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ABSTRACT

The problem of rapidly and accurately determining the orbital plane of

an artificial earth satellite from a short series (< 10m) of observations is

posed and solved. The observations can be either angles only data or angles

and angular rates. The accuracy is generally 50 • In addition, another look

is given to the angular velocity distance estimation technique.
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I. MOTIVATION

During searches of the equatorial belt one will find known objects

and unknown ones. For the known ones immediate identification is desirable

so that telescope time can be freed for other purposes. Currently this is

done by position only. The use of a spin period, angular velocity , or an

orbital plane direction would help. Hence, it was asked whether or not

an artificial satellite’s orbital plane could be accurately determined in a

inrelatively short (5 — 10 ) time .

If an object turned out to be an unknown, then finding it again in the

immediate future , so that the telescope could be time shared, was a problem.

For low eccentricity, low inclination objects the current dead reckoning

tools are adequate. For high eccentricity or high inclination objects these

techniques decay in predictive ability as the square of the elapsed time.

If one knew the orbital plane then one could constrain the predictions of

right ascension and declination to satisfy the orbital plane equation

[cf. Eq. (4b)]. Once again a rapid , accurate determination of the orbital

plane is desirable.

Finally, there is the problem of recovering unknown satellites the next

night. Obviously an along the orbit search needs the orbital plane to proceed.

Also, discriminating against several possible initial orbits would be helpful.

Hence, the need to determine the orbital plane.

Below we examine the physics and geometry of the problem and test a

large number (34) of different artificial satellite orbits based on the

assum ption they were discovered during equatorial search. The results are

generally good to 5°.
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II. THE CONSTRAINT !. !:~ — 0

A unit vector in the direction of the angular momentum vector is

given by

L — (sin~sinj, —cos~sini , cost), (1)

where ~ Is the longitude of the ascending node on the equator and 1~ is

the inclination of the orbital plane to the equator. ~c[O ,36O), ie[O ,180),

and the zero of ~ is the vernal equinox. The magnitude of the angular

momentum vector per unit mass is given by na2(l — e2)~~
’2 

where n Is the

mean motion , a is the semi—major axis, and e is the eccentricity. Since

L - r x v / I r x vl , (2)

where r — (x,y,z) — r(cosiScosc&, cosl5sina, sInS) is the geocentric location

and v — dr/dt Is the geocentric velocity, it follows that

r L— 0 a n d v~~~L— 0 .  (3)

These relationships are true at all instants of time when a, e, 1, and ~

are interpretated as the elements of the osculating ellipse. Hence, no

assumptions about the forces acting on the object (an artificial satellite

bound to the earth) need be made except that di/dt , d�2/dt , da/dt , and

de/dt multiplied by the duration of the observing span be very small. It

so happens that for both practical reasons concerned with the mechanics of

equatorial search and analytical ones discussed below the observing span

2 L
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will be on the order of a few minutes. Hence, we can take i, ~ 2 , a, and e

to be constants .

The flr8t part of Eq. (3) can be written as

xsin~sInt —ycosQsini + zcos I. 0, (4a)

or, in spherical coordinates ,

r[cos6tantsin(c~ — 
~ Z) — siw$] — 0. (4b)

Note if t 90* the right ascension is always equal to ~~~. We also note that

t the geocentric distance plays no real role in Eq. (4b). In addition, two

observations of geocentric position (e.g., a and ö)  s uf f i c e  to determine

i and ~~~, viz,

nina tan 5 - sina tan5
tan~i =  1 2 2 1, (5a)

cosa
1
taniS

2 
— cosa

2tanS1

taut = tan61csc(ct1 — 
~2) — tanS

2csc(ct2 
— ~). (5b )

The problem is that we measure topocentric position A , ~ [the topocentric

location is given by R = R(cosE~cosA,cos~sjnA, sint~)] and not the geocentric

values.

Let the observer’s geocentric location be given by s s(cos4 ’cosi,

cOs~ ’sIflT, sine’) where s is his geocentric distance, 4’ is his geocentric3



latitude, and t the local sidereal time. Then the relationship between

geocentric and topocentrtc locations is

(6)

In terms of the measured quantities Eq. (4b) becomes

R[cos~tanisin (A — ~) — sint~)

+ s[cos4’tantsin(r — ~) — sin$’] — 0. (7)

We see that the distance does not now drop out. Moreover, if it happens

that even within the 5 - lO’~ observing span R changes appreciably, Eq. (7)

will not accurately reflect the physics of the problem . Hence, we allow

for a constant variation of R, V — dR/dt. Therefore, r L — 0 becomes

f(t , ~~~, R, V , t)  — (R + Vt){cos~ (t)tan~sin [A( t) —
~~~~ 

—

sint~(t)} + s{cos$’tantsin[r(t) — — sin~’} 0. (8)

The full time dependence is now explicitly indicated in Eq. (8).

Presumably we have N > 3 measurements of A, ~~~, and t , say

{A~ 1 
~~ 

t~ }, j — 1, 2, 3, ... , N. From these and Eq. (8) we wish to

determine i and fl and ~e apparently get R and V free. Letting

f~ (t 1 ~~~, R , V) — f(i, ~, R, V, t~) we form

4



N
F(t , 1~, R , V) — ~ w~f~ (t . ~I, R, V) (9)

i—i

and seek the minimum of F with respect to i, ~2 , R , and V. The

quantities W
j are the weights of the jth value of f. We argue below

for — 1/N vjc[l,N1. The problem is now in the form of a non—linear

least squares estimation problem. There exists a standard technique

for solving such problems (see the Appendix). Unfortunately , it doesn’t

work in this case. Instead the method of steepest descent has been

successfully used to obtain values of t , ~2 , R , and V (see the Appendix).

The accuracy of the results obtained by using Eq. (9) is discussed in

The weights, are given by

l/Wj 
- (

~
f j /3Aj

) 2
/wA + (3f

j /a~ j
2

/w~~ + (
~
f
j/~

tj
)2/w

~ 
(10)

where WA is the weight of A , etc. Relative to the weights of topocentric
.1~ 

j

right ascensiom ~ind declination, the weight of the time is effectively

infinite. Also, since 0° Vjc[l,N], the weights of right ascension

and declination are effectively equal. Finally, as tN 
— t 1 

< lOu, to first

order all the ~f~/aA~ and af~/at~ are the same, whence to first order , all

of the weights of the same. After reading the Appendix it will become

clear that a dependence of the weights on t , ~~~, R, or V is immensely

complicating analytically. Hence, even if it weren’t true that the

5



weights are all equal (to first order), I would’ve taken them to be equa l

out of computational necessity. This discussion also makes it clear that

determining t , 12, and R must rest on second order effects so that high

accuracy (e.g., better than 1° in L) is not to be expected. Clearly,

determining V rests on third order effects.

I ’
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I I I .  THE CONSTRAINT ! L — 0

Unless r x ‘i vanishes ( e . g . ,  e — o) the constraint v L — 0 is
independent of the constraint r • L — 0. Assuming that the acceleration

in the topocentric range is negligible , we can write this as

df(i , 12, R, V , t)/dt — V{cosMt)tantsin[A(t) — 12] — sin~A ( t ) }

— (R + Vt)A (t) {sinL ,~(t )  t an i s in [A(t )  — 12] + cosI~( t) }

+ (R + Vt) A(t)cost~(t) tanlcos [A(t) — 12]

+ sr ( t ) c o sq ’t a nt co s [ T ( t )  — 12] — 0. (11)

The function to be minimized is now

N
F(t , 1~, R , V) = ~ w~~[f ~~(t . ç2 , R , V) + f~~(i , 12, R , V)]. (12)

The weights for f and df/dt are taken to be same because the f weights

are all equal to each other to first order. We note that no new unknowns

are introduced in Eq. (12) over those already in Eq. (9).

Solving Eq. (12) is no more difficult than solving Eq. (9) and it

has also been performed by the method of steepest descent . If it turns

out that no information can be obtained about V even when it ’s relatively

large we merely set V = 0 in Eqs. (8 and 

11).7



I
IV. NUMERICAL TESTS

SThe time spacing for the first series of tests was t~~ 1 
— t

1 
= 30

Vjc[l ,N]. This series, using six widely different artificial satellite

orbits , included V , used the method of steepest descent , and showed that

for a ~~~ observing span tl~ direction of L could be gotten within a few

(5) degrees. Eliminating V from the equations made no difference (it was

always 0.000km/sec anyhow) even though ~~ was as large as 5km/sec in some

cases. I also rewrote Eqs. (8 and 9) using fIR (see the Appendix) . For

these same satellites and the same observations the results were never

better (with or without V) and sometimes poorer. Thus, it seemed

important to test a wider variety of satellite orbits , the effect of the

angular rates, the effect of the quality of the data , and the effect of

the time span of the data.

A total of 34 different satellite orbits have been ised to generate

topocentric position and topocentric angular velocity . Each has been

analyzed (without V) in the following ways ; (a) t~~ 1 
— t

,~ = 30S 
Vjc[l,N],

accuracy in position = v’~ ’, N = 11 (e.g., 5m), no angular velocity , (b)

same as case (a) except N = 21 (e.g., 10m), (c) same as case (a) but with a

positional accuracy of 9” (SSCSAO quality), (d) same as case (c) except

N = 21, (e) same as case (a) except including angular velocities accurate to

0’.~l/sec, and (f) same as case (e) except N = 2 1.

If w and I are our approximations for  12 and i , then let

9.. = (sinwsinl , —cm oswsinl ,cosI) ,  (13)

8



and

cos~~~~~~~~L. (14)

If Q. and 1. were parallel then ~ would be zero. As there is an ambiguity in

determining 12 from Eq.(5a), we may find a set of values for I and w which

has 9~ anti—parallel to L. This corresponds to ~ — 180° and the incorrect

heliticity . Lastly we note if t and I are both small , • may be small but
1w — 121 not necessarily small.

With in  a few tenths of a degree in ~ cases (a) , ( b ) ,  (c) , and (d) all

produce the same results. Table 1 lists the case (c) and case (e) results.

The satellites are grouped by increasing mean motion and within each mean

) motion group by increasing eccentricity . In general adding the angular

velocity information produces better results (as would be expected). In a

few instances the reverse is true . Moreover , one could presumably find a

function of the satellite ’s orbital elements and the observer’s location

which would predict the values of • in Table 1. Whereas this would explain

Table 1, it is obviously of no practical use.

If we concentrate on those satellites with a mean motion of less than

2.5 rev/day the mean value of $ is 5~8. The standard deviation about the

mean is 5°3. It, therefore , appears that the usefulness of these results

is fairly limited. Further experimentation for dead reckoning purposes

has been temporarily suspended. Finally , by examining the results for R,

it became clear that in the huge majority of the cases what came out was

what went in. Hence, a more detailed examination of the angular velocity

distance estimation technique seemed in order.

9
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V. THE DISTANCE ESTIMATION TECHNIQUE*

As this is the largest body of data I have yet had with which to

test the angular velocity distance estimation technique, I performed

such an analysis. Figure 1 is a plot of the estimated distance against

the true distance (both are geocentric). Low eccentricity orbits are t

plotted as dots , high eccentricity orbits as plus signs . The two lines

represent r — r and r — 0.83r. The latter includes the correctionest est

of the unknown eccentricity assuming a uniform distribution of eccentricities

in the artificial satellite population? Once beyond 3 earth radii the

technique works qu ite well. Of course, for all the small eccentricity

objects rest is systematically too low by 1 
— 0.83 — 17%. To remedy

this, since about 75% of the total deep space artificial satellite

population is low eccentricity, we can split the difference (e.g., use

0.91 instead of 0.83) or use a two point eccentricity distribution. The

latter, if 75% are near e — 0 and 25% near e 0.7 yields 0.94. In the

future we’ll split the difference.

*See IVIIA of L. C. Taff , “Astrometry in Small Fields ,” Technical Note
1977—2, Lincoln Laboratory, M.I.T. (14 June 1977), DDC AD—A043568/5.

11 1
Ai~~



j Is -g - s49 1)
+

8 —  —

+

r .st .r
7 —  —

6 -  /
‘

F- .JF-

/ 4 ,,

5 — ~) ./ ‘ 
,,<

4~ r1,, O.83r —

S

4 + 
—

+

/Z -

2 —  —

+ +
(~~~~

.F-+ I I I I I I
2 3 4 5 6 7 8

Fig.l. Plot of estimated geocentric distance (rest) vs the ac tual
geocentric distance (r). Plus signs denote high eccentricity
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APPENDIX

In this section I want to review the standard technique for solving a

non—linear estimation problem, review the method of steepest descent, and

examine the application of these techniques to Eqs. (9 and 12). Suppose we

have some function g of the unknown parameters x and we wish to minimize

N
C ~ w~g~(x). (Al)

j—l

The standard technique to find the value of x, say ~~~~ , that minimizes G

is to expand Ej(& about some guess for x , say x .  Then, to first order,

C 

~~~ 

wj E8j (~ ,) + V
~aj (&l~ - ,~~~ 

(
~ 

- 

~~,fl
2 . (A2)

C, as given by Eq. (A2) is now a linear function of x — x and we f orm

the normal equations as in the ordinary linear case (e.g., demand

VxG 0). After solving the normal equations for x - our new guess

for x is x — (x -- x ) + x . If necessary this iteration is repeated

until x — x  is sufficiently small and IV ci is sufficiently small too.
This procedure won’t work for Eqs. (8 and 9) because of the following:

It is logical to use the geocentric relationships, Eqs. (5), to obtain

guesses for t and IL We can guess R by the angular velocity technique

and V 0 should do. The matrix of the norma l equations , along the main

diagonal , ~iill then have terms proportional to N 1cos~tanis in(A~ — I~)

— sinA~]
2 and (tN 

— t1
)2 times this. Clearly each of these is very small ,

13
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I

the second being lO 5of the first. Hence, inversion of the matrix is

numerically impossible. One might think that this could be avoided by

using f/R instead of f in Eq. (9). The present difficulty would be

removed but a new one introduced. As s/R 1/6 for the satellites of

interest, the matrix of the normal equations now contains terms of the

order of N(s/R2)
2 and N (tN 

— t1
)2(s/R 2)2 on the main diagonal. These are •

of the order of lO
_ 2 

and l0~~, respectively . Hence, numerical inversion

is again impossible.

Having exhausted analytically rearranging Eqs. (8 and 9) we turn to a

completely different technique. Let us return to Eqs. (Al and A2) but

continue the expansion of G(x + AX) to second order terms. If r(x) is the

Hessian matrix of G then

C(x + AX) — G(x) + V C(x) )j~ + (A
2/2) X r (x ) X. (A3)

As we are looking for a minimum of C we take X to be in the direction of

the maximum rate of decrease of C, i.e.,

X — - V G(x). (A4)

With this value for X we can find the value of A to use by insisting that

C(x — XV
~
C(x)1 be a minimum with respect to A. The result is

A — lv~~~&I
2 ,’Ev ~t~& r (x) V C(xfl. (AS)

14
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Thus , starting from a guess x — ~~~~~ for x , we compu te our new guess from

x — x — XV G(x)I (A6)—U —o x — x - x
- - -0

with A evaluated via Eq. (AS) at x — x .  If C(x) has a unique minimum

(e.g., ~~ ) in any closed region and the metric defined by F(z) has a

positive upper bound in this region then this iteration does converge to

x .  For most practical problems this technique is difficult to apply

because one needs accurate values for r(x).

For the problem posed by Eqs. (8 and 9), or more generally Eqs.

(11 and 12) , all of the second derivatives can be computed. In particular,

H for Eqs. (11 and 12),

•1 N .

aF/at — 2 ~ w4If 4 (af 4/~ L) + f4(~f4/~~fl, (A7)
j—l~~ 

~~ -‘ ~

etc., and

N .

— 2 ~ w [( sf /~~j )
2 + f (~

2f /~~2) + (9f /~~)2 + f (
~
2f ~~~~~ (A8a)

i_l i i j j j j j

• N . .

— 2 ~ w4[~ f4/~~)(af4/3I2) + f 4 (a 2 f 4 /~~~Q) + (~f 4 /~~)( af  / 312)
j—l ‘ ~ ~ .‘

+ f~ (a
2f~/3taI2)]. (A8b)

etc.

15
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‘ I
The needed derivatives of f~ and df~ /dt are given by

— sec 2
t [ ( R  + Vt

1
)cosL~~sin (A~ — Q)  + scosP ’sin(T~ — 12)], (A9a)

— —tan~[(R + Vt~ )cosi\~cos (A~ — 
~) + scosP’cos(T~ — I2)J, (A9b)

— cos~1
tani.sin (A~ — 12) _sinz~~. (A9c)

3f
1

/3V — t~~af~~/~ R. (A9d)

) t)f~~/ 3 t  — sec2t[Vcos~~sin(A1 
— 12) — (R + ~~~~~~~~~~~~~~~ — 12)

+ (R + Vt
1

)A~cos~~cos(A~ - ~ ) + sT~cos~ ’cos(T~ - ~)J, (AlOa)

3f~/ a c2 — —tani[Vcosi~1
cos(A~ 

— 12) — (R + Vt
1
)~ 1

sinA~cos(A~ — 17)

- (R + Vt
1
)A~cosA~sin(A~ - 12) - ST~~COSq ’Sif l (T~ - S~2 ) ] , (AlOb)

3f
~
/3R — —~~(sinA ~tantsin(A~ — 12) + cosA~ 1

+ ~~~~~~~~~~~~~~~ - 12), (AlOc)

— 3f~/~R + t
1

3f~/~R. (AlOd )

16
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•1•

— 2tanl3f~/3l~ 
(Alla)

32 f~ /3t312 — sec2tcott3f~ / 3I7~ (Allb)

— sec2icos~~sin (A~ - 12) , (All c)

F- 3
2
f~ /3i3V — t~3

2
f~ /a~aR. (Alld)

3
2f~/3122 — _cos2ttant3f~/?t~ (Alle)

a2f~/ac23R — —tanicos~~cos (A~ — Q),  (Allf)

32 f~/ 3c23v — t
1
32f

1
/3c2aR, (Allg)

32f~/3R
2 - 32f~/3Rav - 32 f~/av 2 - 0, (Allh)

3
2f / 3 ~

2 2tan~3f~ /3~~ (Al2a)

— sec2tcot~3f~/3Q~ (A 12b)

32f~/313R - sec2~ [_~jsin~~sin(A
1 

- ~ ) + A~cos~~cos(A~ - ~ ) 1 (A12c)

— 32f~/3t3R + t~3
2f~ /at3R . 

(Al2d)

I.- 
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-

3~ f / 3~~ - - IS t.ifl~~~~( / ~~~ (A12e )

— t a n t [ , \
1
si, 1 \

1
L- (ls(,~ — 

~) 4- A
1~~~s.’I~si n (A~ — ~7)J, (A 12f)

f
1
/h~~V — f~/Z~s2Z4R + t t l ~~~R , (A12g)

‘ I
- f~~/~~R)V - - 0. (A 12h )

j Since the V der ivatives  tre , in genera l , a factor of t~ 0.007

down from the R derivativ~’~ we expe~-t poor accuracy for the final value

of V.
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