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RADIATION OF AN ELEMENTARY SLOTTED DIPOLE LOCATED IN.THE CCNTER
OF AN IDEALLY CONDUCTING DISK

. Obtained on the basis of the solution to the strict
integral equation are the asymptotic expressions for the
field appearing in the long-range zone with excitation
of an ideally conducting disk by an elementary slotted
dipole (magnetic dipole) located in the center of the
disk. In the solution it was assumed that the radius of
disk 1s much larger than the wavelength.

Introduction

The radiation of an elementary slotted dipole located in the
center of an infinitely thin ideally conducting round disk was
examined by M.G. Belkina in work [1]. The solution was obtained
on the basis of Fourier method in the form of series according
to spheroidal functions. As is known, such series in the case of
the large (in comparison with the wavelength) disk merge ex-
tremely slowly, and the solution becomes practically unsuitable
for the numerical calculations. Therefore, it is of interest to
obtalin the asymptotic solution for the case xa®»l, where :-"—:—
is the wave number; A - the wavelength; a - the radius of the
disk.

A one-sided slot, cut in the disk, 1s equivalent to the ele-
mentary magnetic dipole lying on the disk. In virtue of the
principle of duality [2], instead of solving the problem on the
exclitation of the disk by the elementary magnetic gipole located




in the center of the disk, it 1s possible to solve the problem
on the excitation of an ideally conducting plane with a round
opening by an electrical dipole located in the center of the
opening and then, according to the known equations of transition,
find the solution of the initial problem. When xa®»1 the second
(additional) problem is solved considerably simply.

Statement of the problem

Let us examine the additional problem on the excitation of
an l1deally conducting plane with a round hole of radius a by an
elemenatary electrical dipole with moment 5: located in the cen-
ter of the hole.

Let us introduce the Cartesian coordinate system X, y and
z, the origin of which coincides with the center of the hole,
axis z 1s perpendicular to the plane of the screen, and the di-
rection of the axis x coincides with the direction of the moment
of the dipole d;-;J» . Let us also introduce the cylindrical
coordinate system r @ 2 the axis 2z of which coincides with
axis z of the Cartesian coordinate system (Fig. 1).
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Fig. 1

The strength of the primarry eleetrical field created by
the elementary electrical dipole

E =7E, + 95, + 2E0, ()
where :
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E, = li(r, 9cosg; E}, = fy(r, sing; Ey, = fo(r, 2)cosg;

h. =M S [2— 5 (1 — F) e — 2]
—fxR
fu(r, 3)=—M%— l_é_#i];
i 3i 3 7z
".(" )= —Mp T'[l _?R’—(FR)?]T ;
M= 2 R=VFF7,

4ns : >

and € 1s the dielectric constant of the medium. The dependence

on time is taken in the form of e™ .

Under the effect of the field (1) on the plane with a round
hole, there are applied the currents with density

e O =7l D+ Wiy . =zl O+ 40iy1n 0), (D

The vector potential corresponding to these currents

- 7 L
A=~r-jpdp J 2 jte. 7)d 3, 3)
a

where

L=Vr+p*+22—2rpcos(z— @),

and y is the magnetic permeability of the medium.

G.A. Greenberg showed (see [3] or [4]) that in the case of
ideally conducting infinitely thin screens, the vector potential
Z at points of the screen can be found irrespective of the func-
tion 70,9) . This makes 1t possible, by applying the relation
(3) to the points of the screen, to reduce the problem to the
solution of the 1integral equation of the first kind. To deter-
mine the functions A4 on the screen, 1.e., when r>a, 2=0, let us

proceed in the following manner.
The strength of the secondary electrical field E; is con-
nected with the veetor potential K by the relation

E,=—grad¥ —iwA4, @
; where
Ve —'—"‘
[ 7Y
3




F

On the surface of the screen the following boundary con-
ditions must be fulfilled:
E,, = —E, when r2a, z2=0; (5)

E, = —E, when r3a, z=0 6)

117
which, by taking (4) into account, can be rewritten in t.: form:

2Y +ieA,=E, when r>a, z=0; Ao
109, .
T‘-—;f}-luA's‘E;' when r>a, z=0, 8)
A are the radial and azimuthal components of

where A, and 3
the vector A , respectively.

Since E;, =fy(r, zZ)cosg, and E;' =fs(r, 2)sing, then, according
to results of work [3], the scalar potential ¥ on the surface
of the screen can be presented in the form

¥ = y(r)cos@ when r>a, z2=0, : ()
where the function ¢(r) must satisfy the condition of the radia-
tion and the differential equation

ary 1 dy 1 af, b
2L +(x’—7)¢=-—2’- |_jr>a. (10)

Solving (10) by the method of the variation of the arbi-
trary constants and considering the condition of radiation, we

get
¥ = BHP ) + 51 1o o) [ F 0 P (et at -
—H?’(xr)]'F(l) H(l"(xl)dl}, r>a, ' ()
where
eIt 3i 3
F(O-—MTII o wrl

H{» and H@® are Hankel's functions of the first order of the
first and second kind, respectively, and B is a certain constant
which must be defined later from the condition of vanishing on
the edge of the hole of the radial component of the current den-
sity:

jr(@=0. (12)




Thus the function #(r), and, consequently, function ¥(r, 2)
when r3a; 2=0 are determlned with an accuracy up to the con-
stant B.

Expressing from (7) and (8) components A, and A, and
then going over to the Cartesian component of vector A, we get

A=X A+ YA, (13)

where

Ac= AQ (1) + AP () cos 2 npu r>a; 2= ol : (14)

A,=A‘:’(r)sin2tp npp r>a; z=0
Ar ) = - [E =Rt 0+ e +he. 0]

. . (s)
AP = A2 = [ —he. 0—Tv—he. 0|

Applying (3) to points of the screen (r>a, 2=0) and con-
sidering (13), we arrive at two independent integral equations
of the first kind:

o3 ' ‘,-n-‘_.m b
AP, 0+ AP, Ocs2e= " [pdp [ =i, 9de; (18

- 2 '
AD (7, 0)sin 2¢ = -"—jpdp j Ko i lp, syt (17) |
LS 4n 1 L i ; 3
L 12

where

Pl

D=Vr+p*—2rpcos(z—g).
From the form of the left sides of equations (16) and (17),
it follows that the functions j«lp,@) and j,(p,e) can be sought
in the form

is=iQ )+ IP (p) cos 22

i 1
j, = I () sin 2 i

where ®@=/p) .

Substituting (18) into (16) and going in the intermal in-
tegral to the new variable of integration B according to the
equation p=a—¢. we arrive at the two independent integral | 4
equations of the first kind for functions j® (p) and j®(p) :

- ™ ‘_.. .
AP0, 0 =2 [ p)pdp [ S—cospdhi r >0 v =02 (19)
e . )




where

D=Vr+p*— 2pcosp.

The left sides of equations (19) are known with an accuracy
to the constant B, which must be defined after the finding of
functions j®(p) and j®(p) . The conditon (12) serves for the
calculation of constant B, and after the transition to functions
i®(p) and j®(p) takes the form

i® (@) + j®(a) = 0. (20)

Thus the problem on the excitation of an ideally conducting
plane with a round hole by an elementary electrical dipole lo-
cated in the center of the hole 1s reduced to the solution of
two independent integral equations of the first kind (19) with
an additiomal condition (20).

Determination o. Currents

Eaquations (19) are strict integral equations of the problem.
They are correct at any values of the parameter xa . The solu-
tion to these equations when xa>»1 is of interest to us. 1In
this case the left sides of equations (19), defined by equatdons
(15), are considerably simplified. Since «xa»l, and rza,
then the Hankel functions, which enter into the left sides of
equations (19), can be replaced by the first terms of their
asymptotic expansions:

v

H® (xr) = ;,7 ""e 5 (21)

Disregarding, furthermore, terms of the order of {& in com-
parison with unity, we get

.'pla' ‘; —a,i ';‘:_']- -

y % o0 3 . :

=) I 0)pdp [ S cospdp; r>a; v=0; 2, (22)
)

where

& =

S T ey wbin




The internal integral on the right side of (22) can be
transformed by using the asymptotic equality proven in work [5]:

=

(52 casvpdp=— 2L (P cir—pp +
J D R s ,
+i(= 1) H? x(r + o)) +0l(xa)™>), v =0; 2. (23)

Substituting (23) into (22) and introducing the dimension-
less variables £, n and y connected with p, r and k by relations

we obtailn

-
-

J U @A i tDde+ i W@ K (y(r+ E+ 21 dE=

= £ , \
=CJ‘%%f““—%”th+nL @9
where
T
'M(a_ Ve ‘a

tayyy RO FDIVIFE =02 (29

and C=—iV ae™8 1s a certain constant which will be defined
subsequently from condition (20).
Using the equalities proven by G.A. Greenberg [6]

Jnfﬁwm HP wln—Epdt =HPIly(m+R). @0

Yre © o mp@yin—thdb = ™, (28)
Varg

we transform the equations (25) into the integral equations of
the second kind:

PRI s T ey >
i ke b 5 ere -
+C.—m . L 29)

sVE  Tavie+»

Since according to the assumption that y=xa3»i , the
solution.to equations (29) can be found by the method of




successive approximations. However, it 1s more convenient to use
the artificial method.

Functions u"’(;) are proportional to the component j™fa(1+%))
of the density of the current induced on the screen. With an
increase in the variable £, functions um(i) decrease according
to the absolute value and vanish when g+«, Therefore when y3»I1
the main contribution to the value of the integral entering into
(29) is given by the neighborhood of the point £ = 0. Conse-
quently, there takes place the following approximate equality:

—IY ¢+ M

Y U 4
uvV ()= —i U?"‘I-Ca,/i.

" VER+D
it = etk (30)

IV E+HD

where -

up =‘§ M E)e " ™dE, v=0; 2. . (31)

We can strictly show that the error of equality (30) does
nct exceed O(y™* 3

For determining the constants U§{? , let us multiply both
sides of (30) by e ™ and integrate with respect
to £ from zero to iInfinity. As a result let us impart to two
(for v = 0 and v = 2) independent algebraic equations, the solv-
ing of which we get

il o
‘W-'V%—f;;—b.ll—o(t’lzvn

y V= 6; 8 (32)
1+i"1—0o(Viwy)
where
5 I{ Ve
P { '
O(Vi-)a—ﬁ_ ‘[ e ds. @

It remained to determine the constant C. Using condition
(20), which after the transition to functions «™ () takes the

form
u®©0) 4+ «™(0) =0, (34)

we obtain

B
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oo U0 0 TR 5y 1~ o (/T

: . (35)
o 1+ie™ -0 (VT —i el sy
- 2V ay

Expression (35) is considerably simplified if function
O(Vi;) is replaced by its asymptotic representation. Here there
will be fulfillled the simple relation C=--e"40(y>?)

2 e wadt .

Thus the functions u"’&) are completely defined, and, con-
sequently, the distribution of the currents induced on the screen
is known.

Determination of the Field

Let us turn to the determination of the field which appears
with the excitation of an ideally conducting plane with a round
hole by an elementary electrical dipole located in the center of
the hole.

The vector potential of the currents induced on the screen
is expressed by the equation (3) and has two components: Ax and
Ay, where _

A= A®(r, 2)+ AD(r, 2)cos2¢
A, s AP, 2)sin2g; AP = AP |’ o

On the screen (rz»a, 2=0) functions AQ (r. 22 coincide
with the functions AY (r), introduced earlier and at the arbi-
trary point in space are determined by the expression

= - e
Ap--,_"—jmp)puoji—;wﬁ’. =0 (N
. 4 i

Equation (37) 1s inconvenient for the numerical calculations.
Let us find the asymptotic representation. Here we will distin-
guish two regions: first, the one adjoining the z axis and the
second, the remaining part of the space.

First, let us examine the second region. Let us introduce
the spherical coordinate system R, 6, ¢, the polar axis of which
coincides with the z axis of the cylindrical coordinate system

(Mg 1),




G

Equation (37) in this coordinate system takes the form

1
A‘,"’ v ie

ala

e 2x
w-ti)]"\‘ JUM(E)I/I—-!——EdEf e—Vels
0

4n ) 2nea

X cospdp, v=0; 2, (38)

where

Ly=La=[r+(1+ §)’ 2ro (1 + E)sin(icosﬂ]"2 .
=Rla.

Since in the examined region the inequality ysin®>1, 1is
fulfilled, then the internal integral in (38) can be transformed
according to the equation (see work [7])

e e H® (vb
5 s V——_‘r.u+a)a b ;100 +
+i(— 1) HP (yd))+0l(ysin®)™>?), v=0; 2, . (39

where
b=[ri+ (1 +8—2r(1 +B)sin ),
d=[r3+ (1 +8+ (1 + E)sin 0],

Substituting into (38) values of functions u™ (§) from (30)
and applying to equation (39), we get

. le
AY ‘fﬁ?ﬁﬁ‘f’?'”‘"m‘(z f..3)+

+iQi2 1y 04+ 7)) +iCIQ:(ry, 8) +iQslre, 8+ 2N —
—i8,1(, 1,8 +iQ0, r Ok, U0

where

Qo 0=L —V%ﬁ—"—-li?’( voOdE - )

Qa(“'o- 0) "—'5

HP(wbo)dE. . (49

The integral Q(o, r,,8) was examined in detail in work [T7].
In the long-range zone (when 7re+o0 ) the following asymptotic
equality 1s correct:

49
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% Vet ™ _ve-nasgy _
Ql(ov .’.0 o) -—Va_’ —Vr' ll e
— @ (Viyo(T=sn0)) +0 (™). Wy
The integral Qs(re 8) 1s calculated in work [8] and equal
to
= .
Qi (r,. o)-'_}% e ‘et @ (Y iyr, (1 —sin®) )]. (44)
In the long-range zone (when rg+00' ) expression (44) takes
the form
V'f iV .ﬂﬂn‘- : i -
Qa('o-o) = vn m"‘o('o ). . (45)

Using the relations (43) and (45) and going from components
AR and A® 1in the Cartesian coordinate system to components

A, and A, 1in the spherical coordinate system, we get

A'.- eni 4 '_ . S, @)sing; (46)

A= "-"-’ s S. (@)cosgp, @“n

where :
S,0) = (48)

S,(6) = 7——5 {[us”+ uﬁ”lrl(e)-—r.(ew

- -
2 4 i¥sind g —i¥sind .

k& Ve,‘—y (i V 1—sin® VYV 1+sin® )} A “9)
F.(e) M — o (ViZy(T—sin®)) +

(| —o(Viy (1 +sn0))k
F.m-ill-O(VTiTi‘:sW =N —@(Viy(T+sn0))l

The strength of the secondary electrical fileld E; in the
long-range zone 1s connected with the vector potential A by the
relation E,-—b; . Consequently, the components of the vector
of the strength of the total eleeétrical field E=Ey+E  in the
long-range zone in region ysin@»1 are equal, respectively, to

11




E,-— S LRS00k 0

; .E.- i .—-:ro H'Petl' [s (0)+l] (51)

Let us turn to the computation of the field in the region i
adjoining the z axis, and let us be limited to the examination
of the long-range zone. |

Assuming in (38) that Lo~ ro—(1+§)sinOcosp and changing the
order of integration, we get

1= 2
ie ‘wupVy e ) 1¥sinbcosp
) = X
A 4n) 2na - "y B
X cosvpdp, v=0; 2, (52)

where k
G (P = 5 WM @) VI T Ee™ P4t v =0; 2. (53)

Integral (53) can be computed asymptotically. Substituting
the values of functions &™ (}) from (30) into (53) and disre-
garding terms of the order Ofy(l —sin8) ™2} , we get

. i

. 1 4 o —3/2 3
where : :
——|U3’ ""+ VQC

Expanding (1 —sin6cosp)™* 1in power series of sinBcosp and
being limited to the first three terms of the expansion, after

the term-by-term integration in equation (52) let us impart to the
followling expression:

A%"-“" ",'."x"r"(o),'--i).z. (56
where

T (6) = Jolysin®) + —'-ﬂnOJ,(ysan)-i-

+——dﬂ'€')ll.(7ﬂﬂ')—l-(vin')l. - (0

12
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T () = — Ja(ysin) + — sin01J, (ysin8) —

—Ja(ysin®)] + 3 sin?01J, (v sin ) — 27, (ysin6) + Ju (y in @)L, (58)

Here Jn is the Bessel function of the first kind of order n.
In going over to the components A, and A, 1n the spherical

coordinate system, we get

g" | A= :.z: %V, (@sing; (59)
A= s Vi@ cose, (60)
where
V0 =K*T?@)—K"T@; (6D
Vy(8) = [K* T (8) + KT (8)] cos. -~ (62)

Consequently, the components of the vector of the total
electrical field strength in the long-range zone in region
y (1—sin8) »1 are equal to
W Y psing :
E, = e [V'(O)—_l], (63)

E= SRt e+ (60

Thus the additional problem on the excitation of an ideally
conducting plane with a round hole by an elementary electrical
dipole, located in the center of the hole, 1s completely solved.
Let us turn to an analysis of the initial problem.

Excitation of the Disk by an Elementary Magnetic Dipole

The electromagnetic field created by the elementary magnetic
dipole (one-way slot), located in the center of an ideally con-
ductiﬁg disk, can be found by the duality principle [2], using
the obtained solution. Here 1in the long-range zone 1in the
region ysin@>1 the total electrical field strength E is de-
termined by the following expressions:

a) in the upper half-space (z 0):

B —ivre | sin :
E=H, yi=-- . B e (S,0—2), (69 .
| L e e U R Y

| 13




where m is the moment of the dipole;
b) in the lower half-space (z<«0):

- —iVr | sin > .
E=H Y3 =205, _(67)
] [ Wi -
E; e ”; -.L- - [ '::::' Si(©). . (68)

Correspondingly, in the region adjoining the z axis [i.e.,
with the fulfillment of equality y(l—sin@)»1}, the field in the
long-range zone is determined by the eauaﬁions:

a) in the upper half-space:

. 'y —iVry r.dﬂ' ‘
ﬁ-".%%-*%rwrmm—_zl. e
s —1Vry y2
E=H) == T tvie+ 2 (70)

b) in the lower half-space:

s ‘ —iVre Y3 11 sin @ .
Rei) - To0000 0, )
e —iVry 43
. . u e Ve YT mcos @
Ry T2 e e

Numerical Results

For a comparison of the obtailned asymptotic expressions
(65)=(72) with results of the strict solution [1], the numerical
calculations for the case y = 5 were conducted.

Figure 2 gives the normalized radiation pattern of the ele-
mentary magnetic dipole located 1n the center of an ideally con-
ducting disk on the upper side of the disk corresponding to the
plane ¢ = 90°, The solid line shows the values of E; of the
component referred to the maximal value of modulus |E| taken
from work [1] (strict solution). Applied by a dashed line are
similar values computed according to equations (65), (8%), (69),
and (71).

Figure 3 gilves the normalized radiation pattern in the plane
¢ = 0°, The solid line corresponds to the strict solution and
the dashed line to values computed according to equations (66),
(68), (70), and (72).




m. —— T T I T o T—

Figure 4 shows the normalized radiation pattern of the ele-
mentary magnetic dipole located in the center of an ideally con-
ducting disk in the plane ¢ = 90° calculated according to equa-
tions (65), (67), (69), and (71) when y = 10.

Figure gives the normalized radiation pattern in the plane
¢ = 0° calculated by equations (66), (68), (70), and (72) when
Yy = 10.

On Figs. 6 and 7 similar patterns are plotted when y = 15.

As the calculations show, equations (65)-(72) overlap the
whole range of the change in angle 6.

The obtained solution will be more accurate, the larger the
quantity y=xa. However, as the numerical calculations show,
it satisfactorily transfers the character of the radiation pat-
tern at such a comparatively small value of y, as y = 5,

The ottained solution is suiltable only when the magnetic di-
pole lies on the disk; however, the method used in the work makes
it possible to obtain the solution also for the case of the mag-
netic dipole raised slightly above the disk.

In conclusion the authors wish to thank Professor G.Z. Ayzen- _
berg and Assistant Professor L.S. Korol'kevich for their dis- é
cussion of this work and their valuable advice.
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C513 PICATINNY ARSENAL 1 FTD
C535 AVIATION SYS COMD 1l CCN 1
C591 FSTC S ASD/FTD/NICD 3
C619 MIA REDSTONE 1l NIA/PHS 1
D008 NISC 1l NICD 2
H300 USAICE (USAREUR) 1
P00S ERDA 1
P00S CIA/CRS/ADB/SD 1l
NAVORDSTA (50L) 1
NASA/KSI 1l
AFIT/LD 1l
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