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aSUBJECTIVITY IN THE VALUATION OF GAMES 4

Robert James Weber ‘~~~~‘~~~“ ~~lftiL& T~ GOOlS
Ya le Univers ity at tYA L ~~ ~4

New Haven , Connecticut U.S.A.

The recent ax i omatic study of probabilist ic values of games has
c larified the relationship between various valuation methods and
the players ’ subjec tive perceptions of the coalition-formation
process. This has i mportant bearing upon the increasingly-coninon
use of the Banzhaf value in measuring the apportionment of power
among the players in voting games . The incompatibil ity of the
players ’ hypothes ized subjective beliefs (under the Banzhaf va l-
uation scheme) leads to the strange phenomenon of “pitfall” points
(points of value discontinuity ) in weighted majority games with
several major players and an ocean of minor players . Such results
argue against the use of the Banzhaf va l ue (or i ndeed , of any
va l ue other than the Shapley-Shubik Index) in the measurement
of power In weighted voting systems.

Introducti on. Let N be a finite set of players. A simple game v is a
(0-1)—function on the subsets (coalitions) of N , wh i ch satisfies v(O) = 0
and v(S) > v(T) for all S~T . The collection of all simple games on N is
denoted SG(N) . We often think of a simple game as representing the decision
rule of a politica l body: coalitions S for which v(S) 1 are said to be
winning, and those for wh i ch v(S) 0 are said to be lo jfl~.

ç The weighted voting same Iq: w1,...,w~) is a simple game defined on the player

set N = {l ,...,nl , in which a coalition S is winning if and only if
w(S) 

~~ SWi q . The quantity q is the quota of the game, and w1,...,w~
are the players ’ voting wei ghts.

Many organizations are formally administered as wei ghted voting games. (The
stockholders of a corporation , for example , are traditionally accorded voting
weights equa l to the number of shares they own.) Other institution s use decision
rules which , while not explicitly formulated as weighted voting games, are never-
theless equivalen t to such games . (The United Nations Securi ty Council passes

measures wi th the approval of at least nine of its fifteen members; each of the
five permanent members has the righ t to veto any measure . This situation is
fuRy represented by a weighted voting game in which the quota is 39 , the
permanent members have votin g weights of 7 each , and the remaining ten mem-
bers have weights of 1 each.)
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Legislative bodies in which the legislators represent districts of unequal popu-
lations are frequently organized as wei ghted voting games. How should the voting
weights of the various legislators be determined? An obvious approach is to make
the weights proportiona l to the district populations . However, this can lead to
highly unsatisfactory results . For example , assume that four districts respec-
ti vely contain 30, 30, 30, and 10 percent of the tota l population . An assignment
of weights yielding a game such as [51 : 30,30,30,10] will leave the residents
of the fourth di strict without effective representation ; their legislator will
never be an essential member of a winning coalition . Again , assume that three
districts respectively contain 45, 45, and 10 percent of the population . Although
the third district is much smaller than the other two, the proportionally-weighted
voting game [51: 45,45,10] is actually symmetric; all coalitions of two or more
legislators are winning.

Situations analogous to those just given (although perhaps a bit more subtle)
have arisen in a number of municipal legislative bodies in the Un ited Stetes (for
example , see [51). The courts have generally ruled that such situations violate
the “equa l representation ” principles of the U.S. Constitution , and have required
that voting weights be reallocated in order to prov i de a more equitable distribu-
tior~ of influence .

These same courts have shown a willingness to accept the idea of a measure of
“power” of the players in a simple game. If the relative power of the legis-
lators in a weighted-voting legislati ve body is roughly proportional to the pop-
ulation of the legislators ’ districts , then the situation is deemed satisfactory .

In order to facilitate comparisons among various measures of power, we shall
present several properties which might be desired of such measures. Two par-
ticular measures , the Shapley—Shubik and Banzhaf power indices , have received
much attention . We will find that both of these reside wi thin a common axiomati c
framework which provides a natura l interpretation of them in terms of the
players ’ subjective perceptions of the process of coalition formation .

Probabilistic va l ues. As a fixed player i .N varies his attention over the
games in SG(N) , he will perceive himself as having greater influence in some
games than in others . A va l ue for i on SG(N) is a real-valued function

SG(N) R which indicates the subjective assessment, by player I , of
his power in the various games.

For any iLN , consider the simple game on N in which the winning coalitions
are precisely those containing i . Player i is a dictator in this game; it
is difficult to imagine him in a more powerful position . On the other hand ,
since all games in SG(N) are monotonic (if SDT and I is winning , then S
is also winning), player l’ s membership can never hurt a coalition . Therefore,
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his weakest position arises when he cannot contribute anything to any coalition .
In this case, when v (S~i) = v(S) for all ScNIi , we say that i is a
dummy of v . (For notational convenience , we will often omi t the braces when
indicating one-element sets.) Generally, if v(Sui ) = v(S )  + v(i) for all

ScNII , then i is a strategic dumy in v ; both dictators and zero-dummies
are strategi c dummies.
Contining these observations , we impose the following normalization requirement
upon a va l ue

(P1 ) For any v~SG(N) , O.- n
~
(v)-l . If i is a strategic dummy in v , then

= v ( i )

A simple game on N is completely characterized by its collections of winning
and losing coalitions . Hence, a particularly elementary measure of player i ’ s

power In a game would arise from simply tallying the winning and losing coali-
tions to which he belongs. This idea is embodied in the next requirement.

(P2 ) There are constants {a1:TcN} , {b1:TcN } such that for
every v€ SG(N) , ~~( v )  = Z aT + z b.~.T wins T loses

m v  m v

There are a number of equivalent formulations of this requi rement , s ome less
transparent than others. For example , for any games u and w in SG(N)
define the games uvw and u~w by (uvw)(S) = max (u(S),w(S)) and

( uAw ) ( S )  = mm (u(S),w(S)) . These two new games are also in SG(N) . Recently,
attention has been given to the requirement that a va l ue satisfy

+ ii 1 (w ) = ~1 (uvw ) + 
p 1 (uAw) for all games u and w under considerati on;

this is a lattice—theoretic ana logue of linearity . In essence, this says that
the transfer of winning coaliti ons from one game to another does not affect the
tota l value of the two games . (P2) is a direct consequence of this.

A probabilistic va lue is a va lue satisfying (P1 ) and (P2) . These two properties
together imply that probabilistic values have a very special fo rm.

Theorem. A value for i on SG(N) is a probabilistic va l ue if and only
if there is a collection (P1:TcNli} of nonnegati ve constants satisfying
ZPT = I , such that for every v~SG(N) ,

u 1
(v ) ~~ P1[v(Tiil)-v(TH .

T’- N l l



Proof. It follows from (P2) that for any v

u1 ( v )  
~ 

a~. + 
~ 

bT ~ 
(a T _ b T )v (T)  + 

~ 
b.~.

v(T) l v (T) 0 TcN TcN

For any Tc:N , let VT SG(N) be the ganx~ in which the winning coaliti ons are
precisely those S for which ~~ . If  I is nonempty , let v1€SG(N) have as
winning coalitions those S for which SDT . The game VN is identically zero.
Player i is a zero-dummy in this game; it follows from (P1 ) that ZbT=O . For
every TcN , define CT = aT-bT . Then u 1 (v) = ~c1v (T) . p
Let I be any nonempty coalition in Nh . Player i is a zero-dummy in VT
Therefore, til (v T)=0=ZTcs N h l (c s i +cs) . By i nduction , beginning wi th T=Nhi
and proceeding to successively smaller coalitions , it follows that c1~~+c1=O
Define P1 = 

~~~~ 
-cT , and also define P0 c~ . Then

= ET NI1 PTtv(Tui )v(T)]

From (P1), it follows that ~P1 = ti~
(v
~
) = 1 . Furthermore, for any TcN fi

P1 ~~(v1) > 0 . This establishes the formula in the theorem. It is easily
veri fied that any value defined in this manner indeed satisfies both (P1) and
(P2). 0

Our pri nciple concern is with an interpretation suggested by the representation
in the theorem. Player i can view the coefficients P1 as subjecti ve proba-
bilities . Coalitions form through a process of accretion . At some point , a
coalition in N h will approach i and invite him to join; the probability
that he is approached by I is P1 . The quantity p 1 (v) is then the proba-
bility that i is pivota l , converting the coalition he joins from losing to
wi nning . Hence, the normalization and simplicity assumptions lead directly to
a subjective model of coalition formation , in which a player ’s sole concern is
wi th his marginal contribution to the coalition he joins . We shall hold this
model in mi nd throughout the remainder of this paper.

Semiva l ues. When developing a measure to compare the infl uence of the various

p layers i n a game, i t seems reasona b le to adopt a symmetric point of view . In
addition , it is desirable that the measurement method be applicable to all
fin i te-player games (rather than merely to games on a fixed player set).

Let U be an infinite set, the un i verse of players . A simple game v on U
is a monotonic (0,1)-function on the subsets of U which satisfies v(Ø) = 0 .
Any N.~U such that v(S) = v(SnN) for all SLU is a carrier of v . A finite
simple game is a simple game with a finite carrier; the set of all such games
is SG(U) . A va lue for i~U is a real-valued function on SG(U) . For
any finite NcU , SG(N) can be embedded in SG(U) by treating the players in
(JIN as zero—dLaIInles . A value ‘P 1 Is said to satisfy (P1) and (P2) if its



restriction to each SG(N) satisfies these condit ions. A permutation $~:U4J
is a one-to-one onto mapping. For any permutation n and game v€ SG(U)
define ~v SG(U) by (nv)(S) = v(~S) for all ScU . A semi value ~ = (‘P~~)~~~
is a collection of values satisfying (P1), (P2), and the following symetry
condition :

(P3) ‘P1 (iT v) = ‘v~~(v) for all i€ U , all permutations it of U

and all games v€ SG(U) . p
Let ~ be a probability distribution on [0,1]. The va l ue ‘Y” on SG(U) is
defined for all v.SG(N) and 1~NcU by

~ P~ [v(Sui)-v(S)]ScN h i

where pn = f 1 t~ ( l - t )  ~~~dE~(t )  . (Here , n and s generically denote the
card i nalities of N and S .) Note that the definition of ‘P~(v) is inde-
pendent of the selection of a carrier N of v . It is not difficult to veri fy
that is a semi va l ue. The following result is derived in [3].

Theorem. Let ~‘ be a semi value on SG(U) . Then there is a probability
distribution ~ on [0,1] such that p=p~ .

Adopting the interpretation of probabilistic values given in the previous
section , we can view a semivalue in the followin g manner. Given v~SG(N) ,
the players in N i l are assigned random positions on [0,11 which are chosen
independently and uniformly. The position of i is chosen according to the
distribution ~ . Then ‘i’~(v) is the expected marginal contribution of i
(or equivalently, the probability that I is piv otal) when he joins the coali-
tion of players whose positions precede his.

A semiva l ue ‘v~ gives each player in turn a distinguished treatment when his
va l ue is computed . A fully-synirietric treatment arises when is the un i form
distribution on [0,11. This yields the Shapley value [8,91, w ith

= s (n-s-l)~/n: . On the other hand , if is the probability distribution
concentrated at the point ‘~ then the i-subjective viewpoint associated with
is highly idiosyncratic; i considers himself likely to hold a centra l position
among the players . This yields the Banzhaf va l ue [1], wi th P~ = l/2~~~ .

Consistenqy. The use of a semiva lue ‘V to compare the relative influence of
the players of a game is not affected by rescaling . Hence, one may work instead
with the normalized va l ue ~ , defined for all v SG(U) by ~(v) = ‘V (v)/

~
’P
~
(v) .

Historically, most applications of the Banzhaf value have emp loyed this normali-

~ zation .
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A conceptua l difficulty with ~his approach is that the sum in the normalizing
factor combines the subjective probabilities of different individuals , a proba-.
bilistic analogue of adding apples and oranges .

Theorem. The Shapley value is the only semi va l ue ‘P for which z’V~
(v) = 1

for every nonzero v€ SG(U)

This characterization of the Shapley value in the context of simple gair~ fi rst
appeared In [2) . FOr an alternative derivation , let A denote the Lebesque
measure on [0 ,1] and let ~xA be any other probability measure . Select
x~[0 ,l] such that (D~)(x)>1 , or such that x is in the support of the corn-
ponent of ~ singular with respect to A . Let v be a k-player game in
which all coalitions of more than xk players win. Then for xxl , suffi-
clently large values of k can be found so that z’V~(vk )>l . (If x=l , the
same result holds when Vk is a k—player unanimi ty game.)

The theorem provides a particular distinction to the Shapley value : it is the

unique semi value arising from consistent expectations . The effect of incon-
sistency on normalized va l ues is discussed in the next section .

Games wi th many mi nor players. We consider wei ghted voting games consisting of
a set M (1,2,.. .,m} of “major” players, and a large number k of “minor ”
players of total voting wei ght ct>O . Let vk = [q:w 1,. .. ~Wm4~•~ .4] , and
let v~ = (q:w 1,.. .,wm4,. . .,~) ; a coalition wins in the latter game if it has
total wei ght strictly greater than q . The following results concern the semi -
values (unnormalized and normalized ) of the major players when k is large .

Let ‘Y~ denote the semi va lue associated with the probability distribution con-

centrated at t . Define Zt = [q—tct:w1,. .. ~~~ and z~ = (q-ta:w 1,.. .,w~)
if q—tcz<0 then Zt=O , and if q—tcz<0 then z~~O

Theorem. For all 0<t<l and i~M

lim ‘P
~
(vk) = lim ‘v~(v~) = 

~ 
‘V~(z~) + 

~2

Theorem. For all 0~t<l and i~M

~i~ (z ) = ‘i~ (z ’) if tIP
lim 

~
.(Vk) = lim ~~(v~) = ~ t 1 t
1 1 0 if t.P ,

where P = It : for some ScM , w (S) +t i=q}

Both of these results follow in a stra i ghtforward manner from the centra l limi t
theorem, or from a few judicious applications of Stirling ’s formula . As k
becomes large , each major player considers the total weight of the minor players
in the c o a l i t i o n  he will eventually join to be equally likely to be slightly

4
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more or sl ightly less than t~ ; the fi rst theorem is an immediate consequence
of this . Fix a minor player j , and let L be the (binomially-distributed )
number of other minor players in the coalition which j eventually joins. If
w (S)+tc a~q , then ‘V~(v k )1t5 ( l_ t ) m_s Pr(L<tk ~L+ 1 ) ; this probability is asympto-
tica l ly proportional to k 2  . On the other hand , If = m i n{ It_ t ’ I : t ’ t P}>O
then ‘V~

(v k) < Pr(L< (t—€ )k or (t+€)k<L+l) ; this probability is asymptoti cally
proportiona l to k r , where r = exp(-€ /[2t(l-t)))<l . Consequently, in one
case the sum of the va l ues of the k minor players increases wi thout bound ,
in the other case the sum approaches zero. Hence, the normalized semi values

behave as indicated in the second theorem. (The cases t=0 and t=l require

separa te trea tment, because the distribution of I is degenerate. However,
this degeneracy makes direct computation of the va l ues ‘P0 and ‘~

1 trivial.)

For any probability distribution ~ on [0,1], and any v.SG(U) and i€ U

‘P~(v) = f~~~(v)d~ (t ) . Since the integrand is nonnegative and bounded , the
first limi t theorem carries over to genera l distributions in an obvious manner.

The possible behavior of normalized values , as indicated in the second theorem,
is best illustrated by an example. Let B denote the normalized Banzhaf value ,
and consider the games Vk = [55: 4o+€ ,3o,2o,.!.Qj~-,.. ~~~~~~~~~~ for various values
of € . If ~-0 (B l,B 2,B3)( v k)~

(0,0,0) ; that is , the mi nor players share
essentially all the influence in the game. For any small ~>O

(8l,B 2,B3)(v k)-’.(~
,
~
.,
~

-) . This discontinuity may seem unsurprising , since the
vot i ng we ight of a major player has been increased at the expense of the minor

players . But for any small .<O , we have (B l,B 2,B3)(vk )-s (- ,
~
-,
~
-)

according to the normalized Banzhaf value , a sacrifice in voting weight can

benefit the major players~ (It can be shown that for a genera l distribution

~ and a game vE SG(U) , the occurrence of this type of ‘pitfa ll discontinuity ”
is related to the existence of a t~Pn (O,1) such that dUdA either does not
exist or is unbounded in every neighborhood of t .)

Of course, this strange behavior results from the inconsistency of the players ’
subjective expectations . If €=O , each minor player considers himself rela-
tively more likely to be pivotal than any of his fellow minor players ; for

the opposi te situation holds . And the normalized values of the major

players depend critically upon this collective optimism or pessimism of the
minor p layers .
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