the gains made through recycling.

In the case where a lower bound, A , for the inten-

sity function exists and is positive, it is possible to

determine the expected number of exponentials which must

be generated. Variates are reused if they are greater than

ln(A */A) . That is, if E~ > ln(A */A), then E
~+i 

= E~ 
— ln(A /A).

Otherwise, a new (i.e. non—recycled) variate is used. Thus

*the probability of not recycling , p, is A/A and the number

* *of variates required is binomial with mean n p, where n

is the number of points to be thinned.

Empirical results for the five test cases considered

are shown in Appendix B. Using the calling rule of expected

number plus four standard deviations for generating thinning

exponentials yielded inconclusive results as compared with

48 
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the procedure in which exponential thinning variates are

generated in arrays with no recycling. As expected, for

larger Nt ,  (Cases II, III and V), recycling provided a slight

time advantage (seven percentage maximum) while for small

• 
- Nt, (Cases IV and VI) recycling was slower. In case VI,

recycling caused run time to be approximately five percen-

tage greater than that without recycling . Using a calling

rule of expected number plus two standard deviations reduced

the disadvantage slightly to four percent. The reason that

recycling can cause longer run times than not recycling is

that an additional logical IF statement is required for the

recycling program. Again, when exponentials are used for

thinning and the mean number of points to be thinned is

on the order of two or three hundred , it is probably not

worth the effort to recycle. If several thousand “thinnings”
- are required, the savings may indeed be worthwhile.

Results were somewhat surprising in the general

class of intensity functions fbr which uniform variates are

used for thinning. It was expected that a significant savings

would be realized since the uniform variates can be recycled

in all situations. In fact, test runs were run in which

only one uniform variate was generated for the entire run

with recycling used throughout. The only program statement

• which added time was a logical IF statement to preclude

dividing by zero and to diminish the probability of small

bit usage . As expected , some bias was experienced in the

mean and an unusually high variance was noted , indicating a
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low degree of “fidelity” to the true non-homogeneous Poisson

process being simulated . Of particular interest however,

were the results on execution time. Since this setup

essentially gives the lower bound on execution time for

recycling of uniform variates, it was expected that signi-

ficant time savings would be realized in comparison to no

recycling. In practice , however , the savings were minimal,

with a maximum of only three percent savings. This is

attributed to the efficiency of the LLRANDOM package in

generating uniform variates with the logical IF statement

being only a secondary cause to longer execution time.

Appendix B shows results for both exponential and

uniform thinning variates.

The key point to keep in mind here is that the above

results reflect the case where thinning variates are called

• in arrays, i.e. many at a time. Thus the comparison is

between a very “fast” variate and recycling. As discussed

above, calling by arrays results in considerable time savings

compared to one-at-a-time generation (up to fifty times

faster). Thus, in the case where a slower random number

generator is utilized or where variates are called one at

a time, use of the lower bound may indeed result in con—

siderable time savings.

F. FINAL PROGRAM

A general program was developed which incorporated the

efficiency considerations discussed above. The program is

50

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
:i~.:~~:::~:~~~



_ _ _ _ _ _ _  —~~~~~ - - - -•  - -- - - - - -~ - - ------ --- -

general in that it can be used with any of the general

class of intensity functions, whether exponential polynomial

or not. The program is essentially four programs, each

used in a specific case. The program classifies simulations

. into the four classes by asking two questions:

- - 1. Is the intensity function exponential polynomial?

2. Does the intensity function have a positive lower bound?

The first of these determines whether uniform variates

(general case) or exponential variates (exponential poly-

nomial case) are used for thinning. The second consideration

merely deletes an unnecessary logical IF statement in the

case where no lower bound is used.

The computer program , NHPP , is listed after the appen-

dices, and requires a user supplied subprogram FUNCTION FCN(T)

to compute the intensity function values for each value of

• t. If the intensity function is exponential polynomial,

only the exponent portion should be calculated , i.e. the

statement FCN = a0 + a1t + a2t
2 (for degree—two polynomial)

should appear in the subprogram. Otherwise the entire

intensity function should be evaluated.

Empirical results showed that the final program,

utilizing the efficiency considerations mentioned in this

chapter, resulted in a program which ran in two-thirds the

time of the basic thinning program.

Please see Appendix B for case—by—case results.
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VI. RESULTS, CONCLUSIONS AND RECOMMENDATION S

A. GENERAL

This section presents the results of comparison of

the Poisson decomposition and gap—statistics algorithm

with three variations of the thinning algorithm. These

variations are the basic thinning algorithm, the modified

thinning algorithm (final program) and the special case

one-at-a—time algorithm. Section B presents the performance

o.f each of the algorithms when measured by the two measures

of effectiveness, computational speed and computer memory

requirements. Section C examines the results with a view

toward identifying the strong and weak points of each

algorithm. Section D recommends further avenues of study.

• Again, in comparing the two classes of algorithms, one

basic distinction must be kept in mind. That is that the

• Poisson decomposition and gap—statistics algorithm as imple-

mented by PATROW [Ref. 3] is limited to a special class of

intensity functions, i.e. exponential polynomial of degree

two (or less). Although the algorithm could be adapted to

higher order polynomials (by further bisection of inter-

vals), the already complex programming considerations would

grow significantly. In contrast, the thinning algorithm

is a completely general method which is analytically valid

for any functional form of permissible intensity functions

(positive and right continuous).
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The results presented here are necessarily limited to

that class of intensity functions for which both algorithms

can be compared, i.e. the degree-two exponential polynomial

- -

- 
class. The purpose was to determine the relative performance

• of the thinning algorithm on this piece of common turf with

the heretofore champion, Poisson decomposition and gap-

statistics.

The basic result is that the thinning algorithm is

indeed quite competitive with the Poisson decomposition and

gap—statistics algorithm in the area of mutual validity.

This, combined with its ease of programming and ability to

generate variates from any intensity function, make the

thinning algorithm a highly attractive tool for generating

non—homogeneous pojgsonprocesses of any type.

One shortcoming of the thinning program was revealed by

• the first test case considered (see Section IV.C). This is

a fast rising exponential polynomial which rises from a

value of five to almost 3300 over the interval (0,100]. For

*A = 3294.47, the expected number of points in the bounding

process is 329 ,447 while the non-homogeneous Poisson process

being simulated has an expected number of only 1464 points.

Thus all but one point in about 200 are thinned out. The

thinning algorithm could be more efficiently adapted to

this case by partitioning the interval, alleviating the

necessity to store over 300,000 bounding process points.

However , the efficiency involved would still be low , and the
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best solution appears to be to utilize the Poisson

decomposition and gap-statistics approach. The key point

here is that the problem is easily recognized beforehand ,

• as discussed in Section V .A , and avoidable .

Table II presents a general comparison of the two
• algorithms.

B. MEASURES OF EFFECTIVENESS RESULTS

Chapter four details the comparison procedure utilized

to develop the following results.

1. The Basic Thinning Algorithm

Salient features for thi s case include the use of

uniform variates for thinning and one-at—a-time generation

of exponential and uniform variates.

• Table III presents the results for each of the five

test cases run. Algorithm A is computer program DEGTWO,

the Poisson decomposition and gap-statistics program

developed by PATROW and listed at the end of this paper.

Algorithm B is computer program NHPTHN, the basic thinning

algorithm, also listed.

The thinning algorithm was fastest in two out of

the five test cases run and required eighty percent of

the core space required for the gap-statistics algorithm.

Table VII lists core storage requirements for each

algorithm.

2. The Modified Thinning Algorithm (Final Program)

This section compares the best case performance

for both algorithms.
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The modified thinning algorithm includes :

1. Use of exponentials for thinning of exponential

polynomial intensity functions

2. Use of lower bounds

• 3. Partial recycling of exponential thinning variates

4. Use of exponential variates left over from generation

of the bounding process.

Each of these refinements are discussed in Section V.

The Poisson decomposition and gap—statistics

algorithm used was again the implementation by PATROW

[Ref. 3], program DEGTWO. In addition to the normal running

of the program, a second set of comparisons was made uti-

*lizing separately calculated values for c , the bound for

the conditioning-acceptance—rejection routine. This is

discussed by PATROW [Ref. 3]. These run s are indicated

- - 
by asterisk (*) in Table IV.

In the first case, the thinning algorithm was faster

in four out of the five test cases, with the best relative

performance occurring in Case VI.

*When the improved values of c were incorporated

for Cases IV , V , and VI , the Poisson decomposition and gap-

statistics algorithm improved substantially , winning in

three Out of the five test cases.

The relative advantage in computational speed was

less than a factor of two in all cases with a maximum of

1.83 to 1 in favor of the thinning algorithm in case VI.
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Core storage for the thinning algorithm was determined

by using only the part of the algorithm which used exponen-

tial thinning variates. This precluded the requirement for

storing 5000 uniform variates which are not used. The

- 
‘ 

Poisson decomposition and gap-statistics program (DEGTWO)

required about 88,000 bytes of core storage as compared to

about 94 ,000 for the thinning program (NHPP modified to

exclude unused uniform variate array). Detailed results

are listed in Tables IV and VI.

3.. The One-At-A-Time Thinning Algorithm

As discussed in Section II.C, the one—at-a-time

algorithm was developed only to test the relative efficiency

of the algorithm used to generate the next event in a non-

homogeneous Poisson process. This latter requirement may

arise in event-step simulation where only the next event

in a non-homogeneous Poisson process is desired rather than

an array containing all events in a specified interval.

Computationally , the one-at-a-time algorithm is

quite similar to the basic thinning algorithm. The only

essential difference is that the basic thinning algorithm

• generates and stores all the points in the bounding process
*(intensity function A ) before thinning, whereas the one-

at-a-time algorithm generates a point in the bounding process

and thins that point before continuing. The latter method

removes the requirement for an additional array to store

the bounding process points. This in turn saves about

_ _ _  _ _ _ _ _ _ _  
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20,000 bytes of core storage requirement when the programs

are dimensioned to accept 5000 points.

- As implemented here, the one-at-a-time algorithm

simply generates the next point in the non-homogeneous Poisson

process and stores it, stopping when the last point generated

lies outside the interval. All variates in this program are

generated one at a time. The results shown in Table V are

thus a good indicator of the relative efficiency of using

this method. As can be seen, the one—at-a—time algorithm

(program NHPOAT) is faster than the Poisson decomposition

and gap—statistics algorithm (program DEGTWO) in three of

the five test cases run. This is true despite the fact that

DEGTWO generates all variates in arrays, taking advantage

of the time economies of scale mentioned in Section V. The

one—at-a—time algorithm also requires forty percent less

core space.

From the tables one can also see that since both the

best case thinning algorithm (Table IV) and the one—at-a-

time thinning algorithm (Table V) are compared to the

Poisson decomposition and gap-statistics algorithm, it is

possible to obtain a reasonable comparison of the best case

thinning algorithm and the one-at-a-time thinning algorithm.

For example, for the sample intensity function used in

Case II (see Figure 3), the ratio (•8l27/.5541) = 1.47

indicates that execution time for the one—at-a-time thinning

algorithm is almost fifty percent greater than that of the
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best case thinning algorithm. The ratios for Cases III,

IV , V and VI are 1.62 , 1.27 , 1.37 , and 1.21 respectively.

. 
The tables also demonstrate the time—of-day effect

discussed in Section IV. That is, the execution time for
— 

• a given program is not the same each time it is run . For

example, program DEGTWO took 21.8808 seconds for the run

recorded in Table V compared to 18.8917 seconds for the run

recorded in Table IV. For this reason, ratios of execution

times were chosen as the measure of effectiveness rather

than absolute times.

A FORTRAN program listing , NHPNXT , is provided at

the end of this thesis. This program generates the next

point in a non—homogeneous Poisson process with a user

supplied intensity subprogram, FUNCTION FCN. This program

can be used in conjunction with event-step simulation

programs , including SIMSCRIPT , where it is desired to mini-

mize core space (at the expense of speed) or where only one

event is desired at a time. Core requirements are shown

in Table VI.

C. CONCLUSIONS

Both the thinning algorithm and the Poisson decomposition

and gap—statistics algorithm include two general types of -
‘

operations : a “ generating” process and a “second stage” .

For the Poisson decomposition and gap—statistics algorithm ,

the generating process is the non-homogeneous Poisson process

with degree-one exponential polynomial intensity function.

_______________________________ 
_____
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For the thinning algorithm (as implemented herein) the

generating process is homogeneous Poisson.

The second stage for the Poisson decomposition and gap—

statistics algorithm is the actual decomposition and genera-

• tion of variates by the conditioning-acceptance-rejection

method . For the thinning algorithm, the second stage con-

sists of the thinning of the points in the bounding process.

Thus one algorithm generates events and adds-more events

from a second process while the other generates events and

subtracts some out.

The strongest point in the Poisson decomposition and

gap—statistics algorithm is the highly efficient generation

of the events in the degree—one exponential polynomial inten—

sity function process. This is done with the gap—statistics

algorithm which is two to five times faster than the thinning

algorithm for this type of process (see Appendix A). At

the same time, the conditioning-acceptance—rejection routine

is relatively quite inefficient.

There are many considerations in predicting the relative

success of the two algorithms, i.e. which will be faster in
- I a given situation. For example, the Poisson decomposition

and gap—statistics algorithm is affected by factors such

as whether or not partitioning is required , the percentage

of the total number of variates which come from the degree-

one exponential polynomial process, and whether time rever-

• sal is required. For the thinning algorithm, the fraction

•1 
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*of the lower bound divided by the upper bound A/A , would

seem to be a good indicator of success.

For the test cases considered , however , the only con-

sistent indicator was the expected number of events in the non-

• homogeneous Poisson process being simulated. The smaller the number

of events in the non-homogeneous Poisson process being simu- -

lated, the better the relative performance of the thinning

algorithm over the Poisson decomposition and gap—statistics

algorithm. Thus it appears that each algorithm has a fixed

and variable part in terms of time. The thinning algorithm

has a shorter “setup” cost in terms of time but the variable

cost or “cost per additional variate” seems to be smaller

for the Poisson decomposition and gap—statistics algorithm.

The exact cause of this phenomenon is not known although

it appears to be centered in the conditioning—acceptance-

rejection routine.

In the larger spectrum of non-homogeneous Poisson process

- - generation , it seems clear that the thinning algorithm is

the best all-around method available.

D. RECOMMENDATIONS

Two specific areas for further study are recommended.

First, the thinning algorithm as implemented here uses

only homogeneous Poisson processes for bounding. It might

be worthwhile to investigate the possibility of using other

processes, such as non- homogeneous Poisson processes with

degree-one exponential polynomial intensity functions, as

65
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bounding processes. This would allow the efficient gap—

statistics algorithm to be utilized although function

evaluation would in general become more time consuming.
— 

- The second area is in finding the optimum method for

generating the degree-two exponential polynomial class of

intensity function. These will undoubtedly remain of

interest due to their statistical properties. Here, it

seems clear that the best features of the two algorithms

can be combined. Specifically, the Poisson decomposition

and gap-statistics algorithm can be modified to use thinning

rather than conditioning-acceptance-rejection for generating

the points in the difference function process, i.e. the

process with intensity function AD 
= X (t) - AL(t). Also

the criterion for the decomposition might preferably be 
- -

that the intensity function of the remainder be monotonically

increasing. This would make it easy to find the upper

bound for the function, and the most efficient version of

the thinning algorithm, that where the number of computations

of the intensity function is minimized , could be used .

~ 

:1 -
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APPENDIX A

GENERATION OF DEGREE-ONE EXPONENTIAL
POLYNOMIAL IN~~NSITY FUNCTIONS

The generating process for the Poisson decomposition

and gap—statistics algorithm is anon-homogeneous Poisson

process with degree-one exponential polynomial intensity

function. This is generated by using the gap-statistics

method, which is subroutine NHPP 2 in the DEGTWO program

(see listing below) .

To determine the relative speed of the thinning algorithm

compared to the gap-statistics algorithm, two simple degree-

one exponential polynomial intensity functions were developed

and simulated.

Table VII presents the results. Case A is a monotone

decreasing intensity function , A Ct) = exp(3.4 - 0 . 0 2 t)

over the interval (0,100]. Case B is a monotone increasing

intensity function , A ( t )  = exp (.693 + 0 . 0 3 -t )  over the

interval (0 , 50 ] .

Results show that the gap-statistics algorithm is from

two and a half (Case B) to four and a half (Case A) times

faster than the thinning algorithm.

-

~~~~~~~ 
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APPENDIX B

RESULTS OF EFFICIENCY MODIFICATIONS

This appendix presents , in tabular form, the results

of comparison of the programming modifications listed in

Section V.

Table VIII shows the effects of utilizing lower bounds

for the intensity function. Test conditions include:

1. Use of uniform thinning variates

2. Recycling of thinning variates

3. Use of arrays of variates

Table IX shows the gains realized by employing exponen-

tial thinning variates in contrast to uniform thinning

variates for exponential polynomial intensity functions.

Test conditions include:

1. Use of arrays of variates

2. Recycling of thinning variates

3. Use of lower bounds for intensity function

Table X shows the results of recycling versus rio

recycling where uniform variates are used for thinning

while Table XI shows the same comparison when exponential

variates are used for thinning. For both cases, test

conditions include:

1. Use of arrays of random variates

2. Use of lower bounds for intensity function
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Table XII presents the results of incorporating all

of the programm ing improvements into program NHPP. The

final thinning program , NHPP, is compared to the basic

thinning program without modifications, NHPTHN . The

essential differences are :

NHPP (final program) NHPTHN (basic program)

Arrays of variates generated Variates generated one
at a time

- - Exponential variates used Uniform variates used
- 

~
- for thinning for thinning

— 

:~ Lower bound of intensity Lower bound = 0.0
functions utilized

Thinning variates recycled No recycling used

F- 

H
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~~~ O~PY ~~~~ 1SkJED TO D~C
C S U B R O U T I N E  NHPP
C
C SUBROUTINE NHPP
C
C PURPOSE
C SiMULATES A NON—HOMOGENEOUS POISSON PROCESS
C WITH INTENSITY FUNCTION FCN (X) OVER A GIVEN
C INTERVAL. USI NG THE THINNING ALGORITHM.
C
C USAGE
C CALL NHPPUS,EL,ER,UB ,XMIN,NTYPE,N,IER)

C
C DESCRI PTION OF PAR AMETERS
C IS — RANDOM NUMBER SEED. ANY INTEGER WITH
C NINE OR LESS DIGITS.
C EL — LEF T END POINT OF INTERVAL
C ER — R i GH T EN D POINT OF INTERVAL -

C US — UPPER BCUNO CF THE INTENSITY FUNCTION
C FCN (X ) OVER THE INTERVA L (EL,ER). THE
C CLOSER US iS TO THE LIiS, THE SORE
C EFFICIENT THE PROGRAM
C XMIN — LOW ER BOUN D OF THE INTENSITY FUNCTION
C OVER THE INTERVAL. THE CLOSE R XMIN IS TO
C THE GL~~, THE MORE EFFICiENT THE PROGRA M.C NTYPE — 1 IF THE INTENSITY FUNCT ION IS
C EXPONENTIAL POLYNOMIAL, I.E. OF
C THE FORM EXP (A + A *X + A2*X**2 +.. .)
C 0 O THERWISE
C N — THE TOTAL NUMBER OF EVENTS IN TH E
C NON—HOMOGEN EOUS POISSON PROCESS
C It-P — ERROR FLAG . IER HAS FOLLOWING MEANINGS:
C 1...ER IS LESS THAN EL.
C 2...UB IS NON—POSITIVE
C 3...XMIN IS NEGATIVt
C 4...MORE THAN 5000 EVENTS REQUIRED FOR
C BOUNDI NG PROCESS: STORAGE CA PACITY
C EXCEEDED.

• C 5...XMIN IS GREATER THAN US
C
C COMMENTS
C CALLING PROGRAM MUST HA,VE A COMMON REGION ,
C DCNNA , OF DIr’ENSION (5OO0~C
C EXA MPLE : DIMENS ION T 5000)
C COMMON/DONNA/I
C
C TI MES TO EVENTS WILL 6E STORED IN
C CELLS Til) THROUGH TIN)

THE INTENSITY FUNCTION IS US ER SUP PLIED .
C IF THE INTENSITY FUNCTION IS NOT EXPONENTIAL
C POLYNOMIAL , i.E. IF NTYP E = 0, THE ENTIRE
C INTENSITY FUNCTION IS EVALUATED.
C
C EX.~MPLE: FUNCT ION FCN X )
C A = 1 . 0
C FCN = B*X
C RETURN
C END

IF TH E INTENSITY FUNCT ION IS EXPONENT iAL
C POLYNOMiAL, I.E. NTYPE = 1, ONLY THE —

C ~CLYNOMIAL IS EVALUATED.
C
C EXAMPLE: FUNCTION FCN (x)
C A 1.O
C At 0.5
C 42 0.05
r FCN = A + A1*X i- A2*X**2RET I RN

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~
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C 
- END
PROGRAMMER : LCDR JOHN SCOTT REDD , LSN

C SEPTEMBER 1978
SUB ROUTINE NHPP (IS ,EL ,ER ,U8,XMIN,N TYPE ,N,IER)
DIMENS iON U(5000), TIMES (5000), TT(!000), EE(!000)
COMMON /DCN-NA/ IT
COMMON /4NNE/ TIMES,EE
EXTE R NAL FCN
CALL OV FL OW

C IN I T I A L I Z E  V A R I A E L ES
C

I E R = 0
2K ~~ .0001
ZL = 1OE— 6
PCT MI N = .05

C
C CHECK FOR PA RA ME TE R ERRORS
C —

IF (EL.GE .ER) IER = 1
IF (UB.LE.O.0) IEP = 2
IF (XMIN.LT .0.O ) IER=3
IF (UB—XMIN.LT.ZL ) IER=5
IF (IER.NE.0) GO TO 14

C
• C GENERATE POI NTS IN HOMOGENEOUS POISSON PROCESS

C WITh RAT E = US
C

CAL.L HPP (IS EL ER UB,NTY PE,NSTAR,NLEFT,NEXP ,IEP)

C 
IF (IER.EQ.kf G3 T3 14

C IS  INTENSITY FUNCTION OTHER NAN LOG C L..ADRAT IC?
C

IF (NTYPE.EQ.O) GO 10 9

C LOG QU t CR A T I C INTENSITY FUNCTION
C DOES IT HAVE A MINIMUM CR IS MINIMUM LESS THAN

• C PCTMN CF MAX ?
C

PCI = XMIN/UB
iF (PCT.LT.PCTMIN) GO 10 6

L C
USE MINIMU M

C —

C CCMP U T~ EXPECTED NUMBER OF EXPONENTIALS NEEDED, TAKING
iNTO ACCOUN T REUSEING OF THOSE IN MIN

P = 1.O—PCT
Q = P C T
XNST AR = FLOAT (NSTAR )
NCHK = IFIX (XNSIAR*P+4.O*SQRT (XNSTAR*P *O))
NCHK = MI NO(NCHK,NSTAR )
CALL REOR O (NCII(,NEXP,NLEFT )
NCALL = NCHK—NLEFT
iF (NCALL .LE.0) GO 10 1
CALL SEXPON (IS,EE,NCALL)

1 
~~~~~~
ES EE(KK)
UBLN * ALOG (UB)
SNO ALOG (UB/XMIN )
K K K S O

I CCUNTS THE HPP EVENTS
C K COUNTS THE NHPP EV ENTS
C KK C3UNTS THE CURRENT UNI T EXP ONENTIALS (FOR THINNING)
C KKK COUNTS THE TOTAL NUMBER OF UNIT EXPONENTIALS

(FOR THINNING )
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THIS PLQ~E IS ~~~T ~UA3jIT! rnCTICABI~
(EB. f.SN GO TO 2 ,EIoaDOPYr 1Sk~~~1’O~~

O 
~~~~~~~

-

K * K +1
— 1T (K) a T1MES (i)

ES = EB—SNO
• GO 105

2 VA t. = —F CN (TIME $(IH+UBLN
IF (EB .LT .VAL) GO TO 3

-
4

TT(~(I = TIMESC I )
3 K K = KK+L

C
C CHECK TO SEE IF MORE UNIT EXPON NEEDEC
C

IF (Kk.LE.NCHK) GD TO 4

— G ENER AT E M ORE UN IT EXP ONENTIALS FOR THINNING
C KK K = KKK +KK

FN = P*FLCAT (NST AR—Kj (K )
NEB = MAX O (1 ,IFIX (PN-I- 4.0*SQRT(PN*C)))
CALL SEXPON (IS ,EE,NEB )

NCHK = NEB
4 ES = EE (KK)
5 CONTINUE

N = K
GO TO 14

C -

c L O G  QU~ DRAT 1C WITH ND MINI MUM
C

6 CONTINUE
CALL REORD (NSTAR,NEXP ,NL.EFT)
NCALL = NSTAR—NLEFT
IF (NCALL.LE.O) GO TO 7
CALL. SEXPON IIS,EE,NC AL.L )

C SET V A R I A B LE S
- - C

7 K = O
UBLN = ALOG (UB)

I COUNTS HPP EVE NTS
C K COUNTS N IP P E VENTS
C

DO e I=1,NSTAR
V A L  = —FC r’I(TIMES (I))+UBLN
IF (EE(I1.LT.VAL ) GC TO 8
K = K+1
TT(K) = TIM ES (I)

8 CONTINUE
N = K
GD TC L4

C
INT EN SITY FUNCT ION IS NOT LOG QUADRATIC

C DOES IT HAVE A MINIMU M OR IS MI N IMUM LESS THA N
C PCTMN CF MAX?
C —

9 PCI = X M IN /U 8
IF (PCT .~.T.-PCTMIN) GO 10 12

C
C USE M INI P4JM
C
C I N I T I A L I Z E  V A R I A B L E S
C —

(%UNIF * NSTAR
CALL SRAN D (IS,U,NUNIF)
( = 0
FF 1.0/US

I COUNTS HPP EVENTS
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WXS PAZ IS B~~T QUALIT! ffiA~~1~*I!4C K COUNTS NHPP EVEN TS ~~~~~~~~~~~~~~~~~~~ ~~~~~~~—

DO 11 1*1 NSTA R
IF (U( I) .~~T.PCT) GO 10 10
IC ~ K+1

• TT ( K )  a T IMES( I)
GO TO 11

10 VA t .  * FCN~T1H ES ( I ) ) * F F
IF (U(I) .~~T.V ~ L) GO TO 11
K• TT ( K )  = T IMES(I)
GO TO U

ii CONTINUE
N a  K
GO TO 14

C
NO MiNIMUM
12 N UN IF a NSTAR

CALL SRAN D ( IS ,U,NUN IF)
( * 3
FF = 1.0/US
00 13 Iat ,NSTAR
VA t. * FCN (T IMES (I))*FF
IF (U (I ).GT.VAL) GO TO 13

C
C ACCEPT POI NT
C

K = K+1
TT ( K )  = T IMES( I)

C - —

C
C RE J EC T POINT
C 

13 CONTINU E —

14 RETURN
END

• 
C S U B R O U T I N E  HPP

SUBROUTINE HPP GENERAT ES PCINT S IN A H O MOGENEOUS
C POISSON PROC ES S WITH I NTENSI TY FUNCTION = UB
C 

SUBROUTINE H P P (IS , EL , E R , UB , N TYP E ,N Sf lR ,N L EF T ,NEX P ,IE R)

DIMENSION TIME S (5000), EE (5000)
COM M ON /A NNE / TIME S ,EE - -

INITIALIZE V ARIABLES
C 

EXMEAN = 1.0/LB
N~XP a IFLX (US* (ER—EL I +4.O*SQRT(UB* (ER—EL I))
IF (NEXP.GT.5000 ) NEX P =5000 —

CALL SEXPON (IS ,EE ,NEXP )
SUM = EL
I ST ART a 3
ISTOP NEXP

C 
03 1 JJal ,NEXP
E EXM EAN*E E (JJ )
SUM a SUM+E
TIM ES(JJ ) * SIM
IF ( SUM .L1.ER )  GO TO 1
MSTA R J J—1
G0 10 5

• 1 CONTINUE

EXCEPTIONAL NUMBER OF POIN TS NEEDED
C 

2 ISTA RT * ISTA R T+JJ
NEXP IFIX (UB* (ER— SUM )+4 .0*SQRT(UB* (ER—SUM)))
IF ( NEXP.EQ h 0) NEXP.1
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~IIS PAZ IS B~~T QUAI,tTY PRLCflC&RLI
J~~~ 0c~i 7LV~ISI~~ TO D~O

ISTCP = I START +N EXP
IF (ISTOP.GT 5000 ) GO TO 4
CALL SEXPON ~IS ,EE ,NEXP )
CD 3 JJai ,NEXP
E * E XME A N*EE (JJ)

• SUM * SUM +E
- - JJ+I START

TLMES (KK ) * SUM
IF (SUM.LT.ER ) GO 10 3
NSTAR = KK— 1

-
- 

- G3 T0 5
3 CONTiNU E

C
GO TO 2

M O R E  THAN 5000 EXPONENTIALS NEEDED
C

4 ZER a 4
GJ TO 6

CA LCULAT E ItI MB ER OF EXP ONENT 1ALS NOT USED
C
C

5 NLEFT = NEXP—JJ
6 RETURN

ENC

C...SUBROUTINE REORD
C SUBROU TINE RE-’OR C R E O R D E R S  EXPJN ENTIAL S LEFT O V E R  FROM
C SL3SOLiT1NE HPP FOR U-SE AS THINNING V A R I A T ES IN NHPP
C 

SUBROUTINE R E C R D  (NCHK,NEXP ,NLEFT )
DIMENSI ON EE (~~000), TIMES(5000)COM MON /ANNE/ TIMES,EE

ARE ENOUGH EXPONENT I ALS LEFT OVER FR OM HPP?

IF (NLEFT.GE.NCHK ) GO TO 4
• MORE EXPONENTIAL S NEEDED

-

~~~~~~~~~ C
C REORDE R TOP TO 8011D M OR V ICE VERSA?
C 

iF (NEXP.LT.NCHK) GO IC 2
C

• C RECRD ER  BOTTOM TO TOP
C NI = NC HK —NLEFT

N2 = NEXP—NLEFT
C

CO I I1 ,NLEFT
4 = N1+I
K = N2~-IEE (J) = EE (K )

1 COP~TI NUE
-

- 
GJ TO 6

REORDER TOP TO BCTTOM

2 NCbIKO = NCHK +
NE XPO a NEXP +
03 3 Iai ,NLEF T
4 NCHKO— I

a NEXPO— I
EE (J) * EE (K)

3 CONTINU E
G0 10 6

ENOUGH LEFT OVER FROM HPP FOR ALL THINNING

4 Ni a NEX P —NLEFT
- 

- 30 5 I 1,MCHK

- - - —  ~~~~~ - - --~~-~~~~—~~~
- - - - -
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EE (I)
1
z
1
EE (J) ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

- 5 CONTINUE
6 RETURN- END

I
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C SUBROUT iNE NHPTHN
C
C PURPOSE
C SIMULAT ES A NON I-OMOGENEOUS POISSON PROCESS
C WITH INTENSI TY FUNCTION FCN (X ) USING
C THE THINNING ALGORITHM
C
C USAGE
C CALL NHPT I-N (IS,EL,ER ,UB ,N ,1ER )

C DESCR IPTION OF PARAMETERS
C AS — RANDOM NUMBER SEED. ANY INTEGE R WITH NINE
C OR LESS DIGITS.
C EL — LEFT END POINT OF IN TERVAL
C ER — RIGHT £ND POINT OF THE INT ERVAL
C UB — UPPER BOUND OF THE INTENSITY FLNCTION ,FCN (X),
C OV ER THE I N T E R V A L  (EL ,ER). THE CLOSER US IS
C TO THE LEAST UPPER BOUND ,LUB , THE MOR E

- 
- 

C EFF ICIEN T THE PROGRAM. US MUST BE S T R I C T L Y
S C POSIT IVE

C N — THE TOTA L NUMBER OF EVENTS IN THE
C NON— HO MOGENEOUS PCISSON PROCESS.
C ZER — ERROR FLAG . IER HAS FOLLOW ING M EANINGS ;
C i...ER IS  LESS THAN EL
C 2...UB IS NON—POSITiVE
C
C COMMENTS -

C CALLING PROGRAM MUST HAVE A COMMO N REG ION ,
C SCOTT , OF D-I ME NS ION (5 000)
C
C EXA MPLE ; D iMENS ION T (5U00 )
C C OMMON /SCOTT/I

• T IMES TO EVENTS W I L L  SE STORED IN C ELL S
C 1(1) THR O UGH T( M).

PROG R A M M ER :  LCDR J OHN S COTT R EDO, USN
• C AUGUST 1578

C 
SUBROUTINE NH PTH N (IS,EL ,ER ,UB,N ,IER )
DIMENSION TIMES (5000) , TTT( 5000)
COM M CN fSCDTT / ITT
EXTERNAL FCN
CALL OVF LOW

C I N I T I A L I Z E  V A R I A B L E S
I E R = O
IF (EL.GE.ER ) IER = 1
IF (UB .LE .0.0) IER = 2
I~ (IER.NE.O) RETURN

GENERATE POINTS IN HOMOGENEOU S PCISSCN PROCES S WITH RATE
C = UB .
C 

EXM EAN = 1.0/LB
- - 1 = 1  -

SUM = EL
1 CONTINUE

CALL EXP ON (IS,E,1)
E E *EX M EAN
SUM a SUM+E
IF (SUM .GT.ER ) GO TO 2
TIMES (I) SU M
1
0 T ~~~t

2 ~ 0N TI N UE
NST*R a 

~~~~~4 -

~ COMM ENCE THINNI NG THE NSTAR POI NTS
- 

FL s 1.0/UB
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aF (NSTAR ,EQ .o) GO TO 4

DO 3 l=i,NSTAR
CALL SRAND (IS,IJ I )RAT IO = FCN(T IME~~(j ) ) * F 1
IF (U.GT.RAT IO ) GO TO 3

TIMES (I)

N a K
RET URN

4 N a  C
RET U RN
EN D

83



_____ 
________ — — —

- 

~~TJ PAGE IS BEST QUALITY P1~&CflC~~~~
C SUBROUTiNE NHPOAT
C
C SUBROUTiNE M I-POAT
C
C PURPOSE
C SIM ULATES A NON—HO MO GENEOU S POISSON DROCESS
C WITH INTENSITY FUNCTI ON FCN (X ) OVER THE
C INTERVAL (EL ,ER ) USING THE ONE —A T—A—TIME
C THINNi NG ALG O RITHM
C
C. • .US AGE
C CALL NHPO *T (IS,EL,ER ,U 8,N,IER )
C
C...DESCRIPTZON O.E PARAMETERS
C
C iS — RANDOM NUMBER SEED. ANY INTEGER WITH NINE
C CR LES S CIGLTS.
C EL — LEFT END POI NT OF I N T E R V A L .
C ER — RIGH T END POINT OF THE INTERVAL
C US — UPPER BOUND OF THE ZNT E4S 1TY FUNCTION,FCN(X ) ,
C OVER THE INTERVAL (EL ,ER). THE CLOSER UB IS
C TO THE LEAST UPPER BOUNO ,LUB , THE MORE
C EFFICLENT THE PROGRAM. US MUST BE STRICTLY
C POSI TI VE
C N — THE TOTAL NUMBER OF EVENT S IN THE
C NON—HOSIOGENEOU$ POISSON PROCESS.
C IER — ERR OR FLAG. IER HAS F O L LOW I N G  MEANINGS;
C ~~...ER iS LESS THAN EL
C ~ ...1JB IS NON—POSITI VE
C.. .CCMMENTS
C CALLiNG PRCGRAM MUS T HAV E A COMMON REGION , DONNA, OF
C DIMENS ION (5C00)

EXAMPLE : DIME NSION 11(5 000 1
C COMMON /DONNA /IT
C
C TIME S TO EVENTS WI LL BE ST ORED IN CELLS
C 1 (1) T~ROUGH 1(N)C 

SUBROUTINE NH POAT tIS ,EL,ER,U 8 ,N,1ER )
DIMENS ION TT(~ OOO)
~CMM C PI /D CNNA / TI
cXTERNAL FCN
CALL CVFL OW

C...IN ITIALZZE VAR iABL E S
IER a C
IF (EL.GE.ER ) IER = 1
IF (UB .LE.O.O) IER * 2
IF (IER .NE.0) RETURN

C 
1 = 1
EXM EAN a i.01U8
SUM = EL.

G E N E R A T E POINT IN B O U N D I N G  PR OCESS
C

1 CO NTINUE
CALL EXPON (IS,E,1)
E a E*EXMEAN
SUM = SUM +E
IF (SUM.GT.ER ) GO IC 2

T H I N  THE POINT
C 

CALL RANDOM (IS,U,t)
RATIO = FCN (SUM)*EXM EAN
IF (U .GT.RATIC) GO 10 1
TT (I) = SUM
I 1+1
GO TO

1
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) TO DDC ~~~~~~~~~~~~

C S U B R O U T I N E  NHPNX T
SUBROUTINE NHPNX T GENERATES THE TIME OF THE NEXT

C EVE NT IN A NON—HOMOGENEOUS POISSON PROCESS WIT H
C RITE FUNCTION FCN (X ) (USES SUPPLIED).
C
C U SAGE:
C CALL NHPNXT (I S ,US ,GLB ,XLAST ,ER,XNEXT, ZER )
C
C DESCRIPTION OF PARAM ETERS :
C IS — RANDOM NUMBER SEED. ANY INTEGER WIT H
C NINE OR LESS DIG ITS.
C US — UPPER BOUND OF THE INTENSITY FUNCT iON
C OVER THE INTER VAL (XLA ST .ER ~.C GLE — GR EA T EST LOWER BOUND OF TI- E INTE N SIT~C FUNCTION OVER THE INTERVAL (XLAST,ER).
C SET = 0 IF UNKNO WN.
C XL A ST — ThE TiME OF THE LAST EVEN T IN THE PROCES S
C ER — RIGH T END POINT OF THE INTERVAL
C XN EXT — THE NEXT POINT IN THE PROCESS. IF THERE ARE
C NC MCRE POINTS IN THE INT ERVAL (XLAST,ER ) ,
C XNEXT IS ASSIGNED THE VALUE ER + 1.0 AND
C IER IS SET AT 5.
C IER — ERROR FLAG . IER HAS THE FCLLOWI NG MEAN INGS:
C ]...LB IS NON—PO SITI VE
C ~ ...XL AST IS GREAT ER THA N ER
C ~...GLB IS NEG A TIVE
C 5. ..XNEXT IS GREATE R THA N ER
C
C COMMENTS
C THE INTENS ITY FUNCTION , FCN , IS USER SUPPLIED.
C EXAMPLE: FUNCTION FCN (X )
C FCN a 1.0 + EXP(— X )
C RETURN
C -END
C

P R O GRA M M ER : LCCR JOHN SCOTT R EDD, USN
C AUG 1978
C
C -

C 
SUBROUTINE NHPNX T (IS ,UB ,GL 8,XL.AST,ER ,XNEX T ,IER )
EXTERNAL FCN
CALL CVF L CW
CATA EXPO /O.0/,U/0.O/
RM IN GL B/UB
IER 0
IF (UB .LE .O.O) IER a 1
IF (X LAST .GE.ER) I ER=2
I~ (GLS .LT.0.C) IER 3
iF (IER.EC.1.OR. IER .EQ.2) RETUR N
IF (IER.EC .3) ~LB 0.0

C
C GENERAT E E* (I,J); CHECK TO SEE IF ADDITION OF E* (I ,J)
C EXCEED S ER
C

EXM EAN * i .OfUB
XNE~ XLAS I

G E N E R A T E  ONE EX PONENTIAL AND SCAL E
C 

~ CALL EXPON (IS, EXPO ,1)
EXP O a EX P O *EX M EAN
XNEW a XNEW +E XPO
IF (XNEW.GT -.ER ) GO 10 3

C GEN ER AT E UN IFORM(O,1) THINN ING V A R I A T E
C 

CALL RANDOM (IS,U,i)

TEST LOWER BOUND FOR T H I N N I N G
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C ~~ (U.LE.RMIN) GO TO 2

TEST ~OR THINN I NG —

• RATIO a FCN (XNEW I/U 8
IF  (U .LE .RATI~)) GO TO 2

C 
GO TO 1

C ARRIVAL HER E INCICATE S SUCCESSF UL THINNING
C 

2 XNE X T = XN EW
RET U RN

ARRIVAL HERE LNDICATES NO MOR E POINT S IN INTERV AL
3 Z E R a 5

XNEX T ER +1.O
RETURN
END

87
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C SUBRO UTINE DEGTWO 00?! ?O DJ)C

SUBROUTINE DEGTWO

C PUR P OS E
C SIMULATES A NON—HOMOGENEOU S POISSON PROCES S WITH

• C QUADRAT IC EXPONENTIAL INTENSITY FUNCTION OVER
C A GiVEN INTERVAL USING THE POISSON—DECOMPOS ITION

- - C AND GAP $TA TI STI C ALGORITHM .
C
C USAGE
C CALL DEGTW O (IS ,A ,A1,A2 ,EL ,ER,II ,N,IER )

- 
- DE SCRIPTI ON OF PARA M ETE R S

C IS — RAND OM NUMBER SEED. ANY INTEGER WITH NINE
C OR LESS DIGITS .
C A — CONSTANT IN I NTENSITY FUNCTION
C Al — 1ST DEGREE COEFF IN INTENSITY F UNCTION.
C AZ — 2ND DEGRE E COEFF IN INTENSITY FUNCTION.
C EL — LEFT END POINT OF INTERVAL.
C ER — RIG kIT END POINT OF I N T E R V A L
C II  — 0 FOR TIMES OF EVENTS.
C 1 FOR TIME S BETWEEN EVEN TS.
C N — A VEC TOR OF LENGTH 5. N (t) THROUGH N (4)
C CONTAIN NUM B ER S OF EVENTS FR C F ’ VARI OUS
C COMPON ENTS OF THE DECOMPOSED INTENSITY
C FUNCTI ON. N(5) CON TAINS THE TOTAL NUMBER
C OF EVENTS IN THE NON—HOMOGENEOUS POISSCN
C PROCESS .
C
C CO MMENT S
C CALLI NG PROGRAM MUST HAV E A COMMON REGION, HOLD,
C OF DIMENSION (50C0),AND AN INTEGER ARRAY OF
C DI ME NS ION (5).

EXAMPLE : DIMENS ICN T (5000),M (5)
COMM CN/HDLD~T

C CALLING PR OGRAM MUST CONTA IN THE FCLLWO ING
C ASSiGN MENT STATEMENT:
C
C Ma N(5)

CALLI NG PROGRAM MUST USE THE FCLLCW ING JCL CAR DS
C
C /1 EX-EC FORT CLG ,IMSL = OP
C //FORT.SYSI N DO *

TIMES TO EVENT S OR TIM ES BETWEEN EVENTS WILL BE
C STORED IN CELLS 1(1) THROUGH 1 (M).

C 
SUBROUTI NE DEGTWO (15,4 41 AZ EL,ER II N ,IER )
CL ME NS AOM T~ZME S (5OOO), ~(5J 301, N (51 , ~(5)COMMON /M IKE/ TIMES /HOLD/T
CALL OVF LOW

I N I T I A L I Z E  VARIABLE S
C

PU ) A
P(?) a A].

x AZ
P(4) = 0.
P(5) = 0.

DO 1 I=1 , .~1 N( I ) a 0
C

IF R A T E  FUNCT4OF~1 IS LESS THAN DEGREE iWO ,
C USE NHPP2 RCU TZ NE ONLY

88
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iF (A2.EQ .0.) GO TO 2
G0 10 4

2 CALL NHPPZ ( LS , EL ,ER,A ,A1 ,L I,N1.,LER I
N(5 )  a N].
IF (N1.EQ.O) RE TURN

C
00 ~ I 1,N1
TI M~ S( I)  a 1(1)

3 CONTINUE
C

RETURN
C
C DETERMINE COEFF ICIENTS FOR MO DIFI ED
C DEGREE ONE RATE FUNCTION
C

4 TEST = —A 1/ (2.*A 2 )
TINT ER—EL
IF (A1.GE.0..AND .A2.GT. O.) GO TO 5
GO TO 6

5 5 a A—A2*TINT**2
B]. = A1+2.*A2*TTNT
GO TO 10

6 B A
IF ((Al.LE.O..AND.A2.LT.O.I.OR. (A1.GT.O..AND.A2 .LT.O..

1TINT)) GO TO 7
GO TO 8

7 3]. = A 1+42*T INT
GO 10 10

8 IF (A1.GT.O..AND.A2.LT.0..AND .TEST.LT.TINT ) GC TO 9
5 1 =  Al
GO TO 10

9 B]. = 41/2 .

MUST THE INTERVAL BE PARTITIONED?

10 IF (Al*A2 .LT.O..AND.TEST.LT .TINT ) CO TO 11
ERNEW a ER
GO TO 12

11 ERNEW a TEST+E1.
C

G E N E R A TE DE GR~EE ONE NHPP ON INT ERVAL
12 BB B

SB]. a 5] .
CAL L MHPP 2 (IS ,EL ,ERNEW,BB, BBI,O,N 1 ,IER)
NU)  a N].
IF (N(1).EQ).0) GO TO 14

DO 13 Ial,N1
TIMES (I) a T ( I )

C 
13 CONTINUE

COMPUTE LENGTH OF INTERVAL AND DETERMINE VALUE
C OF CSTAR FOR USE IN REJECTION ROUTINE
C 

14 Q ERNEW—EL
El = AE2 a A2*Q**2
E3 = Al*Q
E4 = A.l**2/(4.*A2 )
E5 Al**2/(12.*A2 )
IF (A1..GE.O..ANO.A2.GT .0.) GO TO 1~IF ~A4.LT .O..AND .A~~.GT.O. .AND.TES r .C-E.TIN1) GO TO ].6
I~~~ ~Aj.LT.O..AND.A~ .GT.0..A ND.TEST.LT.TINT) CC TO L7IF (A1..LE .O..AND.A~ .LT.0.) GO TO ~8IF (AL.GI.O..AMD.A ~~.L1.O..AND.TEST.GE.TINT ) GO TO 19CSTA R a E X P ( E l — E 4 )— E X P ( E1 )
GO TO 20



~~-~~--- T T ~~~ T -~~~~~~~ 1~ ----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

H
THIS PA2S IS REST QUALITY p1~&CT1CA~~~
3110100?! y~~~ ISH~~

) TO D~ 0 ~~~~~~—

15 CSTAR a EXP(~E1)—EXP(E1— E2)
GO TO 2O

16 CSTAR a EXP (E1+E2+E3 )—EXP (E1+E3)
GO TO 2O

17 CSTAR = EXP(E 1—E4 )—EXP (E1—E5)
G3 T0 20

18 CSTAR = EXP (E1 )—EXP(E 1+E3+E2)
GO TC 2O

19 CST A R a EXP(E 1+ E3+E2)—EXP (El)

C O MPUTE INT EGRAL OF M C C I F I E D  DEGREE TWO RAT E FUNCTION
C OVER INTERVA L
C 

20 CALL HELP (A ,A 1 ,A 2 , EL , E R NEW ,P MT R )
PMTR = PMTR— (EXP(8)* (EXP (B1*ERN EW)—EXP (B3.*EL)))/BI.

IDENTIFY AS FIRST SUBINT ERV AL
C 

N OTE 1
C
C GENERAT E REAL~IZAT ION ON POISON (PMTR ) VAR I A T E
C

21 CALL PVAR (IS PMTR M )
IF (NOTE.E Q.1~ GO tO 22
GO TO 25

REJECTION ROUTINE U S E D  ON FIRST SUB INT ERV AL
C

22 N(2 )  = M -P(4 ) = B
P(5) a B].
if (N (Z).E Q~.O) GO TO 24CALL REJECT (IS,EL ,CSTAR ,P, Q,N (2))

C
DO 23 Ia l ,M
T.IMES(N (1 1+-i ) = 1 ( 1 )

23 CONTINUE
C
C
C HAS THE INTERVAL BEEN PARTIT i ONED ?
C

24 IF (ERNEW.E Q.ER) GO TO 34
G3 10 27

USE REJEC TI ON ROUTI NE ON SECOND PART CF INTERV AL
C

25 N ( 4 ) a M
P(4 )  = B

= 81
C IF N O EVENTS OCCURRED B Y P A S S  R E J E C T I O N  ROUTINE

IF (N (4).EQ.O) GO TO 35
Q = ER—ELNEW

• CALL REJECT (IS ,ELNEW ,CST AR ,P,Q ,N (4))

C OPY TI M ES OF EVENTS INTO ‘TIMES’ A R R A Y
C

N’. a N( 1) + N( 2 )+N (3 )
C
C

DO 2t Ial ,M
TIMES(N4 +fl = T (I)

26 C ONTINUE

GENERATION OF VARIATES COMPLETE.
C GO TO ORDER ING ROUTINE
C

GO TO 35
C 

- - - - _ _
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C INTERVA L PA RTITION WAS RE QUIRED. MUST NOW
C CONSIDER SECOND SUB INTERVAL

D E T E R M I N E  C O E F F I C I E N T S  FOR MODIFI ED
C A )EGREE ONE RATE FUNCTION
C 

27 IF (A1.GT.O..AND.A2.LT.O. ) GO TO 28
E A—A2*T INI**2
81 = A1 +2 .*A2*TINT
GO TO 29

28 B = A+(A l /2 . )*T INT
5] . a A 1/2.+A2*TINT

29 ELNE W = ERNEW

GENER ATE DE GR EE ONE NH PP ON I N TE R V A L
C

B B z B
881 a
CALL NhPP2 (‘ IS,ELNEW ,ER ,BB, BB 1,O,N3,IER )
N (3) a N3
IF (N(3).EQ.O) GO TO 3].

c 
N3 * N(1)+Nt2 )

TRAN SEER TiM ES BETWEEN ARRAY S

00 30 I 1,N3
TIMES(N3+I) = T ( I )

30 C ONTINUE

3]. Q a TINT
C
C OETEP M INE VALUE OF CSTAR FOR USE IN

THE REJ ECTION ROUTINE

E2 ~ A 2*Q **2
~ Al *QIF (A l .GT.O..ANO. A2.LT . O. 1 GO TO 32

CSTAR a EX°(E1— E4 )—EXP (E1—E5—E3—E2 )
GO TC 33

32 CSTAR a EXP~ E1—E4 )—EXP(E1 +E3+E2 )

- 

- 

CO MPUTE INTEGRAL CF M OCIFIE D DEGREE TWO RAT E
1 C FUNCTION OVER SECOND INTERVAL

3’ CALL HELP (A,A1 ,A2 ELNEW ,ER ,PM TR )
• PMTR * PMTR— (EXP (Bi* (EXP (B1*ES)—EXP (81*ELNE%d)fl/81

IDENTI FY AS SECOND SUBI N TERVAL
C 

NOTE :
GO TO 2

PARTITION OF INTERVAL NOT REQUIRED. COMPUT E TOTAL
C EVENTS AND SUPERPOSE TWO EVENT STREAMS
C 

N (5) a N (1)+N (2)
IF (N (2).EQ.0) GO TO 38
LBGN a
JB G N a 1
CALL COL AT E (LBG N, N( ! ) ,] . )
GO TC 3 B

PARTITION WAS REQUIRED. DETERMINE
C AMOUN T OF SORTING NEEDED
C 

N (5) = N (].)-.N (2)+M (3)+N~4)IF (N (2).EQ.0.AND.N (4).EQ.3) GO 10 38
IF (N (4).EQ.O) GO TO 36
IF (N (2).EQoO ) GO TO 37

C

-i 

_ _ _ _ _ _  
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MUST SUPERPOS-E FOU R EV ENT STREAMS

19GM a N (1)+l
LFIN = N(1)- ’ N(Z )
CALL , COLATE (LBGN ,LFIN ,1)
LBGN a LF IN+N(3)+1
43GM LFINe1
CALL COL A TE (LBGN ,N(5),JBGN )

C 
G0 T0 38

u 
C MUST SUPERPOSE FIRST HA LF OF ARRAY ON LY

36 N2 a N( I )+N (2 )
LBGM = N( l )+1
CAL l . COLAT E (L BGN,N2 ,] .)
GO TO 38

C -C M U ST SUPERPOS E SECOND hALF OF ARRAY ONLY
-
~~ C

37 KK = N(1)-.N(2)+1
- - UGh = N(1Ia- N(2 ) - , - N(3)+1

LFIN = N(S)
CALL COLAT E (LBGN,N(5),KK )

-
- 

G0 T0 38

ARE TIMES OF EVENT S OP TIMES BETWEEN EVENTS REQUESTED?
C

-
‘ C

38 IF (I1.EQ.01 RETURN
H C

- -~ CALCULAT E TIMES BETWEEN EVENTS

S = TIMES (1-)
TIMES (1) = TIMES( 1)—EL
N5 = N(5)

-~~~~~~~~~ • C
C

03 39 I 2,N5
5], = TIMES( -I )
TIMES (I) a TI t4E S (I)—S• S = S 1

39 CONT I NUE
C

RETURN
END

C S UB R OUT INE NH PP 2 S I M U L A T E S  A NO N—HOMCGEN EOUS
C PCISSCN PROCES S WiTH A LOG— LiN EAR INT ENS ITY
C (RATE) F UNC TION
C

SUBROUT INE NHFP2 (IS,EL,ER, A, A1,II,N,IER )
D IMENSION 1(5000)
COMMON /HOL D/ 1

C
CALL OVFLOW

I N I T I A L I Z E  VARIABLE S
C

I E R = O
TINT * ER—EL
A a EXP (A +41*EL )

IS THE POI SSON PROCESS HOMOGENEOUS?
C

IF (A1.EQ.0.) GO TO 3
OAR = (A* (EXP (TIN T*A1)—1.))/A 1
IF (A1.GT .O.) GO TO 1
I F L A G = 3
G0 10 2

1. A = A*EXP (TINT*A1 )
At a —4]
ZFLAG a 2

C
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C COMPUTE PARAMET ERS OF BOTH POI SSON RA N C OM V A R i A B L E S
C

2 THETA * —A / Al
GO TO 4

C COM PUTE RAT E AND SCAL I NG FARAMETERS FOR HOMOGENEOU S
r PCISSON PROCESS

3 PAR a TZNT * A
I~~LAG a 1
&LNVR S a 1./A

COMPUTE NUM B ER OF EXPONENTIAL VARIATES REQUIRED
C
C ~ NMA~ P4R+6.*SQRT(PAR)

C IS THiS A HOMO GENEOU S POISSON PROCESS?
C 

IF (IFLAG .EQ.1) GO TO 17
GENERATE RE ALIZATION ON POI SSON (THETA) VARIATE

C 5 C ONTINUE
CA LL PVAR (IS ,THETA ,M )
IF (M.EQ.O) GC TO 7

C
C CALCULATE TIMES OF EVENTS
C

CALL SEXPON (IS,T,NMAX)
B = —A].
V a
JMA = NMAX +1

C
C

C 
DO 6 I=1 ,JMA X

C HA VE NUMBER OF EVE NTS EXCEEDED THE MAXIMUM NUMBER
C 1)-AT THE AR RAY CAN HOLD?
C

IF ( I .GT.NMAX ) GO TO 8
V = V+T (l )/t (M— I+1)*B )
IF (V.GT.TINT ) GD TO q
1( 1) = V
IF (L.E Q.M) GO TO 10

6 CONTINUE
C

i~1O EVENTS OCCURRED
C

7 N = O
RE TURN

C
C TOO MANY EVENT S FOR A RRAY . INCREMENT ERROR
C CODE AND T R Y  AGAi N
C 

8 IER = IER+1
GO TO 5

THE NUMBER OF EV ENT S OBSERVED TO OCCUR IN THIS
C NON— HOM OGENE O~iS POI SSON PROCESS IS ‘N ’
C

5 N a I—].
IF (N.EQ.Q) RETUR N
GO TO 11

IO N a M
it CON TINUE
IS THE RATE FUNCTION INC REASI NG OR DECREASING?

IF (IFLAG.EQ.3) GO TO 13

TI M E REV ER SAL TECI-N IQUE IS NECESSA RY
DETERMINE WHE TH ER N IS EVEN OR ODD

-i
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C 
IS I G a MOD ( N, 2) 

- 
~~~~~

NL .OOP a N/ 2
N L a N +l

C

1.

1 . 
C 

~J 9 (f)
l~~NLOCP

T ( I )  = ER—T(N1— I )
T(N1—I ) = ER—S

12 CONTINUE
c
C 

IF ( IS IG.EQ.1 ) T( NLCO P+1)=E R—TIMLODP 4- I)
ARE TIMES OF EVENTS RECUESTED?

C
IF (II.EQ.O) FETURN
GO TO 15

13 IF (LI.NE.O-) GO TO 15
IF (EL. EQ.O.) RETURN

C
C 

00 14 Ial ,N
1( 1) z EL+T( I)

14 CONTINUE
C

RETURN
C
C CALCULATE T I M E S  BETWEEN EVENT S

-~~ C
15 S a T (1)

- - C H:
C - E

DO 16 1a2 ,N
SI = 1(1)
T (i) = T (I)—S - 

-
-

S = S 1
16 CON TINU E

C
RETURN

THE PCISSON PROCESS IS HOMOGE NEOUS
C

1 7 1 = 1
U O .
CALL SEXPCN (IS ,T ,N? ’ AX )

18 U U+T( I)
IF ( U.GT.PAR ) GO TO 20
I = I -i-I
IF ( I .GT .MMAX ) GO TO 19
GO TO 18

I N C R E M E N T  ERROR CODE
19 IER = IER+1

C
C TRY AGAIN WITH MEW STRING OF VARIAT ES
C 

GO TO 17
20 N a I—It

IF ( N.EQ.O )  RETURN
IF ( I I.EQ .1) GO TO 22

C

DC 21 I=L,NEL = EL+AINVRS*T (I)
T ( I ) a E L

21 CONTINUE

c RETURN —

94
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C 
JBOI 00?! Ti1~~ISH~

) 1’O DDC —

22 00 23 I=1,N
1(11 = T (1)*A INV RS

23 CONTINUE
C

RETURN
EN DS 

C SUBROUTINE PV AR GENERATES A POISSON (THETA )
C VARI ATE, N , USING THE GA MM A METHOD

- - SUBROUT IN E PVAR (IS,THETA,M)
DIMENSION 1(5000 )
COMMON /HOLD / I
(= 0
C a 16.0

a .875
1 IF (THETA .LT.C) GO TO 2

GO TO 5
2 U = 1.

CTN = EXP (—THETA)
M MAX = THETA+6.~~SQRT (THETA )

3 1 = 1
CALL SRAN D (IS,T,M MAX )

4 U = U *T (II
IF (U.LT .CTN) GO TO 8
1 a 1+1
K = K+1,
IF (I.GT .MM AX ) GO TO 3
GO TO 4

5 NP = INT (D*THETA)
AN = FLCAT (NP )
CALL GAMA (AN,IS,G,1)
IF (G.GT.T hiETA) GO 10 6
K = K-i-NP
THETA = THETA—G
GO TO 1

6 U = THETA /G
NP = NP—I
CALL SRAND (IS,T ,NP)

C
CO 7 I=1,NP
I~ (T(I).LT.U) K = K-i-i

7 CONTINUE
C

C THE VALUE M IS ASSUM ED BY THE POI SSCF % (THETA) V f l R I A TE
C

RETURN
END

C SUBROUTINE REJECT GENERATES AN ORCEREC SAMPLE
C OF GIVEN SIZE FROM THE SECOND COMPOt~ENT
C CF TIl E O R I G I N A L  INTENSIT Y FUN CTION
C USIN G A REJECT ! ON—AC CE PTA NCE AL GORITHM
C

SU BROUTINE REJECT ( IS ,EL  C S T A R , P V E C , Q , L )
DIMENSION VLSCO ), PVEC (sr
DIMENSION T(5000)
COM~ CM /HCLD/ I• L 20 = L*10
IF (L2 0.GT.500) L20=500
Li L+1

1 J =  0
CALL SRAN D (IS ,V,L20)

C
C 

IX) 2 1=1,12 0
J a
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1&~iI OUPX I~~ 1S1~~ !O DDO

TLK) a Q*v (J),EL
J~~~J+1IF (V(J).L.T .CALC(PVEC,T(K))/CSTAR ) K=K+1
(F cK.EQ.L1) ~Q TO 3
if ~J .GE.L~O—ii GO TO 12 CONTINUE

IF (K.LT.L) GO TO
• 3 C4LL PXS3RT 1,1,L

RETURN
END

:1 C SUBROUTINE COLA TE SUPERPOSES TWO ORDERED
EvE:~T STREA MS OVER THE SAME INT ERVAL

SUBROUT INE COLATE ILBGN ,LFIN,JBGN)
DIMENSION T’IMES(5000), T(5000)
COMMON /MIKE I TIMES/HOLD/T
Z a J B G N
J~~~IK — LBGN

3. IF (TIMES (I.).LT.TLMES(K)) GO TO 2T ( J )  TI MES ( K )
J — J+1
~ *
IF (K.GT.LFIN) GO TO 3
GO TO 1

2 T(J) — TIMES (I)
J J+1
I = 1+1

• IF (I.EQ.LBGN) GO TO 5
GO TO 1

3 11 = LBGN—1
C
C

CJ 4 N=I,II
T(J) = TIMES (1~)H 4 CONTINUE

C
RETURN

5 CONTINUE
C

00 6 N=K,LFIN
T(N) = TIMES (M

6 CONTINUE
C
C

RETURN

c SU~~8UTINE HELP EVALUATES THE INTEGRATED INTENSITV
C FUNCTION OV ER TI-E INTERVAL (EL,ER)
C 

SUBROUT INE HE LP (A,A1,A2,EL,ER,XX)
DOUBLE PREC4SION MMC rnJ,eB,AA
Z SQRT (ABS (A2))

(A1*Z)/(2.*A2)
AA Z*EL+Y
SB = Z*ER+Y
CC A—AI *A1/(4.*A2 )
CC EXP (.CC)IZ

• j  (A2.LT.O.) GO TO 1
Q1 CEXP (AA**21*M MOAW (AA )
Q2 DEXP (BS**2)*MMDAW (BB)
XX CC*(Q2—Q1)
RE IL RN

1 CC CC*.8862269
XX CC*(DERF (BB)—DERF (AA ))
RETURN

r. FU~~~ ION CALC EVALUATES THE SECOND CDMPONEN’ OFC THE DECOMPOSED INTENSITY FUNCTION

( 
_ _ _ _ _ _ _ _ _ _ _  
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FOR At~Y INPUT VALUE .

~~~~~~~~ C~jj  ~(P,A 8SA)

•

~~~~RN 
EXP (X)—EXP (XX)

END
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