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RADIATION OF AN ELEMENTARY SLOTTED DIPOLE LOCATED 1N ..THE CENTER
OF AN IDEALLY CONDUCTING D ISK

; Obtalned on the basis of the solution to the strict
integral equat ion are the asymptot ic express ions for the
field appearing in the long—range zone with excitation

of an ideally conduct ing disk by an elementary slot ted
dipole (magnetic dipole) located in the center of’ the
disk. In the solution it was assumed that the radius of

disk Is much larger than the wavelength .

Introduct ion

The radiation of an elementary slotted dipole located In the
center of an Infipitely thin ideally conducting round disk was

exam ined by M.G. Belkina In work [1]. The solution was obtained
on the basis of Fourier method in the form of series according
to spheroidal functions. As is known, such series in the case of
the large (in comparison with the wavelength) disk merge ex-
tremely slowly, and the solution becomes practically unsuitable
for the numerical calculations . Therefore, It Ii of IntereEt to
obtain the asymptotic solution for the case ~~~~~ where
is the wave number ; A — the wavelength; a — the radlue of the
disk.

A one—sided slot, cut in the disk, is equivalent to the ele-
mentary magnetic dipole lying on the disk. In virtue of the
principle of duality [2], instead of solving the problem on the
excitation of the disk by the elementary magnetic dipole lne.ated

1
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In the center of the disk, it is possible to solve the problem
• on the excitation of an Ideally conducting plane with a round

opening by an electrical dipole located in the center of the

opening and then, according to the known equations of transition,

find the solution of the initial problem . When xa>I the second

(additional) problem is solved considerably simply . 4
Statement of the prob lem

Let us examine the additional problem on the excitation of
an ideally conducting plane with a round hole of radius a by an
elemenatary electrical dipole with moment p. located In the cen-
ter of the hole.

Let us introduce the Cartesian coordinate system x, y and
z, the origin of which coincides with the center of the hole ,
axis z is perpendicular to the plane of the screen , and the di-
rection of the axis x coincides with the direction of the moment
of the dipole (p ~~ x,p) . Let us also introduce the cylindrical
coordinate system r. ~~. z, the axis z of which coincides with
axis z of the Cartesian coordinate system (Fig. 1).

Fig. 1

The strength of the primarry electrical field created by
the elementary electrical dipole

(I)

where

• ••±
~

. .±±• -.~~~~~~~~~~~ 
•
~~~~~~~~~~~~ -~~~~~~~ L



r~— I1(r, z)cos~; E~,—’ I, (r . z)sin,; E~~~~$(r. z)cos,;

~ (a, 
a) M !~~~ [i* — ~~- (i _. 

~
) (aS — 21*)];

I.(r,

e ’~~~t 1  3f 3 1 *
~~ 

(I , z) = M R R IL1 — 
(~R)ij ~

M~~ 4*1 -

and c is the dielectric constant of the medium . The dependence

on time is taken In the form of e~’

Under the effect of the field (1) on the plane with a round
hole, there are applied the currents with density

T’ ,) — a,!, (a, ,) + ,,J, (r, ,) xJ1 (r, ,) + y.J, (a. ,). (2
~

The vector potential corresponding to these currents

— ~~ Id.A = - ~_ Sp dp j L ~~~~~~~ ~~~~~ (3)

where

L=Vr ’+p’+z’—2rpcos (3 — ,),

and 11 is the magnetic permeability of the medium .
G.A. Greenberg showed (see [3] or [~4]) that In the case of

ideally conduct ing inf initely thin screens , the vector potent ial
at points of the screen can be found irrespective of the func-

tion 7(r , ç) . This makes it possible, by applying the relation
(3) to the points of the screen, to reduce the problem to the
solution of the Integral equation of the first kind. To deter-
mine the functions A on the screen, i.e., when ,>a, z— O , let us
proceed in the following manner .

The strength of the secondary electrical field E~ is con—
nected with the veCtor potential A by the relation

~3 ’-— gra dV — 1. , (4)

where

3
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On the surface of the screen the following boundary con—
I • ditions must be fulfilled :

Bk — — when r.~~ a, z —0 ; (5)

— — when a> a, a — 0. • (6)

which , by taking (4) into account , can be rewritten in t~ ’ form:

• 
. +i,,A,i..E,when r>a , z— 0 ~7)

.-!~f+ i w A,=cwhen  r>a , z = O , (8)

where A, and A, are the radial and azimuthal components of

the vector A , respectively .
Since E , ~~~~ z)cosç, and E’5, =J,(r1 z)sznç , then, according

to results of work [3], the scalar potential ‘V on the surface
of the screen can be presented in the form

where the function ~j (r) must satisfy the condition of the radia-
tion and the differential equation

~ ++~ +(*‘— 3)*=—~ I ;  r>a . (10)

Solving (10) by the method of the variation of the arbi-
trary constants and considering the condition of radiation, we
get

~(r) — BH?)frr) + 
~~~~

- HV)vcr)SF(t)Hf!(sct) dt _

— H?) (Icr)
S F (1) 

H(1
1) (pcI) dtl. r> a, 

• (11)

where f 31 3F(O a.—M
at (at)’ ’

J~V’ and HI” are Hankel ’s functions of the first order of the
first and second kind , respectively , and B is a certain constant
which must be defined later from the condition of vanishing on
the edge of the hole of the radial component of the current den-
sity:

J,(a) — 0. (12)

4
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Thus the function $(r), and, consequently, function ‘V (a, a)
when r~~a; z—O are determined with an accuracy up to the con-
stant B.

Express ing from ( 7 )  and (8) components A, and A, and
then going over to the Cartesian component of vector A, we get

(13)
• where

Aa = A? (a) + ~~ (r) cos 2ç fl~H r ~~~
. a; z = 01 . 14)

A,=A~ (r)smn 2q U~H r>a ;  z = 0  J ’
• A? (a) — 

~~~~

. 

[~
i —

~ h (r, 0) + _!_
ip + 1~ (r, 0)]

• • (15)
A? (a) — A~ (a) — 

~~~~~ 

.[
~ 

_!i (a, 0) — — !~ (a, .0)]

Applying (3)  to points of the screen (r~~a, z— O) and con-
sIdering (13), we arrive at two independent integral equations
of the first kind :

A?(r , 0) + A?(r, 01cos2~ = _Spdp $ 5~J~j1p, .)da;

— ,+2’

A?(r. 0) sin 2c =~~-$pd r ;c D i~(p. 2)da. 07)

where

D = Vr’±p ’~~ 2r~~cos (a _ q~~.

From the form of the left sides of equations (16) and (17),
it follows that the functions j~(p, a) and j,,(p, a) can be sought
in the form

ia=i?(p)+i?(p)cos2* (18)
I, —

where
Substituting (18) into (16) and going in the interrkal in-

tegral to the new variable of integration 8 according to the
equation ~~~~~~~~~~~~~~ we arrive at the two independent integral
equations of the first kind for functions 1? p) and J?’(’)

—
“~“ (‘~ ~~~~~~~~~~~~~~~~ 

‘ ‘ cos4d~ ,~~~~~

5
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where

D = V r’+p’—2rpc os~

The left sides of equations (19) are known with an accuracy
to the constant B, which must be defined after the finding of
functlon8 J?(p) and I?(p) . The conditon (12) serves for the
calculation of constant B, and after the transition to functions

!?(p) and J?(p) takes the form

(20)

Thus the problem on the excitation of an ideally conducting
plane with a round hole by an elementary electrical dipole lo-
cated in the center of the hole is reduced to the solution of
two independent integral equations of the first kind (19) with

an additional condition (20).

Determinat ion of Currents

Ecuations (19) are strict integral equations of the problem .

They are correct at any values of the parameter aa . The solu-

t ion to these equations when aa>1 is of interest to us. In
this case the left sides of equations (19), defined by equations
(15), are considerably simplified . Since Ka>1, and r~~a,
then the Hankel funct ions , which enter Into the left sides of
equations (19), can be replaced by the first terms of their

asymptotic expansions :

H ?(ar)~~ ‘L. e~” e~~ ~~~ (21)

Disregarding, furthermore, terms of the order of in com-
parison with unity, we get

t —
~~~~ —I~ r 1• spuD ’ -’— — 6 1 ’ I~~~•

I VT • ‘ V T J
_ 3 i p)pd~~ç

° cos~~ p; r> ~—O 2, (22)

where • ;
2~~~~e ’ 11 4.,, ‘—0,i f— B 
“Y~’ 

‘ 6 ’ ’lo~~A,~, ‘-2.

6
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The internal integral on the right side of (22) can be
transformed by using the asymptotic equality proven In work [5]:

~‘ -4iiD I~~~ cos d~~~_ -—~__ (Hg)(a cIr_ p 9+ -

+ I (—1k’ 14’ 1* (r + p)J) +0 ((icai~”I, = 0; 2. (2~)

Substituting (23) into (22) and introducing the dimension—

less variab les F , r~ and y connected with p, r arid k by relations

p=a(l +~ ), r — a ( 1 +~) , y = ~~d,, (24)

we obtain •

.sM (~)H r [y (,i + ~+ 2f ld ~~—

(25)

where

JI~’~ (~) — ~~~~~ ~~_“~~~~~ j~
’
~ (a (1 + ~)j VI + ~. ‘ —0; 2, (26)

and C—— l }1~~e~~’B’ is a certain constant which will be defined
subsequently from condition (20).

Using the equalities proven by G.A . Greenberg [6]

(27)

f ~~~~ e~
’
~H~’(y Iv ,—~ I)dt — e~ ” . (28)

~ I 2 n ~

we transform the equations (25) into the integral equations of

the second kind :

uM
~ ) — ~~ 

~~~~I1’U+Z_ ç a~~ (1)C4’
~ Yt ~~~2 

~ +
nIT b

—In
+C e — 6,-’ ,~~n0;2 (29)

Since according to the assumption that y—sca > 1 , the

solutiou .to equations (29) can be found by the method of

T T T  

_ _ _ _ _ _ _ _ _  
- .

—
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successive approximations . However , it is more convenient to use

the artificial method .

Functions u~”(~) are proportional to the component J1a(1+~j3

of the density of the current induced on the screen. With an
increase in the variable ~~~, funct ions u~”(I) decrease according

to the absolute value and van ish when ~~~~~ Therefore when y>I
the main contribution to the value of the integral entering into

(29) is given by the neighborhood of the point ~ = 0. Conse-
quent ly,  there take - place the following approximate equality:

uM = — ii! 
- 

UI” + c
,~ •Yi ~ +z ii vT

—I? (1+1)
—6, n (~ + ~~~

_
. ‘= 0; 2, 

• 

(30)

where - 
—

UI” =5 u
1’
~ (~

) e~~ d ~~, = 0; 2. • (31)

We can strictly show that the error of equa lity (3 0) does
not exce ed O(~~~ft)

For determin ing the constants UI” , let us multiply both

sides of (30) by e~~ and integrate with respect
to ~ from zero to infinity. As a result let us Impart to two
(for v = 0 and v = 2) independent algebraic equations , the solv-
ing of which we get

~1

• UI” =. ) ‘1)’ — 6, Li— ~ ~~~~~ 
, ‘= 0; 2, (32)

where

•(Vi ) = !,~.... f e 45. 
- 

(33)

It remained to determine the constant C. Using condition
(20) , which a f te r  the transition to functions u 1” (~) takes the
form

(0~ + ~m (0) — 0, (34)

we obtain

8
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-.4’ ~~~~~~~~~~~~~~~~~~~~~ Ll—.WT~ )j
C= .!-.

2 • —Ifl —.sfl

1 +I. ’tI —~~(Vr~ )I _j  ‘ — -

• 2~~~

Expression (35 )  is considerably simplified if funct ion

Is replaced by its asymptotic representation . Here there

will be fulfillled the simple relation
2 h.a.- .s~~~~.

Thus the func t ions  uM (~) are completely defined , and , con-
sequently, the distribution of the currents induced on the screen

Is known .

Determination of the Field

Let us turn to the determination of the field which appears
with the excitation of an ideally conducting plane with a round

hole by an elementary electrical dipole located in the center of

the hole.

The vector  potent ial  of the current s induced on the screen
is expressed by the equation (3 )  and has two component s : A

~ and

~~~ where

Aa — A? (a, a) + A? (r, a) cos 2, 
(36)

A,’ A? (a, z)sin2ç; A r=A? 
-

On the screen (r~~a, z=0) func tions A~’ (r. z~ coincide
with the func tions A~Z~ (r), introduced earlier and at the arbi-

trary point in space are determined by the expression

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (37)

Equation (37 )  is inconvenient for the numerical calculations .

Let us find the asymptotic representation . Here we will distin-

guish two regions : first , the one adjoining the z axis and the
• second , the remaining part of the space.

First , let us examine the second region . Let us introduce

the spherical coordinate system R, 8, q ,  the polar axis of which
coincides with the z axis of the cylindrical coordinate system

• (Fig. 1).

9
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Equation (37 )  in this coordinate system takes the form

= ~~~~~~~~~~~~~ 
~~

‘ 

u~’~ (~
) 1’ l 4~~ d ~ç ~~~~~

X cos~~d~, v=0; 2. (38)

where

L,= Lb = [r~+ (1 + ~~)2 ... 2,’,(i + ~)sin O cos~ )”2 ,
= Rio.

Since in the examined region the inequality ysin0>1, is

fulf illed, then the internal integral in (38) can be transformed
according to the equation (see work [7])

ç • L, 
cos~~d~ =— I H ~”(y b)+

1, jT

+ I (— I)’ H~o” (y d)) + O [(y sin O)~~1]. v = 0; 2, (39)
where

b= 1 r + (1 +~
)2_ 2r,(1 +~

)sifl $fm ,

d= [r+ (1+~)’+2r,(1+~)Sin9f~~.

Substi tut ing into (38) values of functions ~ M 
~~ from (301

and applying to equation (39) ,  we get

A?’—- - , , , ,-. {UP’ IQ,(2, r,,O)+

+iQ(2, r,, O+~ )1+iCtQ 2 (r.,9)+iQ,(4, ’ 8+n)1—
— i 6,[Qj (I , r06)+i Qi (i , r., O+~~)), 

- (40)

where
Q1(a, r1, O)= ~-J~ ~~~~~~~~~~~ H~’(sjb)d~; - . (41)

Q (a,r,, 0) = .1 ~~
‘ Cd” Hr (v b) d ~.. • 

(42)

The integral Q,(a,r.,0) was examined in detail in work [7].

In the long—range zone (when rr+oo ) the following asymptotic

equality is correct :

-

~~~~~

. ~~~~ •• . .:i~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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~~ ( fl ’e 
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• Q1(a, r,, 0) -” Yi~ Y~ : -

The Integral Q,(rs. ~) is calculated in work [8] and equal
to

Q,(r,, 9 )— e ~e ’~” ’~”(1 —~~(Vi yr,(1 —~ n0) )I. (44)

In the long—range zone (,~,hen r,-~.oo ) expression (411 ) takes
the form

VT —IVy, IV IaS .
Q,(r,, 0)— ~~~ ~~ )‘l ki 

+0(r,”). (45)

Using the relations ( 4 3 )  and (45) and going from components

A~~ and A? in the Cartes ian coordinate system to components
A,. and A, in the spherical coordinate system, we get

4, 
— 5, (8) sinc; (46)

— i;~
-. ~ (9) cog,, (47)

where
S,(0) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (48)

S,(0)== ~~~ {tu ~
2 + urI F 1 (o) —F ,(O, +

- 

— I -~~ 1 
- 

~~~~ e~
1’

~ \l2e ( j  
______ 

— 
______ 

fl ; (49)
‘. y r ~-~~e • V 1+ sin S /J

F1(0) e~’ t1—0 (V Y (1—’~~))I+• +Ie”~~(1_0 (VT2y(1+*1hi0))1;
F,(9)— 1(1 —,(1/TiTI —sin~~ ) 3— L 1 —OW i~ (I +sInO))).

The strength of the secondary electrical field E1 in the
long—range zone Is connected with the vector potential A by the
relation E~~ —I.A . Consequently, the components of the vector

of the strength of the total ele~trical field E—i,+E~ in the
long—range zone in region ysIn6~~ I are equal, respectively , to

L• •  .

~~~~~

-•

~~~~~~~~~

..

~

.________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A —

— — ‘

~~~~

‘ 
~ ~ 

(8)—I); (50)

- E,’_ ~~~’~
” ‘

,°“.(S,(O)+IJ. (51)

Let us turn to the computation of the field in the region
adjoining the z axis , and let us be limited to the examinat ion
of the long—range zone.

• Assuming in ( 3 8)  that L~~ r0—(1+~)sin0cos~ arid changing the

order of integration, we get

A?) = 
I 

e IVr
~ (~) e

’~’~~°~ x
X cos v~ d~ , ~~~O; 2, (52)

where
G”(~) =~

‘u~’~(t)V1 + ~~~~~~~~~~~~ -.‘= 0; 2. (53)

Integral (53 )  can be computed asymptotically. Subst i tu t ing
the values of functions u~~ (~) from (30) into (53) and disre-
garding terms of the order O 1(y( 1 — sinO)f~~’J , we get

— 
I’_~~ ~~~~~~~~~ 

,(
(V) + 0 ILy (1 — sin e)j-I”J , (54)

where •

(55)
J

Expanding (1 — sin8ccspf ’~ In power series of sIn8cos~ and
being limited to the first three terms of the expansion, after
the term—by—term integration in equation (52) let us impart to the
following expression :

A?’—~~~
’
~
’ ‘~~~ (“~T~~(9), i— 0 2. (56)

where 
-

7’ (O)— 4(~iIn9)+ +~
“hhs(Y~’1’

0)+

- 

(57)

12

________________________________________________ _____________________

• 
‘

,.• - 
•

~
.
. . - 

•• —
~~:, . ~~~~~~~

- .- .- t_g LA~~.~~~~~~~. A
______________________ 

.
~~— •--•••-----



- .

7rn (0) — J ,(y sin )+ .3 sln O IJ1(ysln 0)—

— 1, (y sin 0)1+3 sin’ 0(1, (y sin 0) — 21, (y sin 0) + 1~ (y sin 0)). (58)

Here J~ is the Bessel function of the first kind of order n.
In going over to the components A, and A, in the spherical
coordinate system , we get

i~~dI~P .~~~.
• A,— 4na ~ V,(8)ain,; (59)

1 46w •4W•A,— ~~~~~, , V,(0)ccs,, (60)

where

(61)
V,(0)_ t!(~~T~~(0)+I(

rnTrn(o)1cose. 
- 

(62)

Consequently , the components of the vector of the total

electrical field strength in the long—range zone In region

y (1—sin$)>1 are equal to

•—IW. y’pMo~— 
, 

—
~~~~~,,, 

[1’, (0)— 11; (63)
-4W. ~~~~~~~

4*a’i 
(V,(0)+lJ. (64)

Thus the additional problem on the excitation of an ideally

conducting plane with a round hole by an elementary electrical

dipole, located in the center of the hole , is completely solved .
• Let us turn to an analysis of the initial problem .

Excitation of the Disk by an Elementary Magnetic Dipole

The electromagnetic field created by the elementary magnetic

dipole (one—way slot), located in the center of an ideally con-
ducting disk , can be found by the duality principle [2], using

• the obtained solution. Here in the long—range zone in the

region yslnO~~1 the total electr ical field strength E’ is de—
• termined by the following expressions :

a) in the upper half—space (z 0):
- — -‘In. Iy’m~n,

~~~~~~~~~~~ (S,(0)—21J, (6~)

— H’ }f ”  — — ~-4~ b I ~~~~~ (S, (8) + 21), (66)

13
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where m is the moment of the dipole;

b) in the lower half—space (z 0):

— —1W.Iy’4N~ n,
E = H ,J/-~,-=  e n 

_
4,i.s s S,(0), (67)

•ç_ .H;~~~~~= •_ “ 
~:~:‘z’ S,(8). (68)

Correspondingly , in the region adjoining the z axis [I.e.,

with the fulfillment of equality y(1—sInO)> 1], the field in the

long—range zone is determined by the equations :

a) in the upper half—space:

(69)

E=  ~~~~ = ~
‘- “4:~ :v,~ 

— 2); (70)

b) in the lower half—space:

E;=H;1/f-=_ !_ _
~~~~!~‘v,io), (71)

- 
,—IYr. ~‘m cos ç

= II; J/-f = — —i-— 
~~ ~~ 

V1 (O~. (72)

Numerical Results

For a comparison of the obtained asymptot ic express ions
(65)— (72) with results of the strict solution [1], the numerical -

calculations for the case y = 5 were conducted .
Figure 2 gives the normalized radiation pattern of the ele-

mentary magnetic dipole located in the center of an Ideally con—

ducting disk on the upper side of the disk corresponding to the

plane • = 90°. The solid line shows the values of E of the
component referred to the maximal value of modulus 

~~~
, taken

from work [1] (strict solution). Applied by a dashed line are

• similar values computed according to equations (65), (67), (69),
and (71).

• Figure 3 gives the normalized radiation pattern in the plane

• — 00 . The solid line corresponds to the strict solution and

the dashed line to values computed according to equations (66),
( 6 8 ),  (70), and (72).
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• Figure 11 shows the normalized radiation pattern of the ele-

mentary magnet ic dipole located in the center of an ideally con-
ducting disk in the plane $ = 90° calculated according to equa-

tions (65), (67), (69) ,  and (71) when y = 10.

Figure gives the normalized radiation pattern in the plane

• = 0° calculated by equations (66 ) ,  (68 ) , (7 0 ) ,  and ( 72 )  when
y = 10.

On Figs. 6 and 7 similar patterns are plotted when y = 15.
As the calculat ions show , equations (65)— (72) overlap the

whole range of the change In angle 0.

The obtained solution will be more accurate , the larger the
quantity y~~a. However , as the numerical calculations show,
it satisfactorily transfers the character of the radiation pat-

tern at such a comparatively small value of y, as y = 5.
The ottained solution is suitable only when the magnetic di-

pole lies on the disk; however , the method used In the work makes
it possible to obtain the solut ion also for the case of the mag-
netic dipole raised slightly above the disk.

In conclusion the authors wish to thank Professor G.Z. Ayzen—

berg and Assistant Professor L.S. Korol’kevich for their dis-
cussion of this work and their valuable advice.
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