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ABSTRACT
The problem of rapidly and accurately determining the orbital plane of
an artificial earth satellite from a short series (< 10™) of observations is
posed and solved. The observations can be either angles only data or angles
and angular rates. The accuracy is generally 5°. In addition, another look

is given to the angular velocity distance estimation technique. .
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I. MOTIVATION

During searches of the equatorial belt one will find known objects
and unknown ones. For the known ones immediate identification is desirable
so that telescope time can be freed for other purposes. Currently this is
done by position only. The use of a spin period, angular velocity, or an
orbital plane direction would help. Hence, it was asked whether or not
an artificial satellite's orbital plane could be accurately determined in a
relatively short (5 - 10™) time.

If an object turned out to be an unknown, then finding it again in the
immediate future, so that the telescope could be time shared, was a problem.
For low eccentricity, low inclination objects the current dead reckoning
tools are adequate. For high eccentricity or high inclination objects these
techniques decay in predictive ability as the square of the elapsed time.

If one knew the orbital plane then one could constrain the predictions of
right ascension and declination to satisfy the orbital plane equation

[cf. Eq. (4b)]. Once again a rapid, accurate determination of the orbital
plane is desirable.

Finally, there is the problem of recovering unknown satellites the next
night. Obviously an along the orbit search needs the orbital plane to proceed.
Also, discriminating against several possible initial orbits would be helpful.
Hence, the need to determine the orbital plane.

Below we examine the physics and geometry of the problem and test a
large number (34) of different artificial satellite orbits based on the
assumption they were discovered during equatorial search. The results are

generally good to 5°.




II. THE CONSTRAINT r " L = 0

A unit vector in the direction of the angular momentum vector is
given by
L = (sinQsin1, -cosisini, cosl), (1)
where Q is the longitude of the ascending node on the equator and 1 is
the inclination of the orbital plane to the equator. Qe[0,360), 1€[0,180),
and the zero of Q is the vernal equinox. The magnitude of the angular
e2)1/2

momentum vector per unit mass is given by naz(l - where n is the

mean motion, a is the semi-major axis, and e is the eccentricity. Since

L=rxy/lrxyl, 2)
where r = (x,y,z) = r(cosScosa, cosSsina, sind) is the geocentric location

and v = dr/dt is the geocentric velocity, it follows that

r " L=0andyv "L =0. (3)

These relationships are true at all instants of time when a, e, 1, and Q
are interpretated as the elements of the osculating ellipse. Hence, no
assumptions about the forces acting on the object (an artificial satellite
bound to the earth) need be made except that di/dt, d/dt, da/dt, and
de/dt multiplied by the duration of the observing span be very small. It
so happens that for both practical reasons concerned with the mechanics of

equatorial search and analytical ones discussed below the observing span




will be on the order of a few minutes. Hence, we can take 1, 2, a, and e

to be constants.

The first part of Eq. (3) can be written as

xsinQsin1 -ycosQsinl + zcost = 0, (4a)

or, in spherical coordinates,

r[cosStanisin(a - Q) - sinf] = 0. (4b)

Note if 1 = 90° the right ascension is always equal to . We also note that
the geocentric distance plays no real role in Eq. (4b). In addition, two

observations of geocentric position (e.g., a and §) suffice to determine

1 and Q, viz,

sinaltanéz - sinaztandl’ (5a)

tan) =
cosa. tan62 - cosa

1 tan61

2

tan1 = tan61csc(a1 ~-Q) = tanGzcsc(a2 - Q). (5b)

The problem is that we measure topocentric position A, A [the topocentric

location is given by R = R(cosAcosA,cosAsinA, sinA)] and not the geocentric

values.
Let the observer's geocentric location be given by s = s(cosd'cosT,

cosp'sint, sind') where s is his geocentric distance, ¢' is his geocentric




latitude, and T the local sidereal time. Then the relationship between

geocentric and topocentric locations is

E=R*s, (6)
In terms of the measured quantities Eq. (4b) becomes

R[cosAtanisin(A - Q) - sinA]

+ s[cos¢'tanisin(t - Q) ~ sin¢'] = 0. (7

We see that the distance does not now drop out. Moreover, if it happens
that even within the 5 - 10™ observing span R changes appreciably, Eq. (7)
will not accurately reflect the physics of the problem. Hence, we allow

for a constant variation of R, V = dR/dt. Therefore, r ° L = 0 becomes
f(1, 2, R, V, t) = (R + Vt){cosA(t)tanisin[A(t) -Q] -

sinA(t)} + s{cos¢'tanisin[t(t) - Q] - sin¢'} = 0. (8)

The full time dependence is now explicitly indicated in Eq. (8).
Presumably we have N > 3 measurements of A, A, and t, say

{AJ, Aj’ tJ}. §=1,2,3, ..., N. From these and Eq. (8) we wish to

determine 1 and  and e apparently get R and V free. Letting

£, R, V)= £(1, Q, R, V, ¢

I ) we form

3




N

Fu, Q, R, V) = J w fz(t, & B ) 9
qmp 33

and seek the minimum of F with respect to 1, 2, R, and V. The

quantities w, are the weights of the jth value of f. We argue below

3

for w, = 1/N vje[1,N]. The problem is now in the form of a non-linear

3
least squares estimation problem. There exists a standard technique
for solving such problems (see the Appendix). Unfortunately, it doesn't
work in this case. Instead the method of steepest descent has been
successfully used to obtain values of 1, 2, R, and V (see the Appendix).
The accuracy of theresults obtained by using Eq. (9) is discussed in

§IV.

The weights, wj, are given by

2 2
lle = (ij/BAj) /wA + (3f,/934,) /wA + (3f,/d3t

2
Y /w, , (10)
3 ¥ %

i j

where w, 1s the weight of A
Aj 3

right ascensior and declination, the weight of the time is effectively

, etc. Relative to the weights of topocentric

infinite. Also, since Aj = 0° Vje[l,N], the weights of right ascension

and declination are effectively equal. Finally, as tN - t1

order all the 8fj/8Aj and afjlaAj are the same, whence to first order, all

of the weights of the same. After reading the Appendix it will become

3 10m. to first

clear that a dependence of the weights on 1, 2, R, or V is immensely

complicating analytically. Hence, even if it weren't true that the
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weights are all equal (to first order), I would've taken them to be equal
out of computational necessity. This discussion also makes it clear that
determining 1, Q, and R must rest on second order effects so that high
accuracy (e.g., better than 1° in L) 1is not to be expected. Clearly,

determining V rests on third order effects.
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THE CONSTRAINT v " L = 0

Unless r x v vanishes (e.g., e = o) the constraint v " L = 0 is

independent of the constraint r * L = 0. Assuming that the acceleration

in the topocentric range is negligible, we can write this as

The

are

are

has

out

large we merely set V = 0 in Eqs. (8 and 11).

df (1, Q, R, V, t)/dt = V{cosA(t)tanmisin[A(t) - Q] - sinA(t)}
- (R + Vo)A (t){sinA(e) tamisinfA(t) - Q] + cosh(t))
+ (R + Vt) A(t)cosd(t) tanicos[A(t) - 9)

+ s%(t)cos¢'tanlcos[r(t) - Q] = 0. (11)

function to be minimized is now

2

j(1, 2, R, V)1. (12)

N v
F(, @ R, V) = § w,[f2(1, Q, R, V) + f
R

weights for f and df/dt are taken to be same because the f weights

all equal to each other to first order. We note that no new unknowns
introduced in Eq. (12) over those already in Eq. (9).

Solving Eq. (12) is no more difficult than solving Eq. (9) and it
also been performed by the method of steepest descent. If it turns

that no information can be obtained about V even when it's relatively
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IV. NUMERICAL TESTS

The time spacing for the first series of tests was tj+1 - tj = 30°
Vie[1,N]. This series, using six widely different artificial satellite
orbits, included V, used the method of steepest descent, and showed that
for a =5" observing span the direction of L could be gotten within a few
(5) degrees. Eliminating V from the equations made no difference (it was
always 0.000km/sec anyhow) even though |V| was as large as 5km/sec in some
cases. I also rewrote Eqs. (8 and 9) using f/R (see the Appendix). For
these same satellites and the same observations the results were never
better (with or without V) and sometimes poorer. Thus, it seemed
important to test a wider variety of satellite orbits, the effect of the
angular rates, the effect of the quality of the data, and the effect of
the time span of the data.

A total of 34 different satellite orbits have been used to generate
topocentric position and topocentric angular velocity. Each has been
g g 30° vie[1,N],
accuracy in position = V2", N = 11 (e.g., Sm), no angular velocity, (b)

analyzed (without V) in the following ways; (a) t

same as case (a) except N = 21 (e.g., lOm), (c) same as case (a) but with a
positional accuracy of 9" (SSCSAO quality), (d) same as case (c) except

N = 21, (e) same as case (a) except including angular velocities accurate to
0"1/sec, and (f) same as case (e) except N = 21.

If w and I are our approximations for 2 and 1, then let

L = (sinwsinl, -coswsinI,cosT), (13)




cosd = & ° L. (14)

If ¢ and L were parallel then ¢ would be zero. As there is an ambiguity in
determining Q from Eq.(5a), we may find a set of values for I and w which
has & anti-parallel to L. This corresponds to ¢ = 180° and the incorrect
heliticity. Lastly we note if 1 and I are both small, ¢ may be small but
|w - Q| not necessarily small.

Within a few tenths of a degree in ¢ cases (a), (b), (c¢), and (d) all
produce the same results. Table 1 lists the case (c) and case (e) results.
The satellites are grouped by increasing mean motion and within each mean
motion group by increasing eccentricity. In general adding the angular
velocity information produces better results (as would be expected). In a
few instances the reverse is true. Moreover, one could presumably find a
function of the satellite's orbital elements and the observer's location
which would predict the values of ¢ in Table 1. Whereas this would explain
Table 1, it is obviously of no practical use.

If we concentrate on those satellites with a mean motion of less than
2.5 rev/day the mean value of ¢ is 5°8. The standard deviation about the
mean is 573. 1It, therefore, appears that the usefulness of these results
is fairly limited. Further experimentation for dead reckoning purposes
has been temporarily suspended. Finally, by examining the results for R,
it became clear that in the huge majority of the cases what came out was
what went in. Hence, a more detailed examination of the angular velocity

distance estimation technique seemed in order.
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V. THE DISTANCE ESTIMATION TECHNIQUE*

As this is the largest body of data I have yet had with which to
test the angular velocity distance estimation technique, I performed
such an analysis. Figure 1 is a plot of the estimated distance against
the true distance (both are geocentric). Low eccentricity orbits are
plotted as dots, high eccentricity orbits as plus signs. The two lines
represent T and Rt ™ 0.83r. The latter includes the correction
of the unknown eccentricity assuming a uniform distribution of eccentricities
in the artificial satellite population. Once beyond = 3 earth radii the
technique works quite well. Of course, for all the small eccentricity

objects r

gt is systematically too low by 1 - 0.83 = 17%. To remedy

this, since about 75% of the total deep space artificial satellite
population is low eccentricity, we can split the difference (e.g., use
0.91 instead of 0.83) or use a two point eccentricity distribution. The
latter, if 75% are near e = 0 and 25% near e = 0.7 yields 0.94. 1In the

future we'll split the difference.

*See SVIIA of L. G. Taff, "Astrometry in Small Fields," Technical Note
1977-2, Lincoln Laboratory, M.I.T. (14 June 1977), DDC AD-A043568/5.
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Fig.1l. Plot of estimated geocentric distance (rpgy) vs the actual
geocentric distance (r). Plus signs denote high eccentricity
objects. Dots denote low eccentricity objects.
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APPENDIX
In this section I want to review the standard technique for solving a
non-linear estimation problem, review the method of steepest descent, and
examine the application of these techniques to Eqs. (9 and 12). Suppose we

have some function g of the unknown parameters x and we wish to minimize

B
G = z w g (x). (A1)
L ==
i=1
The standard technique to find the value of x, say X that minimizes G
is to expand gj(ﬁ) about some guess for X s Say X . Then, to first order,

N
6 =) wils(x) + 9,8 (] T - x )02 (A2)

=1 =%

G, as given by Eq. (A2) is now a linear function of x - X, and we form

the normal equations as in the ordinary linear case (e.g., demand

va = 0). After solving the normal equations for x - X our new guess

f;r X is x = (x - 50) + X . If necessary this iteration is repeated
until |5 - 50| is sufficiently small and |ch| is sufficiently small too.

This procedure won't work for Eqs. (8 ;gd 9) because of the following:

It is logical to use the geocentric relationships, Eqs. (5), to obtain
guesses for 1 and Q. We can guess R by the angular velocity technique

and V = 0 should do. The matrix of the normal equations, along the main

diagonal, will then have terms proportional to N [cosAtamsin(Aj - Q)

- sinAJ]2 and (tN - tl)2 times this. Clearly each of these is very small,

13
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the second being 10_50f the first. Hence, inversion of the matrix is
numerically impossible. One might think that this could be avoided by
using f/R instead of f in Eq. (9). The present difficulty would be
removed but a new one introduced. As s/R = 1/6 for the satellites of
interest, the matrix of the normal equations now contains terms of the
order of N(s/Rz)2 and N(tN - tl)z(s/Rz)2 on the main diagonal. These are
of the order of 10“2 and 10_1 respectively. Hence, numerical inversion
is again impossible.

Having exhausted analytically rearranging Eqs. (8 and 9) we turn to a
completely different technique. Let us return to Eqs. (Al and A2) but
continue the expansion of G(x + AX) to second order terms. If I'(x) is the

Hessian matrix of G then
G(x + AX) = 6(x) + V.60 " AX+ (O%/2) X " T'(® * X. (A3)

As we are looking for a minimum of G we take X to be in the direction of

the maximum rate of decrease of G, i.e.,
X=-VG6(x). (A4)

With this value for X we can find the value of A to use by insisting that

G[x - XVXG(E)] be a minimum with respect to A. The result is

A = |v§c(5)|2/[v£c(5) T 7Em]. (AS)

14




Thus, starting from a guess x = 50. for Em' we compute our new guess from
23" vac(é)lx = X (A5)
- = =g

with A evaluated via Eq. (AS5) at x = X . If G(x) has a unique minimum
(e.g., gm) in any closed region and the metric defined by I'(x) has a
positive upper bound in this region then this iteration does converge to
X For most practical problems this technique is difficult to apply
because one needs accurate values for I'(x).

For the problem posed by Eqs. (8 and 9), or more generally Eqs.
(11 and 12), all of the second derivatives can be computed. In particular,

for Eqs. (11 and 12),

N P
F/ = ijle[fj(afjlal) + fj(afjlal)], (A7)
etc., and
2 .8 2 B R R e g
azv/ax =2 ) w [f,/30)° + £,(3°F,/91°) + (3f,/3)° + £,(3°F,/91°)], (A8a)
j=1 J 3 J J b h| h|

/30) + £, (32, /313Q) + (3F,/31) (3, /39)

2? N
3F/nM =2 wjlafjlat)(afj 7, p ]

i=1

+ Ej(azéj/axan)l, (A8b)

etc.

15
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The needed derivatives of fj and dfj/dt are given by

ijlal = seczl[(R + Vt’)vosAjsin(Aj - Q) + scos&b'sin(rj -],

3,/30 = ~tani [(R + Ve )coshcos (A, - ) + scosd’cos(ry - D],

3,/0R = cosd tamsin(A, - Q) -sind,,

/20 = 38, /3R,

an/at - sec21[VcosAjsin(Aj =R} = (R + v:j)AjsinAJsin(Aj - Q)
R+ v:j)ijcosajcos(Aj -+ s}jcoswcos(rj <3,

aéj/an = -tam [Veosd cos (A = @) ~ (R + v:j)AjsinAjcos(Aj -

- (R + th);\jcosAjsin(AJ - Q) - s%jcos¢'sin(1j -],

9f ,/OR = -AJ[sinAjtanlsin(Aj -Q) + cosAJ]

+ AjcosAJtamcos(Aj -Q),

3EJ/BV - BSIQR + tjafj/BR,

16
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(A9b)

(A9c)

(A9d)

(Al0a)

(A10b)

(A10c¢)

(A10d)
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azfj/axz = 2tan13fj/3\,

azfj/azan % seczlcotlafjlaﬂ,

Bzfjlalak - seczlcosAJsin(AJ -9,

2 2
3 fj/axav cja fJ/B\BR.

azfj/an2 - -coszttanlafjlal,

32f /903R = ~tanicosA,cos(A

3 yeueiAy = W

2 2
£ = 3 5
3 j/BQBV tja j/BQBR

azfj/an2 " azfj/aaav - 32fj/aV2 -G,

azij/axz- 2tan13éj/81,

azij/axan - seczlcotlaéjlaﬂ,

sin(A, - Q) + A, ,cosA, cos(A

i, i Ak e S L

azéj/axan - seczx[-&jsinA

2, 2 2,
9 fj/a\av 9 fj/a\an + tJB fj/BIBR,

17

(Alla)

(Al11b)

(Allc)

(Al1d)

(Alle)

(Al1f)

(Allg)

(Al1lh)

(Al2a)

(A12b)

(Al2c)

(Al24)




— e s

down

of V.

" - .) v, .
3”fjlaﬂ“ - - cos‘\tnn13f1/3\.

1

& .
3°f , /ONIR = tnnl[A‘sinA1

cns(A‘ - N) + A coaA‘sin(A

! Al

o a o
3‘f1/ﬁﬂﬁv = 3°f, /0Q3R + t13‘fj/ﬂﬂﬂk.

]

5 2 P 2 2
d f'/DR =3 fj/3R3V -3 f'/DV‘ - 0.

Since the V derivatives are, in general, a factor of t

(Al2e)
-], (A12f)
(A12g)
(Al12h)
= 0,007

J

from the R derivatives we expect poor accuracy for the final value

18
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