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I. INTRODUCTION ’

The contract N00019-78-C-0064 entitled "An Investigation on Characterizing
Mutual Coupling Between Two Antenna Slots on a Cone' was awarded to the
University of Illinois by Naval Air Systems Command for the period of ’
16 November 1977 to 15 November 1978 and with funding of $53,000.00. The
contract was later extended to 15 January 1979 with no additional cost.
The contract monitor is Mr. J. Willis of AIR-310B.
This is the final report of the contract, covering personnel (Section II),

technical results (Section III and attachments) and publications (Section IV).
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W. Lee, Professor of Electrical Engineering, Principal investigator.
Mittra, Professor of Electrical Engineering, Principal investigator.
Yung, Research Associate
Grun, Research Assistant

L. Law, Research Assistant
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ITI. TECHNICAL RESULTS

Qur study of the mutual coupling effect in a conformal arrav has been
successfully concluded. In the present contract, the following two tasks
have been carried out:

(i) GTD solution of self-admittance of slot on a cone or cvlinder.

In applying GTD formulas to calculate the self-admittance of a slot on a
cone (cylinder), there is a difficulty which was not previously presented
in the calculation of mutual admittance, namely, the GTD Greens' function G
for the surface field has a r_s-singularity at the source point r = 0. We

removed this difficulty bv subtracting G, from G, where G. is the Green's

0 0

function for a planar conducting surface. The contribution of Go to the

self-admittance can be calculated by a Fourier transform method. The
remaining function (G - Go) is of order r—l'5 as r - 0, and is therefore
integrable. When the slot is on a cylinder, our GTD results of the slot
self~admittance are in excellent agreement with those calculated from the

known exact solution. Details are given in Attachment A.

(11) Justification of the transverse curvature term in the GTD solution.

In our GTD sclution for the magnetic field on a convex conducting

surface, there exists a rather peculiar term. Contrary to all previous

GTD theories, this term depends on the surface curvature in the transverse
direction of the rav. For many practical situations, the inclusion of this
term is of critical importance in getting accurate numerical solutions.

This term was first introduced by us in November 1976 as a conjecture. Now,
we have shown through a rigorous asvmptotic expansion of an exact solution

that our conjecture is indeed correct. Details are given in Attachment B.




our work on the GTD calculation of mutual coupling is summarized in
a review article (Attachment C), which will be included in the forthcoming

book entitled Principles and Applications of Antenna Design sponsored by

IEE (London).
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GTD SOLUTION OF SLOT ADMITTANCE ON A CONE OR CYLINDER¥*

S. W. Lee, E. Yung, and R. Mittra
Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1978

ABSTRACT

The input admittance of an elemental radiator on a curved surface,
e.g., a slot on a cone, plays an important role in the design of conformal
arrays. A search through the literature reveals that at present, there is
no reliable theoretical method available for computing this admittance.
The objective of this paper is to provide a solution to this problem using
a surface ray approach — within the framework of GTD. The solution is
verified for the limiting case where the cone degenerates into a cylinder
and it is shown that the GTD results compare extremely well with the exact
modal solution to the cylinder problem. Extensive numerical results are
presented in the paper for the input admittance of a cone as a function of

variows design parameters.

*This work was supported by Naval Air Systems Command under
Contract N0O0019-78-C-~0064,
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1. INTRODUCTION

Because of its simplicity of geometry and ease of flush-mounting,
the slot radiator is onme of the most frequently used elemental radiators
in the design of conformal arrays. A crucial design parameter of a slot
is its input admittance Y, whose value depends on the slot dimensions and

the geometrical property of the conducting surface on which it is mounted.

s RESN

In the simplest case, the mounting surface is an infinite ground plane, in
which Y of a thin slot can be related through the duality relation to the

input impedance of a thin-wire antenna in free space. The latter quantity

was first calculated by P. S. Carter in 1932 [1] - [3]. Direct

calculations of Y of a slot on a plane were reported in [4]. When the

mounting surface is a cylinder, the solution of Y has been expressed
exactly in terms of cylindrical modes, namely, an infinite series in
the azimuthal direction and a spectral integral in the axial direction [5], [6].

This modal solution is suitable when the radius R of the cylinder is

small in terms of wavelength (kR < 10); otherwise,its numerical evaluation
is extremely laborious.

In the present paper, we consider the calculation of Y of a slot
on a cone (or cylinder) using surface rays in GTD. The general concept
of surface rays was introduced by J. B. Keller in 1956 [7]. The
explicit formulas for surface rays adopted here are those reported
recently in [8]. Our solution of Y is an asymptotic solution which is
valid when the radii of curvature at all points on the cone are large
in terms of wavelengih (or high frequency solution). Its calculation
is relatively simple,and its accuracy is surprisingly good as verified
by the comparison with the exact modal solution for the case of a slot

on a cylinder.
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simple cosine distribution, i.e., the so-called "one-mode approximation':

2. FORMULATION OF INPUT ADMITTANCE

Referring to Figure la, let us consider a slot on the surface of
an infinitely large conducting cone with a half-cone-angle 80. The slot
is relatively small when compared with {ts surrounding cone surface,
and the shape of the slot is assumed to be rectangular on the developed
cone (Figure lb). Note that, depending on the exact manner in which the
freding waveguide is fitted into the cone surface, the shape of the slot
mapped onto a developed cone can be quite irregular. The assumption of
rectangular shapes represents a good approximation for practical cases;
at the same time, it simplifies the subsequent calculations. The
location and dimensions of the slot are described by

(¢, W), and (a x b) ,
where ¢ is the radial distance of the center of the slot from the cone
tip, and w is the angular deviation of the slot axis from the cone
generator (w = m/2 for a circumferential slot and w = 0 for a radial
slot). Throughout this work, we assume that

(%79, ke > 1 (slot awav from cone tip) -

(i1) ka ¥ m and kb << 1 (resonant thin slot)
Assumption (1) is necessary because near the tip the cone is highly
curve¢ and GTD is not valid there. As a consequence of assumption (ii),

the aperture field of the slot can be adequately approximated bv a

AR Ty £ .

E = z\/g cos () (2-1a)
N\ "’—

H= =vI /= cos () . (2=1b)
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\
{ vwhere V and 1 are, respectively, the modal voltage and current of the
J slot., The input admittance of the slot is defined by
{
: '.1 )
J Ysg, (2.2)
1
| Alternacively, it can be calculated by the expression
§ :
; W P (2.3)

villy
Here A is the aperture (a x b) of the slot. K is the equivalent surface

magnetic current density due to the application of a field E described

a3+ i i

in (2.la), and is given by

N ~

E = E xXn= é XX . (2.4)

ot

The magnetic field H in (2.3) is the field produced by K when the slot

e

is short-circuited. Under the one-mode approximation, this H is identified

with the radiation of E located on a completely filled cone (without slot).

SR o 4454

We emphasize that (2.3) is an approximation of (2.2) because of the manner

S s

in which ﬁ is calculated, and is valid only under the one-mode approximation

) in (21}




3. GTD SOLUTION OF INPUT ADMITTANCE

To calculate H in (2.3), we first determine the Green's function
F(l,:) which represents the magnetic field at point 2 due to a magnetic
dipole at point 1. Both points 1 and 2 are on the surface of the
completely filled cone (after the slot is removed), as shown in Figure 2.
According to GTD, K(1,2) has the following two dominant contributions
at high-frequency: Ed due to the direct ray f& going from the source
to the observation point, and gt due to the tip~diffracted ray faé.

Thus,

B2 ~BY %R 5 kew (3.1)

Accordingly, input admittance Y also has two parts

 IE SR LTS T (3.2)
The calculation of Kd is detailed in {8], and that of Kt i [Si0 181) .
Applying the above results in (2.3), Yd and Yt on a cone are found as follows

(for expjwt time convention):

Direct contribution:

4 5 paf2 rb/2 ra/?2 [b/Z
Y = - ‘a-l')—f dyl J dzl J dy2 J dz2
-a/2 -b/2 -a/2 -b/2
Y, my,
X cos (—57) cos (%) 8(¥ys 235 ¥y, 25) (3.3)
where
2] pl
(V. % Yau % ) = sin” 9 + cos 8 , (3.4)
1 1 2

= G(s) {(1 - —1—) tv(§) - (—-)' T u(g) (3.5

+ j(/_Ek_Rc)-'” [tv' () + (Et/'§b> T u'(s>1> "

5
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- G(s)(ikj [rv(i) +

L - 31) Pu@ + 3R Pe@ | L6l

ks
2 -jks
G(s) = ——5 &— (3.7
j2aom® 7
s = /(y2 - yl) + (z2 - zl) - (3.8) '
=1 [ %9 T &
9 = tan o 3 3 (3.9)
NEE
2 b
Q =Ve" +s” -2cs cos (W=-w) ’ (3.10)
ﬁ n n n n
s
A &;1 = gn sin BU = sin-l {32 sin (W - wn)} n (3.11) |
Q) !
v y x .
s = /y" B z- ’ (3.12)
n n n
w = tan L (z_/y) (3.13)
n a'“n !
sin }@; - ']
2 1 ,
T = T s (3.14)
(63 = &}
krl sin Ql 143
£ = |——u"= lo; = 931 , (3.15)
2 tan 60 =
i ey, Can‘eo
= = N )
Re = Sin Ql sin G, & RAES
J—
_ YT, tan 80 .
L 0 (3.17)
cos Ll cos {1,

Fock's functions (u,v) and their derivatives are described in [9].

Tip contribution:

1/9
. tan O =~ L 2
2 + s D% -32k
™ - g, sin” w (14 Gj)ab ( g 0) [siﬁb>5b/ ,]e jlke
60T ¢” sin @0 : =

(3.1%) 1

—1------.IlllIlIIlllllIllllllllllll-Il-lIlll-II-l.....-..--.---ﬁl“.




Here JO

functio

%0
where

A
B

in whic

is the zeroth-order tip-diffraction coefficient and is a

n of the half-cone-angle 90. It is approximatelv given by (8]
= AeJB "
p L i e 2
= 1.305/\0 - 1.755 + ~.7/.\0 - 1.45990 .
S A608 = 2 & e3
w 2,7195 + l.abO;@O - 1.1-9590 + 0.6566 0 =

h both 90 and B are in radians.

(3.19)

(3.20)

(3.21)

If the slot is on a cvliinder and is criented along the circumferential

directi

calculate the input admittance Y (there is no tip contribution for the

cylinde

determi

8¢

where

Fad)

R
The fun
In
a cone

is give

on (Tigure 3), the same expression in (3.3) can be used to

r case). The GTD solution of the Green's function, which is
ned in (9], is given by

5 ) 3
Yiv I Yo z,) = G(s) {v(2)[sin” 8 + is cos 20]

I a) % 3 i
* w(E) [con™ 6 (1 = 3 + = gtn® 8}
ks Ks

Ks g

2l

+ E% Elv'(8) sin”™ & + u'(%) cos™ 9 (tan” 2 + f%\1}

L (kR cosé 5)1/3 s
2 R 2

= radius of the cvlinder,

ctions G(s), s, & are defined earlier in (3.7) through (3.9),

summarv, the GTD scolution of the input admittance of a slot on

is given in (3.2), (3.3), and (3.18); while that of a cyvlinder

n in (3.3) and (3.22). These solutions are approximately valid

8

(3=

22)
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when the radii of curvature in the neighborhood of the slot on the cone

or the cylinder are large in terms of wavelength.
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4. TFINITE PART OF DIVERGENT INTEGRAL
The integral for calculating Yd in (3.3) is in fact a divergent
integral. This is due to the fact that, as point 1 approaches point 2,
(Figure 2) the Green's function in (3.4) becomes infinite as

g(yl) zl; Yza 22) S CS—3 ’ s -+ O Y (-/‘.la)

where s, defined in (3.8), is the distance between the two points, and
the parameter C is

C = =R TOR 2 -3 sin2 ED) (4.1b)

24012k

It is well-known that the singularity of cubic power is non-integrable
with respect to a surface integral. This difficulty can be traced back
to the derivation of the Green's function g. Strictly speaking, g is
a distribution and can be written as

g=Dg , (4.2)
where D is a second-order differential operator with respect to
coordinates of point 2, and E is the Green's function of a vector
potential component. A "legitimate'" expression corresponding to (3.3)

should read

¢ .. é% ff dy, dz, cos (—;g) {p[ ff dy, dz; cos (‘;l)gl} 3 (4.3)

which is convergent, and Yd has a well-defined finite value. However,

in writing (3.3), we have interchanged the differential operator D and the

second surface integration operator in (4.3). This interchange is not

permissible and, therefore, leads to the divergent integral in (3.3). | 1
Since (4.3) contains a differential operator and is nc: suitable

for numerical evaluation, we prefer to work with (3.3), provided of course

1L

————————————l
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e

we can extract the correct finite part from the divergent integral. To

this end, we rewrite the Green's function in (3.4) as

g = go + gl & (4.4)

The first term &g in (4.4) is the Green's function of an infinite ground

plane, and is given by the well-known expression

8o
Note that, as s - 0, go has exactly the same singular behavior in (4.1)
as g. This is expected, because in the sufficiently small neighborhood
of a point source, the cone can be approximated by its tangent plane.
The second term 8, (g1 =g - go) in (4.4) is the difference between the
Green's function of a cone and that of a plane. Near the source, it
can be shown from (3.4) and (4.5) that

-3/2
8 ~ Cls

= & -3/9 2
C, = (19208 )L k71/2 47372
1 =
When (4.4) is substituted into (3.3), the admittance Yd on a cone is

decomposed into two components, namely,

v oyl gy e
The singularity of g, at the source point specified in (4.6) is
integrable. Thus, there is no difficulty in evaluating Yi numerically.

The first term Yg is the admittance of a slot on a plane. It is
defined by (3.3) after replacing g by g, in (4.5). From (3.7) and
(4.5), we recognize the following identity:

2
By Ul 2 -1—23—2) G(s) . (4.
k Syz *

= ©¢a) [ddn” ©§ + La-Dbae-s stn® ©1 - . (4.5)

s s+ 0 s ' (4.6a)

(L= )2 - 3 cos” §) . (4.6b)

8)




Note that (4.8) is in the form of (4.2). Substituting (4.8) into (3.3)

and interchanging integration and differentiation operators, we obtain

3 my 2

) ) i 3

Y\i o - :b } l{ dy., dz 5 COS (““*“.) (1 + ‘L‘- —'—,;') [ Tj
( ab | 2 2 a K oy’ ]

- 4.9 ’ 4

r( "y \ ‘
dyl dzl cos (—:~) G(s)]!} .

The integral in (4.9) is now convergent, and (4.9) can be considered
as the "finite part" of the divergent integral in (3.3). For numerical
evaluation, (4.9) is converted to that in the Fourler transform domain.

Following Rhodes [10], it is simplified to become (Appendix A)

d a k ('Sb
ReYO = 44 J da C(a)3 {} Jo(t)dt - JI(Sb)]} 5 (4.10a)
137k o 0
d k {Sb &
[mYl) = { da C(\\)D[} Yo(t)dt - \l.(bb\ - ;‘Eg
0 0
2 g Jg3 ' dt + K b 1 (4.10b)
+ = da C()yY i\O(t) i 1(\( ) - 5 " 4.
k 0 |
Y By ) o o '
where 3 = (k7 - a')l/' 5 Yy = (o - k’)l" , and
2 B
C(a) = Soofaa/2) (4.11)

1 - (aa/“):

In summary, the direct contribution Yd on a cone as given in (3.3)
{s divergent, due to an "illegal" interchange of integration and
differentiation operators in the derivation process. The (correct)
finite part of the divergent integral is given in (4.7), where Yg is

given in (4.10), and Y? in (3.3) after replacing g by 8y The same

difficulty arises in the case of a cvlinder, and it is treated bv the

same procedure as in the case of a cone,

13
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5. NUMERICAL RESULTS
We have derived the input admittance Y of a slot on three types
. : . ol
of surfaces: (i) For an infinite plane, the tinal solution Y = Y is

d ”

given in (4.10). (i1) For an infinite cylinder, Y = Y is given in (4.7),

where YT is calculated numerically from (3.3) after replacing g by 8-

The explicit form of g, can be gathered from (4.4), (3.22), and (4.5).

1
(tii) For an infinite cone, Y has two contributions as described in (3.2).
= ,d P, - o o7
Y is given in (3.18) and Y in (4.7). To calculate \l' we use (3.3)
arter replacing g by 8y where 8) can be gathered from (4.4), (3.4),
and (4.5). Numerical results of Y on the above three surfaces are
presented below.

Slot on_a plane. As a function of slot length a , we plot (a/2b)y
in Figure 4 for three different values of slot width b. Those curves
are practically linear, and can be described to a good accuracy by,
for 0.4 < (a/)) < 0.6 .

Y 3 :-:’Aau.o:o + §0.596) + (3.75 + _1’:%)\3\-:— - 0.5 1} millimho (5.1)
<

where B = 44, 33, and 21 for b = 0,0001\, 0.001\, and 0.01\, respectivelv.

Relation to dipole impedance. As discussed in (1l1], there is an

alternative definition for the (input or mutual) admittance of a slot.

Instead of (2.1), a modal voltage V can be defined bv

N

E - 2V % cos (iy\ 3 (3l

or equivalently,

V = (E 3\v_0 dz T

é

—
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Then a different input impedance Y is defined by (2.3) after replacing :
V by V. It is easily shown that
Y = (a/2b)Y . (5.4)

Conventionally, Y is used if the slot is fed by a waveguide, while Y

is used if the slot is centrally fed by a pair of transmission lines.
From the duality relation in Maxwell's equations, it can be shown that
(p. 519 of [2])

(120m> %, (3.5)

2 =

e

where Z is the input impedance of a centrally fed dipole radiating in
the free space (not in a half-space as in the case of a waveguide-ted
slot). From (5.1), (5.4) and (5.5), we find that for a half-wave
length dipole,

Z = 73.12 + § 42,36 ohm (5.0)
which agrees with Ehe results in (2], (10].

Slot on a cylinder. Consider a circumfevrential slot of dimensions

0.9" x 0.4" on an infinitely long cylinder whose radius is 3.8". Figure 5

shows Y calculated by the present GTD solution and that by the modal
series solution in [5]. These two solutions are in agreement within
0.5% in magnitude and one degree in phase. Note that, under the "one-

mode approximation,"”

the modal series solution [S5] is exact. It is
amazing that the present GTD solution gives such an accurate result
for kR «~ 18.

Slot on a cone: variation with radial distance. In all the following

cone calculations, the slot has the dimensions of 0.51 x 0,051, except where

stated otherwise. In Figures 6 and 7, the slot is circumferentially

16
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oriented on a cone with 9 = 300, and the variation of Y with the

0
radial distance c¢ is presented. We observe two effects: (i) As ¢

is increased, the radius R = ¢ sin 60 of the "equivalent" cylinder
becomes larger and larger. The magnitude of Y decreases and approaches
the asymptotic value of the slot on a plane. (ii) At c = 2\, the

tip contribution lYt[ is less than 1% of the ]Y|, and this contribution

diminishes as ¢ increases.

Slot on a cone: variations with cone angle. As 60 is increased,

the cone surface becomes flatter. Therefore, Y in Figure 8 approaches
its value on a plane.

Slot on a cone: variations with slot length. It is interesting

to observe from Figure 9 that the minimum values of |Y| for both cone
and plane cases occur roughly at a = 0.45\, not at the resonant length
a = 0.5\,

Slot on a cone: variation with slot orientation angle. Figure 10

shows that there is about a 10% increase in [Y| as w varies from 0

(radial slot) to m/2 (circumferential slot).
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Figure 8. Input admittance of a slot on a cone as a function of

half-cone angle 90.
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in (4.9).

ReY

O A

2
r(k -ky)

)

0

numerical evaluation.

derived from a different method.

3
By a change of variable kz = (k" - k;)

2. L/2

d

APPENDIX A SIMPLICATION OF YO

The input admittance Yg of a slot on an infinite plane is given

In this appendix, it is transformed into a form more suitable for

Making use of the identity

o
f exp {~jlk (y,-y)) + k (2,201}
G(S) = I dk dkz 5 5 3 1/2 (A—l)
waor 11 Y @D
Equation (4.9) may be rewritten as
% 2
3 ff dk_ dk_ C(k ) S(k_) s ki (A-2)
0 60ﬂ5k / g -z v z (k2 el k2 > k2)1/2
= - »
where
2
sin (kzb/Z)
S(kz) RS S B g (A-3)
(k_b/2)
z
2
cos (kva/Z)
Gl ) & (A-4)

1- (kya/?\')2

This result is identical to that obtained by Borgiotte [4], which is

Following Rhodes [10] who has studied

a similar integral, we separate (A-2) into real and imaginary parts.

Consider first the real part

k 5(k,)

ab

lSﬁSk

dk

2 2
dky C(ky)(k - ky 172

J 2 2. 2_ 2
0 0 (k ky kz)
(A-3)

2 1/2

cos N, the inner integral of the

preceding equation is transformed into

) 2 2. 1/2
S(kz) sin” (cos n(k -kv) b

/2)

4
75 7 S 7o i T MR 3
) ik’ - k) cos® n

dk 5
z k- - k2
s

(A-6)
25

e —

.




{
L!
\

(k -kv\

Differentiating the integral on the right twice with respect to the

parameter b(k~ - k )1/ , we obtain
“-I‘I
ik - 2,172
5 | dn cos (b(k™ - kv) cos n) , (A-7)
0 '
Ny 1/»3

which is equal to m/4 J (b(k = k:) SR

Then, integrating JO twice and

applying the recurrence formulas of Bessel's functions, the integral

in (A-6) becomes

1/2
i ((b(k -k )

2 2.1/2
b(k™ - ky\ \\p

Substituting this result into Equation A-5, the real part of Y

reduced to

s

3 30
d ey = 0, Glk” =R 37 3y o L8

|
o
d
0

is

_ s el peticagtyLid :
fefY?} = —A4 dk. Gk ) (kx> 173! de 3.08) = 3. (bl Y\
9yt } . v \ ) Y 1 v '
T K 0 \~O ’;
(A=)
Next, we study the imaginary part of YS, which is
!/ k
P /‘ a5 S [ S(k )
t v . BB ( dk_ C(k ) (k>-k>) | dk
BY el ¥ 0 ¥ Lo marg T allnd k Eyy e
0 (k- k ) Rt
. A S
- J dk C(k ) (k™ = k) fw dk 5 3 (A-10)
v » z 1/2
k 0 (k +(k -k~ )) ’}
By another change of variables, k_ = (k7 ~ k;\ " cosh n in the first

inner integral of the above equation and
second integral, we have

f% S¢ k ) ] o
| dk_ Z g |
2 2, 1/2 e (i k ) b7(kT=k)

N to

K, = (k; - k'\lj' sinh n in the

9 Al !1‘\

sin® (cosh n(k“=k>)"'= b/2)

dn

bl .
cosh™ n

(A-11)

|
|
|



)
r“ S(k_) 4 o sin” (sinh W(k -k )1/' b/2)
dk, 5 2 - T .7 2 : dn
h 5 (k°+(kv~k-)) (i b~(k;—k') b sinh- n
e (A-12)

It can be shown that the intugrals c¢n the right-hand sides of (A-11)
and (A-12) are, respectively, related to Neumann's functions

Y,) and the modified Bessel's functions of the second kind

(YO‘
(ko, kl) by 3
5 5 2 g2
sin” (cosh W(k k )1/ b/2) 1/2 g b(k k\)
rdn = ‘b(k-—k) ( [ : t\’ (t)
0 cosh' n k\o
2 2 \\
= (b(k k )1/' - -—;_l—/.’/ (A-13)
'Tb(k- k ) )
and
) & B )
sin® (sinh n(k2-kD 7 b/2) R lb(k ity HE
fw dn 5 = b(k -k7) } de K, (t)
0 sinh™ n (‘)
/» 1 ‘
k U)(k k) = ————T ) (A=-14)
b(k ~k7)
Substituting these results into (A-10), the imaginarvy part of Yg is
reduced to
¥ g ST
d a fk 3 1/2 | (.’b(.\ -K\'\
LY, =~ , ( dk C(k\(k k)’ | | dt Y, (t)
m 0 4 J | 0
157 k | 4
0 0
3 L} bl Al ) » 9 ) o
- Y (b(k~ k \l/ S = e e r’ dk C(k ) (k -k )1/
. 4 .8 bfd W | v v
To(k™=k™) :
v k
r-b\k' kH1/2 22,172, 1
. w dt k (EY + K \b k =) -5 515 ) (A-15)
3 b(kS-k)

he final results in (A=9) and (A~15) are duplicated in (4.10) after

an obvious change of notations.
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APPENDIX Bl

COMPUTER PROGRAM OF Y FOR CYLINDER

FROGRAM MAIN ( INFUT,QOUTFUT, TAFE3=0UTFUT

COMFLEX Y11,YFLsYDIFsFYLLsFYFLsAYDIFsCJrCONA

COMMON A»3'RrAKsAKAY AKErAKR SE»SCrSEy THIRDSF L CONST/,CJrCONA
CJ=(Q.sl.)

FI=3.141592653¢6

THIRD=1./3.

READX>»AIN»RIN»RIN»FREQ

AK=20.XkF[XFREQ/ 3.

A=AINX0.0254

E=HRINX0.02%54

R=RINX0.02%54

AKAZAKXA

AKB=AKXER

AKR=AKXR

CALL FPLANE ( fFL,AK»AsE )

CALL DIFF ¢ YOIF»S )

Yil=YFL+YDIF

PYPL=YPL

FYDIF=YDIF ’ D
PYli=Y1l

CALL XTOFP ¢ FYFL )

CALL XTOP ¢ FY1l

CALL XTORP ( PYDIF )

WRITE(3s1) FREQrArAINIByBINsRyRIN» YFLFYRL, TUIF»FYDIF, (11,5Y1L
FORMAT(/TL10s “INFUT *e/T1Qs *FREQ =*sF3.39"* SHI"»
3/T105'A ='yF3.3+s* METER ="+F8.3s* INCH"»

$/T10s"B =*yF8.3s* METER =*»F3.3s* INCH"»
3/T10y» 'R =*sF8.39" METER ="9F3.3s" INCH'.
$///T109s *CUTPUT $°»/T10s°Y11°%

5723, "REAL*»T38y "IMAGINARY "+ TI3 s *MAGNITULE" +T33s *S4ASE"*»
$/T10s*PLANE s T20+3E:5.7+£12.4

/TLOs *DIFFERENCE " »T20+3E1S.7+212.3>
83/T109 *CYLINDER*»T20+3ELS.7+E12.4)

STOF

END

SUBRQUTINE SELF ( RESULT »

COMPLEX STHFYeRESAPRESIYRES1/RESZIRESIYRESYWRESLULT.Co.20NA
EXTERNAL FTHFASFY

COMMON AsBsRyAKIARASARR+ARNR s SBs3CrSEr THIRDWF T2 CONST» 2Ly CONSA
COMMON /DATA2/ Y1,Z1sY2sZLy2U

Y1=0.

£1=0.

3B=0.7%SC

30=0.7%SC

THLAP L/ 2

CALL RGQ ¢ FA #0.¢THLs3»RES )

SESA=CONAXSQRT (2. 445 KRES

m

CALL CGQ ¢« FTH 3»RESD
CALL S6G ¢ P JsRESL
CAaL. CGQA ( FY .3D+3C»32.REZ2

!
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SUBROQUTINE OIFF ¢ YDIF.NY )

COMPLEX FY2sCJsCOMNAYSFLINE,YDIF

COMFLEX TOTAL/RESULTRESL+RES2+RE33/RESS
REAL SP(12)

EXTERNAL FY2

COMMON AsHIYRsARK7AKAPARKBIAKR»SHeSCrSEs THIRD T, TONST»CJd» CONA
COMMON /DATA2/ Y1,Z1sY2,2L,2U

DATA SP/7.918.914.910.914.918.s914.915.913,718.918.918./
CONA=(1.~CJ)/( 1920.XRXPIXSQRT(AKXFI) )
AN4=4XNY

N2=22%NY-1

DY=A/AN4

0Z=8/10.

SC=AMINL(DY/3.,02Z+.1E~1)

3E=3.xSC

CaLL SELF ¢ RESULT »

YOIF=(0.+0.)

D0 200 IZ=1+5,2

[F(IZ.EQ.1) EZ=1.

IFC(IZ.NE.1) EZ2=2,

T1=02Z%(IZ-1)

SFLINE=(0.+0.)

DO 100 IY=1,N2y2

ISP=(IY+1)/2

Yi=DyYX(Ifr=-1)

RES1=RESZ=RESI=RES4=(0.+J.)

ZL=-R/2.

U= &/2.

YL==R/2.

YU=Y1-SE

IF(YU.GT.YL) CALL CGQ ¢ Fr2,YLyYU»8»RESL
YL=Y1+SE

YU=Aa/2.

IF(YU.GT.YL) CALL CGQ ¢ FY2yYLyYUr&sRES2
YL=Y1=5€

YU=r1

ZL=2=8,2.

ZU=21-sC

IPCZU.OT 2L CALL CER ¢ FYQ»YL:YU»8sREST )
ZL=2Z14+SC

JUu=8/2.

IF{ZUGT.ZL) CALL CGQ ¢ FY2,YL«7Ur3sRESS ?
TOTAL=RESULT+RESL+RESI+RESI+RESA+RESIHRESS
TATAL=TOTALKCOS(~I&YLi, )
SPLINE=SPLINE+SF(ISFYXTOTAL

CONTINUE

SPLINE=2.%0YXSFLINE /L3,
YUIF=YDIF+EZXSFLINE

CONTINUE

YDIF=DZKYDIF

YOIF==-3.«YIIF/ A,/ %

RETURN

ZIND
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T0 DD
FUNCTION FACTHD FROE OOPY FURMAISHED [+

COMFLEX 2J+CONA

COMMUN AsBoRsAR»ANAYAREsARR Yy SE» SCHSE» THIRDF I CONST»CJrCONA
20SX=COS(TH)

CO0SX=ARS(COSX?

COMFLEX FUNCTION FTH(TH)

CUMFLEX FSsCJsCONALCONV

EXTERNAL F3

COMMON . DATA/ SIN2»COS2+SIN4,COS4,C0S2X«XCONCYCONSCONV
COMMON A+ReRsAR+AKAYANRyAKR s SBeSCrSE» THIRDF s CONST»CJ e CONA
COSX=CO8(TH)

2382=C0SXxCOSX

SIN2=1,-C0O8S2

N2%S N2

082%C082

J082X=m L =2, S TND

CON=ARNKRXCOSS, 2.

CON=XCONRXTHIRD, R

FCUN=F O RLDS KA

CONST=0084, (2. KAKRYAKRR)

SONVEUUXCUNSTRRTHIRD

CoLl CGAT ¢ F5¢0.98He32»FTH )
TETURN
N0
- COMPLEX FUNCTION FS(S)
COMPLEX UXUX» VFXUFX (S
COMFLEC GCYL . GFLCOIF «+aFFCJy JOKS»CONA« CONYV
SOMMON TATA, SIN2,COS2,SIN4»COS4/COS2X» <CON» ‘CONS CONV
COMMON Qs BeR AR s ARA P AR ARR s SR SCrSEy THIRD S T+ TONST S+ CONA

T32004 0042
| IF(3.LT.iE=20) RETURN
ARG TANKSE
JORS=2CJ AKS
(=2(LINRS
SALL FOCN € XaWUXeUXsUFXpURX )
IS=CMPLXL COSCANS)Y o =SINCARS) ) ' AAS
JCrL=VXx(SIN24JONSXCOSTX)

8 SUXKJORSR(COSIH (L. =2, kJOKNS) + .OKNSKSIND)

3 FUEXRCONUXS (N2

] SUEXRCONVUXJOKRERCOSD
{(F CISQALGE.L.E~50) GCYL=GCYL+UFXXCONURSING, COS2
IFOZ282.LT v 1eE-30) GCYL=GCYL*O.ITSH(L.=CUOXSART FIXARS) 'ANR
SRLASIN2HUNSR (2, =T kSINDYR(L, = JONS)
SULF =Sk (GCYL=GPL)
[FI3.8T.1.8-3) G070 190
= “

SUIFaCHF' . ((RE=RE)

OIS SREDIF

AR =TONARCOSIR (2. -3, 4C0S2) SQRRTIS)
FSsUIF=APP

i
JS{YCON)

A B 3

3l

= W=FIXCOSX KSE/A
CALL FRESNEL ¢ CrS9eX ) o
FA=CRCOSX® (2, -3.4COSXXCOSX)XSQRT(COSX)
AETURN

. ¢
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COMPLEX FLUNCTION YY)

SOMFLZX F2,CJeCONA

EXTERNAL FZ

COMMON AsBsR/AK ARAYARB v ARR» SBeSCeSE» THIRDWF L CONST o Cu e CONRA
:OMMCN /DATA2S (1+21TYZL,2U
rY=syo

[FISR.GE.Y2) ZL=SQRT(SERXSR-Y2xY2)
IF{SR.LT.Y2) ZL=0,

CALL CGQA2 ( FZsZL+SCr3eFY )
FY=FYXCOS(FIRY2/A)

RETURN

N

COMFLEX FUNCTION FZ(ZI2)

COMPLEX UXsUXPUPXeUPX,GS

COMFLEX GCYL GPL»CJr JONS+CONAYCONV

COMMON AsBsRsANsARAPARB o ARNR » SRy SCr 3E THIRDF I CONSTCU» CIONA
COMMON  DATADS Y1,219¢2020Ls2U

DY=Y2=-Y2

0T=T2-21

3ESERT YRy -QZwn2)H

IF{S.LT.1.E~-30) RETURN

cosx=0Y S

CO322C0SKXCOSX

SIMN2=1.-C082

3 INI=S IND2%S (N2

CUS4=C0STxCOS2

o

=Cd ANS
CARNRKRCOSS 2.

2(taTHIRDNS, R

AL FOCN 0 Xe U UXS VRN URY
13=CMFLX( COSCAKS) «=SINCANS) '/ ANS
JONST=COS4,/ (2, CARRKARR)
OMU=CURCONST KX THIRD
SUTLaUXX(SINI+ JONSXCOS2X0)

+UXKJUORSK O ZOSTX (L o ~2. «JORKS M + JONS RS I VD)

SURXNCONVRSIND

SURFXACONVRJORSXCOS2
[FICCS2.GE.1.E~S0) GCYL=GCYL +UFXXCONVXS INM4/COS2
[F(COS2.LT 1. E=80) GCYL=GCYL+D.373%i1,-CU)XSART I FIXANS) . ANR
SFLASINT+UONSH(D, -3, kSIN2YK (1, =JOKRS)
TI=33k SCYL=GFL)
SETURN
N

SOMFLEX FUNCTION FYZ(YQ)

COMPLEX FI»CJeCONA |

EXTERNAL FZ

TOMMON AsHeR AN cANA ARG e ARR AR eSCoSE o THNIRUW A LI CONST e Cus CONA
SOMMON TATAZ, YLsZLlsTYeZILW U

TY=sY2

UY2ARS(Y2=-71)

NT=3

LELDY.LT. Nl=lo

PELDY

3
f eToel8=1Y NI=32
CALL T5Q2 sellsSUSNIFYR
SYSRFYQKCOS(RTIRYS. &)
RETURN
END

i
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APPENDIX 32
COMPUTER PROGRAM QF Y FOR CONE

FROGRAM MAIN ( INFUTUUTFUTs TAFE3aQUTFUT

COMPLEX (PLsYDIF s YTIPFsYDIR»YLL4FYRL yFYRIFPYTIFWFYDIRsAYL]
COMMON FIvARNAsBsBIs 83RO+ CoOMEQ+SINOCOSOr TANO« BEL
FLa3,1418928830

READ XeFREQrAsBsCrOMEs THETA

AR=20. kF [XFREQ/ 3. !
THETAOSTHETAXFT 130, £
OMEO=OMEXFP 1. 130,

SINO=SIN(OMED)?

COS0=COS(OMEDD

FTANO=TAN(THETAQ)

R2=R/D.

RIJ 2@/ 3.

HasRo s,

SALL FLANE ( YRLsANPASR D)
SALL QRIFFER .« YRIF.J )
TANO=THETAQ

CAaLL TIR ¢ YTIF 2
AIN=A/0,02%4

SINaR, 0.0284

CIN=C. 0,029
YOIRaYRLEYOQIF
Y11aYQIR&YTIPR

Sy aYRL

FYRLIFaYDIF

FYOIR=YDRIR

FYTIPFaYTIR

FYlia¥Yll

CALL XTOF ( FYPL )
CALL XTOR ( PYDIF »
CAall XTOR ¢ FYDIR
CALL XTOF « RYTIF )

CALL XTOF ( FYI1 3
WRITE(3,1 TREQs THETASOME s A AINBRyBIN»CrCINY
YRL s RYRL s fUIFsRYDIF W YDIRyAYDIR»YTIRWRFYTIFs 711y L

Sy

21y

FORMAT(/T10s *INPUT %4, T10+FREQD =*oF12.7¢" GHI®» }

TLOW*THETA =*sFL12,%¢* DEGREE®,

TLlOe *OMEGR = eF 12, 7¢* DEGREE®»

TLOe*A 2 F12:7»" METER =, F12.7¢* INCHY.

R L TR 2t FL2, 9" METER &'«FL2.7¢"* INCH':

THOs 'C Y12 P METER a':FL13. 79" INCW":s
Ty “QUTEUT (*»sT100*YIL®

U3 'REAL " « T38s *IMAGINARY ¢ ¢ TEJ ¢ ‘MAGNITULE » Tad s *FHASE " »
O PLANE s T200 JELS 7oL 20 4
T1Q¢ *DIFFERENCE *+T2003EL1S. T+EL12. 9

TLIOw *DIRECT o TR0 JELTL7sELI 3
TLOW*TIP*«T20+JELT . TeEL12. 40

TLO+ *CUNE "+ TQ0»JELS . 7¢ELS 4D

=N
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SUBRQUTINE QIFFER ( rRIFeNY >

COMPLEX YRIFCJeSUMYRESULT

COMMON FI AR A+B+B2 BIsRECrOMEQ»3IINOCOSO» TANO Y DEL

DATA CJU/ (0.t

N232¥NY-1

DY=A/FLOAT I 2RNY

YOIF=(0.,0.) ’

00 100 [Z=1,3

Z1=B3IX(I[Z-D

SUMY=(0Q.90,)

DO 200 IY=1,N2
Y1=DYR(CIY=NY)

CALL HYZ ( RESULTsY'»Z1 »
RESULT=RESULTXCOS (F XYL/ /A)
ISaC(LY+1)/2)=-(IY/ D)
SUMYaSUMY+RESULTX (L 3+T1S%D)
CONTINUE
YDIF=YDIF+SUMYXDY 19,
CONTINUE
YDIF=CURANKAKNKRIKYDIF ({20 . XF I KFIKAXK)
RETURN

END

SUBRQUTINE TIF ( YTIF )

COMFLEX CJsYTIP TySIGMA

COMMON PIsAR»A¢ &y R2«B3+38+,C,0OMED+SINOSCUSO» THETA, EL
CJ=(0srl.)

SA=1.3087 /THETA=1 . 7585+ 2, 772K THETA=1 , ASPRTHETAX THETA
SB=. 719941 ,4008XTHETA- 1. 1299ATHETAXTHETA+0, 3T80k THETAKX]
SIGMA=SAX( COS(SR)+CJUXSIN(SE)

ARNEI3ANKER/2,

SINX=SIN(AKEDZ) /ANB2

ANC2=2. KANXC

T2C0S(ANCD) =CUXSIN(ARCD)
T=SIGMAKAXBXSTNXCKSINXKCL . +C0) KT, (30, «F I kXIRCXC)
T=aT/SQRT(SIN(THETAYKCOS(THETA  x3 ., xF )
YTIP=TXxSINOXSINO

RETURN

END

COMPLEX FUNCTION FA(TH)

COMPLEX TJ

COMMON FIsANsArReRD B3 »538sC OMEQ»SINOSCOS0e TANO S IEL
COMMON /DATA, Y1+ZLsR1eFNLIYIHTTH
DATA CJ/{Qer1.)/
COST=ARS(COS(THY)
ARG=FI«DELXCAST /A

CALL FRESNEL CEW3F ARG
CON=SQRT(2.xA,/COST

FA=SQART JEL) RSIN(ARG=CON/ 2, kSF
Fas<CUXANKLEL, ARG XFA+CONXCF
SINA=SIN(OMEO+FHL=TH)
FA=FAXK(Z, -3, «COSTRCOST kS INAXKS INA
RETURN

END
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SURRQUTINE HY2 « RESULT»Y1,ZL! )

COMPLEX CUsFY2)FTHWFAWRESL»RES2»RESULT

EXTERNAL FY2»FTH»FA

COMMON FIsAN+AsBPBIs B3+ Bas CrOMEO» SINO»CUSO "TANO W DEL
COMMON /DATA/ TYLsTZLwR1«FHL Y2 TH

DATA ZEROsCJ/ . 1E-5Q+(Qsel.)/

TYi=Y1

TS1=21

DEL=0.PS#AMINL((B2-T1)» (Z1+B2))
S1SQ=Z1xZ1+Y1xY1
IF(S1SQ.L M. ZEROQ) 3QTO 100
S1=SQRT(318Q)

SIN1=Z1/S1

CO0S1sY1/S1
SIND=SINOXCOS1-COSOXSIN1
COSO=COSOXRCIOS1+SINOKSINI
R1SQA=CXC+S13Q-2. xCx31 «COSD
R1=SQRT(R13Q)
FH1=2ASIN(S1KSINI/R1)

30T0 200

R1=C

EH1=20.

CONTINUE

THL=OMEO+FPH 1

THU=THL+F [, 2.

CALL CGQ « FasTHLsTHU»3,RES1
THL=THY

THU=THL+PI/ 2.

CALL CGQ \ FAsTHL» THUS3+RESD
RESULT=(1 ., +CU)XSART(FTI/AK) (4. KAN KARKR LK TANO) x tRESL
THL=OMEO+FH41

THUaTHL+FI

CALL CGQ ( FTHsTHL,THUs3,RESL
THL=THU

THU=THL+FI

CALL CGQ ( FTHsTHL, THU»8,RESZ )
RESULT=RESUL T+RES1 +RES2
RES1=(0.,+0.)

YL3=A/2,

YUsY1-DEL

NI=1a.&(YU=YL)/A

TFCYU.GT.YL) CALL CGQ ¢ FYQeYL»YUsNI+RESI
RESULT=RESULT+RES1

NI=L2.«[EL, &2

YLaYy

YUsy!

SALL CGQR « FY2rYLsYUSNIWRESL
L=YU

YU=sY1+DEL

CALL CGQ « FY2sYLsYUINI,RESD
RESULT=RESULT+RES1+RES2
RES2=(0.90.0

YLaYy

YUu=a/2.,

NIs{o. (YU=YL)/A

IF{YU.QT.7L) CALL CGQ ¢ FYJeYLoYUNI+RESQ )
JESULT=RESUL T+RESQ

RETURN

NI
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3 Py

GE
.‘“15?‘ \LI\“‘XS“@ SOMFLEX TUNCTION FTH(TH)
‘“)lw? COMFLEX 73
i EXTEANAL F3
COMMON SIvAR, ArRe B2y 83»BE»CoOMED s SINCCUSQO» TANODEL
COMMON “DATA/ Y1.21,R1FHL1.12,TTH
TTH=TH
CALL CGQA2 ( FSrQ.sDEL»LSFTH
RETURN
1 END

COMPLEX FUNCTION FS(S)

COMPLEX FZ2

COMMON PI»ARsAsRIBR2/BIIBE,CrOMEO»SINO,COSO TANODEL
COMMON “DATA/ Y1 s Z1sR1sFHL, Y2y TH

Y2=SxCOS(TH)

Z2=SASIN(TH)

FSaFZ22(22)

FS=3XFSKCQS(FIXY2/A)

RETURN

END

COMFLEX FUNCTION FY2(Y2)
COMFLEX FI2»RES1,REST,RE33
EXTERNAL FZI2
COMMON FIvAN s As BBy B3y &S+ CrdMEQ 3 INOCIS0» TANO»
COMMON DATA/ Y1+Z1sR1+AN12TYDH»TH h
TY2%Y2
RES1=REST=RES3I=10.+2)
UY=ARS(Y2-Y1)
N1=N2=3
IF(Z1.5T. DEL) NI=1§
[F(Z1.LT.-0EL' Nl=1s
IF(DY.3T.DEL> 50TQ 1000
IC=SQRT(DRELXDEL-TYXDY)
ZU=R2
ZLa221+2C
IF(ZYU.G5T.2L) CALL CGQA2 ¢ FZ2»r»ZLsZUNLRESL @
ZU=Z1-ZC
IL==-B2
IF(ZUBT. 2L CALL €802 ( FI2:ZL»IU»NIIREST
FYZ=RESL +RESQ
30T0 3000
1000 [F(DY.GE.83) GOTO 2000
SU=&2
ILal1+0€L Q.
SALL COR2S ( FIZ-ZL»2UsN1.RES! )
u=ZL
ZL=Z1-DEL/Q.
CALL CGQ2 ( FTR+ZL»IUr15»REST
JU=ZL
ZL==R3
CALL CGQ2 ¢ T22+.2LsIUWN2.RES3
FYJ=RES1+RESA+RESS
307D 3000
<000 JU=8Y
CL==g2
CALL C8Q2 ( FI29»ILsZUsdsFYQ
3000 FYQ=2FYIXCOS(FIaY2 Q)
SETURN
ENT

E

=

=

|
|
|
|
|
|
|
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FROM 0OPY FURALSHED TODD0 e

COMFPLEX FUNCTION FZ2(ZI2)
COMFLEX YsUsUP,UF +GS i
COMPLEX ClJ» JOKSsHBeHT «3C+GF»GA {
COMMON FLl+AK,AsRIB2,B3»B49CrIMEQ»SINO»COS0s TANO < TIEL
COMMON /DATA/ Y1+21+R1sFH1,72+TH
0ATA ZERQ» THIRDYCJ/ . LE-F0» , 3333333333333+ (Derl../
S2SA=Z2xZ2+Y2xY2
IF(S2SQ.LT.ZERJ) 30TO 1000 .
S2=SART(S2SQ)
SINZ=Z2/82
CQs2=y2/82 '
SIND=SINOXCOS2-COSOXSIN2
COSD=COSOXCOS2+SINOXSIN2
R2SQ=CxC+S2SQ-2.xCxS2xCOSD
R2=SAQRT(R2SQ)
PH2=ASIN(S2XSIND/R2)
GOTO 2000
1000 R2=C
FH2=0.

2000 ANG=AHRS(FH2-FHL)

0Z=22-21

oy=¥2-vt

SSQ=0Zx0Z+DYXDY

IF(SSQ.LT.ZERO) GOTD 2000

S=SQRT(S3Q)

IF(ANG.LT.ZERQ) GOTOQ 100

SINA=SINC(ANG)

SINO1=R2XSINA/S

SINO2=R1XSINA/S

RT=SART(R1XR2)XTANO/SINO1/SINOZ

RTORB=SART( (1 .,-SINOLASINQ1;%(1.-SINO2XSINO2))/SIND1/5TNC2

CONP=(2, XAKXAKXRTXRT ) kX (~=THIRD)

TAUSQR=SINA/ANG

TAU=SQRRT(TAUSQ)

TAU3=TAUXTAUSQA

ZETAI=AKXR1XSINO1XANGXX3/ (2, X TANOXTANO)

ZETA=ZETA3XXTHIRD

GOTO 200

100 SINO1=SINO2=ZETA=CONF=0.

TAU=TAU3=1.

RB=TANOXSQRT (R14R2)

200 CONTINUE

CALL FOCK ( ZETA»UsUsUFPIUF

AKS=AKXS

JOKS=CJ/AKS

HE=(1.=-JOK3)XTAUXV+JOKSXJORSXTAUZKU+CIXCONF K TAUKUF

IF(ANG.GE.ZERQ) HE=HE+CJXCONFYRTOREXTSUIKUF

IF(ANG.LT.ZEROD) HE=HE+.3794(1.~CIIXSRRT(FIx3) KE

HT=TAUXV+(1.-2, XJOKS) XK TAUSKU+CIXKCONF R TAUIKUF

HT=_JOKSXHT

SINTSQR=DZ%xDZ/SSQ

COSTSQ=1.~-SINTSQ

GC=HEXSINTSQ+HTKCOSTSQR

GP=SINTSA+JOKSA(1,~JOKS)X(2, =3, 4SINTSQ)

GS=COS(AK3)~CJUXSIN(AKS)

55=65/aKS

FZ2=GSX(GC-GP)

IF{S.GT.DEL) RETURN

3A=(0,+0.)

IF (ANG.GE.ZERO) |
3 GA=(1 . ~CUXAKS X(L . +CI*( 3 XSINTSQR-1. kSQRT(~I/aN3) |
s XSINO1xSINO1, (3. XAKSKAKXR 1 KTANO

FZ2=FZ2-GA

RETURN

3000 FI2=2GA=(0.+3.) ?

RETURN |

END .
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SUBROUTINES OF vg

SUBRQUTINE FLANE ¢ YPL,TAK,TA»TR )
COMFPLEX YFPLs,CF1sRES1+RES2
EXTERNAL CF1,RF1

ZOMMON "FPLANAR., ®L,AKsAsBrAKAsARRICOND
JATA FPI/3.13185926536/

AN=TAK

A=TA

}=TR

ARA=AK XA

ANE=ANKE

SONZ=FIeRIxExX0. S, Axxd
FERIOD=2.4F (/4

SE31=XL=0.

W=FERICD/ 2,

IF(XU.GE.AK) GOTO 200

CALL CGQZ ¢ CFLl.xLyXUs3sRESL
L=xU

{U=XL ~-FERIDD

If . XU.GE.AK® 30T0 200

CALL CGQA2 ( CFL«ALsyXUrHIRES2 )
SES1=RESL+REST

GOTO 219

Akl CGQR2 ¢ CFL»XLyARN»32YRE3T
RE31=RES1+RES2

ZALL 3ICI ( 3I/CIvARA D)
RES3I=COS(ARA/2.)

RES3=2. «RESIXRESI-ARAKXKSIN(ARA “ANAKARAXCT

RE3IT=RESIXCON2/ (4, XAKXAN)
NU=Z.%AN/FERICD

U= (NU+2) XFERIOD/ 2.
[FIXU.LE.AN) ZU=XU+FERIOD/ 2,
CALL RGQR2 ( RFUsANsXUsdsRESH
SEII=RESI+RES4H

L=xy

{U=<L+FERIOD

cALL RGQ2 RF1s XL <USrRESA
SE3I=RES3+RE3S
XATIC=AgS(RES4/RESS)
IF(RATIJ.GT.L.E=-S) GQTO 100

rPL=RESL+CMPLX (0. ¢+ =2 . XRESI/FI)
YRL=YPLIA/ (LS. RARZXF T kXA
SETURN

N
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COMFPLEX FUNCTION CFL{ARY)

COMPLEX CF2

ZOMMON /FLANAR/ FI+AKsA» 3+ARA»ARE» CON2
(=HXSART (AK KAR~AKY KAKY )
CF1=CY (ARY ) XCF2(X)

RETURN

END

FUNCTION RF1(AKY)

COMMON /PLANAR/ FL+AKrArBsARASAKECON2
X=EXSART (AKYXAKY-AKXAN)

F1=CY(ANY) XRF2(X)

#2=C0S(AKYXA/2,)

FO2=CONZXFO2XF2/AKY xX3

RF1=F1-F2

SETURN

END

FUNCTION CY(AKY)

COMMON /FLANAR/ ALsAN»ArHrAKAPARE» CON2
CY=COSC(ARYX®A/2,) /7 (L.=(ARYXA,FI)xx2)
CY=CYxCY

RETURN

END

COMPLEX FUNCTION CF2(X)

CALL ZHOI (¢ ZJOISZYOIeX

REAL=Xx( ZJOI-IJ1(X) )

AIMAG=xx( ZYOI-ZY1(X) )-2./3.1413725534
CR2=CMFLX( REAL»~QaIMAG

RETURN

ZND

FUNCTION RF2(X)

RF2=X%x( ZNOT{(X)+ZIN1(X) )=-1.
RETURN

END
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SUBROUTINES FOR SPECIAL FUNCTIONS

)
4 SPECIAL FUNCTION SUBPROGRAM
E \
{ Bessel's Functions Jo(x), Jl(x) 2J0(X), ZJ1(X)
Neumann's Functions Yo(x), Yl(x) 2YO(X), ZY1(X)
Modified Bessel's Functions Ko(x), Kl(x) ZKO(X), ZK1(X)
X X
f Jo(t)dt, [ Yo(t)dt CALL ZHOI (ZJOI, ZYOI, X)
0 (0]
X
[ Ko(t)dt ZKOI (X)
0
Fresnel Sine and Cosine Integrals CALL FRESNEL (C, S, X)
vl X
S (x) =_1_J sinta o =_l_f cos t ..
mLK O
Sine and Cosine Integrals CALL SICI (SI, CI, X)
X oy ©
$i(x) =f e . clm) e —f £28 £ qe
0 X
Fock's Functions V(x), U(x), V'(x), U'(x) CALL FOCK (X, V, U, VP, UP)
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1000

FUNCTION
IF(X.8T7,:3.?
3=, 3.
Io0R1 . =2.249999T KX T kx2
+1.2035208x X3k
-0.31038904X34Xs
0. 0433479 XT X3
“0.203949344X34xL0
+0.002100%xXJxxll
RETURN
X3=23./X
FO= 0.797884S%s
1~0.00000077&X3
20003327404k X3 K42
3-0,00009912kX34x3
3+0,0013723T kX3 LX4
T=0.J00723054xX3%x3
50,0001 34T S KX TR
THETA=X-0.7383981s
L=0.04158397¢X3
220+ 000039T4KX3Kx2
3+0.002825734XT X3
4-0.00054125xX3Kkkd
Z-0.00022T334X3 k%S
\-ﬁ.vbbk4~,3‘xg“b

2<40(X)
GOTO

1000

YR

&

L0afFN&CCSI(THETA) /SART (XD
\E RN
ENU
FUNCTION 2J1¢X)
IFi%.3T.3.) GOTO 1200
{3=X/3.

SU120.0=-0.3824993xx3kx2
0L 2L1093T734X34%4
=0, 037T4239 ¢ TS
3¢2,00443317 X3 4x8
A=0,00031 7ok 3kwl)
SHDLU000LLOTXXJax 2
P ’:...IA
R

'9 334%5+0.2
-w.u.o_97q.lXulll
+ MWOLTLISKL344&]
=0,002499 1 La3axs
340,001 LT0T3ax3 0K
S5=0.000200334XT kxS
THETA=X-2.,33017449%
L+0.1249952%X3
2+0.0000S020&XT KX
3=0.008373T74xXT&K3
40, 0007334830 axq
2r0. 000798233 xRE
3=0. 00039 LaokXI kX

200001

2JLaF [«COS(THETA) /SQART(X
AETURN
INT

SokX3

)

1000

2000

100

2000

——

BN
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FUNCTION IRO(X)
[F(X.LT.L1.E~TO) GOTO 2000
[F{X.GT.2.) GOTO 1000

Tax/2.

INO==aAL0G(J.Z4X) XZID(X)=0.377

1+0.42273420x Tkl
2+0.230677 04T &4
3+40.03488590%Taxs
4+0.002024678xT k48
3+0.,00010730%TKk%x10
§+0.00000740&Txx12
RETURN

T=2,/X
INO=1,2%331414~0.073323334T
1+40.02189%a3xT k&2
2-0.010623484T&&3
3+0.00987872x T4
4-0.,0029134304T k&S
Z+0.00053208xT kxa
ZNO=INOXEXF (= ‘SART. XY
RETURN

INO=1,ESO

RETURN

END

EUNCTION KR! OO
IF{XeLT.1.E~SO
[F{X.GT.2.) GOTY
TaX/2.
CRL=XXALOG( D . ZaX) &TIL K=
L0, 134431 39«T X2
2=0447278G79%T kx4
3-0.13158397%T k%o
4=0, 01712402« T kK8
F-0.0001030saTXXL
9-20.20004038 kT ka2

30TO 2000

LoCu

IN1=aIN1 X

\ETURN

T=l./X

CN1=1, 23331413 +0,23478619x

1= 0383TT020k T&x2
2404013042538 T x43
3~0.00780353«Txka
4+0.0032801 34T &x5
3-0.00008243kTxxs
INL=INLAEXP (=X
RETURN

“N1=31,E830

RETURN

ZND

SQRT (X))

1286
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FROM OOPY FURMISHED 10 DDC

1000

2000

LI00

2000

FUNCTICN IYO(X)
[F(X.LT.1.E-%50) 30TO 2000
[F(X.3T7.3.) 30T0 1000
(3=X, 3.

IY0=2, /3. LAL1S925548ALAGID . THX) K I U0 (X))
1#0. 35743007
240,908593004X34x2
3=0.,74350384%x348%4
A+0, 223001 L "exXTxxs
F=0.04251 21323428
Ar0. Q042791 5&X 3kl
?=Q.000248404x38u1 2

RETURN

X3=3.. X

FOom O.’'978843%a
L=0.00000077 X3
2=0,008827A0kX Ik
3=0.00009T L 2xxJ&x3
4+0. 00137237k I kx4
=0.000723054XI kXY
3000013473 4XTu xS

THETAaX~-0,7353981s
1=0.04150397%X3
2=0,000039%4xXJ w2
300020257 Ik T4kxT
4=0,00054 L 28 axXJhxd
F-0.000293334X3 %%
30,0001 ITHIAXT kNS

IYO#FORSINCTHETA), SQRT (X

RETURN

IYQ=-1.E350

RETURN

END

FUNCTION ZYL(X)
IF(XGLT.L.E=-S0) G0TO 2000
IF.XLET.3.) GOTO 1000
(Jax 3.

IY1a2, 301500540 MALIG 0. T KT UL X)) =0, 5350198

L0, 221209 X3 kx
242, 10827093k
I=1. 3104327 434X
A+ 3L23IPT LRIkl
SETOE IR IVE S By ¥ B
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ABSTRACT

The paper studies the asymptotic solution of the surface magnetic
field due to a magnetic dipole on an infinitely long cylinder whose
radius is large in terms of wavelength. Starting from the exact modal
series solution, we extract a dvadic Green's function for the magnetic
field which is valid for all points on the cylinder. In particular,
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our solution justifies for the first time the (ks) ~'° behavior of the
field propagating along the generator of the cylinder, where s is the

distance between the dipole and the observation point.
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1. INTRODUCTION

Let (r, ¢, z) be cylindrical coordinates. An infinitely long,
perfectly conducting circular cylinder is described by r = a. A tangential
magnetic dipole with magnetic point source current density M is located
at P(r = a, » = 0, z = 0) on the surface of the cvlinder. A time
dependence exp(jwt) is assumed throughout and suppressed. The problem is
to determine the surface magnetic field H at an observation point Q = (a,$,z)
on the surface of the cylinder under the assumption that ka is large
(k = 2w/ is the wave number). P and Q are connected through a surface rav
(geodesic) which makes an angle 9 with the $-direction; the distance from
P to Q is denoted by s; see Fig. 1. The present high-frequency diffracction
problem was studied by Chang, Felsen and Hessel [1l]) and by Lee and Safavi-
Naini [2], however, their results differ in various wavs. In particular,
Lee et al. [2, Eq. (2.18)] predict a rather peculiar term in the approximation
of the component HO(Q) when 2 = 7/2, i.e., when P and Q lie on the same

generator of the cvlinder. This term behaves like

s B exp(-jks)

kavks
for large ks and is introduced in a rather arbitrary manner. It is the aim
of this report to clarify the appearance of this peculiar term and other
points in which the asymptotic solutions (1] and [2] differ.

We shall start from the exact modal solutioa for the surface magnetic
field as presented in [l]. Then the quotients of the Hankel function and
its derivative are replaced by a Debve-type approximation. As a result,
we find a two-term approximation for the surface magnetic field. The

leading term is equal to the so=~called planar solution, that is, the




Figure 1. A surface ray (geodesic) from source point P to observation
point Q on an infinitely long circular cvlinder.
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solution for the surface field due to a tangential magnetic dipole on a

flat ground plane. The present approach differs from that of [1] where

the Hankel functions are replaced by their uniform asymptotic expansions

in terms of Airy functions. Then the resulting approximation for the surface
magnetic field is expressed in terms of Fock functions. The Debye-type

approximation of the Hankel function is discussed in the next section.

i,




2. DEBYE-TYPE ASYMPTOTIC EXPANSION OF THE HANKEL FUNCTION i

(2)

Consider the Hankel function H
V

(z) with both v and z being large

and positive. From Watson [3, Secs. 8.4 and S8.41] we quote the Debye-type

asymptotic expansions, taking into account two terms:
(2) ' )
Hv (Vv sech o) = —JYv(V sech o)
v (0-tanh & 3
e 2 @ ) 3 coth & = 5 coth™ & . it
= 3§ = [ & S + 01 ,
v2Tvtanha £ v
o a0, 5 (2.1

and

(2) ,e—jv(tan 3 - 3)+ jw/4
Hv“ (v sec 3) = = (L + ¢
v2TV tan 3 v

B> 5 (2.3
the former approximation applies when the argument is less than the order,
while the second approximation applies when the argument is greater than

the order. Replacing v sech « and v sec 3 by z, we find

St e e =% AN - 2 - 2 ) 2

~ exp [V cosh =) A AR il 2
/:_ z 3 2v- 4+ 3z oc
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It can be shown that the asvmptotic expansions of H (z) are obtainable y

from (2.3) and (2.4) by a term-by-~term differentiation; see Abramowitz-Stegun

<-——-_-——__-—__—_--LJ
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(4, pp. 366-367]. Through division we obtain the asymptotic expansions of

the quotient Héz)(zb/ﬂiz)'(z), viz.,
Hiz)(z) z 23 1
(7)1 S = D) 2 9 & O(_z) ’ Z-< W ’ (2 S)
Hv' (z) v2 = 22 A= = z7) v
and
(2)
H (z) ; 3
o e e e e
2 - 9= 2
Hv (z) 4.5 v2 2(z V7)) v

These asymptotic approximations are essentially the same. Notice that for

£2)°

fixed z > 0, the quotient Héz)(z)/ﬁv

(z) is an analytic function of v in

Loy

v (z). These

the whole complex v~plane except for poles at the zeros of H
zeros lie in the second and fourth quadrants of the v-plane and are
approximately given by

AL g AT TR s L2 (2.7

; qp(z/2)1/3 +0(z

where --qp are the negative zeros of the Airy function Ai(x), i.e., Ai(-qp) = 03

see Keller, Rubinow and Goldstein [5]. 1In order to uniquely define the

/2 2 ;
square root vz - VvV, we introduce branch cuts from vV = z downwards and
from v = -z upwards in the complex v-plane. Then it is easily seen that
2 P ; /2 2, &
zZ =V in (2.6) passes into -jv¥v~ - z” in (2.5), when Vv passes above

the branch point z or below the branch point -z. This shows the equivalence

of (2.5) and (2.6). 1In the sequel we shall use the approximation (2.6),

3 7]
whereby it is understood that /;2 - v2 = -jvﬁi - z° when |v| > z.

The approximations (2.5) and (2.6) apply when either :V¥, ot z, Ot

-2 -2 ’
both 'v| and z are large, the error being of order v ~ or z ~, whichever

is smallest. The approximations are not valid in the transition region




i

/3) and z large. Further difficulties appear when both v and

v & 2| <0(z

(2)

0 tz),

z are small. For example, from the power-series expansion of H

one may find

HéZ)(z) 1 - 3 5
b 3 L log (5 2) + (¥ + 1%)2 + 0(z” log™ z2) 5 z ~0 (2.8)

where Y denotes Euler's constant. The latter result does not agree with

(2.6) when v = 0. On the other hand, when v = 0 and z is large, we find
(2)

from the asvmptotic expansion of HO (z):
H(()2) (2) 1 1
" yraoe O(—§? 5 z > (2.9)
HO (z) : z

which is in perfect agreement with (2.6) when v = 0. Similarlyv, when z

is small and [v| is large, we mav find from the power-series expansion of

Hﬁz)(z):
(2)
H " (2) 3 3
P e (2.10)
Hv- (2) 2v v

in agreement with (2.5).
In subsequent sections the approximation (2.6) is going to be used
in integrals of the form

o (2)
( ,-1v6 H, (kta)
{ g2

20

dv ¥ (2.11)
(kta)

y
where o > 0, kt =y ¥ kt is real when k_ < k7, and kt negative

o
2
i
7"'
NR

2
imaginary when k; > k7. In order to justify the replacement of

> o b .
Hﬁ')(kta)/ﬁi') (kta) by the approximation in (2.6), we distinguish three ]
cases: (i) If k_a is real and large, the integration contour in (2.11) is

6

e ——————]




deformed by introducing semicircular indentations above kta and below —kta,

both of radius O((kta)1/3). Along the deformed contour the approximation

(2.6) is certainly valid. After making the replacement of the integrand
by (2.6), the contour is deformed back to the real axis. Notice that in
both deformations no poles or branch points of the integrand are crossed.
€ii) If kta is negative imaginary and large, the approximation (2.6) is
valid along the real v-axis and no deformation of contours is needed.
(iii) If kta is small due to kZ = k, then the approximation (2.6) is not
valid when |v| is also small; it is valid though when |v| is large. It
is not clear what effect this will have on the error in the resulting
approximation to the integral (2.11). This case certainly needs further
consideration. For later use we also establish an approximation for

the quotient Héz)'(z)/ﬂiz)(z):

9 )
H\) (Z) 2 i Voo = e = ’ b
— x - - -—t (2.12)
Hv- (2) 2(z” = V)

/

2 2 b} 9
where it is understood that vz~ - v™ = -j/c' ~ 2z~ when {v! R A




3. SURFACE MAGNETIC FIELD DUE TO A CIRCUMFERENTIAL MAGNETIC DIPOLE

3.1 Magnetic field component H;.

In the case of a circumferential dipole

9 3.1

=t

the resulting surface magnetic field components are denoted by H;(Q)
and H;(Q). Neglecting the contribution of creeping waves which have

travelled around the cvlinder, it is found in [1l, Egqs. (18) and (19)] that

] 2 (2)
k -jk z k= o H (k_a)
HC(Q) = 1 r» I W dv e 3v¢v2 —AL*W'JL”“
0 A#Zwu a3 4 b k3 H(z) (k_a)
A t =» v t
. g -jk z H(') (k_a)
-k ke L r v e IV It @)
Aﬂ'muoa e " kt o HQ')(kta)

ﬁ > 2 g
where kt = 3 k;, kt is real when k; < k7, and kt negative imaginary when
2 2 y : : .
kz > k™, 1If necessary, one may think of k having a small negative imaginary
{2 2
part. Then kt =y - kz has branch cuts from kz = k downwards and from

kz = <k upwards in the complex kz-plane.
In (3.2) we replace the quotient of the Hankel function and its
derivative by the approximations in (2.6) and (2.12). Furthermore, we

set V = kva in the inner integrals in (3.2). Then we are led to the

c

P

following approximation for H

Q:




e ——

kK> ik k
C
Hy(Q) = —L (w(»exp (-3k,z - jkoao] z3v { . a i Ty
, Tr‘ ;A 7 / 2 2 Y S
DALy ) PP ¥y ke - k° S5k, =~k
t y i
ﬁo B)
kz j ; = k\.f 1 kt »00 p00
- e - += Mdk dk_ = -~ Y | TR
k, k. SIPTUCIE NN —5— | | expl-jk z-jk as]
£ v dn "k <
-~ -0 == 00
. By 7 9 9 2% v i |
K - &2 _L_k“ - K7k - KK - KCKD
. ~ B . e dk dk_ (3.3)
g 4 I S e - oy - 8
v 2 3 -

o) b

42 2 2 2 2
where Y = v€07uo; the square root v - k; - k¥~ 1is positive when kv B e

1S

D 2 ‘
and negative imaginary when k; + k; > k~. Notice that (ad,z) are just the !

rectangular coordinates of Q on the developed cvlinder.
The result in (3.3) can be expressed in terms of the derivatives of

the following two kev integrals

(= dk_dk_
I, (adp,z) = [. ex ~-jk z - jk a¢ = (3.4)
1 € J p [~ik JEg o] V{é____ﬁ____ﬁ_ 4
) o
y Z
and
" dk dk,
I,(ad,2z) = J {” exp (=jk z - jk ad] — L =y (3.5)
7 - % : (k- - k; - )
s z

both of which can be evaluated in closed form. To that purpose we

introduce polar-coordinate variables kv =t cos @, K=t sin q,

“

ad = s cos 9, z = s sin 3. Then by use of Watson [3, Eqs. 2.3(1) and

13.47¢4) ], I1 reduces to

(o 2T P
1 (aa'z) - : t dt f de, eXp [‘jst ‘-054(\1‘6)] - z’T_‘] | J (SC)—L—dt
1 J J ¢ a2 i 9 Fo—s
0 0 vk® -t 0 veT-k”
-jks
= 27y = : (3.6)

s




/2 /
Notice that we made the replacement vk~ - tZ > ~j t2 - kz, and that in the

latter integral the path of integration passes above t = k.

In a similar manner I_ reduces to

2
i [~ist cos (a=8)] :
I.(ad,z) = | ¢tdt do SXRAZISE €08 A70)) - op | J . (st) ——— dt.
2 J 2~ 22 0 (2 - 122
0 0 0
(3.7)
According to [3, Eq. 13.6(2)] and [4, Eq. 11.4.44], we have
t J _(at)
Q a saag
=y dt ks K_l(aZ) s Kl(az) (3.8)

{) (™ +27)

valid for a > 0, Re z > 0. Remember that k has a small negative imaginary
part, if needed, hence Re(jk) > 0. Setting a = s, z = jk in (3.8), we

obtain for 17:

R I . R ,
12(a¢,z) * 3k Kl(Jks) = 27k H1 (ks) (3.9)

by use of [4, Eq. 9.6.4].

Returning to the result (3.3) for H;(Q), we have

[r 2 PR o
H;(Q) x - L l§k2 = 2} I, (a¢,2) - 3={k’ + k° 3 S + k"—a,-
g 477k L\ 3(ad) 3(ad)” 3z~
4 [ 2 -iks
- -—é—g————,}lz(aq’),z) = 21:1‘2(‘ k2 + c:os2 8 ~3—2+sin28 i——a@s-}(e . )
3273 (a) 3 J L 3s
infa . .203% 13 3 2. 3.4
- 5&: kK + k ‘——E + s 5;) - cos 9 sin” 8 ~da (1 - 6cos Ssin"a);
ds 3s
2
3 2 (2
+ (2 - 15 cosz9 sin2 8}3:-—;; ~ (2 = 15c0s™ 3 sin2 6)—% 5%}(sﬂi )(ks));.
8~ 5s” s |

(3.10)

10
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(2)

The derivatives of the Hankel function Hl (ks) can be evaluated and
simplified by means of the well-known recurrence relations for Bessel
functions*; see e.g., [3, Sec. 3.2] and [4, Eqs. 9.1.27 and 9.1.30].

Thus we obtain as our final result for Ht(Q):
Y

o, tks
2 -jks . : .
S _k'Ye T o ol il ol e
Hé(Q) = 5;3 b e [sin” 6 + ks(' 3sin” 9) + kzsz (2 3sin- 8)]
2
K'Y (2)

(2) bk
16Kka [3H (ks) - ks H

- (ks) + ksﬂgz)(ks) cos2 9 sin2 Silbe
(3.11)

Notice that except for the Debye-type approximation to the Hankel function

quotients, no further approximations were involved in the derivation

of (3.11). The Hankel function Hg“)(ks) in (3.11) can be expressed in
terms of Hé 4) and Hi 2) through
ks? (ks) = -amSD (ko) - ks (ko) + Zu P ke) (3.12)

The first term in (3.11) is exactly equal to the planar solution, that is,

the solution for Hb due to a magnetic dipole M = $ on a flat ground plane;
see [l, Appendix D] and (2, Eq. (2.18a)]. The second term in (3.1l1)
represents the effect of the finite, but large, radius of curvature of the

cylinder. For large ks the Hankel functions in (3.11) can be replaced by

their large-argument asymptotic expansions, thus leading to

4y
* In (3.10) the differential operator in front of sHi")(ks) can be rewritten as
2 b} E B - a
k + k'szD2 + ”k D~-s D3 D° - 5D cos” A sin” 2

-
2

where D =

[

Q2

S




R e

Mtk el 2

!

- s
K'Y e .
ks

1 m1/2 ~n/4 1/2,
bka(Z) 6 Uei) )

3

= e

os

2
-8

1

5 : " )
sin” @ + = (2 - 3sin” 8) + —— (2 - 3sin” 3)

k's”

*
2 S(jks +32 d,y;
sin” 8(jks + 3 ) + O(ks)‘]'

(3.13)

Let the term of order A in (3.13) be denoted bv W, then for 9 = 7w/2

ka

one has

B

2 <im/4 /9
(7 l/_e_]W/-J l/_

(ks)

W=

)

4ka

which is in exact agreement with the peculiar term in Lee et al.[2, Eq. (2.18c)].

(3.14)

We shall now compare our approximate results in (3.11) and (3.13) to

the solutions presented in [1] and [2].

Chang et al.

formulas for H:, namely, the asvmptotic formula [1, Eq. (124)]
v

2 -jks Z

K'Y e

H

€ O

2rj ks 0

o B ow TR
o g uy(8)]
cos” €
not valid when 2 gets close to /2,

-

ks 0

Q) = [sin” & v (5) +

5

i 2 Gl 2 fosiaibos oo

i e At Bl S UL z

(cos™ 3 - S7sin 3 ~053swd¥)
(3:15)

and the "full formula" [l1, Eq. (130)]

ks <
cos 9

in® A S - &
sin” 8 vl(H) uo(h)‘

i

-

. 5
8 v (E) + <A=(2 cos“ 8 -~ sin“ 8 -1 z
v (8} oo(2 cos sin )VO( )

(3.«16)

which remains finite on 8§ = 7/2. Lee et al.[2] present the formula

(2, Eq. (2.16b)]

* On extending the result in (3.13), it is found that the term of

is equal to

3

945 2 2

12

3 2 et
ks'~ § * 13gcos 8 sin” 3) + O(—~=—s).

k's”

order O(TLJ
ks

(3.13a)

(1] have two different




= -
2, ~jks " . :
C o —k——-&— —e T = r ~— —J— ~ 2 i 2 A & .J.— -~ <2 T
H¢(Q) * 9 s [51n B v(g) + kS(LOS 8 - sin” 8)V(E) + oS cos 8 u(f)
-1/3
2 9 2 / : b
+ —4;;(2 cos” F=-sin"3)u(f) + -———;%i cos4/33{51n' 5 v'(E)
k"s” (ka)~
e ) 3 2
+ 22 (@) + 2 cos” 8 u'(:’,)-‘} : (3.17)
2 ks
cos 8
In (3.15) = (3.17),
= L
& 1/3 ks?/3 COS~+/3 6 :
(k a)”
and VO = v, u0 = u stand for certain Fock functions as defined in [1}]
and’ 2]

We shall now re-expand the solutions (3.15) - (3.17) in the case of
1
large ka, up to and including order Eg. For large ka, £ is small and
we replace the Fock functions by the leading terms of their small-argument

expansions quoted from [1] and [2], viz.,

o
( s = (% ~ s ﬂ J'TT/*/*__3/2

Vo(w) = v() 21 7 e £ s

vro in/4 3/2
< Up(8) = u(g) = 1 - M43
oA
we) = a2 SN
B T . / 9 Vr— "7//, -

Lv'(:,) 2 = "%Tl 'e‘]w/-‘il/- g WUEY = = 3;T ATl41/2 (3.18)

Then the results (3.15) and (3.16) of Chang et al. [1] become

A »
2, =jks 5 p A .
< ¥ “ ¢ & S 7
B (Q) = ‘:’TJ ‘e—ks—. [sin 8 + Elg(ﬁ - % sin” 6 + —g -a—l-(l;-*-)
3 5 = cos 8

1 m.L/2 =jm/4 /2 2 L o ey 8385 +
% fF—(;)ll e j-T/"(ks)l {3 - =2 sin” 9 - cos™ 8 sin” 8 (jks + :%)-} .
4ka "2 9 %




and
|
. !
2, =jks - : - |
c K'Y e ° 8 S et e
) ¥ o ——— s 9+ =-(2 - 3s 8
H}(g) o - sin ks( 3sin )
/D - 3T /2 f iy Yy hl Al
+ fL—(%\l"e I3 (ke) ™ *{3 + 8in" 9 - cos” 6 sin™ 2 (jks + j)‘] :
4ka "2 J '
(3.20)
and the result (3.17) of Lee et al (2] becomes
—‘. "ij r ) ) )
(o K'Y e = ¢ 1 . Wl
Hb(Q) x 5;7- 5 (sin™ 8 + g;(_ - 3sin” @) + k: :(~ - 3sin” B)
o
1 m.1/2 -yn/4,. . 1/2 ) 2 ety £
el e (kg)" "{3 - cos 0sin O(iks + =) - cos 9(1-3sin"8)}
dka 2 2 ks i
(3.21) !

The asymptotic formula (3.19) due to Chang et al.[l] agrees with (3.13)
onlv at 8 = 0. Even the leading term in (3.19) agrees with the planar
solution only at 8 = 0. The "full formula'" (3.20) of Chang et al., and the
solution (3.21) of Lee et al. do have the planar solution as their leading
term. The next term of order Sz in (3.20) is in agreement with (3.13)
only on & = 0 and certainly not on & = /2. The corresponding term in
(3.21) agrees with (3.13) both at 8 = 0 and at @ = w/2, however, in
between, the agreement is only partial.

~

3.2 Magnetic field component Hi.

« - - .
In this section we consider the z-component H  of the surface magnetic

S

field due to a circumferential magnetic dipole M = H. The contribucion
of creeping waves that have travelled around the cvlinder is again

neglected. Then according to [1l, Eq. (20)], H: is given by

| 23 |
i (o -jk_lz| k < yvlol Hﬁ \kta\ !
3 - | 2 g | ~IV|d|
H:(Q) w ggn(d)ssn(z) —z——sp I dk_e g dve \“TﬁTr-—~~
= dm o wu a” / = g R ™ (k. &)
“ ", } -\ \.\ t
ol S B3
L4




as before. In (3.22), the quotient of the Hankel

(S I S

]
where kc = Vk™ - k
function and its derivative is replaced by the approximation (2.6),

and we set V = kva. Thus we obtain

. . P B i k&, (K7=k) ’
Ko@)~ —5 | | expl-ik,z - jkao] R N e o Rt
4k —=00=00 V/k--kz"k- (ke -kV-kZ)
y 'z ~
(3.23)

The latter integral can again be expressed in terms of the derivatives of

Il(ao,z) and Iv(a¢,z), as defined by (3.4) and (3.5), viz.,

2 2 > I
c . Y 3 ‘ i 3° 2051 v
HO(Q) = - —5 [: T, (ad;2) + o= pere—e 1k +———~0) T (Cath, 20 - (3<24)
2 Ry 3zd(agp) 1 2a dzd(ad) 52 2 |

On substituting the explicit values of Il and I, from (3.6) and (3.9), we

2 -iks
c, Y £y g e
H:(Q) & T cos 2 sin 9&32 S '}3;} ie - )
ds

find

I end 2.2 2 . 2 2 8l oe
+ D 0777 + sin” 2t + 35707 (sH' P (xs)) (3.25)
8ka 1
where D = % é%. By use of the well-known recurrence relations for Bessel
S

i
) & - L1 S;iEi 08 § 8ifi @ F1 « 3k = i)
By R YR Y R
K's
)
2o i o i
- T%E% cos 2 sin ¢ [H&')\ks) - ksHi')(ks) cos” 9] . (3.26)

In deriving (3.26) only the Debve-type approximation to the Hankel function
quotient is involved. The first term in (3.26) is again the planar solution

for H_(Q) as given in [1l, Appendix D]. For large ks the Hankel functions

N G

in (3.26) can be replaced by their large-argument asvmptotic expansions,

vielding

.




2 -jks r
By k - 3
H:(Q) . = :;% T DR g sin 8 ll - E& - f ~
2 21 | Kosl
1 m1/2 -jnlb,, 1/2, I SN L.
+ Aka(2) (ks) {1 - cos” 8(jks + :;) + U(EE)!

(3.27)
On extending the result in (3.27), it is found that the term of order

L
O(ks) is equal to

T};(' % + %‘% COS-' 3 + O(—*)l-;) A (3.28)

Notice that the approximate result (3.26) for Hi(Q) vanishes when 2 = 0

or 9 = /2. The same holds true for the exact value of HE(Q) in (3:22).
The present approximate results in (3.26) and (3.27) are now compared

to the solutions derived in {1] and [2]. Chang et al.[l]) present the

asymptotic formula [1, Eq. (125)]

&, — b
e jks 3 i

Cqy = - &Y g - 1, 23  Ssin” 8, .-
H:\\) &1 i cos O sin 8 [vo(,) + kS( 8 t 9 ) )\O(“)]
COS o}
(3.29)
and the '"full formula'" (1, Eq. (1053)]
2, =jks .
& ) ¥ - k ‘1 € cos 8 g 2} r & - l.l y r
Hz(g) o7 s os © sin @ [\O(ﬂ) e \0(“)] . (3..30)
From Lee et al.[2, Eq. (2.6)] we quote the solution
W = paw B atae0 e 3
Hz(Q) cos 9§ sin ¢ [db(Q, Ht(\))
2, =jks ~
: . X8 5 8 o ) U - T el 3 z
= 7] ks cos sin 3 [il ks).tﬂ) (ks o 5 :)u(j)
kK's
,»~1/3 &1% ., kg ,
o Sd oo’ Blv(E) + BB yr(g) « o W (@M. (330
ey - ks
(ka) cos @
The solutions (3.29) - (3.31) are re-expanded for large ka by means of (3.13).

Then the results (3.29) and (3.30) of Chang et al.[l] become

16




2 - S (5]
k'Y e Jks

Seoy v o EE TR S O Tl
1 HZ(Q) & 7 o cos 9 sin 8 |1 + ks( 3 + 3 5 )
‘ cos O
E |
| T 1/2 -im/4 5 2 2 ,
E + =2 ) Y23 cos? a(iks + —3—3—)\] AT S
,ﬂ and
| 2. ~jks r g ;
| c s L ET S e o L w1/2 <inf4 . (LI
! H Q) & =50 T co% @ s eLl ks Thkara: o (e
5
.; * {- cos™ 9 (jks + 3)} - (3.33)
1
E | whereas the result (3.31) of Lee et al[2] becomes
?* 2, ~jks 0 :
. & kY e Sl 3
| e e & 05 0 sin 9 |1 - 2 - 2
| Bl * 2555 ms ot Hats L ks T 2.2
y ; .
f m.1/2 =-3in/4 172 e 100 33 2
3 + Z%E(%) / e ] " (ks) / {3 - cos™ 8(jks + j?) + Eé cos 85].

(3.34)
The asymptotic formula (3.32) agrees with (3.27) only at 8 = 0. Both the
"full formula" (3.33) of Chang et al. and the solution (3.34) of Lee et al.

have the planar solution as their leading term. As for the next terms of

order f; in (3.33) and 3.34), there is only partial agreement with (3.27).

17
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4. SURFACE MAGNETIC FIELD DUE TO AN AXIAL MAGNETIC DIPOLE

In this section we consider the case of an axial dipole

A

5 )
M=z . 4.

: = : : a.
The resulting surface magnetic field components are denoted by HQ§Q)

and Hz(Q). Exact results for H

o

and (27)], subject to a neglection of the contribution due to creeping

waves which have travelled around the cylinder.

/,

4.1. Magnetic field component g;.

The result for Hg in {1, Eq. (27)) is identical to that for the

component H;, as given in (3.22). Thus when applying the Debye-type

approximaticn to the Hankel function quotient, we are led to the results

(3.26) and (3.27) for H2. Also the asvmptotic formula (1, Eq. (127)]N and

b

%
the "full formula" [1, Eq. (112)] of Chang et al. for HY are the same as
those for H;' Hence Egs. (3.29), (3.30), (3.32) and (3.33) also hold for

H*;(Q). Also the solutions (3.31) and (3.34) of Lee et al. for HZ(Q) hold

true for H;(Q) as well.

" ~ a
4.2. Magnetic field component Hz.

Yok
According to [1, Eq. (26)], Hi is given by

: (2)
-jk_z i B 0w
Hz(Q) -l [ dk_e o k, (m dve VP —‘()—,,-)—,—E—— : (4.2)
Aﬂ-muoa -% im Hv- (kta\
* : 3 23 23
Minor printing errors: in Eq. (127), replace == by 3 in Eqs £112)

replace Hz by Hz.

tese
Notice that there is a misprint in [1, Eq. (26)]: =j in front of the
integral should be +j.

13

?(Q) and Hi(Q) are presented in (1, Eqs. (26)

»
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y In (4.2), the quotient of the Hankel function and its derivative is

| ; replaced by the approximation (2.6) and we set v = kva. Thus we obtain

kP (e = P
» HY(Q) = - ‘7 fmr’o exp [-jk_z - jk_ad) Z + oL Z—% dk_dk .
1 z i&ﬂ’-k“ J 2 vy e 2a (kz_kZ_kZ)?_ Y 'z
=000 /k -k -k vy
y 2 :
(4.3)
f The latter integral can be expressed in terms of the derivatives of
? Il(a¢,z) and I,(a¢,2z), as defined by (3.4) and (3.5), viz.,
{ &
i Y P g gt
{ HAQ) = - —5— [{k° + 2=11 (a0, 2) + 2{x” + ==} I (ap,2)]. (4.4)
2 oy LT 2a 2 2
417k dz dz
! On substituting the explicit values of Il and I, from (3.6) and (3.9),
{ we find
| r 2 -jks
a ¥ 2 2 S {7, 4 B e 33
H x 5—— {k" + si + ¢ = =1 + =T+ 2k s
| (@ szklf sin” B 2 cos .8 sl R ok + 2k win BsD
b} / 4 4 b} 203 D) ) -‘w
+ 2k°D + sin’ 95D’ + 6 sin" 25D + 3D (sH, " (ks))J (4.5)
3 T e
.i where D = = ' Using the well-known recurrence relations for Bessel
A
functions, we ultimately obtain
\
: q :
2 -jks : .
. Kkife 2 : ; Gii R 2
E | HZ(Q) * 91 e [cos™ 9 + t%(l - 3 cos™ B) + = 2(_ - 3 cos 0)]
i K S
2

RS R (2) e e i 3 (Pl 4
16ka[ 2 cos B H, (ks) Egﬂl (ks) + AaHB (ks) cos 3d].

(4.6)

Notice that except for the Debve-type approximation to the Hankel function
quotient in (4.2), no further approximations were involved in the derivation ﬂ
of (4.6). The first term in (4.6) equals the planar solution, that is,

AN

-
the solution for Hz due to an axial magnetic dipole M = z on a flat ground

B

e ——————————————l




i LS RSt

s on

e AR EN Sl

A S

3
£

plane; see [l, Appendix D] and [2, Eq. (2.17)]. For large ks the Hankel
functions in (4.9) can be replaced by their large-argument asymptotic

expansions, vielding

: :
-\ -Jks R 3 (] D)
a 5 e R SN B SR e S L (9 - 3 cos® 8
HZKQ) = T S [Oa 3+ ks(_ 3 cos™ 3) + 3 2(.. 3 cos 8)
K S
1 m1/2 =infa, 1/2.. 2 4 _ .35 s
+ -’.ka('l) (ks) {2 cos™ @ - cos 2A(jks + 3) + O(ks);

(4.7)

Let the term of order i% in (4.7) be denoted bv W, then for 8 = 7/2 one
has W = 0. Hence, there is no term of the form (3.14) in the approximate
result for Hf. This agrees with Lee et al.{2, Eq. (2.17)] where there is

no such term either. On extending the result in (4.7), it is found that

the term of order O(f:) is equal to

; . i /
(-1 - %; cos” 8 + %%% cos™ 8) + 0 } =) . (4.8)
: Kot

The present approximate results in (4.6) and (4.7) are now compared to
the solutions obtained bv Chang et al.[l] and Lee et al.[2]. In [1] two
different formulas for Hf are presented, namelv, the asvmptotic formula
{1, Eq. (126)]

2, ~—iks =

a kK'Y e . ‘] i Y40 29 % P
I ) & St oL B v (& == gir B ow == sus- Q)v. (S ;
H, (Q) 7] ks [cos O(,) + 555 sin 5, cos ) o"”
(4.9)
and the '"'full formula" [l, Eq. (111)]
R g
L. JKS 3 3
a kK'Y e & i i s e 2 2
3 N s ———— ~a 3 r s Y & ¢ - e Q v o
Hz(g) a7 e [cos™ & \O(ﬁ) + ks(' sin” 9 cos \)\O\“\] :
(4.10) :

From Lee et al.[2, Eq. (2.15b)] we quote the solution
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a kK'Y e 2 = i 2 ;o2 = i 2

B e S s g = o 9 - g - .a :;
Hz(g) o i ifos v(g) ks(C°° sin” 8)v(§) + 5 sin u(g)

b 1 2 2 g7ii3 4l . 2
| + —5—5(2 sin” 6 - cos” B)u(g) + 573 cos ' “8{cos” Bv'(5)
E | ks (ka)
A <
+ eu()+ism B wtieytt (4.11) |
J
;; The solutions (4.9) - (4.11) are re-expanded for large ka, that is, for
{
"f small 5, by means of (3.18). Then the soluticns (4.9) and (4.10) of
1
b |
| Chang et al.[l] become
| a A ok MR SRRt BT SR
4 B =5 T [0 Rl T e W
¥ I T -j*r/4 1/2,.20 2 A 247, 41
¥ + ’ka( ) (ks) o cos” 8 - cos 9(jks + 72))} s
{ (4.12)
Q and
' & le e—jks (' ) i_ P
b | S — -~ | : = ~ - A
Hz(Q) 21 ks cos 9 + ks(‘ 3 cos™ Q)
‘ -".T 4 ~/~ ') . Y
’l + ,ia(:)l/z 4 /4 {2 cos” 2 - cos” 3(jks + D} ,
] ¥ (4.13)
Y
whereas the solution (4.11) due to Lee et al.[2] becomes
& e
by —Jka r 5 -
‘ WL leos® 3 + L2 - 3 cos® 9) + 52 - 3 cos” D)
z 2n3 ks 4 2
j L ks
: S T B L L P T T R I A TR
‘ 4ka( ) 4 4(kb) 74{6 cos“ 2= cos '8 (Jks-kjf) + ttcos §(2=3sin 8) i{.
E | (4.14) i

§ The asymptotic formula (4.12) due to Chang et al.[l] does not agree with

A (4.7), even its leading term does not agree with the planar solution.

} The "full formula" (4.13) of Chang et al. and the solution (4.14) of Lee et al.
E ) do have the planar solution as their leading term. The next terms of order

f; in (4.13) and (4.14) agree only partiallv with the corresponding term in (4.7)
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the surface magnetic field at Q due to a magnetic dipole M at P can be

expressed in the following dvadic form: ’
> ‘ * ‘_. ; \..\ : \‘\ \' . :
H(Q) [b"bH (@) + c'cd (V)] (5.1

Here, t' and b' are the unit tangent and unit binormal of the surface rav
at the source point P, and similarly, t and b are the unit tangent and unit
binormal of the surface ray at the observation point Q; see Fig. 2 for a

picture of these vectors on the developed cvlinder.

by a different dyadic form, namelv,

where ;' and ¢ are unit vectors at P and Q in the direction of increasing 5.
The result in (5.2) is based on the "full formula" for the magnetic field
components. The main difference between (5.1) and (5.2) is that the result
of Chang et al.{l] contains a cross term C, whereas no such term is

present in the result of Lee et al.[2].

surface magnetic field in a dvadic form similar to either (5.1) or (5.20).

2 2
Starting from (5.1) in the case of a circumferential dipole M = 3,

the

and

5. REPRESENTATION OF THE SURFACE MAGNETIC FIELD IN DYADIC FORM

According to Lee et al.[2, Eq. (2.6a)], the asymptotic solution for

A

N N

In Chang et al.[l, Eq. (128)], the surface magnetic field is represented }
8 q § s

NOA \

M+ [b'bA + t'tB + ¢'5C) (5.2)

13

H(Q)

N

We now examine the possibility of expressing our results for the

surface magnetic field has components H _(Q) and H (Q) given by
N -

“ 9 B
Hh(Q) =H sin” 2 + H cos 3 % (53)
d b ¢
H;(Q) = - (Hb - Ht\ sin 98 cos 38 . (5.4)
22




Figure 2. Unit vectors (t', b', t, b) and surface ray PQ
on developed cyvlinder.

Figure 3. Integration contour [.




Similarlyv, for an axial magnetic dipole M = z the surface magnetic field

components Hf(Q) and Hi(Q\ become

a o
1) = = (} - sin 9 cos B B
Hc\g) \Hb Ht) sin cos 9, (5.5)

a 2 2
H_(Q = Hb cos 6§ + Ht sin” 2 S (5.6)

On substitution of the actual values of H;, HZ = Hi and Hi as given by
(3.11), (3.26) and (4.6), we can consider Eqs. (5.3) - (5.6), as a system
of four equations for the two components Hb and Ht' It is easily seen
that this system is incompatible and does not have a solution for Hb and
Ht. Indeed, when taking the difference of (5.6) and (5.3). we find

HI(Q) - HS(Q

Ho - H o= = — (5.7)
b . cos O - sin” B

whereas according to (5.4), we have

B (Q)
-H = - < 5.8)
Hb t sin 8 cos 9 (5.8
Now it can easily be verified that
a5 c .

H(Q) - H,(Q) i (Q)
4 * = - ‘ 5.9
2 & sin & cos @ L3

cos 8 =« sgin €
In conclusion, it is not possible to express our results for the surface
magnetic field in the two-component dvadic form (5.1), as found byv
Lee et al.[2].

Next, we try to express our results for the surface magnetic field

in a four-component dvadic form, viz.,

AA AA N N AN

H(Q) = M« [b'bu,, + c'eH  +b'eH  + t'bH bl// (5.10)

tt

ol




3 which is similar to (5.2). Then the magnetic field components for the

cases of a circumferential or an axial dipole become

9 2l

c, 2 2
) = i 2+ n - i 2 ¢ 8 ,
? Hc(g) be sin™ € Htt cos” D + (Hbt th) sin 0s
: £ . o : e
< HZ(\) = - (be - tt) sin 2 cos 8 + Hbt sin” § - dtb cos .
Ha(i) = - (H -H ) sin 9 cos § - H cos2 3 4+ H sin2 9
5\ bb et ? bt ¥ % L
| HI(Q) = H 25 +H 29 - (m ) 11)
] i o C 9 in” 3 - + sin 5 ¢ 8 . 5%
3 Pz Q. b cos O tt sin ( bt ” sin © cos § (D)
? S R L TS : : : : % o
k| Since ﬂp(Q) HZ(QX as found in Sec. 4.1, we have Hbt th. Then the
E | svstem of equations (5.11) can be readily solved, yielding
(}{ Q) = HQ(Q) sin2 9 + Ha(Q) cos: 9 - 2HC(Q\ sin 9 cos @ , |
bb " * ) z z
& 2 a, e c
ﬁ Htt(ﬂ) = HD(Q) cos S + H”(Q) sin” ¢ + ZH’(Q) sin 9 eos 8
c a C; 2 2
= H. = 5 = (031 s g o § e FoE " 6 ey 8
i \Hbt(Q) ﬂtb\Q) [H‘ﬁ(h, H (@] sin 3 cos 3 - H (Q)(cos™ 3 - sin” 9).
i
‘; (5.12)
i 3 =
‘ We now substitute the actual values of H:(Q), H;(Q) and Hi&Q)s taken
lM b
; from (3.11), (3.26) and (4.6). Then we obtain
2 -jks 2 P n
1 kY e . e . Sy % 1.4
J) = -~ - ,——] - — ‘s S = R 5 ks)
dbb(g) 7 s i s kzbzl lbka[SHD (ks) sin 4 ksHl (ks
(D) 2 . (2), 2 .
- 2H, " (ks) cos” ¢ + ksH3 (ks) cos™ 8] . Ui
and
3 1% o 3
" - -Jk: 5 iy rA ?
y k'Y e 2 2 kY (2) 2 (2) "
L] . N —— + - — ! cos” 8 - — ks) ],
H, (@ 37 ke s '3:3] l6ka[m0 (ks) cos e By (ks)]
) i (5.14)
and
H (Q =H , (Q = - k3 sin 9 cos J[3H(:)(ks) + H(:)(ks\} . (o157
bt tb 16ka 0 2
25




Notice that the leading terms of (5.13) and (5.14) agree with the planar

solution for Hb and Ht‘ as given in [1, Appendix D] and [2, Eqs. 2.8a,b)].

1

For large ks the Hankel functions in (5.13) - (5.15) can be replaced by

their large-argument asymptotic expansions, thus leading to

2. -jks [ : : ¢ -
LY g RO 1 .m. 172 ~3nlé (5 ) e R D 43
be(Q) * ol ks 1 s ;525 + Aka(z) e (ks) if cos™ 9(jks + 8)
i e A 1N .
+xs-gt1agcos 8) +0r5 7) : (5.16)
= k s'Jf
J
and
2 ks o e s
Jjks / )
. kYe 2j 2 1 w1/2 ~iun/4 1/2 22
He (@ = 7 T E ity e s
A L 1 ) e
+ 251 + g cos” 8) + 0|5 , (5.17)
k™ s” J
and
2, ~jks i L
o L Y e 1 w1/2 -jn/4 o/ - a
Hbt(Q) th(Q) —"'sz iR ‘——41(3(,) e (ks) cos 9 sin

; (
‘{2+3L+OK}))} : (5.18)
4ks k-

—
Alternatively, the surface magnetic field H(Q) can also be represented
by the form (5.2). From a comparison of (5.2) and (5.10), we find that

A, B, and C are given by

sin 9 o . ¢os § _ bt & 14
o be ¢ Hbt: cos § ° 5= Htt hbt: gin 5 sin8 cos§ ° (3.1%)
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6. MATCHING TO AN EXPANSION IN TERMS OF FOCK FUNCTIONS

In Sections 3 and 4 we derived approximations to the surface field

a

(AR a ’ ;
components HD' H: and H,, H_  due to a circumferential or an axial magnetic
. - v B

dipole on the surface of a cylinder; see (3.11), (3.13), (3.26), (3.27),
(+.6) and (4.7) for the final results. These approximations were obtained
by starting from the exact solution in [1l]) and replacing the quotient of
the Hankel function and its derivative bv the Debve approximation as

given in (2.6) and (2.12). Although the use of the Debye approximation
has not been fully justified, it is believed that our approximate results

for the surface field components are valid for large ka and small f where

. =1/3 ks 4(3 4
= 2 E 8

(ka)®

o i s N,

For large %, i.e., in the deep shadow the surface field decays exponentially
as a function of 5; see [l] and [2]. This S-dependence of the surface
field is properly described in terms of Fock functions u() and v(§).

Following (2, Appendix|, the Fock functions u(f) and v(Z) are defined by

jn/4 /2 w,(t) -
- e, r.L & [4 -Jg[ "
v(§) = 2 } R e dt 5 (6:.1)
and
. 7 t
L g ST g Vel e (6.2)
u(s) = Sl oo diti s
/'-Y- J w,(t:)
1 ro 2
where ~,kt) is an Airy function, viz.,
=5 - 7o =, ’
wy(8) = VA[BL(t) - jAL(E)] = 2/7 e 30 Ai(te sy (6.3)

and the contour [' is sketched in Fig. 3 (see Page 23).

The "hard" Fock funccion v(E) arises when approximating integrals with

(), 1g €2)
an integrand containing Hv (ktn),HU

'

(kta\; similarly, the "soft" Fock

dad
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function u(f) arises when the integrand contains Ht') (kta)/H:"\(kta).

In {1, Appendix B8] the notations v\(i) and uO({) are used for v(5) and

D

-

u(3), respectvely. By closing the contour [ at infinity in (6.1) and (6.2),

we arrive at the following residue-series representations for v(5) and u(i):

3T/ 1o @® axp [=38¢')
v( i) = e In/a 0’7?\‘211_ F e 2
n=1 n
Q0
v/ e 2
u(s) = lej & v 53/' y exp [-jit“] s (6.4)
=]

n

see [1, Eqs. (B20) and (B37)] and (2, Eqs. (A-7) and (A-8)]. Here

=317/ | ¥ ey
le I3 wich Ai\-ltni) = 0 and Ai'(-lc ) = 0

!
i

-im/3
le J [t

and t' = \
n i n n

see [2, p. 34] for a table of the :erosftnfdnd ?c&v. [t is clear from

(6.4), that the Fock functions v{%) and u(f) decay exponentiallv as

T » =, Notice that u(%) decays faster than v(%), since 'c;} < 'cn?. For

small 5, the Fock functions can be represented by the power-series

expansions

=y / - - I . ’ -
_ Yr  im/4.3/2 i1 =3 vm =in/4 .9/2 _6
v(: - — e° £ + = I + = e ! + 0(5)
() = 1 L : g0 & ST © > (&, s
sy . ’ = Y i I 5
e T T4, 32 o ¥  =im/& 9/2 _b :
u(g) = 1 - LT'eJ *;3/ e I% & 7%~ e J : + 008 ) (6.3)
¥4 & <+

quocted from [1, Eqs. (B19) and (B36)], and [2, Egs. (A-12) and (A-13)].

We shall now match the previous approximations for the surface field

~

components H., H w
. ats H.,

: a : ; ’ -
= H_ and Hz' to a new set of approximations in terms ot

IS

Fock functions v(%) and u(3). More specifically, we construct new
approximations involving Fock functions in such a manner that for small 2
the new approximations reduce to those obtained in Sections 3 and 4, whereby
the Fock functions are replaced by their powver-series expansions in (6.5).

[t is hoped that these new approximations are valid uniformlv in &,

28
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o.1 Magnetic field component Hi.
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The exact solution for H, 1s glven by (3.2) and consists of two terms.
)
Following [1, Egs. (13) and (19)], we denote these terms by H;'L and H:L.

foth terms are double inctegrals; the integrand of the term H:'\ contains
(2 {2y, @ /

the quotienc “v kkcn>/n («ta). wvhereas the term Hr has an integrand

(2)

2)
which contains the quotient H& '(kca\/ﬂv

kkta). Thus, H;'c should be
matched to an approximation involving the hard Fock function V(Z), whereas
H;C {s macched to an approximation which involves the soft Fock function
u(®). In the exact solutions for H;’C and H;C. we replace the Hankel
function quotients by the Debye approximations in (2.6) and (2.12),

respectivelv., Furthermore we set v = kva in the inner integral. Then we

are led to the rollowing approximations for El;‘b(t}) and H;\ (Q):
+

2,2 3
200 00 & { K
% L i R N kl\"' jkt 1 ‘\[
H''(Q) 3 =i | exp [-1k_z = jk _ad] 3 e i emstesieeas \ | Ok dk
> g L ghE & R M alahifl vt
R0 wtowto t ;kc-k\’ t ¥
v A0 a0 : Y 3 3
s - D exp [-jk 2z - ikv1¢i i OmCpaine (R s
antk L : ‘ kg )
R S PP
- —-"- -)- -
(k kv k:
wnd
wf @ s T e (myk gz - gk ael (- KES
: *w'wuo il g
/4 P S N
\'.- | \
. - —--‘:—— - exp l-')k‘: - jkv.h:\] 5 d"‘-\,\‘k,




Notice that the sum of (6.6) and (06.7) is equal to (3.3).

The double integrals in (o0.6) and (6.7) can be expressed {n terms of

Ilkdé.:\ and I,(ad,z2), as defined by (3.4) and (3.5), and another key

integral l;\a;.:\ defined bv

3 Al A
"" VKT - ‘\\_ - ‘\:
[.(adp,2) = exp [~k z - jk ap] ——e——=— dk dk « (6.8)
) " < .V k R k - \ Z
- XY »

The latter integral can be evaluated in closed form by use of the relation

32 ) i s
(—= k'\lskdﬁ.:\ ] exp [=jk_z - jkVJQIvk' - k; - k7 dkv dk

V2 J z
Bl S b

hl Y

9" 3"

= — ‘ +
Jap) 9%

Ny
+ k~ Il\a¢,: < (0.9)

On substitution of the value of [1(J¢.:‘ from (3.6), we are led to the

following differential equation for [ (ad,=):

2 2 -iks

\' Al ) _-n,\, 1 le
e~ 0 P T TN D B \“d'; + 1 4 + k7)2mj L = Ivy e I \'1": + L)
& 3 - S \{h S &
\Z Js‘ 8 S
g ¥/2 =3/2 )
- /I k7 4T R, T (ke) (6.10)
If &

|

where s = v(ap)™ + 2z~ is the distance rfrom the source point P to the

observation point Q along the surface ray; see Fig. 1.

\

The differential equation (6.10) can be solved by Fourier transtormation.

i

on defining the Fourier transform of [§ by

\ f zt
F~\[‘\J?.:\‘ - 13(a¢.:\ej de = 2 | I.(ad,2) cos (z2t) dz ,

-0 0 {6.11)

we readilv find from (6.10)

ke
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et ol

o
)

F ‘ =S8 O 2
r.{ll(a:.:)‘ = - H3‘,kkvkd¢) + 27)!}
3 i)
‘l No(agy t- " ‘l\-
= - 4rj(ad) ey e (6.12)
Y iy T
ve® = k©

where the Fourier transform of the Hankel function was quoted from

e .
Bl

* ]
[6, Eg. 1.13€42)]. In (0.12) it is understood that \1— - K

Y

l‘
+ wkT -t

when t < k, in accordance with k having a small negative imaginary part.

Bv inverse Fourier transformation we have from (o.12),
&,

o K (apvt™ - k7

%14 - | -

I.(ap,2) = = iT%\JQ) A 21 -k —— cos (zt) dt =-2nk "~ (a¢)
0 V&7 -k

) wilkea
S i e SRR jks

) \7‘-13\

]
ks™ cos B

where the Fourier cosine transform of X, was obtained from [6, Eq. 1.13(44)).

\ E 1.
The present result for [‘\4¢.:3 was checked bv back-substitution into (6.10).
In fact, the general solution of the differential equation (6.10) is
given by
-1 -2 =-iks e -
I.(adp,2) = <2tk (ad) "e ] + A cos kz + B sin &z . (6.14)
2

where A and B are arbitrary constants which mayv depend on a¢.

Now since Iijb.:3 is an even function of 2, one has B = 0. By a direct

calculation or IB\JQ.: = ) it is found that A = 0 as well. Thus the result
in (6.13) is correct.

_ < L C
We now return to the magnetic field components h;' and %: , as

v

given bv (6.6) and (6.7). As mentioned before, the double integrals can

There are some obvious misprints in this formula: {in the first par

. 2) 2) . o
transtorm result H$ should be H' L the range of validitv of che

Ve ==
part should be b < y< @ jinstead of "0 < ¢<b, All
in an independent manner by means of [3, Sec. 13.47)

A | i

r

of the

second

results have been checked
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be expressed in terms of derivatives of the key integrals Il' [, and [3.
Thus we find rfor H:'\.
2 4
3 oy ¥ i 1

c Y 2 S 2 3 ,
BIY(Q) =2 =ik % —} I.(ad,z) -~ k I,(a0,2) + ;1— et L Cati i)

477K dap “4 3(ad) 3z
€6.L5)
and for H;C.
2 2 2
H;LKQ) = - &; [13(30.:) - :Lfk' + - 3 ik 1—:3 I,(a0,2)]}. (6.16)
8 4mk ik 3(ap) dz"~ %
We now insert the actual values of IL' I, and Ix as given by (3.6), (3.9)

2y
and (6.13). The derivatives of the Hankel function H;' (ks) are evaluated
and simplified bv means of the well-known recurrence relations for Bessel
functions; see e.g.,[3, Sec. 3.2] and [4, Eqs. 9.1.27 and 9.1.30]. Thus

X - < : ¢ ¢
we obtain as our final result for the cqonstituents H;' and H' :

5 31

R L\ —1Ks ?) 3 D 2
HU'S@Q) = 5 & e (ot 8 * (2 =~ 3'sin” 6 - L) 4 (2 - 3 stn” )
> aN5 = T cos™ 3 k's”
U AR 1 WO NN - ARG ¢ SR BT S S
LORJ[HO (ks) - ke Hl (ks) + r\aH3 (ks) cos sin i
€6.17)
and
¢ Ky ¢ 3% 4 3 kY (2)
H'C(0) - N X € o, SN 2H " (ks . 6.18)
;{‘? QN :Tj ks [ks ~OS: .)1 16ka [ PO (\)} (6.18

As before, we observe that except for the Debve~type approximation to the
Hankel function quotients, no further approximations were involved in the
derivation of (6.17) and (6.18). The sum of (6.17) and (6.18) is equal to

the field component H_(Q) as given bv (3.11).

~
-~
P

For large ks the Hankel functions in (6.17) and (6.18) can be replaced

bv their large-argument asvmptotic expansions, thus leading to

3




7 45 2 2 W
+ J~\- - + 2%3 cos 8 sin” 8) + 01— “\ . (6,:9)
K3 3 128 2R
\k S 'J
and
_‘\, -j'l\ 2 A fi 7]
S s e L L G2 a2 1 g o,
b 2] ks ks 2 4ka 2 4ks 2.2
X cos 9 K s
(6.20)

We now match these approximations to a new set of approximations of
a form similar to that of Lee et al.[2] (see (3.17)), involving Fock
functions. The new approximation for H;'C involves the hard Fock function
v(3) and its derivative v'(5), whereas the approximation for H;C contains

the soft Fock functions u(3) and u'(5). Therefore, guided by (3.17), we set

) S <%
&y KRS ) 1. 3 '
~ LT & i
H”L\Q) = %_: }.u (\\'-.) S e Ck‘S-‘/‘3 g [5\'(::)1 » (6.21)
5 anj Ks ' 243
: (ka)
and
: L2 =jks -1/3 v
Q) = 3 S [Cu(@) + 7% cos '’ 8 DU'(D)] (6.22)
- nS N -
- (ka)

where the constants A, B, C and D are determined by matching to (6.19)
and (6.20) for small %.

For small 5 we replace v(Z) and u(Z) and their derivatives by the

approximations

v(g) = - — e & v
-+
» m §n/4.3/2
u(s) =1 - lr ej e "

33
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v-; im/ 4 2 l/— j 4.1
(@) = - L2 gy o L BT T2 (6.23)

raken from (6.5). Then, the results (6.21) and (6.22) become

< 2y iks /9 sl 2 ) )
HL'L\Q) = %,; S = A+ Z%;(%)l"e JTTh(ks)”'{—jksA cos” 2 + %B cos” 3}],
(6.24)
and
i
p X 4 e i 2 ~im/4 2: 2 2
H' (Q) = %‘¥ £ { Tl—(;)l/"e J /*(ks)l/'1-2jksc cos™ 3 + 3D cos” 8}].
» 213 ks 4ka 2

(6.25)
By identifving {6.24) and (6.25) with (6.19) and (6.20), respectively,

we can readilv determine the constants A, B, C and D, viz.,

5 . 9 1 )
y=sin® 3 e l@osin’ s - s v 5 - 3t )
& cos” § ks~
T e e : 13 2
n 8 T . 7 si ) T a2
B = % Ei—;—— - 1o sin 3+ ?%(f - f; °1n7 + —gé sdn® 8) (6.26)
cos 9 = “ cos 8
and
G T R Vel .
Coge 2 ’ “{ika 2 ; (6.27
cos 3 = cosh 8

The values of A, B, C and D, thus obtained are to be inserted into (6.21)
and (6.22). Then by addition of (6.21) and (6.22), we obtain the following

approximation in terms of Fock functions for the surface field component

c
H:(Q):
" ,2,\. “iKs P i ) g
1 1 o iIn" O vt 1o SIS sin~ - &
db(Q) ) ke sin” & v(g) + ks(' 3 sin > N)\L_) G —5—u(®)
cos & cos 6
=173 : SR
; 2 s &3t 8 Ll 2 '
+ Zl 2(2 - 3 sin” 9)v(%) + 373 u054/39‘(%—s—1‘n_7*" - —l—.;._ gin @xn'"(&)
K's (ka) cos 3
K, : )
i ¢ st 8. . L8F . 2 a0 gow 1 teeyl
(S o L BAR_5 250 . + 3
mels - 2= "7 + %5 sinT VD) + o e u'( )J
co b (6.28)
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The present approximation {s of a similar form as that of Lee et al.[2],
as given in (3.17). Notice, however, that the coefficients of v(£), u(f),
v'(Z) and u'(f) are somewhat different.

) T C a
6.2 Magnetic field ccmponent H_ = H_ .

As pointed out in Section 4.1, the exact solution for the field

«
component H

due to a circumferential dipole 1is identical to that for

the field comiponent Hf due to an axial dipole. Then the approximate

” e .,a
solutions for H_ and H,_ are also the same.
- C . . » "
The exact solution for H_ is given in (3.22), as quoted from T

The integrand of the double integral in (3.22) contains the quotient

(2) b e - ; " :
B \kca) H \xta\. Therefore, we match our previous approximation to

a new approximation which involves the hard Fock function v(I) and its

" - < ; . s = .
derivative v' (). hus we start from an approximation for H_(Q) of the
form (6.21) with constants A and B yet to be determined. For small &, ?

when replacing v(%) and v'(£) by (6.23), this approximation passes {ato
the form (6.24). Then by identifving this form with our previous

approximation (3.27) and (3.28), we find for the constants A and B:

" 3 3
A= «cos @ sin 01 - =2 « —5=5] ,
S £ 2
K's
> |
Y b 2 ' o\ - -
- ’ £ sin, Y 187 5
B = <« cos @ sin 3[5 —m— - =+ J*t——r T [ {(6.29)
3 4 < S 0% ; € a
cos @ 4 cos ¢€

when inserting these values into the form (6.21), we obtain the following

approximation in terms of Fock functions for the surface field components

-

R (Q) = H‘:\Q\:




. o =ik r .
| HO(Q) = Hf(Q) = = ::% ks COos 9 sin 8 (1L - &é - =) () D
-1/3 " e . 1
al 3 / o T a . 1 s ] =
, c Lt et PGt b L o),
(ka) ™’ cos 9§ 2 4 cos 9 i
(6.30) '

The present approxXimation should be compared to the result of Lee et al.[2],

as given in (3.31). The main difference is that the result in (3.31)

involves both the hard and soft Fock functions, whereas our approximation
in (6.30) is in terms of the hard Fock function only.

, b a
6.3 Magnetic field component H_.

. . o a N .
The exact solution for the field component H due to an axial dipole
b . P

]. Since the integrand of the double

(2"

\
7

is given bv (4.2), as quoted from (1

y PIRIE PR " (2) / :

integral in (4.2) contains the quotient H_ (kta\:H‘ (Kta), we construct
p ’ = a, : - e ; s <

an approximation for H_(Q) in terms of the hard Fock function V{(E) only.

We start again from an approximation of the form (6.21) with constants A

and B to be determined. For small I we replace v(Z) and v'(Z) by (6.23),

: ; : - a - . T - :
then th: approximation for H_(Q) reduces to the form (6.24). Then by
“~
matching this form to our previous approximation (4.7) and (4.8), we can

readily determine the constants A and B, viz.,

2 i 2 1 2 v
A = con 9 % 2ol = 3 cogr B 4 ====(2 = 3 cos: B g
S 1= 3
Kk
11 T i 7 2 187 2 &
3 = - I% cos € + :%(- el R + 6; cos §€). (6.31)

On inserting these values into the form (6.21), we obtain the following
aporoximation in terms of Fock functions for the surface field component
a,

H \C_‘):

™
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The present approximation should be compared to the result of Lee et al.[2],

as given in (4.11). Again the main difference is that the result in (4.11)
involves both the hard and soft Fock functions, whereas our approximation
in (6.32) contaians only the hard Fock function v(§) and its derivative.

6.4 Representation in a dvadic form.

at P in the dvadic form (5.10); viz.,

+ t'bH ]
tb1

where the unit vectors b', b, t are shown in

dvadic components H I and H are related
s Bb* “ete’ bt - R

d a e
= H,_ and H_ through (5.12).

by their approximations (6.28). (6.30) and

Then we obtain the following approximation

H ind H

iy e s A o}
the dvadic components be. Lt bt

WSd * e

XS

i ;
Ly tes ailliizs
12’7 (8) * T35
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J 7. NUMERICAL RESULTS

For the numerical calculations, we concentrate on H; (the ¢-component
of i due to a circumferential dipole) and Hi (the z-component of H due to
an axial dipole). Three sets of approximate solutions are used in the
calculations, namely,
(i) the "full formulas'" of Chang et al. [1], which are given in
(3.16) and (4.10) of the present report;
E | (ii) the formulas of Lee et al. [2], which are given in (3.17) and
’ (4.11); and
(iii) the present formulas in (6.28) and (6.32).
The radius of the cylinder is ka = 9.5325. The ray directions are

5 = 0°, 45° and 90°. As a function of ks, numerical values of H. are

r y , e A ‘
presented in Figures 4 to 6, and those of H_ in Figures 7 to 9 In

these figures, we use the following notations:

sutediass

Y )
Mag = absolute value of (H;/k“) or (H:/k“)

+jks a +jks
<

) or \Hz

Normalized phase = phase of (ng )

| The db value of Mag is calculated by 20 loglo(Mag in ampere-meter).

As another accuracy test, we calculate the mutual admittance Ylﬂ

between two identical slots on a cylinder by using the three formulas

described in (i) to (iii) above. The geometry is sketched in Figure 10

with the parameters

Frequencv = 9 GHz 5 S [ ol 3 a= 1,991"

Slot dimension = 0.9" x 0.4"

Slot separation described by (bo,zn)

39
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The steps for calculating Y,, can be found in [Ll], [2] and [7]). The

4 - l- .
results for two (identical) circumferential slots are given in Table 1,
and those for the two axial slots in Table 2. Values of Y are listed

19
in (db = 20 lug,) Y,, , phase in degree) format. In addition to three
it

asymptotic solutions based on (1) to (iii), an exact solution of Y

calculated by the modal series (7] and [S] is also listed in the two

tables for comparison purpose.




TABLE 1.

5, = 0°

MUTUAL ADMITTANCE

BETWEEN

WO C

Chang |

Asvmptotic solutions

1]

RCUMFERENTIAL SLOTS

e ey

Present

-62.41

-72° -63° =72 -73°
-71.78 -70.90 -71.00 -71.84
%
-
-117° i <118° -116 -119°
| s
-31.84 -50.30 -81.83 -82.18
\\\ll
34° 34° 37 30°
!
-56.48 -353.20 -30.00 -86.90
16"

=g

-115°

95

<9

P S S —

-92.40
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-92.77
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TABLE 2. MUTUAL ADMITTANCE BETWEEN TWO AXIAL SLOTS |
2. =0 ’ a1 .
0 Exuct Asymptotic Solutions
"0 Chang [1] Lee (2] v Present : 3

-81.33 db [ < =83 24 . -81.34 -80.83

=778 -60° ‘ i S
-89.37 P gl -90.02 ~38.h3
40°
153° 130° 170° 159° ]
|
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_-i 50° |
559 ! 69° 61° 45°
|
10197 | ~102.93 =102 .48 -0% .94
5Q° |
| ~49° «39¢ ~&79 -6k

wr
rs




8. CONCLUSIONS

The surface magnetic field due to a magnetic dipole on a cylinder

can be found exactly in terms of cylindrical modal functions and Fourier

integrals. This solution, however, is not suitable for computations at

r—

high frequencies (ka >> 1) because of its slow convergence rate. The
present paper is devoted to extracting an asymptotic solution (ka - «)
from the exact one. Explicit results have been obtained for the following
cases:
(i) In the penumbra region on the cvlinder where % is small,
the asymptotic dyadic Green's function is given in (5.10) and {
(5.13) = (5.15).
(ii) In order to obtain a solution uniformly valid for all points
on the cvlinder (fvom the penumbra to the deep shadow), the
asymptotic solution in (i) is matched to the well-known

creeping wave representation via Fock's functions. The final

dvadic Green's function is given in (6.34) - (6.36).

The present solution has been compared with two previous ones: H
Chang et al. (1] and Lee et al. (2]. Of particular interest is thart,

through rigorous asymptotic expansions, we have confirmed the peculiar

(key 2%

field behavior along the generator of the cylinder (sometines
known as the ''transverse curvature term'" in the field solution). This
term plays a most important role for rays parallel or almost parallel

to a generator of the cylinder. Until the present confirmation, its

existence was predicted only through speculation.
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1. INTRODUCTION

In the desizn of a conformal array, the two most important
electromagnetic parameters are the mutual admittance between elements
and the active element pattern. These two parameters have been calculated
by the following two techniques:

f1] - [3] applied to problems with separable

(i) Modal analysis

geometry. The solution is usually rigorous, and is in the form of
infinite series/integrals. Because of the convergence rate, it is suitable
for numerical calculations only when the radii of curvature of the array
surface are small in terms of wavelength. In other words, modal analysis

.

is a low-frequency technique.

(ii) Rav technique (4] - [10] is based on surface rays, first introduced

by Keller in his Geometrical Theory of Diffraction (GTD). It normally

yields an asymptotic solution valid for high frequencies. Because of the

wide range of its applicability and simplicitv of its firal solution, the

ray technique is a most attractive tool in solving conformal array problems.
This part of the book will describe the ray technique for calculating the

mutual admittance and active element pattern. We will concentrate on

conformal arrays which have rectangular slots as their elements.




2. CIRCUIT DESCRIPTION OF SLOT ARRAY

Consider an array of N slots over a curved conducting surface C

(Figure 1). FEach slot is fed by a rectangular waveguide (Figure 2),

where only the dominant TE, ., mode propagates and all other modes attenuate.

10
The electromagnetic properties of the arrayv can be conveniently described
by circuit parameters detailed below.
Let us concentrate on a typical element n in the array. At a suffi-
mode
10

guide ~an be

ciently large distance & from the aperture, only the dominant TE
. ’ . th
is present. Then the transverse field vectors in the n

represented by

E(x,y,z=-£) = Vn;(x,y) (2.1a)
!
Hix,y,2==2) = I (E x &) (2.1b)
where
= ~ 2 U
e(x,y) = y(il)l/ cos (l X) (2.2a)
ab a
F th ’
Vn = modal voltage in n element (2.2b)
; th R
In = modal current in n element (2.2¢)
Note that the field in (2.1) is the total field comsisting of waves
travelling in both +z and -z directions. Because of the linearity of
the Maxwell's equations, the current in the mth element 1is linearly
proportional to the voltages in all elements in the array, i.e.,
N
,
I I ¢ s m= 1,2,..04N (2«3)
m w12 8
n=1




In matrix notation, (2.3) may be rewritten as
[ = YV (2.4)

- - f ’ >
where [ and V are column matrices with elements \[1‘ and ﬁ\n}. and Y is
1

a square matrix with elements 'Y 7.

T L

The proportional constant YI‘ in (2.3), for example, is called the

mutual admittance between slots 1 and 2. By reciprocity, Yl’ = Y”l'

We may calculate (measure) Yl’ from the following setup (Figure 3):
(1) Element ! is excited so that the (total) voltage at the

reference plane (z = -1) is Vl.

(i1) Conducting planes are placed at the reference planes of all

g

other elements so that Yn =0 for n # 1.

Then it follows from (2.3) that

f
12 W
{

I

short all except 1

which mav be considered as the definicion of Yl"

; th - !
As a transmitting antenna, the n alement in the slot array in

: : '+
Figure | is excited by an incident rElU mode with voltage \‘. where the
[

superscript "+" signifies that the wave propagates toward the aperture

in the +z direction. The discontinuity at the aperture causes a retlected

TEIO mode with voltage V;.which travels in the -z direction. Then the

y

(total) voltage at the reference plane (z = =U) is

ot =
vV =V & ¥ (2.6a)
n n n
while its corresponding current is
v 1+ v- Al
I =Y (V. «V) . (2.6b)
n ¢ 'R n
>
J

*__M



where Y is the characteristic admittance of TElO mode
LIS RB I s ,
SO e T G i) 2.7)
e L& . e

) Loty 3
For a given set of i{ncident voltages :\nr, we can determine the reflected
voltages tvn} and the (total) voltages {Vn‘ from (2.6) and (2.4). The

results are

T3+ g - (2.8)
c (o
v-21+ TN (2.9)

= =
where 1 is an identity matrix, and Y =Y 1.
L&

.
In addition to admittance :Ymn}' another set of important parameters
is the short~-circuited active element patterns {anﬁ,ﬁ\}. For example,
Pl(e.o\ is defined as the radiation pattern (of Eq or E component) when

-

Vl = 1, and Vn = (0 if n # 1 (Figure 3). The term "active'" means that the
radiacing element is situated in an arrayv environment (not in an isolated

2 -+
environment). When an arrav is excited by an incident voltage vector VU |
the radiation pattern of the whole arrav is then given bv

VP (0,0 = VP (2.10)
nn

P B,p) =
array .0

| B V4

n=1

where {Vn‘ can be calculated from (2.9}, and T is a transpose operator.




3. SCATTERING DESCRIPTION OF SLOT ARRAY

For the same slot arrav in Figure 1, a different and equivalent
description may be given in terms of scattering parameters, instead of
circuit parameters.

Parallel to (2.3), the basic relation in the second description is

N
- +
¥ = § 8§ ¥ R T O BL R SR (3.1a)
m - mn n
n=\
or in matrix notation,
- e
V = SV . (3.1b)

= -
Here 5 = [S ] is a scattering matrix. S = S, for example, is the
mn 12 21 P

Al

induced voltage at element . when

(i) element ! is excited with VI = 1 (not Vl = 1), and

(11) all other elements are terminated with a matched load,

in the manner sketched in Figure 4. Sometimes, is also known as the

Sl‘

>

coupling coefficient between elements 1 and 2. The comparison ot (3.1b)
with (2.8) leads immediately to

d+¥HTA-TN (3.2)

8 L

Tl

= -
which relates S to the admittance matrix Y. For the special case N = I,
we have

-2Y Y. .
. o S (3.3)
T
2 8 1N Y12

-+ ;
For a given incident voltage vector V , the (voltage) reflection

coefficient in element m is defined bv

e ———————led



..

Rm-;-i‘; MERL % F E meen (3.4a)
m
and is found from (3.1la) to be
N
+, .+
o= F o5 My (3.4b)
m n:l mn n m ,3

The input admittance of the TE . mode in element m {s given by

10
\Y 1 +R
(in) m m - ]
‘¢ - — = RS e ——" . "\
s E o i el k39
m m

Unlike Ymn' we note that Rm and Yéin) are functions of the array
excitations.

Under the condition sketched in Figure 4, the radiation pattern is
called the match-loaded active element pattern QI(S.J). For a given incident

=+ .
voltage vector V , the pattern of the whole array is given by

N
* = T
8.8) = Y v (8 - LY 3 < j
Parrav"' ) n:1 \nkn( ) W1 N (3.6)

with the help of (2.9), the comparison of (3.6) and (2.10) leads to

5 4L T 3.7

Je2I+¥. D7) P 3.
<

which relates two types of active element patterns. Note that Qlké.o\.
for example, depends on Pl&ﬂ.®\. Pal8d)swsos PN\O.b) through the matrix

relation in (3.7).




4. ONE-MODE APPROXIMATION

In the discussion of Sections 2 and 3, the reference plane for the
voltage and current is taken to be a distance I from the aperture
(Figure 1). Specifically, 1 should be chosen sufficiently large so that
all reflected modes other than TELO attentuate to negligible values within 2.
As an example, with parameters (Figure 2)

a=0.9", b =0.4", £ =9 GHz ’

2 should be at least 0.45" in order that the next higher-order mode TE

20
attenuate to one-tenth of its magnitude within 2.
For a finite 2, the calculation of {Ymn} and other scattering
parameters is quite difficult. Hence, in practice, we often set
=g . .1}

When (4.1) is used, all of the analysis in Sections 2 and 3 becomes
approximate. This approximation is valid if, despite the discontinuity
of the guide and the coupling in the array, the aperture field of the slot

essentially contains no other modes than TE For this reason, the

10°
approximation in (4.1) is known as the '"one-mode approximation." It

has been verified experimentally and theoretically that one-mode approximation
is a good one if (i) the slots are thin, and (ii) their length is roughly

a half-wavelength.

Under the one-mode approximation, the expression of the mutual

admittance in (2.5) can be replaced by

—




TOTERER T,

where

A, = aperture of slot 2 |

(5]

ﬁl = magnetic field when slot 1 is excited with voltage Vl’ and
all other slots are covered by perfect conductors at their
openings (1 = 0 in Fig. 2) ’ »j
Eﬁ = electric field when slot 2 is excited with voltage V,, and 2
all other slots are covered by perfect conductors at their L

openings.

- - - -
Because H = I,h, and E, = V,e,, it is a simple matter to verify that

1 2 272°

(4.2) and (2.5) are equivalent under the one-mode approximation.
There is an alternative definition of mutual admittance. Instead :

of (2.1), a modal voltage V. (with a bar) may be defined through the

1

expression for the aperture field of slot 1 as follows:

- o i
= — —‘-) 4 . 3¢
E V3 Vl cos (a X) (4.3a)
or equivalently
& o "
vo= G- : »
gt (v E)X,O dy (4.35)
0

Then a different mutual admittance ?l’ is defined by (4.2) after replacing

(V].V,) by (51,9,). It can be shown that

b a & 1.
le b Yll . (4.4)
Two remarks are in order: (i) In the limiting case that b -~ 0, Yl‘ goes ﬁ

to zero in proportion to b, whereas Yl’ approaches a constant independent
-
of b. (ii) For the special case when a = 1/2 and the slots are arranged

on a plane (planar arrayv), it is ¥ not Y,,, that is related, by the 3

12° 2

3




Babinet principle, to the mutual impedance 31’ between two corresponding

A

dipoles calculated bv the classical Carter's formula [11], [12]. (iii) When
the slots are excited by waveguides (transmission lines), one often uses
Y :\fls). From here on, we will concentrate on le instead of §ll'

Under the one-mode approximation, the short-circuited active pattern
Pl(s,a) of slot 1 (Figure 3) becomes the pattern of a single slot when

all other slots are covered by conductors at their openings (U = 0 in

Figure 3). Its calculation is thus greatlv simplified.




S. GTD GREEN'S FUNCTION FOR SURFACE FIELD ON A CYLINDER

Under the one-mode approximation, the mutual admittance between two
slots in an arrayv can be calculated from (4.2). We will now apply it to
aslot array on an infinitely long conducting cvlinder. The key step lies
in the calculation of ﬁl' the magnetic field at the aperture of slot 2
due to a voltage excitation in slot 1. To this end, we consider the
following Green's function problem.

At point Q' on the surface of the cylinder of radius R (Fig. 5a),

there is a tangential magnetic dipole source described bv a magnetic

current density (for exp +jwt time convention)

(r) = M

7k

S(r = R)SWP)S§(2) (5.1)

g I
I3

where M is the magnetic dipole moment, and (r = R, » = 0, z = 0) are
- ] >
the cvlindrical coordinates of Q'. The problem is to determine H at
another point Q = (R,9,2) on the same surface. The rav technique described
below applies when kR is large (sav 10 or more).
According to GTD [13], [l14], the dominant contribution of H at Q is
the field on the surface rav from Q' to Q. The surface rav is a geodesic

on the conducting surface, and in the present case is a helical path

(Figure 5). The arclength of the surface rav is

N
s = V(R))™ + 2 . (5.2}
The tangent, normal, and binormal of the surface rayv are (t', =n',=b')

at Q', and (t, =n, =b) at Q. Thus, (t, n, b) form a moving trihedron along
a surface rav, pointing toward the longitudinal and two traasverse
directions. At anv point on the surface ray, the curvature of the

described bv two parameters:
10

conducting surface i

%

.




~

the radius of curvature in the direction of t (or that in the

w
[}

longitudinal direction of the survace ray), and

the radius of curvature in the direction of b (or that in the

%

transverse direction of the surface ray).
On a convex surface, both Rt and Rb are nonnegative. For the present

case of a conducting cylinder, one has

oo SRR S e 6.2

where 8 is measured from the R¢-axis in Fig. 5b, and takes a value between

0 and 2m. The large parameter for our asymptotic expansion is

/3

5 o% th)l (5.4)

Thus, the solution to be presented is an approximate
asvmptotic solution valid for m - ». Furthermore, let us introduce a
distance parameter

- ms _ 2,173 _ _ ks
e = (/IR 8 s =5 (5.5)

t 2m
which is the arclength normalized by k and Rt' Note that £ = 0 defines the
lit region (& = m/2), £ ~ 1 defines the penumbra region, and £ >> 1 defines
the deep shadow region. Our solution is uniformly valid for all £ > 0.

Due to the point source in (5.1), the final asymptotic solution for

the magnetic field on the surface derived in [9] is given by
Q) ~ M+ (b'bH_+ ¢'¢H ) (5. 6a)
fy t

where the transverse component is

@ v (- v - 7 e + 167 ) e @)
+ 302 )R ROu @] o) (5.6b)

L1




the longitudinal component is

H (D) Vv (-‘L)[v\:',) + (1 - Ll) u(®) + J(/2 kR )-'/3u'(€,)] G(s) (5.6¢)
t ks ks t

and the function G(s) is

2
k YO e-JkS
21 ks

G(s) = (5.6d)

YO = (50/u0)1/2 = (llOﬂ)-l, v and u are defined in the Appendix, and v'
is the derivative of v. The solution in (5.6) is largely based on the
classical work of Fock (17].

Let us consider several limiting cases of the solution given in
(5.6). 1if the radius of the cylinder becomes infinite

kR = o (5.7)

the use of (A-11) through (A-15) in the Appendix in (5.6) leads to

’ - '-1—' - ’—-l ': ol Y " > O 3
Hb\Q) L e \ks) ] G(s) . kR (5.8a)

) —-’—j- 1 - L = e <> R 8k
H[\Q) \ (ks)(x kS)G(b) 5 kR . (\.ﬁ{\

~ " 8 & / & o o - a
When (5.8) is substituted into (5.0a), we find that H in (5.62) is
identical to the cxact solution of the surface field due to a magnetic
dipole on a flat ground plane [15].

The second limiting case occurs when

8 > m/2 (5.9)
We find from (5.6) that Ht is again given by (5.8b), but Hh becomes
' {2 3 M 1/2 =jin/4 ka)*' * oy
H(Q Vv [L-de @) +2@ /" T 8 gy el
b ks ks & < KN 2
(5.10a?
12
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In terms of the planar solution In (5.8a), we may rewrite (5.10a) as

) ot d —,kS -
3 /1 2y ~j3m/4 1 e |
) Y - fr— e A — - 0 =& —
H, Q) l“b“‘”pun.»u- W o N kR o 5
vks

(5.10b)
The resulc in (5.10) is most (nteresting and, in fact, somewhat surprising.
The surface ray traveling in direction 8 = w/2 (Fig. 5) is a atraight line
\RRC * ©),  However, due to the finite curvature in the binormal direction
\Rh = R), l{b on the cvlindrical surface differs from its counterpart on
a planar surface by the additional term in (5.10b). At a large distance
away from the source (ks > ) in the direction 8 = n/2, and for a fixed kR,
ve find that uh on a planar surtace and that on a cvlindrical surface are

given by, respectively,

~Jks
D B, e 5.11)
luh\k Jpldnur L e (5.11
-jks -jks
H (Q) v B = & + A S (5.12)
b : kR "'.:- 2 kS ’ o b

where A and B are constants independent of s and R. Thus, for large ks,
“b on a cvlinder is stronger than that on a plane.

As a third limiting case, let
> 0 (5.13)
which occurs when observation point Q is in the deep shadow. Making use

Y

of (A~60) chrough (A=10), we can derive from (5.b6):

2 2/3 . ST =
H(0) v k™ cos”™! 0 _ exp [=0.88¢ = )\%% + 0.515 + ks)) "
- By 173 1/2 2
\\ ‘) " ’
i = £ »» (5.14a)
H(Q) v KL HQ  §+= PEAS
S \

Theretfore, in the deep shadow, the field is a slow wave and decavs

exponentially along the surface rav.

13
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6. MUTUAL ADMITTANCE BETWEEN SLOTS ON A CYLINDER

Return to the calculation of Y from (4.2) for two identical

12
circumferential slots on a cyvlinder (Figure 6a). To calculate Hl. the
voltage excitation Vl in slot 1 can be replaced by an equivalent '

magnetic surface current density (Figure 7).

El = Elxx = le cos (%y) , for (y,z) in slot 1 , (6.1)

which radiates in a completely filled cvlinder (16]. 1In (6.1), v = Ro.

Making use of the Green's function in (5.6a), ﬁl is calculated from the

superposition integral

(

J,\l

H =

/2 I BT E T s 5
1 dyldzl [V1 g Cos (a yl)][b Hb sin 8 + ¢ Ht cos 9] (6.2)

where we have written the source point (y,z) as (yl,zl). Making use
of (6.2) and the electric field distribution of slot 2 in (4.2), we

obtain the final expression for Y , between two identical circumferential

1l

slots on a cvlinder, namely,

=2 i1 v :
o —— Al " i - b
le o f dyldz1 J dy2d22 [cos i YI][LOS P (y2 R¢0)]go(1,_)_
Al A,
- (6.3)
Here (yl.zl), and (y,,zo) are two typical points in slots 1 and 2,
respectively. The Green's function g¢ is
2 ¢ ]
2 = a ~ . /
gb(l.-) Hb sin” 6 + Ht cos 9 (6.4)
where (Hb‘Ht) are given in (5.6) with
s = /(y: - yl)' - (z: - :1)“ (6.5a)
X -1 y r
= tan [(z, - 31)’(Y“ - yl)} (6.5b)
14




In a very similar manner, the mutual admittance between two identical

axial slots (Figure ob) can be derived. The final result reads

wg. { n B
[ e 2. | z cO08 — cos —(z, - 2 4 32)
Yy o |, 995 | dygds, (cos o2 llcos p(e, - 24015, (2
A A,
i (0.6)
where the Green's function g 1is |
Y ~ ‘
Y ~ - + = 3 - . '.'7 \
gz(l,-) 2 Hb cos” 9 Ht sin” © (6.7)

The two surface integrals in (6.3) or (6.6) must be evaluated numerically.
Extensive numerical results are given in [8], while some representative

are presented in (db, phase l

examples are quoted below. All values of Yl’
& |

in degrees) format, where db = 20 l°510(lY1*‘ in mho).

(1) Agreement between GTD and exact modal solutions. Under the one-

modal approximation, an exact solution of Y on a cvlinder can be found

12
in terms of cvlindrical functions (the so-called "exact modal solution') [
[1) - [3), [8]. Consider two identical circumferential slots with i
parameters
a=s0.9" , BG4 , R=1.95901" (6.8a)
f =9 CHz A= 1,3123" (6.8b)

For various slot separations, values of Yl* calculated by GTD solutions

in (06.3) and by the exact modal solution are presented in Table A. We
note that they are in excellent agreement. !

(i1) Effect of transverse curvature term. As explained in the

discussion of (5.9) through (5.12), the rav travelling along the |
generator ot the cvlinder is straight. However, the field Hb on it

is stronger than that on a ray travelling on a planar conducting

15




TABLE A. le OF CIRCUMFERENTIAL SLOTS ON A CYLINDER
wo(deg.) zo(inch) Modal Solution GTD Solution
0.5" -62.62 db -62.54
-72° -72°
2.0" -71.78 -71.66
-117° -116°
0
8.0" -81.84 -81.83
34° e
40.0" -91.95 -92.46
-115° -110°
30° -77.42 -77.69
7S Wiy
60° -90.00 -90.17
Bl
4 -3° g
90° -102.52 -103.10
120° 116°
30° -81.33 -81.34
_‘/‘70 _750
40° 3 -89.87 -90.02
168° 170°
60° -101.97 -102.48
-49° =47°

Parameters of slots are given

lo

in (68).




i

surface. Such a dependence on the surface curvature in the transverse
direction of the ray is most interesting, and can be seen in Figure 8,
where we plot the ratio

Y1° on a cylinder with radius R ;

le on a plane I

as a function of R for ZO = 8" and ¢O = 0. We note that the convergence

rate of the cylindrical Y to the planar Y is not as rapid as one

12 12

would normally expect. For example, at kR = 50, the cvlindrical Yl’ is

still about 10 percent higher than the planar one. The exact modal
solution in this figure is truncated at kR = 50, because bevond this
radius, it becomes extremely slowly convergent.

(iii) Additional numerical results of Ylﬁ between two identical

slots on a cylinder are given in Figures 9 to 12. The normalized phase

is defined by the phase of Yl“ exp(+jkso), where s0 is the center-to-

2 2.2.1/2

center distance of the slots and is equal to (z0 + R"&O) -




E |

7. GTD GREEN'S FUNCTION FOR A SURFACE FIELD ON A GENERAL CONVEX SURFACE

To calculate the mutual admittance between slots on a general
convex surface, we have to generalize the GTD Green's function for the
cylinder in (5.6). Referring to Figure 13, let us consider a perfectly
conducting convex surface I , whose radii of curvature at any point are
large in terms of wavelength. At a point Ql’ described by position
vector r, on L, there is a tangential magnetic dipole source described

1

by a magnetic current density
- > > - >
K(r) = M8(r - rl) (710

where M is the magnetic dipole moment and lies in the tangent plane of I.

-

The problem is to determine a high-frequency asvmptotic solution of H at
a general point Q, described by position vector ?, on . In other words,

e
the GTD Green's function for the surface magnetic field for points LY and

-

r, is to be found.

Before presenting the solution, let us introduce several definitions
and parameters. According to GTD [13], [14], the dominant high-frequency
concribution to ﬁ(;z) is the field on the surface ray from ;1 £O Ty
surface rav is a geodesic of ©. Some of the geometrical properties are
described by (Figure 13) (i) the arc length s which is chosen such that

- - - -
s = 0 at the source point r, and s = s at the observation point r_ ; (ii) the

1

~ Y

tangent, normal, and binormal, denoted by (tn, -nn, —gn) at ;6 where n = 1,2;
and (iii) its two radii of curvature RCLE), and Rb(g) of I at point s in

the directions of tangent and binormal, respectivelv. (On a general

convex surface, both radii are nonnegative.)

18




From the above parameters, we may calculate the following quantities
that are needed for the solution of the Green's function:
(i) The large parameter in our asymptotic expansion of the Green's
function is
- 1 =1 :
n) = G @Y, (7.2)

which is a function of position along the ray from ;1 to ;, .

-

(ii) A distance parameter from T, to ;, is defined by

X

2
E=J'—§——ds ’ (7.3)

For the special case when Rt is not a function of s (ccnstant ray curvature),

9
§ is reduced to (ks/2m”), a well-known parameter introduced first by

Fock [17].
(iii) The ray curvatures at the source and observation points enter

in a parameter defined by

ks 1/2 ?
* 3200 ncs) & ' (.5

which is positive real for a convex surface, and is reduced to unity for
the special case of a constant ray curvature.

(iv) Consider a small pencil of surface rays originating from ;l and
propagating toward ;ﬁ (Figure 13). The angle extended bv the pencil at

is dy,. The divergence factor DF of the pencil

is dwl. and that at r2 5

b |

is defined by

sdw1 1/2

(75
odv, bl

DF =

-
where 0 is the caustic distance of the wavefront at r, and is always

19
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positive. For example, if I is a sphere and ;1 is the north pole, DF at

point r, = (r,%,0) is

142

DF = | ]

sin 9
which varies from one at the north pole (8 = 0) to infinity at the south
pole (8 = m) as r, moves along a great circle.

> -
(v) The "mean'" radii of curvature between r, and r

1 , are defined by

= 1/2 -
Rt = [Rt(O) Rt(s)] (7.6a)

R = (RO R (1Y . (7.6b)

Throughout this work, we always assume that I is a smooth surface with
a slowly varving curvature. Then (ﬁc,ﬁb) represents a sort of average
value of radii of curvature along the ray.

Return to the electromagnetic problem in Figure 13. We assume
that m(s) is large and is slowly varying for all s in the range
0 < s < s. Then an approximate asymptotic solution for the surface

magnetic field at ;q due to the dipole source in (7.1) is given by

AA A A

H(rz) S M- (bleHb + t1t2ﬂt)(DF) (7.7a)

where

i .3 - = .=2/3
Ho= G(s){(1 - ) (@ - @27 Tu® + JAR) /
reLE ‘D o ?3':
')+ RUR) Tu )] (7.7b)
o, = G(s) ) [7v(E) + (1 - §§> uE) + j</3k§t)‘2/3 ' (E) ] (7 0e)
kZYO e.jks wd
6(s) = 5o =g 4 Yo 2MT . (7.7d)
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The Fock functions u and v and their derivatives u' and v' are described
in the Appendix. Several remarks about the solution in (7.7) are in order.

(1) It is derived in an approximate manner from the classical

work of Fock [17] and the recipe of GTD, as detailed in [10]. All
traditional GTD solutions depend on ﬁt' not §b° In (7.7b), the term
containing (ﬁt/ﬁb) was introduced through an Ansatz suggested in (9].
Because of the fact that u' decays faster than v', this term is important
only if Et is veryv large and ib is finite. An example occurs in the
axial propagation along a cylinder, where it + @ and Eb is equal to the
radius of the cylinder. For this particular example, it is only with this
additional term that (7.7b) agrees with the rigorous asyvmptotic solution
(derived recently by J. Boersma in an unpublished note). Thus, the
Ansatz in [9] is at least partially verified.

(ii) For the special case that £ is a planar surface (Rt = Rb - ®)
(7.7) recovers the known exact solution given in (5.8). When I is a
cvlinder, (7.7) is reduced to (5.6).

>
and r,. In the

(iii) The solution is valid for any combination of ;l

penumbra region (?4 is close to r, and T << 1), (7.7) gives approximatelyv the

1
known planar solution. In the deep shadow (& >> 1), the residue series
representation of the Fock functions can be used, and (7.7) is identified as

the creeping-wave contribution.

(iv) Except for the very simple surfaces such as a cylinder, cone or
sphere, no explicit parameter equations can be found for the geodesics (18].
Thus, for a general surface, one may have to relv on numerical techniques

for determining the geodesics and the divergent factor. 1




8. GREEN'S FUNCTION OF A CONE

Let us apply the formula (7.7) to the field on an infinite cone,

described by the equations (Figure lia)

X = r sin 80 cos ¢ s y = r sin 6. sin

where 80 is the half-cone angle (0 < 8 < m/2).

0
developable surface, the rays (geodesics) on a

are straight lines [18]. Due to the source at

contribution of the field at ;, = (15,9,

Since the cone is a
developed cone (Figure 14b)

By - (rl,ao,¢1), the main

$,) comes from the shortest ray

N

described by

3 sin ﬂl =, sin Qz . (8.2)

As the ray propagates awav from the source point s

altitude at M where &, = 7w/2. After M, the rav travels downward awayv from

the cone tip. The various parameters defined in Section 7 can be simply
calculated from the cone geometry, and expressed in terms of coordinates

(rl.wl) and (r,,d,). The arclength is

s oF : 143 .
s = {r] + t, - ..rlr2 cos [(ol - @2) sin 901. £ (8.3)
The angle 2, at ;1 is
-l 9
Ql = sin {:f sin [(@2 - &l) sin @O]} : (8.4)
5 3 2 t
We choose !ﬂll <m/2ifr, < s" + s and fQI{ > 7/2 if otherwise. The
other parameters are
Qz = :l + (92 - wl) sin 80 (8.5)
a an 9
= v r l': tan ° _ vrlr: tan 0
R = - =, R = D (8.6)
t sin 4 sin ¥y cos “y cos “2
Y9

it reaches the highest

L




T~

g = (% kr, sin 2, sin 90)1/3 ?&l - QL? cost! 3 8, (8.7) ;
= G/ @)™ (sta o) sin 2, cos a3 (5.8)
DF =1 . (8.9)
When the above parameters in (8.3) through (8.9) are substituted into (7.7), ’ a

we obtain an approximate solution for the surface field on a cone due to

a direct surface ray contribution. Let us consider a special observation

-
point r, such that

ks »>> 1 X Q, and Q. are not close to zero 2 (8.10)
L hl

After making use of the residue series representation tor the Fock functioans
(Appendix) and keeping onlv the leading terms, then the two components

of the field in (7.7) are reduced to

k™ (sin Sl sin 2, cct 3O)L'3 sq
Hb A : 176 175 exp [-0.88% - j(IT + 0,518 + ks)] (8:lla)
1548 (ke £ )" (ks) " " 3%
) -
y '3:’: 2
Ht Vo0 (ks) ] (8.11b)

which agree with the rigorous asvmptotic solutions given in Equations (350)
and (53) of (19]. (In making the compariscon, note the corresponding
notations used in [1] and here: =i + j, 3 = G Ly » sy v, ~x,

«

and 51 = t!'|.) We emphasize that the result
L

Be ™ Tor B, * T/2 - ﬂl.
in (8.11) or that in [19] is valid only under the conditions in (8.10).
For an arbitrarily located observation point, (7.7) should be used.

Two final remarks about the formula in (7.7) are in order. (i) For

a given source and observation point, there are infinitelv manv ravs

(geodesics) passing through them. The contribution from each rav can be

i3




calculat:
of all r
computat
arclengt
all othe
the dist
may be a
at the t
dominant
and one

in Secti

from (7.7), and the final field solution is the superposition
contributions. In most practical problems (all the numerical
ns presented in this paper), only the ray with the shortest
gives the significant contribution to the field solution, whereas
rays may be ignored. (ii) Depending on the polarization and
ces of the source and observation points from the cone tip, there
ther significant contribution to the field from the diffraction
In such a case, the total field at any point contains two

ontributions: one from the direct rav according to formula (7.7),

om the tip-diffracted ray. More about the latter will be given

g.




9. MUTUAL ADMITTANCE BETWEEN SLOTS ON A CONE

On the surface of a cone, let us consider two arbitrarily oriented
slots. Under the assumption that the dimensions of the slots are relatively
small compared with the radii of curvature of the cone surface, the shapes
of slots are taken to be rectangular on a developed cone.

Referring to Figure 15, we describe the dimensions and the positions
of the two slots by (an,bn) and [cn,(n - l)¢0.mn] , n=12. Thus, the
radial separation of the two slots is (c2 = Cl) and the angular separation
is @O. The angle w  measures the deviation of the longitudinal direction
of slotn from the radial direction of the cone. As usual, we assume that
the slots are thin, and that their lengths are roughly a half-wavelength.
Then the aperture field in each slot can be adequately approximated by
a simple cosine distribution, which is the "one-mode' approximation
described in Section 4. le has two dominant high~frequency contributions:
one from the direct rays going from slot 1 to slot 2, and the other from
the rays diffracted at the tip of the cone, viz.,

d

{r
v + .
VSR Rt el
d %
The first term le may be explicitly written as
d -2 31/2 bl/Z -32/2 b2/2
Yo PP Ui %y a5 dy, dz,
11272 -a,/2 ~b,/2 -a,/2 -b,/2
. il T A
cos - L (1,2 9.2
% (cos a yl)(cos a. yz) g(1,2 (9.2a)
where
)) = cCO¢ 208 + { s . 9.2
g(1,2) Hb C08 W, COS W, Ht sin vy sin w, ( b)
Coordinates(v,-z ) here have their origin at the center of slot 2 (Figure

not at the center of slot 1 as in the cvlinder case (Figure 7).

29
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The Green's function components (H .Ht) are given in (7.7), and angles

b

(W .ma) are shown in Figure 15. In evaluating the integrals in (9.7a),

3

for two given points (yl.z ) and (v,,z,), we must calculate some

1 242

geometrical parameters appearing in H_ and Ht' Those calculations lead

b

to the following results

2 9 2 /4] 5 7
r =(cT+y +z"-2cvy  +z cos (W -~w ,)]l/" (9.3a)
n n n n n-"n n n n+a
-1 -1 /2 2 -1 ,
¢ = (sin 9 3 V 2 3 - 5
b= (sin 8) © sin ( y otz ot sin w -w )] (9.3b)
W = tan-l (z /v ) (9.3¢)
n+a nn
=Q + (M/2) - w_ - ¢ si ~ sin 9 a,
W oy =8 (r/2) W, ¢n sin HO + (n 1)¢0 sin 9, (9.3d)

where n = 1 and 2. We evaluate the integrals in (9.2a) numerically with
the aid of a computer.

Next, let us consider Yil‘ the part of mutual admittance due to the
ravs diffracted at the cone tip. We approximate it by

Y T sin w, sin w, (9.4)

t
12 1 2

where T is derived in [2] and is given by

, ) I 1/2 5 '
(ab a,b,) ‘tan 8 sin (kbl/-) sin (kb,/2
LIS / P b " ) PR %
U 30 ¢, sin © \ A (kbl/k)(kbl")
1°2 0
« exp J(& ~ ke, = ke,) 9.5)
exp j 4 <y <, . (Y.

Here JO is the zeroth-order tip diffraction coefficient and is a function

A numerical table of 0, for several tvpical

of the half-cone angle G( 0

<
values of 9. is given in [2]. We have fitted those values by a simple

expression, viz.,
26
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O, = A exp (iB8) 2 (9.0)

where

b

A= 1.305798L = 1.755 + 2.7728, - 1.45987

B = 2.7195 + 1.46088 . - 1.12958= + 0.65669° .
0 0 0

Both 8 and B are in radians. It has been checked that the numerical .
values of UO calculated from (9.6) are in excellent agreement with
those tabulated in [2].

: . d .
\ The final solutions for Y,, (total mutual admittance) and Y| (partial

| 12 12
mutual admittance) are given in (9.1), (9.2), and (9.4). For a given
geometry of the slots and cone, the two surface integrals in (9.2a) are

evaluated numerically bv choosing an integration grid roughly equal to

0.05\ x 0.05\. VUnless specified otherwise, all numerical computations

are based on two identical slots with slot length = 0.5\ and width = 0.2\,

t | a. "Equivalent'" cvlinder. It has been tonjectured in [2] that, in

calculating Yd

12 (the contribution from the direct ravs) approximately,

the cone mav be replaced by an "equivalent" cvlinder with radius

It ) 5
; R = E(Cl + c:) sin ﬁO . (9.7)
‘ This conjecture has been quantitatively checked out in [8]. The

conclusion is that the "equivalent'" cylinder gives a good approximation

d

for a small-angled cone, e.g., 8 = 15°, However, the error in Yl‘

0

N

calculated from the "equivalent'" cvlinder can be as large as 2.5 db for
a l.»\rge-;»mgled cone (i"n - 3()“' tor examp[e)_

b. Comparison with experiments. A set of experimental data on

the mutual coupling between two X~band open-ended waveguides (0.9" ~ 0.4™)




on a cone was reported in [2]. As a function of frequency, measurements

were done on the coupling coefficient S , which is related to Y

i 12

through the formula in (3.3). In Figures 16 and 17, three sets of data

are presented: (i) the experimental data; (ii) the theoretical results
from the present analysis in which the calculation of Yi? is based on
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