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SECTION 1
INTRODUCTION AND SUMMARY

The Multimode CPU Design Study was undertaken by the Air Force and Litton
Data Systems Division to define a multimode CPU architecture, to assess the microprocessor
design (IC process interdependencies intrinsic to the processor approaches), to establish a de-
tailed chip design (at the register level) for an advanced 8-bit, bit-sliced processor element,
and to assess the multimode chip design set and existing CPUs for their ability to perform
processing tasks.

The problem set, defined in Section II, is a representative set of signal processing
tasks required through a major portion of the 1980’s. The set was used as the benchmarks
by which the Multimode CPU (MMCPU) design could be bounded.

The architectural design was attempted initially without the constraints of LSI tech-
nology. The results are presented in Section III. The design process started from the bus
system (data and data addressing) and work out to a CPU architecture. Because the FFT
represents the most difficult of the problems in the set, the impact of the multiplier/FFT
special function structure was investigated and two processor structures were presented (see
Figures 1 and 2). The various blocks of the processor were analyzed and two register arith-
metic logic unit (RALU) structures were defined (Figures 3 and 4). Each RALU is designed
to perform both the data processing (DP) and data addressing (DA) functions. An instruc-
tion addressing and microcontrol structure was defined. Figure 5 is the instruction addresser
without its microinstruction memory.

Before the feasibility of the architecture as an LSI candidate could be tested, the
state-of-the-art was assessed. The results are presented in Section IV. The gate level design
of the RALU structures are presented in Section V, concluding that an 8-bit, bit-sliced
RALU for the DP/DA functions is feasible.

Three microcomputer architectures, one based on the Tracor/RCA GPU, one based
on the Litton DP/DA RALU, and one embodied in the Raytheon Micro Signal Processor,
were assessed on their ability to perform the benchmarks from the problem set discussed in
Section II. The methodology, initial assumptions, self-imposed constraints, and results and
conclusions are presented in Section VI

In summary, the attempt to design a single large scale integrated circuit, the
MMCPU, has revealed some interesting insights into the signal processing environment, LSI
technology, and processor design. Analysis showed that the main functions in Section III are
all within the reach of current LSI technology, but two chip types will be necessary to
accomplish the total function of the Multimode CPU.
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SECTION 11
GENERAL SIGNAL PROCESSING PROBLEM

2.0 INTRODUCTION

The objective of this study is to define and do a top level design of LSI circuitry that will
have significant impact upon the capabilities, costs, environmental factors and performance of
future military systems that must deal with the information content of analog waveforms
(signals) to perform their assigned tasks. The systems or portions of systems directly addressed
in this program consist of those techniques, in both mathematics and implementation, used to
transform the signal information content into a form suitable for a known user (whether the

user is a human, an automated tracking system, etc., depends upon the actual system being
implemented).

The problem will be further bounded by assuming that the required signal processing will be
performed using digital circuitry and that recommended circuits should show the promise of
spanning a wide range of applications. These circuits are intended for use in the construction
of systems from 1980 through approximately 1990, most of which have not as yet been con-
ceived. An initial effort has, therefore, been expended in trying to predict the direction of
applications of digital signal processing to military problems for the next 10 to 15§ years. It
was recognized that this program could do more than aid these applications but, if properly
executed, would speed and alter the course of new applications. Care was exercised during
the study of present and “drawing board™ systems for use as a basis of predicting future Sys-
tem requirements. The actual system goals were studied rather than specific implementations

that exist as approximations to desired systems. The desired systems often cannot be produced
cost effectively using todays circuits.

The field of applications to be addressed can be made clearer by first considering the nature
of signal processing itself. Signal processing problems are typified by:

a.  Analog signal or signals to be processed (in this case digitally, thus requiring A/D
converters).

b.  An uncooperative (noisy) environment which corrupts the desirable signals.

o

Low information-rate-to-data-rate ratio permitting averaging for signal-to-noise ratio
improvement.

Due to the uncooperative environment and low information-rate-to-data-rate ratio. the incoming
signal can be, and most ofter is, converted to what mathematicians call “sufficient statistics'.
The idea is to transform the large amount (and often highly redundant) incoming data into a
relatively small amount of data which contains all or, in practice, almost all of the information
content of the initial signal. Once this transformation is performed subsequent processing and
memory requirements simplify because less data must be handled at cach processing step.

Signal processing tasks can be separated into high speed and low speed processing requirements
because of the sufficient statistic concept where high speed and low speed are relative to input
sampling rate for a specific problem and are not absolute. For example, the high speed proc-
essing of a sonar problem may be slower than the low speed processing of a radar problem in

terms of actual hardware requirements. The dependence of processing speed on sampling rate

7

- R -y VE e ST RIS A

- ;‘....\g. -

e TR T

g e




and the high and low speed processing requirements points out the fact that for many signal
processing jobs the total job could be done using a programmable CPU approach but, as sam-
pling rates increase, a point will be reached where high speed processing will have to be out-
boarded and, for high rates, pipelined for maximum throughput. The low speed requirements
could almost always be performed in a programmable CPU, however.

Characterization of the signal processing problems in the 1980-1990 time frame can be accom-
plished by considering the basic nature of such problems and the analytical techniques being
used to address the problems. The objective is always one of determining and suitably for-
matting the information content of a signal which has been corrupted by an uncooperative
environment.  Due to the large number of variables in this type of problem (number of samples,
system states, etc.) problems are cast in the form of matrix equations. This method of analysis
permits a certain ease of manipulation of large numbers of variables and/or equations. As a
direct result, the first statement of the problem solution is in the form of a matrix equation or,
more typically, the equations for computing sufficient statistics are matrix cquations.

Ihe implementation problem can then be viewed as a reduction of these matrix equations to
the point where they can be implemented by existing hardware. In the past this has required
reducing all equations to Boolean operations because design was done at the gate level. As
levels of integration increased, the ALU became a readily available part so that algorithms
needed only to be reduced to adds, subtracts and logical operations.

The very common operation of real multiplication has recently been attacked in an attempt to
reduce it to cost-effective hardware and it seems reasonable to expect that the divide problem
will also become available as a hardware component. Thus, we see a common approach by
commercial semiconductors to ease the manipulation of real scalar quantities in numerical
calculations.

In order to increase the hardware/algorithm boundary further so that less effort will be required
to implement signal processing algorithms, hardware needs to address the operations involved in
complex vector and matrix mathematics. It is unlikely that in the near future single chips will
perform such functions as a vector multiply, but rather a CPU that has a multiplier under its
control could be organized so that vector operations become casy to program and are efficiently
implemented.

i i

This philosophy indicates that the direction of thought toward defining an ideal micro-signal
processing chip set be such that the chip set should:
a.  Provide a hardware complex multiply.
b.  Control the multiply and memory so that matrix manipulations are extremely efficient.
¢. Simplify the programmers’ task for performing matrix calculations.
d.  Not compromise the ease of performing scalar arithmetic and logical operations.
¢.  Be capable of handling large 1/0O data rates.




. MODELLING SIGNAL PROCESSING PROBLEMS

All possible signal processing problems cannot be considered during the design of a versatile
signal processor and a chip set. Instead, the problem must be modelled by a small, manage-
able set of problems, representative of the baseline scenario from which general computa-
tional requirements of all signal processing problems can be derived. With the concurrence
of the technical staff of the Processor Technology group (AFAL/DHE-1) of the Air Force
Avionics Laboratory, Litton Data Systems used the benchmarks, discussed in this chapter,

as a good representative set of problems for use in the design of a Multimode CPU chip set.
The tollowing paragraphs briefly discuss each benchmark and the characteristics of the

signal processing indicated by the benchmark,

The first benchmark is a complex 1024 point FFT. In addition to being the most common
signal processing benchmark in the entire signal processing industry for comparing signal pro-
cessing equipment, this problem illustrates the first four facets of signal processing listed in
Table 1.

The popularity of the Fourier Transform over other transforms involving orthogonal basis func-
tions is by no means accidental. 1t is a direct result of the fact that the Fourier basis func-
tions (sine and cosine) are the eigenfunctions of all lincar systems and, therefore, are the only
functions which will preserve their functional form (except for parameter changes) from input
to output of any lincar system. For example, if A cos (wt) is used as input to any lincar sys-
tem, the response will be of the form Beos (wt + @) and no additional frequencies (basis
functions) will be produced (this cannot be claimed for Walsh or other orthogonal function
representations).  Since all systems are modelled as lincar whenever possible due to the enor-
mous gain in mathematical simplicity, it is assumed that Fourier Transforms will continue as
the most popular transform technique and, as implementation becomes less costly, their use will
grow considerably.

The basic operation performed during a Diserete Fourier Transtorm is the multiplication of a
vector times a matrix. If this operation could be solved quickly and efficiently by, say, a
matrix multiply chip there would no longer be any interest in the collection of algorithms
known generally as the Fast Fourier Transform. However, semiconductor technology will not
solve the matrix problem in the time frame under consideration so that taking advantage of the
cyclic properties of the Transform matrix (FFT) will continue as one of the most important
signal processing computational problems.

The second benchmark is a modification to the FET by the application of a windowing func-
tion to the data to reduce the side lobe effects inherent in the FET algorithm.  This operation,
il performed in the time domain, is an example of a high speed function product common in
modulation/demodulation processes and digital filtering via the FET. If performed in the fre-
quency domain this algorithm is an example of a high speed convolution common in finite
impulse response digital filtering.  In cither case, this benchmark also illustrates the facets (1)
through (4) hsted in Table 1.

Q




Table 1. Important Facets of Signal Processing

Benchmark Facets of Signal Processing
1 and 2 I.  High speed calculation using complex arithmetic on data arrays.
2. With the exception of numerical scaling, the high speed algorithm is independent
of the input data.
3. Array indexing is orderly although not always simple.
4. Multiply/add is a common arithmetic pair of operations.
3 5. Tight data dependent loops.
6. Double precision during less time-critical processing,
7. Numerical scaling.
8. Data dependent jumps.
4 9. Sliding window data manipulation.
10, Averaging (integration). '
11, Data dependent decisions. :
12, Bit manipulation. |
S - 13, High 1/O rates between memory and the outside worl.(;:— iy ‘
14, High speed calculation on small input data blocks. |
15, Repetitive use of a very short program. ‘
|
6 16.  Fast/tandem address generation,
17.  Data dependent address generation., :
18, Efficient memory organization. ’
19, Data comparisons. [
l
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Ihe third benchmark, coordinate conversion, involves the computation of several common
tunctions such as sine, cosine, divide, square root, etc. These functions are common to a wide
range of signal processing problems particularly modulation, demodulation, detection, averaging
and standard dewviation estimation. Demonstrating the ability to handle these functions will
indicate the ability to handle a variety of other functions such as logarithm, anti-logarithm,
error function, Marcum’s Q function, etc., in a similar manner. The double precision require-
ment s indicative of the fact that these functions are often required to great precision and
that, under the same circumstance, calculation speed is generally less critical so it would make
sense to use double precision programming rather than a machine with a larger word size. In
addition, calculation of these functions often involves iterative loops of a form that requires
results of a calculation before the next calculation can be performed. This problem illustrates
the signal processing characteristics numbers 5, 6, 7 and 8 as listed in Table 1.

The fourth benchmark is an example of Constant False Alarm Rate (CFAR) detection commonlhy
used to improve performance of radars particularly when operating in a high clutter environment.
This benchmark illustrates tacets 9, 10, 11 and 12 of Table L.

The shiding window 1s an important aspect of signal processing wherein an algorithm 1s apphed
to a set of data pomnts (in this case averaging and a threshold based decision) and then a new
data point is introduced to the set while the oldest point is deleted and the algorithm is
repeated.  Conceptually the same process is involved in finite impulse response (transversal)
filters, convolution, generation of algebraic codes, ete. In this benchmark the output is a series
of 0/1 deaisions which, for memory and communication efficiency should be packed into com-
puter words (e.g.. 16 decisions in a 16 bit word).

The fitth benchmark s the use of a Cosine Transtorm as tound in the front end processing of
an image bandwidth compression problem.  The basic algorithm s an FFT and in that sense s
similar to benchmark 1. This problem difters, however, in that a high mput data rate 1s
required while the transform itselt s only 32 points.  The problem is, theretfore, one of per-
forming a short, fast operation including tast 1/O thus straining processor /O memory address
and store capabilities and calculating power.  The facets of signal processing illustrated by this
benchmark are 13, 14 and 15,

The sixth benchmark is a pulse classification algorithm characteristic of general pattern recog-
nittion problems but specifically oriented toward signal sorting for electronic wartare.  To
accomplish this benchmark, the signal processor must have a highly tlexible memory organi-
zation with efficient data memory control, sophisticated data address generation for subsequent
data processing, data dependent, data address generation and conditional jump/branch capability.

Because the specification of signal sorting algorithms is fairly incomplete in the literature, Litton
Data Systems was asked to help extend the specitication for the Processor Technology group
(AFAL/DHE=1). Included in the succeeding sections is a detailed discussion of the signal
sorting problem and the general EW problem.

The use of a specific benchmark set has provided greater insight into the general properties
that a micro-signal processor chip set should possess. The benchmarks have been shown to
generally represent the totality of signal processing problems and it appears certain that a
machine architecture that can provide features 1 through © of Table 1 will be applicable
to real world signal processing problems.




.59 BENCHMARKS

2.2.1 Fast Fourier and Weighted Fast Fourier Transform Benchmarks

The Discrete Fourier Transform Equation for an N point complex sequence f(n) is defined
as follows:

N-1
F(k) = ), f(n) wkn k=0,1,.. Nl (1
n=o N

where

A decimation-in-time Fast Fourier Transform can be readily derived from equation (1) by

defining two (N/2) point sequences as the even and odd members of f(n). Because of the
highly cyclic nature of WN. it can be shown that Equation (1) can be computed by first

computing

N -1
2
Fik) = Y f(2n) WhK (2)
Sy 3 N/2
and
N-1
2
Fak) = Y f(n+1) Wnk (3)
s N/2

and then combining Equations (2) and (3) to achieve the result of Equation (1) as follows

Fk) = Fy (k) + WY Fy) (4)

This process can be continued with a significant computational advantage gained at each step.

The basic operation resulting from Equation (4) is called the Decimation-in-Time butterfly
defined as

A+ wiB

A‘

A - wiB (5)
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This operation can be visualized in flow graph form as follows:

A

The quantity Wlis commenly called a rotation vector or ‘twiddle factor’. A combination

of butterflies arranged to produce a 32 point complex FFT is shown in Figure 6. This
structure results from the repetitive application of Equations (2), (3) and (4) and the butter-
fly operation Equation (5). The same process can be used to define a 1024 point FFT and
it is this algorithm that has been chosen as the FFT benchmark. It should be noted that the
output values are unordered and that reordering is a necessary step to be included in the
benchmark problem.

The algorithm will assume 14-bit input data which will be sufficient tfor almost all signal pro-
cessing problems. The nature of the algorithm, however, is such that numerical values tend
to increase through a butterfly operation. The largest data value out of & butterfly will be
at least as large but no greater than twice as large as the largest data value into the butter-
fly. Overflows can be prevented by dividing by two at the output of every butterfly, but
this results in many unnecessary underflows. The scaling scheme employed involves keeping
all data values at 14 bits and, at the end of each group or course, checking to see if any
data value has overflowed into the 15th bit. Whenever this occurs all input data to the next
course will be divided by two. This scheme insures no actual overtlows while maintaining as
much precision as possible in the final results.

The computational requirements can then be defined as follows:
512 butterfly operations during each of 10 courses

a.
b.  Fifteenth bit overflow check and scaling if necessary>after cach course
Reordering of final results for output. i o 3

o

A rate of 5 msec for a 1024 point FFT implies an average butterfly rate of less than 976 nsec,
but time must be allotted for processor dependent data loading, loop set-up and control and
output reordering. This time, thus, represents an absolute upper bound to the actual butter-
fly time which will depend upon processor architecture.

In a similar manner, an absolute upper bound on butterfly time for a rate of 0.5 msec for a
1024 point FFT is 98 nsec with this number decreasing as a function of processor architecture.
{

The additional benchmark of windowing the FFT data will be performed in the time domain
and consists of a premultiplication of all input data values by a window function. The
technique adopted is to store the window function in memory thus requiring the processor
to perform 1024 complex multiplies as well as associated fetches and stores.  This technique
permits the arbitrary selection of any window function at no additional computational cost
since the function will be prestored in memory.
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2.2 Coordinate Conversion Benchmark Definition

The coordinate conversion benchmark of polar-to-rectangular and rectangular-to-polar in single
and double precision demonstrates the fact that functions generated from input variables are
often required in signal processing. Normally they occur in post-processing applications where
relatively low speed calculations are required. Therefore, the use of double precision program-
ming is preferred when increased accuracy is required rather than implementing a lurger
word-size machine.

The polar-to-rectangular conversion problem is defined as follows:

Given a point specified by magnitude R and angle 6, determine the rectangular
coordinates X and Y where

X =R cosO

and

Y

R sin© (6)

The problem is basically one of computing sine and cosine functions and can be solved using
a nested polynomial approach to the Taylor series for either function over w/2 and, by
symmetry, determining the functional value.

First assume that sin @ can be computed for 0 < @ = w/2. Then 6 can be mapped to
0 as a function of the quadrant of 6 and the function (sine or cosine) desired as shown in
Table 2. Therefore, any sine or cosine value can be computed using a Taylor series
expansion for sin @ in the range 0 < @ < n/2. The expansion is

© i p@+1
sin@= ) (1) L— @)
J=0 2j + 1)

The expansion must be limited to a finite number of terms, the number used reflecting the
desired numerical accuracy. Assume, for example, the first five terms are sufficient for a
particular application. Then

3 5 7 9

sin 0 =¢-i +£. -9_4-0_ (8)

3! St Ol 91
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Table 2.

Mapping of Sine and Cosine to One Quadrant of the Sine Function

0 cos 0 sin ©
< < /2 sin [7/2-0] sin [0]
TR <0< -sin (0 - w/2) sin(m - 0 )
3w
w £ 6 =3np sin [~— -0 sin (0 -m)
2
3w
3 w/2=<0 <2n sin( —-) -sin (2w - 0 )
9

which can be expressed as a set of nested polynomials of the form

5y 9] )
sin 0= O[1+ K07 (1 +Ky07(1 + K0 (14K 40%))]

9

With a change of definition of constants and defining ¢ = (2)2 the expression can be written
as

sin 0= 0[k; + byt Y(kz+ Gikg+ ¢ ]

(10)
which can be programmed as an iterative loop as follows
o= kgt b
Zyy1 = k3t ¥Z, n=0,1,2 (1)

Now consider the rectangular-to-polar conversion problem. Given a point specified by X and
Y determine the polar coordinates R and 6 where

furt (1)
Lart (2 )

ifO < X <m/4

0= .

if m/4 < '%' 2 (12)

with appropriate quadrant modifications on 6 based upon the signs of X and Y.

Mic ot
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There are three function problems here; square root, divide, and arc sine. A Taylor series
can be used for the arc sine and implemented exactly as Equation (11) above with a different
set of constants, k. The series is

w0 B sl S Rl 2B W,
sin 1o 4 w4 L33 & ... (13)

<L

vl

It is possible to show, using the Contraction Mapping Theorem, that a divide can also be
implemented in the form of Equation (11). The resulting algorithm is as follows

ifZ= )Y_( and -1 = Y < -5 then the iteration
Zn+l = kx + kYZ“ ('4)

will converge at a rate exceeding two bits per iteration to Z if

1]

kx = -X(Y + 2)

ky = (Y + 1)?
(15)

and

Zo = kx
/
Note that kx and ky remain constant for all iterations. The last required function to
complete the problem is the square root. The Contraction Mapping Theorem can again be
used to show that, if

0.0625 = N =< 0.5025

then the recursion

Xp41 = €n - Xy (16)

will converge to  \'N where
= N 2 17
= N-X§ an

The algorithms presented above represent one possible solution to the coordinate conversion
problem. In addition, they will demonstrate the goals of the benchmark in that they require
a flexible processor capable of handling real and double precision data.




2.23 Constant False Alarm Rate (CFAR) Benchmark Definition

The CFAR benchmark is defined by assuming that 6-bit positive values are input from the
detection stage of a radar with the following characteristics:

a. A 70-mile range
b. A 200-nanosecond compressed pulse width
¢. A l-millisecond pulse repetition interval

This implies that 4352 data points are to be processed resulting in 4096 binary decisions
by a CFAR algorithm using a 256-point sliding window.

The algorithm computes, for each decision, an average of the previous 128 points and the
next 128 points for use as a decision threshold. This threshold is modified by a constant
threshold parameter and then compared to the window center point resulting in a binary
decision that the point is above the threshold or is not. The algorithm is illustrated in
block diagram form in Figure 7.

The output of the algorithm is, then, a single bit decision for each input value which would
be torwarded to another processor that would, probably, perform some scan-to-scan opera-
tion. For the purpose of efficiently transferring the decisions, the signal processor is
required to pack 16 consecutive decisions into a 16-bit data word. This process will be
included in the CFAR benchmark.

The sliding window function of the benchmark can be efficiently implemented by computing
the average of the first 256 points and then updating the average, A;, as follows

Ajgy ™ A+X 5128 X128 (18)

As a result, most of the points will require only three adds (one is part of the compare)
and one multiplication (the division by the number of points in the window can be com-
bined with the constant threshold parameter). Therefore, the CFAR algorithm will require

3 % 4006 + 256 = 12544 adds/millisecond
and
3 % 4096 = 12288 multiplies/miilisecond

in addition to the output bit packing.

i
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224 Cosine Transtorm Benchmark

The cosine transform of an N point real sequence of pixel data is defined as

N-1 nk (n+1/2)
G, =2 Y «x,cos |/ k=0, 1.. NI (19)
B Sghs N

Efficient computation of equation (19) can be performed by reworking the form of the
equation into one compatible with Fast Fourier Transform (FFT) techniques. This can be
done by rewriting equation (19) in the form of complex exponentials.

kK 2r kn
(= ow )
Gy = 2 Re Ie N Z > G W k=G, 1, .0
n=0 ‘ (20)

If Xp is artifically extended to a double length even sequence of length 2 N, equation (20)
can be written as

‘ K IN-1 . 2m kn
- : g )
Gy = Reye 2N Z e 2N k= 0.1...N-1
l n=0 ‘
PR QD
i
Defining WHy = 2N
Tk 2N-1
b g 5 kn l
GesReig!N )
K »)e N L X, sz ’ k=01,..N-1 9%

The summation term in equation (22) is recognized as the Fourier Transform of the even
sequence Xy, and is, therefore, a real quantity for all values of k. Thus, equation (22) can be

written as
21!-]
wk N kn

Gy = e ' L Xq sz} k=0, L. N-I (23)

o ' i e *Rky .
For the purposes of image bandwidth compression, the multiplication term cos (’N ) 18 of
no value since it is not data dependent and, therefore, contains no information of interest.
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The term in brackets can be computed using a N length FFT. The cosine transform of X
(less the multiplicative cosine factor) will be the first N output points of the FFT algorithm.

A more efficient implementation can be determined by recalling that X, has been made into an
even function and, as a result, the FFT output will be real. Consider forming a complex sequence
using X, and an additional set of new data Y, also even extended as the imaginary part. Thus

X=X, § Y, (24)
The Fourier Transform of X"l is

F(Xp) = F (X,) +j F (Y) (25)

because F is a linear operator. Now, since X, and Y, are even sequences, F(Xp) and
F(Yp) will both be real functions. The implication of equation (25) is, therefore, that two
cosine transforms can be simultaneously computed by a single double length FFT and that
the results will be found in the first N real FFT outputs for X, and the first N imaginary
FFT outputs for Y.

The computational portion of the Cosine Transform benchmark could be performed using the
technique described above on groups of two 16 x | input pixel vectors by employing a

32 point complex FFT. Input pixel data will be no more than 8 bits/pixel and, therefore,
there is no need for scaling considerations during a 32 point FFT performed on a 16 bit
machine.

The computational requirements of the Cosine Transform Benchmark can be further reduced
by considering the flow diagram of the 32 point FFT shown in Figure 8.  Since only the
first 16 results are required and outputs 16 through 31 are to be discarded it is worthwhile
to trace backward through the flow graph to determine at what point the discard can actually
take place. The output values not required are circled in the flow graph and the trace is
shown by circling all intermediate values not required due to the final discard process. It is
scen that half of the butterflies on all but the first course actually need not be performed at
all.  Actually, the final algorithm requires only 16 half butterflies for a first course followed
by a 16 point complex FFT. This reduces the initial count of 80 total butterflies to a count
of 48 butterflies for this modified 32 point FFT.

The processing speed for accomplishing the FFT's in real time is as follows:

Number of pixels transtormed 8064000 pixels/second

o 8064000 s
Number of 32 point complex FFTs %— = 252000 FFTs/second

D

48 Butterflys/32 point FFT 48(252000)

12096000 buttertly/second

Therefore, the average butterfly rate is one each 82.6 nanoseconds.
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2.3 ELECTRONIC WARFARE PROBLEM

2.3.1 Basics on Radar Characteristics

In general, at the receiver of any Electronic Warfare equipment, the received signal can be
represented as:

y(t) = S(t,al,az, ...... &) + n(t) (26)

where S is the transmitted signal which is a function of time and a number of parameters,
aj, aj..ap,; and n(t) is noise. By using the thoeory of estimation of paramaters, the m
parameters of the transmitted signal give considerable information about the specific emitter
responsible for the received signal. The frequency spectrum, pulse characteristics, pulse
repetition frequency, beam pattern, scan pattern and rate, angle of arrival and antenna
polarization are some important characteristics that may be utilized in the classification of
an unknown emitter.

The frequency spectrum includes the center frequency and modulation of a CW type radar,
the center frequency and pulse modulation of single or multiple frequency pulsed radars and
agilities. Modulations range from the simple rectangular pulse with no FM to complicated
FM and coded waveform. In many cases, the frequency domain is the only way to classify
the more complex waveforms.

Pulse characteristics include pulse rise time, fall time, amplitude width and jitter. These
parameters are in the time-domain and may be useful in quick classification of simpler,
pulsed radars along with center frequency.

The pulse repetition frequency or interval is primarily a derived parameter, gotten from the
sorting of a number of individual pulse. PRFs fall into four categories, monofrequency,
staggered, jittered, and random, of which the first three can be definitively classified and
tracked.

The beam pattern, scan pattern and scan rate are functions of the radar type such as track-
ing, surveillance, height-finding, etc. A given type of radar will generally exhibit given beam
and scan characieristics. These characteristics represent a transformation of frequency and
time domain information into a spatial picture of the radar beam and the beams sweep
pattern; therefore, these characteristics are also derived.

Finally, the angle of arrival is the angle of the maximum energy for the transmitted signal
relative to the direction of flight of the aircraft. The angle of arrival is a single pulse
parameter in the spatial domain; however, to be most accurate, the angle of arrival should
be transformed into direction of arrival to compensate for the in-flight motion of the
aircraft.

2.3.1.1 Single Pulse Characteristics

Using the information available in a single pulse, it is possible, assuming perfect conditions,
to identify the emitter type and location. To classify the general type, the frequency
spectrum and pulse characteristics are the only useful information available in a single pulse.
A blanket statement may be made that the measurements of the parameters in equation (26)
will be spread in some random fashion and will represent a stochaistic process. If the
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various frequency and pulse characteristics are used to model emitter classes, then from the
theory of estimation, probabilities can be established using the estimated mean and variance
to identify a given incoming pulse with a modelled emitter class.

For a simple radar, center frequency, pulse width, and rise and fall times are probably
sufficient to make an estimate. More complex types may need details of the frequency
spectrum of the pulse or the agilities to identify them.

The location of an emitter can be gotten from the conversion of the angle of arrival into
carth coordinates, often called the direction of arrival. If properly done, this parameter is
the least sensitive to pulse-to-pulse variations because the emitter can not move significantly
from pulse-to-pulse. The frequency band and the angle of arrival are often used as a first
coarse sorting of an incoming pulse.

By classifying the general type of emitter and its location, the specific emitter may be
identificd for further processing, such as pulse train classification, range, lethality, etc.

Techniques for this classification will be discussed in Section 2.3.6.

2.3.1.2  Multiple Pulse Characteristics

When the individual pulses are successfully classified at least by general type, additional
information can be extracted about the emitters responsible for these pulses. For many
classes of radar, this information is uninteresting and single pulse classification is enough to
display, counter, or disregard. However, the more lethal new threats have new agilities,
interesting scan patterns, and various processing techniques that require sophisticated process-
ing on the part of the Electronic Wartare receiver to characterize the emitter. Pulse train
characteristics, such as PRF, requirc a number of pulses to detect with any degree of
accuracy and may be modelled as a Markov process. Furthermore, scan pattern and beam
pattern can be determined using the pulse train information with pulse amplitude: however,
extensive processing is necessary. A discussion on pulse train classification is given in
Section 2.3.6

2.3.2 Necessary FW_Functions
There are three major types of electronic warfare functions: electronic reconnaissance,
electronic support measure (ESM), and electronic countermeasures (ECM).  Eectronic
reconnaissance 18 the specitic reconnaissance directed toward the collection of clectromagnetic
radiations, e.g. ELINT, COMINT, SIGINT, c¢te. Two tunctions are served by the recon-
naissance and analysis of the radiations: 1) Intelligence gathering to obtain information tor
the electronic order of battle, and 2) Basis of ECM designs or redesigns.

Electronic support measures are for monitoring the direction and type of potentially hostile
systems, generally using a priont reference data.

Flectronic countermeasures is to deny or degrade the enemy’s use of his electromagnetic
svstems in order to obtain a tactical advantage. Both active and passive measures exist.

The above major EW tunctions are supported by similar subsystems to the extent that the
major tunction needs them.  All the major EW functions need to be able to receive signals,
determine the significant parameters of the signals, sort the signals, associate the signals with
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emitter classes and/or specific emitters. The ESM and ECM functions must be able to
prioritize emitters according to their lethaligy, and display the hostile emitters. Finally, the
ECM system must be able to process the emitters, analyze the available resources of the
electronic defensive systems, decide on the most effective countermeasures, and activate those
countermeasures. The bulk of this section will be devoted to the sub-functions necessary to
sort signals, associate signals with classes, and determine lethality primarily for the ESM/ECM
mission.

2.3.3 Channelized Front End

No specific system is defined for the ensuing benchmarks, however, the availability of signal
parameters is assumed. The most promising system in development today contains a
channelized front-end receiver, and the processing is done on a channel or subchannel basis.

Typical first problems are dense signal environments and radar characteristics that cover
multibeam, multifrequency transmission, PRF agility, RF agility, CW, and intrapulse fre-
quency agility. As a minimum, a receiver must possess:

1.  An ability to handle multiple frequencies simultaneously
2. A near-unity probability of detection

3.  Good frequency measurement, resolution, and accuracy
4. Single-pulse acquisition and parameter measurement.

To handle high pulse densities spread over a wide frequency range requires a wide instanta-
neous bandwidth. Furthermore, a wide bandwidth allows instant, single pulse acquisition.
The complex PRF agile radars require sorting by single pulse parameters, forcing the need of
good frequency measurement, resolution, and accuracy and a high probability of intercept.
The channelized receiver concept have a wide instantaneous bandwidth and high signal
sensitivity, allowing high probability of detection over several octaves. An excellent discus-
sion of channelized receivers and the impact of surface acoustic wave devices may be found
in Electronic Warfare, September/October 1977.

2.3.4 System Architecture

From a generic point of view, a fantastic system can be postulated that will process any
incoming pulse, fully characterize it, classify it, correlate it with its train of puise, and direct
countermeasures, and whatever else is necessary. From a practical point of view, this system
must handle a multitude of pulses with exceedingly different characteristics. This section
will attempt to define a system flow and point out the strengths and weaknesses of the
various steps in the flow. To attempt this definition, firstly, the top-level system flow of a
“pulse” processor will be discussed; secondly, the processing flow will be analyzed: and
lastly, the architectural necessities will be presented.

2.3.4.1 System Flow

Incoming Signals: The incoming pulse is received and generally converted to base band. The
various pulse parameters, such as center frequency, pulse-width, rise time, fall time, AOA,
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etc. are extracted from the pulse, and digital words are passed to the signal “‘sorter”. The
digital words, more or less, characterize the received pulse.

Sorting of Signals: As the digital words enter the signal processor (“‘sorter”), the processor
must attempt to classify the generic type of radar so that the proper countermeasures may
be chosen; the potential of danger may be ascertained, and further processing may be
simplified. Furthermore, the processor should identify the specific emitter so that any
directivity of countermeasures may be specified, as well as, the probability of a radar morde
change to a dangerous mode may be estimated. If the generic type and/or the specitic
emitter can be classified, then multipulse statistics can be gathered to refine further the
processor’s knowledge of how to jam and when this threat will become dangerous. Finally,
based on available data, the processor must prioritize the threats tfor display to an operator
or for automatic deployment of countermeasures. In the airborne ECM case, this prioriti-
zation is critical because the ECM gear has definitely limited quantities of jammer power or
deployable passive countermeasure to use.

2.3.4.2  Processing Flow

Signal Parameters: As the incoming pulse is being received, a number of operations begin
that extract information about the pulse. The minimal set usually includes center frequency
(fc), pulse width (PW), angle of arrival (AOA), and time of arrival (TOA). These require
very little processing to extract the information and may be handled primarily in analog
form while being processed, and then converted to digital signals.

However, the more exotic the emitter class, the more sophisticated the processing must
become. A considerable amount of preprocessing may be necessary if a good characteriza-
tion of complex radars is desired.  Radars that have modulated waveforms, train and/or
coded pulses, spread spectrum characteristics, or CW may require greatly enhanced preprocess-
ing on a single-pulse basis to be successtully characterized.  Table 3 indicates some of the
variety that can be seen in radar waveforms.  Each type has favorable properties that are
useful in relation to the range-velocity ambiguity function.

T'o characterize these pulses successiually, additional frequency doimain information in the
torm of spectral analysis, or additional time Jdomain information such as rise and iall tme,
and pulse amplitude may be necessary tor cmitter-type classification, as well as, a spatial
domain information transtormation from AOA to direction ot arrival (DOA) may be
necessary for specitic-emitter classification. A signiticant problem or contlict arises because
the volume of incoming pulses is high: thercfore, the pre-processing rates for spectral infor
mation will be excecdingly high, approaching 200-500 million operations per second tor
60100 MHz channel at baschband.  Unfortunately, the spectral analysis must be done before
any emitter-type classification can be performed. It the casily classified pulses could be
stripped away either from the raw analog or in the digital data, the spectral analysis could
be done on the spread spectrum pulses at a much lower processing rate.  Current equipment
can only perform hmited amounts of this preprocessing because of hardware limitations

Probablistic T'vpe Classificitiion:  The signal parameters are passed to the signal (“sorter™)
processor for classitication and action (display. countermeasures, ctc.). The parameters




Table 3. Classification of Radar Waveforms

SINGLE PULSE
Rectangular, No FM
Spread Spectrum
Rectangular - Linear FM
Linear V FM
Stepped FM
Quadratic FM
Gaussian, Linear FM

TRAIN PULSE
Equally Spaced, Identical
Equally Spaced, Identical With Constant Complex Multiplier
Non-Identical
Multiple Frequency
Staggered PRF
Multiple Carrier
Pseudo-Random Coded
Barker
Maximum - Length Sequence
Polyphase Sequence (Ternary, Quaternary)
Huffman

Simple
Frequency - Modulated
Multi-Frequency

will be a best approximation of the parameter set actually needed to characterize the
received signal. Recalling equation (26), the signal processor will receive V(t, b|..... by) which
will approximate y, that is

F(t, bprbpy) = y(t, apyy) 27)
where ¥ is the signal processor’s representation of y and b}, by,...bn are the signal represen-
tation parameters. A given emitter-type will have a “characteristic™ set of representation

parameters, which will be spread in a random fashion about some mean.

Using probablistic techniques for multivariate data analysis, a Chi-squared method may be
employed. The proximity of a given pulse to the “characteristic” set of parameters for a

27




given type will be a measure of the probability of identification. It the measure exceeds
a given threshold, classification will be declared, and the probability of this type will be
updated. A further discussion will be given in the Section 2.3.6.

The threshold criterion is included to insure that “over-classifying’ does not occur. A pulse
can arrive at the receiver that does not fit into any a priori emitter-type class. The
processor must first be able to create a new class if a sufficient statistic can be formed.
Furthermore, the threshold may be warped to allow an easier clasification of emitter-types i
that have exceeding wide diversity or a high lethality. By establishing a low threshold on i
the more lethal threats, the receiver/processor will declare more false classifications of the
lethal emitter-types; however, this higher-error rate may be justified as safety feature (the
ounce of prevention rather than the pound of cure).

oot

Specific Emitter-Classification: A specific emitter can be identified primarily from type
classification and AOA/DOA. In the state-of-the-art case. today’s receiver/processors use
frequency/frequency band and AOA. This classification can also be done as a Chi-squarcd
distance measure; however, the statistic for the AOA/DOA will have to be built up as the
emitter-type probability is created.  To minimize the processing, DOA is preferred because
it relates the emitter to a fixed geometric reference which is insensitive to the motion of
the platform. The establishment of a statistical parameter will be discussed in the
Section 2.3.6.

Furthermore, the probability of a specific emitter can be updated, as well as, a current

“active emitter” list may be established and updated. A given specific emitter may be

modelled as a Markov process, that is, if an emitter has been detected, the likelihood is

high that it will be observed again. A scan-to-scan correlation may be observed. The theory

of Markov chains may be applied to describe the scan-to-scan correlation. In the theory of

Markov processes, the routine of any particular event is not assumed to be independent of

other events.  This theory has been applied to radar returns at the radar antenna and can be

likewise applied to the EW receiver. 4

Using the above rationale, multipulse statistics and properties can be ascertained.  Pulse train
characteristics, scan pattern and scan rate, and beam width can be determined. These | .
characteristics require sophisticated processing whose difficulty increases as a power (N~ or N-)
of the number of items being processed.

Further statistics may be gathered if interchannel communication is permitted, that is, it a
‘number of parallel processors are assumed to be handling portions of the spectrum: multi-
frequency threats, or spread spectrum threats may appear in a number of the channels.  he
correlation of interchannel information for specific classes of emitters will provide positive
wentification.

2.3.5 Architectural Necessitics

The processing flow for an EW receiver requires a diverse set of processing capabilities which
will be outlined herein and expanded in the coding and discussion in the Section 2.3.6. The
most severe are primarily in the address generation and data comparison areas.

The memory organization must be highly flexible, such that if a given frequency band has a
high degree of activity, the memory space can be reallocated to accommodate the higher




activity. Two functions or architectural necessities are indicated: 1) efficient data memory
control and organization and 2) sophisticated data address generation for subsequent data
processing. These necessities, when combined with the high pulse densities of the current
and future EW environment, dictate a dedicated data address function to control the reading
and writing of data into memory as well as to control the allocation of memory based on
need.

Data comparisons has implications in all areas of the processor - data addressing, data
processing and control. Even though a very sophisticated algorithm can be devised to
improve the classification processes, a final decision must be made by the processor. This
decision can be done in all hardware or in hardware-software, but ultimately it reduces to a
simple yes/no comparison.

From the outcome of the comparison, three types of branches/jumps may be necessary in
this process: 1) Data dependent data address generation, 2) Data dependent arithmetic
decision, or 3) Conditional or unconditional jumps in program memory. Because all types
of decisions or branches are best handled in different protions of the processor, the control
for these branches should be put in the various portions rather than totally centralized.

2.3.6 Benchmarks

This section will contain a discussion on three algorithms and benchmarks necessary to
accomplish the algorithms.

Pulse Classification, Mean and Variance Determination, and PRF Sorting algorithms will be
developed primarily from the represcntation of the received signal given in equations (26) and
(27). Certain properties of random variables and stochaistic processes will be included only
if it is necessary for completeness. The benchmarks will be developed for the main sections
of the algorithms. Various processor setup steps will be excluded and only included if
requisite for understanding.

2.3.6.1 Representation of the Received Signal

The signal processor receives a set of parameters from the receiver that are the receiver’s
best effort to characterize the incoming pulse. The parameters deviate from the exact set of
parameters and parametric values because the receiver has finite capabilities to detect the
pulse, may not detect all tie “proper” parameters, and receives a noisy, corrupted signal
which it further corrupts. Using equation (26), the received signal, R(t), is represented by an

N + 1 dimensional vector word, which is transformed by the function § to approximate
R(t), that is,

R(t) ~V(t, bj,.sby) (28)
The N + 1 dimensional vector word is considered a pattern vector and the parameters

b} by are random variables.  Assuming V(t, b],...,bn) satisfies the general conditions for a
ramdom variable, the R(t) is also a random variable.
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NOTE: In the signal processor, the b:’s will be represented by digital words,
which means that all probabilities, discussed henceforth, will be
discrete probabilities. Furthermore, it is assumed that the b:’s are
independent and orthogonal, that is, uncorrelated. Althougfx this
is not strictly true, a set of b;’s can be chosen where the b;s approach
being uncorrelated.

2.3.6.2 Mean and Variance Determination

Algorithm: Assuming a complete statistical description of the noise at the receiver is known, the
joint probability density function for the noise can be used. The pattern vector words can be
represented as:

where S; is the ith parameter representing the transmitted pulse and N; is the noise on the ith
parameter, Assuming the noise can be processed out or statistically removed, the job is to form
estimates of the bi’s on the basis of M observations, YoM of a given emitter-type.

Two helpful parameters in forming estimates for the bi’s are the sample mean and variance which
will be used later in the pulse classification algorithm.

The “sample mean” is simply the sum of the measurements divided by the number of observation
In terms of the b’s:
= bll o b12+ +blM

Sample mean of b; = b; = v (30)

The sample mean, Bi is the expected value of b;. The “sample variance” is the measure of
sum of the deviations of the individual observations from the expected value divided by the
number of observations. In terms of the b’s,

2 (bll - Bl)z g +(h”\1 - 51)2
M

(31)

Sample variance of b; = "i2

The sample variance, oiz is the second moment or the dispersion of b

Benchmark: The mean and variance for the various parameteters of the known emitter-
types will be a priori data for the signal processor. These values will be the distillation ot
intelligence data. Pulses, not meeting the threshold criteria on AOA/DOA statistics, will
have to build-up a sample mean and variance for AOA/DOA to permit casy classification. It
a processor is able to add new categories or emitter-types, then the sample mean and
variance algorithm or an equivalent will have to be included as an auxiliary processing task
for all the signal parameters.

Equation (30) may be implemented directly in an iterative fashion such that 2 operations arc
necessary per iteration; however, equation (7) would require 2N-1 additions, N multiplications
and a division or a 1/M multiplication. To build up a statistic, it is often necessary to
integrate a new bi as the data comes.




A straight implementation would require 3N operations every new data point. Assuming
N starts at 1 and goes to N, a total of 3N (N"") operations would be required for

N-observations. A different approach was explored and it can be shown that equation (31)
can be reduced with the aid of equation (30) to

N
) SR 7.2
02 = &+ > b2 (32)

By this reduction, equation (32) can be used in an iterative procedure adding only 4
operations per iteration.

Below is a sample processing implementation of the sample mean and sample variance
described by equation (30) and (32) respectively. Four values must be stored to set up the
iteration loop and a loop counter test and iteration must be included for each iteration.
Therefore, for N observation, 8N +4 operations must be performed.

SAMPLE PROGRAM FOR MEAN AND VARIANCE

SETUP EnterC = 0,D = 0,N = 1, NMAX = NMAX
MEAN C = C+BI(NN)
BIBAR = C/N Comment: Sample Mean, b;
BIB2 = BIBAR*BIBAR
D = D + BIB2
SIGMA2 = D/M
SIGMA2 = SIGMA2-BIB2 Comment: Sample Varianct:,ai2
IF N = NMAX, THEN STOP
N = N + 1, JUMP MEAN
STOP

2.3.6.3 Pulse Classification Algorithm

Algorithm: Assuming a sample mean and variance for each parameter b, has been determined
for J classes, the mean and variance may be used as a measure of the ciass, Cy 2sainst a
new incoming vector word. A new data word y is received with parameters b;,....bp.  To
determine the probability that y belongs to class, Cy, a mean-square error betwce;\ each new
b; and the mean b i of class Cy is gotten and normalized with the variance, oy;“, pre-
viously established for Cyn. This mean-square error is often referred to as a “dnstam.e
measure’’. The error is given by:

2 _ (b - byy)?

N = = (33)
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(Note: by; represents the sample mean of the ith parameter of class, Cpy. Compare with

b; ; which means the jth observation of the ith parameter of an unspecified class). For the
cn{irc data word y, equation (33) becomes
n =
A (bi - bNi)
T p)

This procedure assumes a multivariate normal distribution for the vector variable in each of
the classes. We use the notion of swarm for the plot in measurement spece of points
representing the members of a single class. A multivariate normal swarm is very dense in
the region of the class centroid and thins out in all directions. The normal swarm is a
hyper-ellipsoidal distribution. The probability density function for the ith parameter is by
belonging to the Nth class is:

P o LR —1—_—_— -X<

ni /2 34)

ONi o

=
P, . . . . — et .
where X = represents a Chi-squared statistic and cqualsu’l bN; ™). Dropping the constant

Ony:l
Ni-
and extending equation (34), the probability density function of y belonging to CN is

PNy = exp (—CNJ/.’.) (395)

which also follows a Chi-squared statistic. The probability of Class Cyy is now represented
by PN the probability of all J classes must be similarly determined. b}:inully, to yield the
relative density of class CN with respect to y versus the other J densities, the relative
densities are determined by:
PN
= 3
PrN ] (30)
x5

=1

whichever Pr N is the largest is the class. However, a threshold function may be invoked at
this point which will skew the determination. A class may be favored because it represents
a larger threat or for whatever reason, or a “No class” determination may be made. A

“No class” determination is valid only in a processor which can deal with unknown signals.

Benchmark: Unfortunately, no simple reduction is available for this algorithm. The proc-
essor must compute the mean-square error of each new § versus every class, Cy.  The mean-
square error for each ith parameter requires three memory fetches to get [UNT and
—

' U : INi~
b; and 4 computational steps: a total of 7 operations are involved. With J classes and m
parameters, a total of 7*J*m operations are necessary to make the computations plus
indexing the loop counter which involves another J*m operations,
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The processor must calculate the probability that ¥ belongs to every class, Cyy and

normalize the probabilities. Assuming the exponential is a look-up function,
fetch and 2 computational steps are required for every class, plus one memory fetch per ¥

J
for the ¥ Pj; a total of 3J + 1 operations are required.
i=1

memory

Lastly, the processor must determine which class has the highest probability as well as

which classes have passed their threshold. A minimum of one memory fetch and two com-

parisons per class as well as one memory store per y are required, a minimum total of
3J +1 operations are necessary. A maximum of J-1 memory stores is possible; therefore,
the maximum total of 4) operations may be required. Below is a sample program.

SAMPLE PROGRAM FOR PULSE CLASSIFICATION

SETUP EJ = 0, IMAX = IMAX, IMAX = JMAX,
PYK = 0

ERROR A = B ({) - BBAR (J, D Comment:
C = A*A Comment:
D = C* SIGNA (J,D) Comment:
EJ] = EJ +D
IF1 = IMAX, JUMP PROB
I = 1+ 1, JUMP ERROR

PROB E = - EJ/2 (Shift Right)
P) = MEM (k) Comment:
PYJ = PJ*SUMPJ Comment:
TEST = PYJ - PYK Comment:

IF TEST <0, JUMP JCOUNT
IF TEST = 0, JUMP JSTORE

PYK = PY] Comment:
JSTORE MEM = ] Comment:
JCOUNT IF J = JMAX, JUMP THRES

J = J + 1, JUMP ERROR
THRES TEST = PYK - T Comment:

IF TEST > 0, JUMP STORE

33

I =01J = 1,

a = (hl-l‘-").,
¢ = (bj-b;p-
= 1
(b; - b))~

Oji"

Memory look-up for
exponential:  exp(k)

P!
Pr‘l B W ..

L J
Compare with previous

“high" probability

Replace with new
“high™ probability

Store (‘J

Compare with
threshold

T N




~pTT

STORE At this point, the program will option to display
the output (MEM), to determine a counter
measure or do nothing if the test is passed.
Otherwise, it will store the y for further processing.

2.3.6.4 PRF Sorting

Algorithm: as the incoming signal is received, a time-of-arrival number or word is associated
with it. This TOA word is relative to an internal clock and demarks the beginning of the
pulse. The primary purpose for the demarcation of the pulse is to develop multipulse
statistics like the PRE/PRI of a specific emitter. By knowing the PRI and the time of arrival
of the previous pulse, an ECM processor can anticipate its needs for expenditure of counter-
measure resources,

The major problem for PRF sorting is multiple emitters of the same or similar type trans-
mitting in close geometric proximity such that the AOAs cannot be resolved. The goal of the
sorter is to pull apart the distinctive PRFs, either simple, staggered or jittered. The algorithmic
flow is exceedingly simple; however, as the number of pulses to be sorted increases. the prob-
lem can become untenable.

The flow is, as tollows:
1. Calculate the difference between allreasonable TOA combinations, that is.
Aij = TOAI- TOAI for all j # i
where TOA| represents the TOA of the ith pulse.
2. Compare the differences for a repetitive pattern, such as:
Aij = Ajk = Akl = Alm = . . .

A tolerance must be included in this comparison so that the comparison is not
overly sensitive to noise.

3. After a successful comparison of a given Aij, a PRF can be declared and utilized.
Utilization may range from simply preparing the countermeasure to developing
histograms for beam width and scan pattern determination.

Benchmark:  The benchmark described herein represents a “practical” approach to using the
TOAs as they come to the PRF sorter. As the processor receives the mth TOA. it stores the
data in memory, replacing an old TOA value. This approach represents a moving time window
over which processing will be performed. Without this constraint. the processor would be
saturated within a very few pulses. With small modification, this benchmark could be used as
a batch process in which a large number of TOAs are saved and processed as a group.

The processor must update the memory pointer and fetch an “old” TOA for delta caleu

lation. The delta caleulation is performed N times, where N represents the average number of
pulses received during the time window. Two operations are required per pass.
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After the delta is calculated, it is immediately compared with the deltas present in a given
A row, that is, if the new delta has subscripts i and j, this A will only be compared with
deltas having subscripts n and i. This comparison property is shown in Figure 9. If a match
is declared, the Ajj is stored and a “hit counter” is updated. The *“hit counter’” represents
the number of TOAs in a row that have had an equal TOA difference (A). When the hit
counter exceeds a given value, the PRF is declared. This comparison requires N(N+1)
comparisons each containing one or more operations.

Below is a sample delta calculation and comparison program. Significant program development
is required to include how the bit counter is incremented or decremented, how a PRF is
declared, and how the data is used for prediction.

A new instruction has evolved from this benchmark — the windowed compare. Because the
use of absolute compare function would create a noise-sensitive process, a tolerance must be
included to account for variations in the TOA measurements and the subsequent delta
calculation.

SAMPLE PROGRAM FOR DELTA CALCULATION AND COMPARISON

SETUP ENTER N=N M=M, | = Comment: N is the average number
M-N-2 of pulses received during
J = N-1, TOL = TOL the time window. M is
the memory pointer.
TOA(M) = TOA Comment: Store the new TOA

DELTA DELTA (I,M) = TOA(M)-TOA(l)

IF I = M, STOP
I=1+1

COMP TEST | = DELTA (I,M) - Comment: Comparison windows
DELTAQ,D)+TOL have been set-up
J=1J+1 will be replaced by new
IF J = M-1, JUMP DELTA instruction.

TEST 2 = TEST 1 - 2 *TOL

IF TEST 1 > TOL, JUMP COMP

IF TEST 2 < -TOL, JUMP DELTA

IF TEST | < TOL + TEST 2 > - TOL, THEN Increment the hit

counter;
Store Aim
Jump to COMP.
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SECTION 111
MULTIMODE CPU ARCHITECTURE

3.0 INTRODUCTION

In Section II, a baseline scenario was defined for future signal processing applications. The
scenario was presented as a set of representative benchmarks. The benchmarks were chosen
from previous Air Force procurements and in-house experience and are used to indicate the
various processing and control structure necessary to properly handle the problem set.
Table 4 is a brief compendium of the benchmarks and the data processing, data addressing,
and control structures necessary to perform the benchmarks.

In this section, an attempt will be made to utilize Table 4 and discuss the impact of the
processing needs on basic computing structures such as the control section, the ALU, the
data addressing and the bus system.

3.1 PRIMITIVE COMPUTING STRUCTURE

Conceptually, the most basic computing structure must contain a control function, an arith-
metic/logic function, and storage. All structures may be broken down to these fundamental
structures. For the purpose of discussion, Figure 10 represents a primitive computing struc-
ture for handling signal processing. The control function is handled by an addressing unit
and a micro-program/instruction memory. That memory controls the functioning of the
arithmetics and storage, as well as, its own addressing unit, thereby creating a seltf-contained
computer.

The arithmetic function is performed by the Register Arithmetic Logic Unit (RALU) and the
multiplier. The RALU performs all the basic arithmetics: add, subtract, shift, and the basic
logic functions, AND, OR, EXOR, COMPLEMENT. The multiplier performs a simple hard-
wired multiply function on any two operands presented to it. The multiplier is an extension
of the basic arithmetic function because the multiply function is generally required in signal
processing.

The storage function (operand storage) is handled by the data memory and the register
section of the RALU. The data memory has both permanent operand storage (i.e., ROM,
PROM) and temporary storage (i.e., RAM). The structure shown in Figure 10 assumes that
the addressing of operands (data addressing) is performed by the RALU or the controller.

Although Figure 10 shows a multitude of buses, a single bus can be conceived to handle all
control and data informational transfers. The bus structure will be discussed at length in the
next section.

This primitive computing structure has been presented as a basis for the following discussions.
These discussions will expand the description of the elements in Figure 10, as well as, give
the rationale for the specific embodiments of the elements based on the baseline scenano and
architectural constraints.




Table 4. Benchmarks and Indicated Architectural Characteristics

Benchmark Data Processing Data Addressing Control

FFT Multiply Accumulate Array Indexing Loop Counting
Complex Arithmetic

Coordinate Conversion Double Precision Tight Data Loops Data Dependent
Numerical Scaling Branches

CFAR Bit Manipulation Simple Addressing Data Dependent

Jumps

Cosine Transform High 1/O Rates High Addressing Loop Counting
To Memory and Rates
Outside World

Pulse Classification Memory Table Lookup Array Indexing Data Dependent
Variable Bit Length Branches

Data Words
High Speed Arithmetic

32 BUS SPEED, WIDTH, EFFICIENCY

In viewing the signal processing problem from a system point-of-view, it becomes apparent for
certain problems, such as the FFT and pulse characterization, that bus traffic considerations
are paramount. For this reason, the design of the Multimode CPU began from the bus and
proceeded out. This section and the section on multiplier structures will hopefully justify
this decision, as well as, detail the structures dictated by the problem set.

3.2.1 Bus Speed

The FFT requires a great number of data memory reads and writes to accomplish the butter-
fly operation. Because the speed of operations is also quite high, the path in time from the
generation of the read/write address for the data memory until the data reaches its destination
or arrives from its source must be minimized. In viewing this requirement, a single bus for
data addresses and data would become extremely difficult to manage, considering the high
data flow required. It has been concluded that this path from address to data must be
pipelined to provide maximum speed; therefore, a separate data address bus and a separate
data bus is a necessity to handle the pipeline.

Furthermore, a minimum time path can be analyzed, as in Figure 11, which will give feasible
estimates of the time to take a previously generated address from the address register to the

memory, to fetch the operand from the data memory and to send operand to the data
register. The time path, therefore, is

T= TReG ouT * TDRIVER * TADR BUS * Tacc * TDATA BUS * TLATCH.
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Figure 10. Primitive Structure
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Figure 11. Minimum Time Path for Address to Register

With current technology, the minimum time path can be from 50 to 100 usec, depending on
a number of factors, including IC drive, PC board techniques, memory selection, etc.

Using the above argument for separate data and data address buses, it has been concluded
that a five bus system is necessary to maintain and support the data bus and data address
bus requirements.

The five buses are:

DATA

DATA ADDRESS

INSTRUCTION

INSTRUCTION ADDRESS
STATUS FLAGS OF PROCESSORS

Analysis shows that cach of these buses must maintain a speed equivalent with the speeds of
the data and data address bus, that is, the instruction address to microinstruction memory to
instruction register path must be as quick as the data address/data path.

e & Bus Width

As stated before, the FFT presents the most challenging problem. This extends into the arca
of bus width. The FFT butterfly requires two or three complex data reads and two complex
data writes be performed. Obviously, the bus could be structured so that the complex words
are accessed as real quantities (2 per complex word). Such a bus would double the number
of reads and writes necessary to accomplish an FFT butter{ly, thereby doubling the time to
set up the FFT independent of the multiplier.

The indicated conclusion is that a dual data bus system should be used so that a single read
time is necessary to access and transmit a complex data word. Furthermore, the data words
should be 16 bit real and 16 bit imaginary to allow processing gain without scaling which
would require either additional processing steps or more hardware. Therefore, the data bus
will be 32 bits wide to handle the complex data for the FFT. This size is also good if any
double precision arithmetic is necessary. Coordinate conversion routines sometimes require
expanded accuracy for positional fixes.
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3.23 Bus Efficiency

Bus efficiency is a motherhood topic. The maximum efficiency is 100 percent. Any signal
processor should strive for the maximum, especially during the FFT processes. By the FFT's
very nature, a SO percent efficiency is a practical upper bound, that is, 2 or 3 data reads.
some processing time, and 2 data writes. The processing time is generally equivalent to the
sum of read and write times if the processor is properly organized. A cursory conclusion at
this point is if a practical upper bound of 50 percent efficiency is obtainable, why not have
two FFT butterfly operations running concurrently and out-of-phase so that one is processing
during the reads and writes of the other and vice versa? Thus, the bus efficiency can
approach the maximum.

3.3 MULTIPLIER STRUCTURES

This section on multipliers has been included to discuss the impact of a multiplier special i
function unit on the speed and bus traffic of a signal processor. The multipliers described f
herein will be assumed to have 16 x 16 bit multiply capability and may be any of a number
of available multiplier organizations, such as parallel, pipelined, or serial parallel.

The problem set will be those discussed heretofore; however, the FFT remains the most
challenging problem. The actual design of the multiplier will not be included although its
implementation greatly impacts the LSl-ability of the multiplier special function unit.

331 FFT Buttertly

To accomplish an FFT buttertly, the signal processor and its special function unit must fetch
two complex data points (and possibly a complex rotation vector), perform a complex multi-
ply and two complex adds, and store two complex data points. Figure 12 shows the actual
operation of the butterfly.

However, to perform the complex operations described above, the current processors must
perform all real operations. The complex multiply becomes four real multiplies and two real
adds, and the complex adds become two real adds cach. Thus, the optimum structure to
perform the FFT butterfly would have four parallel real multiplier and two real adders per-
forming the complex multiply, and four real adders performing the complex adds (see

Figure 13).

All signal processors must emulate the FFT buttertly structure in Figure 13, either by furn-
ishing all the hardware, by recursive use of a single multiplier, or the software. Assuming
that the purely software method would be both clumsy and slow, only the first two methods
will be discussed. Four multiplier structures will be discussed as means of accomplishing the
the FFT butterfly.

33.2 Multiplier/FFT Structures

The simplest structure is a single multiplier with two input latches to latch in the 16-bit
operands, a 16 x 16 multiplier, and two 16-bit output latches to hold a double precision
product. This multiplier could be constructed from the AMD 2 x 4 multiplier chips or

the TRW 16 x 16 multiplier chip.
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An advancement from the simple structure is the addition of an accumulator that can handle
addition of two 32-bit products: thereby performing the real or imaginary portion of the
complex multiply. This structure is called a multiply/accumulator. Currently, a version is
available from TRW that can handle 12 x 12 bit multiplication. Although the TRW product
is insufficient, it is a step in the right direction.

A further advancement would include the holding registers necessary to perform the whole
complex multiply without multiple operand fetches and stores. Figure 14 shows such a
structure. The rotation vector and data point can be loaded directly into input latches: the
four multiplies can be pipelined through the single multiplier; the partial products can be
accumulated and held in latches; and the complex product can be outputted in a single clock
time. No present product is known that can accomplish this structure on a single chip;
however, the Raytheon Micro-Signal Processor’s pipeline structure virtually performs this
operation.

The final advancement would be structured that totally emulated the FFT butterfly structure
in Figure 13. The only difference would be that various registers would be necessary to hold
A, B, and W, as weli as, intermediate results. This structure is a totally hardware approach;
therefore, the unit would be a special purpose processor, even though standard multipliers
could be performed without any penalty.

3353 System Impact of Multiplier/FFT Structures

Each of the structures discussed above will be analyzed herein with regard to their impact on
bus efficiency and speed. As discussed in Section 3.2.3, a goal of a processor should be 100
percent bus efficiency; however, this efficiency concept must be extended to include a state-
ment about the types of bus traffic. Obviously, the bus can be filled with partial products
and incompleted solutions (that is, shuffling intermediate data around to accomplish a task).
or the bus can be filled with operands and solutions. The latter case indicates a higher
“true” efficiency of the bus, and is a function of whether the complex data is transferred
simultancously or sequentially in the case of the FFT.

Heuristically, i’ the data is transferred as complex words, a 1024 FFT will require 1024

input transfers and 1024 output transfers; that is, 2N transfer times for N points. However,

if the data is transferred as real words (the complex word is treated as two real quantities),
the same FFT will require 2048 input transfers and 2048 output transfers; that is, 4N transter
times for N points. The following discussion will take this heuristic argument and analyze the
specifics of each multiplier/FFT structure. For this discussion, Figure 1§ will be considered
the system architecture.

3.3.3.1 Case 1: Multiplier

To perform the butterfly, a single multiplier will be used for the real multiplies, and the
RALU’s will be used as the adder/accumulators. Since the multiplication requires two
operands be presented every multiply cycle by the RALU’s or the data memories, the real
and imaginary buses (16 bits each) are tied up for loading and each output ties up the real
bus.

In addition to the bus traffic to load and unload the multiplier, two or three complex reads
are necessary to set up the butterfly by putting the operands into holding register, that is,
the registers on the RALU. Finally, two complex writes are necessary to store the output of
the buttertly.
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Table 5 has been included to estimate the bus activity in clock cycles. The multiply time is
assumed to be one or two clock cycles. From the cycle totals, the bus is busy about 70
percent of the time; however, two-thirds of the bus activity is shuffling data to and from the
multiplier. Furthermore, overlapping of butterflies would be virtually impossible; therefore, the
bus and multiplier must remain unused during part of the cycle. It is concluded that such a
system would be inefficient in performing the FFT butterfly.

Table 5. Bus Activity as a Function of the Multiplier/FFT Structure

4
: Bus Activity in Clock Cycles
Case 1 Case 2 Case 3 Case 4
Operation Being Bus Bus Bus Bus Bus Bus Bus Bus
Performed Active | Free Active | Free Active | Free Active | Free
} Complex Operand Reads 2/3 2/3 . .
i MPY Input 4 4 1/2 2/3
MPY Operation - 4/8 4/8 1T 1 4/8 : 1/2
MPY Qutput 4 2 1
Intermediate Adds for — 2 2
Complex MPY
Complex Adds and Word 2 2 2 2
Writes
Total Per Column 12/13 | 6/10 10/11 | 4/8 5/6 4/8 4/5 3/4
Total Cycles per Case 18/19t022/23 14/15 to 18/19 8/9 to 12/13 7/8 to 8/9

*Complex words go directly to Multiplier
t Additional complex read during Multiply operation (does not increase total cycles)

3.3.3.2 Case 2: Multiply/Accumulator

As in Case 1, a single multiplier is employed, and the RALU is used as the operand holding registers;
however, the intermediate adds necessary to complete one-half of the complex multiply are done in
the accumulator.

Once again, the bus traffic is split between operand fetching and multiplier loading and unloading.
As indicated in Table 5, the bus is busy about 60 percent to 70 percent of the time and 60 percent
of the bus activity is the movement of operands to and from the multiplier. Overlapping of butter-
flies would again be quite difficult, and the bus and multiplier have idle time. Although the
accumulator with the multiplier is an imprbvement over a simple multiplier, this system is still
inefficient in performing the butterfly.
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3.3.3.3 Case 3: Multiplier/Accumulator with Holding Registers

A single multiplier is used; however, the operand holding registers and accumulators are ‘
v included so that the complete complex multiply can be done without intermediate data being |
L placed on the data bus. The complex multiplier and multiplicand go directly to the multiplier }
holding registers, and the third complex word goes to the RALU’s during the multiplier
operation, thereby not increasing the total time to perform the butterfly.

Except for the movement of the complex product from the multiplier to the RALU so that
the two complex adds can be done to finish the butterfly, all of the bus traffic is the fetching
and storing of data in the data memories. The bus is active approximately SO percent of the

time; therefore, if two multiplier units of this type were employed, the overlapping of butter- |
flies could be accomplished, resulting in approximately 100 percent bus efficiency. Using the 1
overlapping process, the multipliers could be kept busy full-time. |

This approach to the multiplier special function unit is a significant improvement over both
cases | and 2. This sytem would be quite efficient in performing the butterfly operation.

3.3.34 Case 4: Multiplier/FFT

Multiple multipliers are used, all holding register for the three complex operands are in the
unit, and all accumulators are included. Essentially, the rotation vector and the two complex
operands are directly loaded into the multiplier unit, the complex multiply is performed, the
two complex adds are performed, and the outputs are loaded back into the data memory.

{

All the data bus activity is dedicated to loading and storing operands. The bus is active SO }
percent of the time, and as in case 3, 100 percent efficiency could be accomplished by over- :
!

lapping in time if two multiplier units were employed.

Obviously, this approach represents the most efficient approach to performing the butterfly:
however, this efficiency can only be accomplished with dedicated hardware. The system !
design must ultimately decide between the minimal differences between the performance of
the units in case 3 and case 4.
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3.4 COMPLEX PROCESSOR

A detailed review of the multiplier special function unit cases has revealed that the more
sophisticated units - the multiplier/accumulator with holding registers and the multiplier/FFT
- can permit extensions/modifications to the RALU structures that will impact the data
addressing function. Although the modifications are minor, two different complex pro-
cessors have been identified - one if the simpler multiplier units must be used, the other

if the more complex units are available.

This section has been included to describe the processor architectures from a fairly high level.
Within this section, the first complex processor to be discussed will have a multiplier or
multiplier/accumulator, and the second will have the more sophisticated multiplier functions.

34.1 Processor 1 (See Figure 16)
3.4.1.1 Data Processors

This processor uses two real processors, or, more appropriately, RALU’s to perform the com-
plex arithmetic dictated by the problem set. Each real data processor is a 16 bit RALU, able
to perform arithmetics, logicals, etc. in a single instruction cycle. Therefore, the two real
processors can perform the full complex add or subtract function in a single instruction if they
are worked in tandem.

3.4.1.2 Data Addresser

The data addresser is a single 16-bit processor RALU which must be able to add, subtract,
increment and compare. In the configuration shown, the addresser can furnish two 16-bit
addresses per clock cycle to the data memories; however, only one new address can be calcu-
lated during that period. This calculation limitation is not a hinderance for the problem set
herein discussed. A third port on the data addresser is tied to one of the data buses so that
a data word may be used as a data address such as in the case of a ROM table look-up.

3.4.1.3 Data Memories

The data memories will include both temporary and permanent storage, i.e. RAM and ROM,
To support complex processing, one memory will be for the real operands: the other, for the
imaginary operands.

3.4.1.4 Multiplier

The input latches are connected as shown in Figure 16. Because the complex multiply requires
a multiplication of two real operands and two imaginary operands, the crisscrossing of the
“real” bus to the imaginary processor and vice versa is necessary. The crisscrossing is also
desirable if the processor is to be used in an array fashion.

The output latches hold the product of the input words until desired. The most significant
bits are latched in the C Latch and attached to the real bus. This latch is the only one used
in most cases. When double precision products are necessary, the D latch holds the least
significant bits and is attached to the imaginary bus, thus, the imaginary bus becomes the
lower bits bus when double precision arithmetic are being performed.
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All the latches, both input and.output, are assumed to be independently latched.
3.4.1.5 Control

The control structure, as shewn in Figure 17, contains a single Instruction Addressing Unit
(which will be described in a subsequent section) that addresses the microinstruction memory.
The microinstruction memory has a total of 109 control bits and a maximum of 4096 words.
The control bits are, as follows:

25 Bits to control Real Processor

25 Bits to control Imaginary Processor

25 Bits to control Data Addresser

4 Bits to control Multiply Function

4 Bits to control Real Data Memory

4 Bits to control Imaginary Data Memory
12 Bits for Jump/Branch Addresses

10 Bits for Next Microinstruction Control

109 Total

This control word is exceptionally wide: however, the system designer must make a compro-
mise at this point. The total number of bits to control the processors, etc. cannot be lowered,
but the number of microinstruction bits can be significantly reduced. Reducing the number
of microinstruction bits, simply means that a high degree of decoding must be accomplished
either within the processor or in an external ROM/PROM. The decoding operation takes time.
The decision must be based on the time available. If speed is the goal, then the amount of
decoding must be minimal. Thus, the control section here has opted for speed.

Because the microinstruction word is extremely wide, it is assumed that the microinstruction
register is part of each function being controlled, i.e., the control registers are within the data
processor, etc.

The Instruction Addressing (IA) unit contains the flag logic that is necessary. There are three
sources of status or flag returns in the complex processor — the real and imaginary processors
and the data addresses. Each of these processors can return four bits; this may be a problem
for the flag logic provided on the 1A unit. Expansion may be necessary in some cases; how-
ever, this is unlikely for the given problem set.

The control unit must be able to furnish microinstructions to the data processors and data
addresser at the minimum instruction completion rate. Since these functions have been defined
earlier in this section as having single clock instructions, the control unit must be able to
supply instructions every clock cycle. If that instruction rate can be maintained, then no
instruction buffer or FIFO register is necessary or even desirable. The buffer or FIFO causes
problems in algorithms with a high degree of jumps such as the pulse classification task.

Before a jump or branch can be accomplished, the FIFO must be cleared, or a fast-address-
around loop must be included.
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Figure 17. Complex Processor Control Unit
34.2 Processor 11 (See Figure 18)

3.4.2.1 Data Processor/Addresser (DP/DA)

By providing a more sophisticated multiplier special function unit, the need for a separate data

addressing unit is obviated because the ALU of the data processor is virtually unused during
the FFT butterfly operation. The remaining problems in the benchmarks are much less diffi-
cult or strenuous from the ALU’s point-of-view. In fact, the remaining problems require only
one RALU or data processor and one data addresser.

The data processor/data addresser is explained in depth in a subsequent section. The struc-
ture is essentially the same gs the data processor from Processor 1 with circuitry added to

perform data address incrementing and with an additional data address register and port.

The dual function DP/DA is able to perform processing functions such as complex add or

subtract and increment an address simultaneously or to calculate and furnish two 16 bit addresses

every clock cycle. Furthermore, because the DP/DA functions share the same register stack,
there exists and intrinsic ability to transfer data to the address port for a ROM table look-up.

3.4.22 Data Memory

Same as Processor 1.
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3.4.2.3 Multiplier/FFT

The multiplier for this processor is capable of performing fully complex arithmetic as well as ?1
real and double precision arithmetic. I3

3.4.2.4 Control

To T

The principles of operation are exactly the same as for Processor 1. Figure 17 represents the
control structure. The only variance is the specified use of the control bits and the total num-
ber of bits necessary. The control bits are used as follows:

26 Bits to control Real DP/DA
, 26 Bits to control Imaginary DP/DA
‘ 10 Bits to control MPY/FFT
4 Bits to control Real Data Memory
4 Bits to control Imaginary Data Memory
12 Bits for Jump/Branch Address
10 Bits for Next Microinstruction Control
92 Total

343 Complex Processor Performance

The two complex processors, discussed herein, were analyzed in depth to determine their per-
formance. The FFT butterfly and the pulse classification benchmarks were chosen for the
analysis because they represent the most strenuous problems in the baseline problem scenario.
The FFT is extremely orderly in its instruction flow where the arithmetic operations are a
preponderance of the problem. The pulse classification benchmark represents a repetition of
arithmetics, but, more importantly, it contains a high degree of conditional and unconditional
jumps, which is a good test of the tlexibility of the control structure.

Appendix A contains the equations and/or task flow of the algorithms and the coding and
timing of the two processor. The summary is given below.

Processor 1 requires 17 clock cycles to perform the butterfly (19 if the rotation vector must
be loaded); therefore, 89086 clock cycles are necessary to do a 1024 point FFT. Processor
I with a single multiply/FFT unit requires either eight or nine effective clock cycles per
butterfly; thereby, needing less than half the number of clock cycles-41987. Only 20 per-
cent more cycles are necessary if the dual multiplier/accumulators with holding registers are
employed.

Both processors performed equally well on the pulse classification benchmark. This benchmark
requires seven cycles for setup and three for close-out (i.e., thresholding) and 6051 for class-
ification. The total is 6061 clock cycles. Processor 1 potentially has an advantage in per-

g forming pulse classification because it has two data processors and an independent data
E address; however, the dual DP's are not an advantage unless dual control sections can be pro-

vided for testing and program control. Such a structure would simply become two parallel
processors. Both processors can perform the benchmarks as demonstrated. The speed advantage
of Processor Il is purely a result of additional hardware, which is probably justified in the

case of the FFT butterfly.




3.5 DATA PROCESSOR/DATA ADDRESSER

Within this section, a full description of the Data Processor (DP) and Data Addresser (DA)
architectures, as well as, introductory words on the design rationale for the general structure
will be included. These structures will not be discussed as integrated circuits although some
reference may be included if a design rationale is only clear in the IC context. Specific IC
trade offs will be in the technology section of this report.

3.5.1 Design Rationale

Early in the design effort, it was noted that similar structures for the DP and DA functions
could be employed if the multiplier/FFT structure was considered independent of the Data
Processor. Each function, DP or DA, has a need for a number of high-speed, on-chip
registers and an Arithmetric/Logic Unit (ALU) structure. Because the general structures
were similar, a more detailed look was warranted. Below is a capsule of the register and
ALU needs of each function.

3.5.1.1 Registers

The Data Addresser, described as part of the complex processor section, is a highly utilized
function requiring the same high speed that the DP requires. The problem set forces the

signal processor to address data operands at a very high rate; therefore, it is incumbent on
the processor to calculate its data addresses quickly, forcing the need for on-chip registers.

The registers must store the current address of the operand being fetched, the starting
address of the operand string to be utilized, the maximum or ending address of the operand
string, and the incremental values or delta addresses. An incremental value is used to
determine the steps through the operand string, and there may be need for more than one
incremental value if the addressing is complex. To further complicate the problem, if
double indexing or higher indexing is advantageous, register space is necessary for all the
start, maximum, current and delta addresses. To satisfy the double index need, a minimum
of 8is dictated, and 16 registers would be nice.

The register needs of the DP are very straight forward. Operand storage, intermediate results
storage, and, depending on the multiplier special function unit, multiplier operand storage.

In every algorithm coded to date, the maximum number of registers utilized has never
exceeded six, even with the most inefficient multiplier structure.

A final comment on the registers is necessary. The registers should be Multiport RAM with

two read-ports and one or two write-ports depending on the multiplier for ease of operand

fetch and storage in the registers.

3.5.1.2  Arithmetic/Logic Unit

The DA function requires only the most basic arithmetics to be able to complete its tasks
addition

subtraction
increment/decrement (1)
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The ability to test addresses for the maximum must be available. The test requires simple
subtraction and the generation of a test flag to force a jump/branch, or decrement in the
loop counter.

The DP must have a sophisticated ALU with full arithmetics, logicals, and shifts. The gen-
eration of test flags for data dependent operations and signals for carry generate and prop-
agate for extended precision arithmetic must be available.

3.5.1.3 RALU Structure

The conclusion drawn from the above discussion is that a RALU structure is indicated. The

DA function forces the highest need for registers, and the DP requires the more sophisticated
ALU; however, neither requirement forces an untenable deviation from the needs of the other
function. If anything, the RALU is a slight overkill for each function.

3.5.1.4 Additional Comments

As discussed in Section 3.4, the RALU structure for the DP/DA will be controlled by a wide
instruction word with little or no decoding on the chip. This constraint has been applied
because it offers the highest speed and maximum flexibility in the timing cycles, thereby,
allowing fast single cycles and multiple cycles if necessary.

To minimize the total chip count of the signal processor, the instruction words are latched
onto the chip and held in instruction registers. In other words, no external registers are
needed for instructions. The rationale is simply that external registers are inefficient
because their low gate-to-pin ratio requires many additional chips. By placing them on the
RALU, the number of 1/O pins on the RALU is unaffected, and the gate count is only
slightly increased.

Finally, all the ports are latched and tristated to minimize external multiplexers. Since the
data bus/data address bus are system limiters, it was concluded that the fewer the number of
multiplexer, the faster the bus could operate.

3.5.2 Two DP/DA Structures

Depending on the multiplier special function unit, variations in the specific DP/DA archi-
tecture are indicated. The simpler multiply functions, discussed in the comiplex processor,
required a whole unit be dedicated to data addressing. Each DP and DA unit has the RALU
structure described above, that is, a full function ALU, a three Port MPR and 3 Bidirec-
tional 1/O ports (see Figure 19).

The more sophisticated multiply functions, also discussed earlier, minimizes the use of the
ALU in the DP; thus, the functions of DP and DA can be combined because the DP/DA is
used for addressing and calculating addresses during the FFT butterfly. By combining the
functions, additional features are necessary on the DP/DA to support the addressing when
the ALU & 1/O ports are being used during processing. An address incrementer with
increment/decrement and pass capability and an additional unidirectional port for addressing
must be added. Furthermore, the MPR requires an additional write port so that addresses
may be incremented and written back into the MPR simultaneously with data being
processed in the ALU and being written back in the MPR (see Figure 20). Only in this
case is a full four-Port MPR required.
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3.6 INSTRUCTION ADDRESSING

The control function for the complex processor consists of a microinstruction memory and
an instruction addresser. The instruction addresser (1A) includes a microsequencer, a loop
counter, an interrupt control unit, and flag logic. The IA will furnish a 12 bit address to
the microinstruction memory which will control the DP’s and DA, set up to the IA for

the next microinstruction, and provide the jump/branch addresses. The next sections will be
devoted to explain the IA architecture.

3.6.1 Program Control Unit

The program control unit (PCU) is indigenous to all stored program computers and is often
called the microsequencer (a la 2909). The PCU is shown in Figure 21. The heart of the
PCU is the address multiplexer and register. Under the control of the IA instruction register,
the flag logic, and the interrupt logic, the address MUX acts as a “traffic cop”, selecting the
next microinstruction address from 4 sources:

Program Counter
LIFO Stack
External Input
Interrupt Address.

e -

The program counter generally contains the “next address” in its register. During normal
operation, the program counter simply is incremented by 1 and steps through program. The
output of address multiplexer is increment (actually +1, +2, or pass) and stored in the pro-
gram counter. When a branch operation is being initiated, the program counter contents

are fed to the LIFO Stack as the branch return address. t

The LIFO (last in-first out) stage is a group of registers that are 12 bits wide which generally
store the branch return address. The LIFO is a RAM when a branch return is necessary.

The external is used as a way of “forcing” a jump or branch instruction address and is chosen
only when the address multiplexer receives the correct condition select codes and/or test con-
ditions from the flag logic and instruction register.

The interrupt address is a hard wired address which is furnished by the interrupt control unit
(ICU). The ICU will be discussed later.

36.2 Interrupt Control Unit

The interrupt control unit (see Figure 21) contains the priority interrupt unit to establish
the relative priority of interrupts as received and the control interface to control the inter-
rupt requests, thereby allowing disruption only when desirable.

The priority interrupt unit has the interrupt register for reception of the interrupts. The
interrupt register feeds the interrupt logic to determine the priority of the interrupt, as well
as to provide the interrupt address to the address mux. The highest priority interrupt may
be considered a DMA controller which can affect a memory store via the control interface
without interrupting the data processor.
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The control interface handles interrupt requests and provides control to the priority interrupt i
unit. It is controlled by the auxiliary flags and the high priority interrupt line which is
reserved for DMA loading from the system I/O. The final function of the control interface

is response to the higher level processors in an array configuration. In other words, the higher
order control and response is handled by the control interface for array coordination.

363  Flag Logic

The flag logic (see Figure 21) is necessary so that test flags may be used to control the next Ji
address given to the microinstruction memory. The external test flags include the carry bit, :
overflow, sign and ALU equals zero received from any cc mbination of the DP’s and DA. .
Furthermore, the loop counter provides a zero indication which may be used to stop a “DO” 1
loop. (Further discussion will be given in the loop counter section.) Auxiliary flags have i
been included to extend the limited input (seven flags) to the flag logic. ‘J
§

The flag logic and auxiliary flags control the loop counter’s incrementer, the external flag test

and the interrupt control unit; however, that control can partially be modified by the condi- |
tion selects conditions furnished by the next instruction control word sent to the IA instruc- i
tion register from the microinstruction memory. :

3.64 Loop Counter

i
:
i
The loop counter (see Figure 21) provides a simple way to control the looping of repetitive |
routines, and it represents the only departure from the very fundamental control provided in :
most basic microprogrammable processors. The loop counter receives a littral from the :
external input which sets up the loop count. Each clock cycle, depending on the flag test :
and the IA instruction register, the count is either decremented or passed from the counter
output to the counter input undisturbed; therefore, at the end of each pass through a routine,
the beginning instruction of the routine is addressed and the loop count is decremented.
When the count is zero and the end of the routine is reached, the loop is ended.
|
1
1
]
l
1

This structure is quite simple and could be replicated any number of times to allow auto-
matic control of nested loops as in the FFT algorithm, pulse classification algorithm and
any algorithm that requires a number of passes through a fixed routine. In the current
structure only one has been included because LSI gate count constrains the number of loop
counters that are advisable.

3.7 ARRAY PROCESSING

Either complex processor, discussed earlier, is suitable for us as an array processing element

or controller in a parallel array multiprocessor. The rationale for array processing is simply

to have a number of computers applied to a single task; thereby, multiplying the computation
power. The multiple computer systems may be divided into two classes: (1) Single Instruction
Stream/Multiple Data Stream (SIMD) systems, referred to as parallel processors and (2) Multiple
Instruction Stream/Multiple Data Stream (MIMD) systems, called multiprocessors. Historically,
signal processing problems have been proposed for parallel processors; however, data dependent
algorithms, such as associative search and pulse classification, are extremely difficult.

Multiprocessors systems have a collection of relatively independent processors sharing a com-
mon memory and set of I/O devices. The processors must contend for access to the memory
and I/O which makes the multiprocessor architecture slow for signal processing tasks, requiring
high I/O rates. The ability to easily share data operands is a desirable feature of the multi-
processor systems.
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By approaching the array processor problem from the point-of-view of the signal processing
problem set, the parallel processor architecture with a limited ability to share and pass data
between nearest neighbor processors is highly desirable. Heretofore, such an approach
would have been limited by the sheer bulk of the array elements; however, current LSI
technology affords new potential for a “mixed” approach.

The complex processors, shown in Figures 16 and 18 show that one data 1/O port of each
the real processor and the imaginary processor is removed from the data bus of the complex
processor and freed for use in data transfer to the nearest neighbor array elements.

A port is also made availaole for data flow from a control processor element via the broad-
cast bus. Processor | requires that the broadcast bus be tied to the data buses to permit
the proper data flow during multiplier operation. Processor II is able to free up the ports
of the processors; therefore, the broadcast bus does not need to fight for contention with
an internal array processor data bus.

3.7.1 Array Processor Element

A system of four array processor elements and a control element is shown in Figure 22 to
represent a parallel array multiprocessor.  One processor acts as a controller to this system,
and the remaining four are configured as two 16-bit RALU’s which provide arithmetic and
logic capability for the processor. Associated with each RALU is a data memory consisting
of both PROM and RAM. Each RALU is responsible for addressing its own memory. The
RAM provides a total of 1K 32-bit words of storage for dynamic data, while the PROM
holds 512 32-bit constants used in performing the FFT algorithm.

Each of the RALU’s is independent of the other on that they may perform different instruc-
tions. This allows efficient complex number arithmetic to be performed. In executing
algorithms involving complex values, real numbers are stored in one data memory and imug-
inary numbers in the other. A path is provided between the RALU’s to allow transfer

of data. Each of the RALUs provides one 16-bit bidirectional bus to a neighboring array
processor so that interprocessor data transfers may take place. The real RALU provides a
connection to the higher-order 16 bits of the system broadcast bus. The lower-order 16 bits
are connected via transceivers to the imaginary RALUs memory data bus. The bus trans-
ceivers are controlled by a one-bit field in the microinstruction memory.

The multipliers are connected in parallel and have a bidirectional port to each memory.
Their operation is alternated by the microcode which controls them. This is necessary
because they are fully independent circuits, and it is fruitless to attempt to load or empty
them simultaneously. The capabilities of the multipliers include the following: multiply,
multiply accumulate, and butterfly in both real and complex formats; double precision
scalar multiply.

The microinstruction memory supplies all instruction fields to the processor hardware. The
fact that all elements of hardware can be controlled by a single microinstruction makes the
array processor a horizontally micro-coded machine. This enhances its speed and makes
each instruction very powerful.
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Figure 22. Parallel Array Multiprocessor

The processor’s speed is enhanced further by the fact that the RALUs and the multipliers
contain instruction registers that allow instruction fetch and execution to be overlapped.

The microinstruction memory is addressed by the program counter which is located in the
controller. The microinstruction memory supplies a literal field to the controller which is
generally used as a branch address. An alternate branch address can be determined from
data received from the controller via broadcast bus. This is the mechanism by which the
array processor can receive task assignments from the control processor. The controller has
flag testing logic onboard and accepts up to eight flags from the RALU and multiplier chips.
A total of 12 flags are available from the devices, however, so an FPLA should be used to
combine some of the flags. The FPLA logic is controlled by a microcode field from the
control PROM.

A specialized control interface is incorporated into the controller. The control interface is
connected directly to the array control buses shown in Figure 23. The interface logic is
illustrated in some detail in the 1A discussion,

3.7.2 Parallel Array Multiprocessor

The efficiency of uniting the array processors to perform parallel tasks is dependent on their
ability to operate synchronously. For this reason, all processors in the system operate from
the same clock source. If they were not synchronized, complex and time consuming soft-
ware routines would be required for intercommunication, and hardware would have to be
provided to accomplish handshaking.
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Figure 23. Control Detail

The broadcast bus is used both for issuing commands to the array elements and for getting
data into and out of the array. Its dual use is made practical by the fact that task initiation
ties up the bus only for the amount of time required to issue a single program address to
the responding array elements — one clock cycle. Efficient control of the processors in the
array depends upon a mechanism for selectively issuing commands to the array elements

and for determining their program status. The control structure indicated by Figure 23
allows this to be done.

The *‘instruction™ control signal identifies whether or not the broadcast bus currently con-
tains an instruction. For a processor element to accept an instruction from the bus, it
must first be in a state of attention, either by having ended a previous task segment or by
way of interrupt from the controller. The “interrupt”™ signal is used by the control pro-
cessor to issue interrupts to the array. The control processor is able to determine which
elements of the array are in a state of attention by means of a general purpose flag register
which resides in each of the array processors. The controller may simultaneously sample
the flag registers of the array elements by means of the “response™ signal which is available
from each element as shown in Figure 23. The flag registers contain a number of flags and
any of them can be gated to the response bus by way of the ‘“‘condition select” lines.

The controller accepts a single interrupt from the array. The interrupt line is daisy-chained
throughout the array elements, and the assignment of priority is established by the way in
which the chain is routed. As it is necessary for the control processor to determine the
source of an interrupt, each array processor’s flag register includes the interrupt flag.




s

: The response logic described only operates when the controller is not issuing a command to

3 the array (i.e.,, when the “instruction’ signal is not asserted), so the controller cannot simulta-
neously examine flags and issue commands; as a practical matter, this is not a handicap. The
b reason for this is that the flag inspection logic has a dual use. Both instructions and inter-
rupts to the array can be made conditional, so that it is possible to selectively apply them to
the array. The response logic is instrumental to this purpose. The “condition select” lines
control the condition by which each array processor determines whether or not an instruction
or interrupt is intended for it.

One of the condition codes corresponds to ‘“‘unconditional”, that is, it specifies every element
of the array. This is used when the entire array is to perform a parallel task. All but one
of the remaining condition select codes specifies one of the flags in the array processors’

flag registers; the “true/false” signal establishes whether the specified condition is the true or
false state of the flag. It is thus possible to selectively issue commands to elements which,
through previous program tasks, have set flags. The remaining condition code allows the
controller to use the response bus to specify which array elements are selected; for this
reason the response bus is bidirectional. The controller may then pick the responding
elements by asserting the response line to which each is tied.

The control mechanisms described are extremely flexible and account for the ability to
efficiently use the system in both parallel processor and multiprocessor modes.
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SECTION IV

LSI TECHNOLOGY SUMMARY

4.0 INTRODUCTION

The status of LSI development is an everchanging scene. For a time, a given technology or
several technologies will reign supreme in the marketplace, only to give way to new tech-
nologies or improved versions of the older technologies. This point not withstanding, an
attempt must be made to gather enough information about the state-of-the-art to determine
whether a particular function is feasible as an LSI chip or must be made with a limited num-
ber of chips and chip types.

A survey of the technology has been made to get a rough picture of the present status of
LSI technologies. From this survey, an attempt has been made to extract a list of macro-
constraints which an LSI function can not exceed today or in the next one to two years.
Included as the final section of this chapter are some methods and methodology for LSI
development.

4.1 TECHNOLOGY SURVEY

This technology survey gives the present status of the technologies available for both custom
LSI and memories. The current research in LSI technologies is to satisfy demands for
greater function in the microprocessor arca (custom LSI) and higher density and greater”speed
in all types of memories. The developments are related to economics: increased density,
lower speed-power factors, larger wafers, and improved yield. The discussion will be separated
into a section on custom LSI and on LSI/VLSI memories.

4.1.1 Custom LSI

The major characteristics of the current technologies that are available for custom LS1/VLSI
applications are included in a number of brief description and are summarized in Table 6.
Table 6 is an attempt to take the sometimes ambiguous data for the various technologies and
alter it to some standard definition or measurement procedure; therefore, a description of the
Table is included at the end of the technology discussions.

4.1.1.1 SiGate MNOS

The N-channel MOS uses the ion-implantation, SiGate and doped oxide technology, with a
100 crystal orientation process. The N-channel device with higher electron mobility and low
threshold voltage means faster operation while using less power. At higher substrate doping, it
allows the channel to be shorter, resulting in reduced input capacitance and reduced size. With
its low power, high mobility, and packing density, NMOS, i.c. compatible and even desirable
for custom LSI technology.
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4.1.1.2  N<Channel Depletion-Enhancement Mode SOS-MOSFET

The NMOS/SOS evolved out of the conventional bulk SiGate NMOS approach where it is
fabricated on the insulating sapphire substrate. The advantage over the bulk NMOS is
observed by virtually eliminating the parasitic capacitance and by increasing surface carrier
mobility which gives maximum current for a given geometry.

4.1.1.3 VMOS

The N-channel V-MOS transistor is formed along the slope of the V-groove, which is
anisotropically etched into the surface of a silicon wafer. The process is a double-diffusion
profile in the channel region under the gate, which effectively reduces the channel region to
a micrometer. Compared with NMOS. VMOS technology saves about 40% in random logic
area and lower speed-power product. This advantage makes VMOS attractive to be used in a
broad range of memory devices.

4.1.14 DMOS

The planar-double-diffused MOS exhibits a short-channel characteristic which are obtained from

a full-size device. The channel length is determined by the difference in lateral diffusion of
two profiles. Effective channel lengths of less than 1 um can be obtained independent of the
photolithographic tolerances which limit channel length for conventional MOS fabrication. It
appears that its performance advantage over a conventionally scale down device may be too
small to make it worth considering at this time.

4.1.1.5 C2L/MOS

The C2L is a self-aligned silicon-gate CMOS technology where the gate completely surrounds
the drain providing a transistor aspect-ratio which maximize,s the transconductance-to-
capacitance ratio thus allowing high speed on-chip. The C*L device exhibits a factor of 3

improvement in packing density over standard CMOS and operates at frequency approximately
:

4 times faster than standard CMOS. Thg C<L device requires 6 photomasks, one less than
standard CMOS. In regard to custom C<L LSI design, the only known source is not inter-
ested unless the volume is high (million units per year).

4.1.1.6 CMOS/SOS

The SOS/MOS technology evolved out of the conventional bulk-silicon approach. The silicon-
on-sapphire (SOS) approach comes closest to these desirable features of high-speed perfor-
mance at low supply voltages and with nanowatts of stand-by power dissipation. The MOS/
SOS devices can be fabricated in a thin single crystal silicon film grown on the insulating
sapphire substrate. The use of thin-film silicon virtually eliminates the parasitic capacitance
which gives the highest speed with minimum power and circuit complexity. In addition,
having the non<junction type isolation, it will improve its transient radiation resistance char-
acteristics. Availability has been a consistent problem; however, for this technology.

4.1.1.7 First and Second Generation lzL/MTL

First generation, integrated injection logic (lzL) or merged transistor logic (MTL) is basically
derived from direct couple transistor logic which utilizes a basif four-mask, double diffused
bipolar process without junction isolation. Second generation I“L/MTL gate is fabricated with
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a new process/structure, which includes a matrix on the P extrinsic base drive and implanted
intrinsic base dose for the n-p-n transistor. While retaining the advantage of the first gene-
ration, it is designed to operate at greater speed with same injector current. The 1°L promises
to plan an important role in LSI technology.

4118 S°L

The S2L has a structure, topology, and characterization of integrated injection logic with a
self-aligned double-diffused injector. The new structure, a lateral p-n-p transistor with effec-
tive sybmicron base width, can be realized, by using standard photolithographic techniques.
The S“L with higher injector efficiency and low parasitic capacitance results in a large fan-
out capability, high speed and large noise margin. The packing densities are improved by
factor of 2 over standard 12L logic.

4.1.1.9 SFL

The substrate fed logic uses an approach designed primarily for LSI where high packing
density and low power-delay is desired. The basic logic element is a multi-input, multi-output
gate, formed in a single-base area by using several diffused collectors and several Schottky
base contacts. It has been found that an overall improvement of 2.2 in packing density
between SFL and 12L technologies with the same tolerances can be obtained. It was noticed
at maximum speed, SFL power dissipation is equal to standard 12L logic.

4.1.1.10 SCHOTTKY I°L

Schottky I°L is a modified form of the substrate fed logic, differing from the earlier process
in the extrinsic n-p-n base profile. Heavier boron doping in this region has lead to less charge
storage so that minimum delay and power are reduced. The high performance of Schottky
I2L has been achieved with a structure designed for high yield by use of simple processing
technique.

4.11.11 Up-Diffused I°L

The *‘up-diffused” structure is fabricated in a fashion that Schottky diodes can be readily
incorporated. With the addition of Schottky clamps between the collector and base of the
n-p-n switching transistor, gate delay by factor of S and power-delay product by factor of 2
is achieved over standard I=L. Another version is injected Schottky logic (ISL) currently
under development by Signetics.

4.1.1.12 1BL

The Isoplanar integrated injection logic (l3L) technology emphasizes achieving high packing
density and high performance by the use of various process innovation combined with topo-
logical design variation. A high performance has been achieved without the use of Schottky
clamping, and the process is equivalent in complexity to any standard dual-layer metal

bipolar technology. The packing density of 13L is equal to NMOS technology, by using a two-
level metal scheme.
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4.1.1.13 Table 6 Description

Table 6 lists the bipclar and MOS technologies that are currently available or in development
for custom LSI/VLSI applications. Table 6 was generated from the d.ta received directly
from various semi-conductor producers, from the literature search and from personal direct
inquiries. The data specification supplied by semiconductor producers or journal reports are
sometimes ambiguous and referenced to non-standard values. Therefore, data specifications
were altered to a given standard value for ease comparison.

Table 6 contains 6 parameters which are most important for this technology survey study.
They are as follows:

Gate Delay: For bipolar technology, a maximum intrinsic delay for a one and five-collector
gate was listed. For MOS technology, a maximum intrinsic delay for fan out one and three
was listed, at 5 volts power supply.

Power Dissipation Per Gate: It is static and dynamic power dissipation at nominal maximum
frequency with +3 volts power supply. The nominal maximum frequency is defined as the
average of maximum repetition rate at single and multiple load conditions.

Speed-Power Product: It is a product of gate delay times power dissipation per gate.

Gate Area per Square Millimeter: It is a random logic area with approximately 50% area
assigned to interconnect and power busing.

Repetition Rate: It is a range of frequency of operation where the lower and upper end of
the range is a function of the fan-out load.

All of the circuit technology listed in Table 6 are referenced to 5-7 um mask rules.
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Table 6. Technology Survey
. System Random
! Parameters Speed Logic To
Gate Power Gate Number | Repetition |
Delay Power | Product Area of Rate |
Gate ]
Circuit MWatts/ Pico- Gateg
Technology Nanosec Gate Joules MM Mask MHz
SiGate NMOS 8-30 4-5 4-12 100-150 6-7 8-30
DMOS 6-20 14-16 15-20 225 6 1340
|
c? L/MOS 6-40 1.25-2.5 | 15-50 270 6 640
: NMOS/SOS 2.79 2.6-3 8.1-234 100-150 7 2890 g
‘ VMOS 5-20 8-1 5-16 80-300 7 13-50 E
CMOS/SOS 3-20 1-2.5 7.5-20 150-250 74 11-80 f
FIRST GENERATION 25 S 12.5 80-160 4 10 :
1I2L/MTL
2ND GENERATION 4-8 S 2040 60-120 6 30-60
12L/MTL
S2L 10 A5 4-50 170 5 25 i
SFL 20-30 5 125 120-240 : 10 i
SCHOTTKY I2L “ 23 16-24 400 6 20 i
MODIFIED SFL |
i
l.%l’-DIFFUSED 2.5- S 12.5- 100 6 70-100 §
I“L 3.5 17.5 :
ISL 2-5 3-7.5 15 100 6 50-125 §
f
l3 L 4-5 5 20-25 250-300 6 5062
;,
i
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4.1.2 LSI/VLSI Memories

There are several new and old LSI technologies that are competing for new generation of
memories in range of 64 kilobits. Table 7 lists current memory devices and their performance.
Charged couple device (CCD) memories with 65 kilobit level for block storage application, are
serially accessible and slower and more difficult to use RAMs. The only reason to use CCD

is the price advantage in order of two to one over RAMs. A VMOS device that has large
potential density and low power consumption is available in 64K read only memory into 175
mils square chip. Another competitive technology is HMOS using scaled-down 2-um rule and
high density, lower power MOS RAM.

In future, one or two years away, VLSI memories with 256K bit capabilities will emerge out
of production lines. One of the problems in VLSI is the interconnection on the chip. This
problem may be reduced by use of double-poly or three-layer metal interconnection in con-
junction with an innovative logic.

Table 7. Memory Device and Performance
Density/
Device Capability Speed
Type Bits NSEC Process Manufacturer
DYNAMIC RAMS 16K 150-300 N-MOS FAIRCHILD
16K 100 PL NTT ,
65K 150-300 N-MOS AMI ;I
65K 150 V-MOS AMI !
STATIC RAMS 4K 150 N-MOS - :[‘
4K 50 H-MOS INTEL :
4K 55 V-MOS AMI ‘
8K 150 N-MOS MOSTEK |
ROMS 64K 80 V-MOS MOSTEK
64K 250 V-MOS AMI
64K 300 H-MOS INTEL
CCD 64K 200-500 FAIRCHILD
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4.1.3 Figure of Merit

The complexity of the MOSFET and bipolar technology over the past several years has
created the hard task of standardizing sensitive parameters. Those parameters are used for
comparison in the LSI technology survey. One of the very important parameters is the power-
delay product which indicates how much power is necessary for a given gate to operate at
its maximum frequency a;, a given supply voltage and fan out condition. For example, a
power delay product of I<L exhibits linear relationship over extrinsic region (slow gate delay)
and power dissipation using injector current times collector voltage swing (less than 1 volt).
Obviously, the power-delay product parameter will be low and impressive. In order to be
comparative with the rest of the LSI technologies in this survey, an intrinsic gate delay,
which is a delay due to minority carrier charge-storage effect, and S volts supply voltage was
used to determine the power-delay product. As for CMOS technology, where the only static
power dissipation factor was used to generate low power delay produ’ct, a given nominal
maximum frequency is included in power-delay product. Therefore, 1L and MOFSET tech-
nologies can be easily evaluated and compared.

i These factors are not the only ones that could or should be included to determine the
relative merits of the technologies in Table 6. A number of system considerations should be
| included before a technology is chosen for a given application. A fuller discussion of this
point is included in Section 4.3. However, a figure of merit will be defined using the speed-
power product, gates per unit area, and maximum frequency as defined for Table 6. Since
lower speed power products are preferrable, this factor will go in the denorrinator. Higher
gate densities and maximum frequencies of operation are more desirable; therefore, these
factors will be in the numerator.

In an attempt to rate these technologies for custom LSI, a very simplistic approach was
taken: Utilize the factors from Table 6 to create a figure of merit (FOM). Two factors are
immediately discernible, as significant from an LSI point of view — speed-power product and
gates per unit area.

Speed-power product has long been used as a measure of the “goodness” of a technology. It
is used to measure technologies against constant speed-power lines on the now-famous gate-
delay, gate-power chart. On that chart, the lower a technology’s speed-power product, the
better the technology is considered.

lo evaluate LSI potential, a second factor must be added to the evaluation-gates per unit
irea. High gate packing density is crucial if a technology has any hope of approaching LSI/
VIESI potential, because the integrated circuits will be smaller, thereby lowering the proba-
Wity of fwdure due (o surface defects on the wafer. From a system application point of
lowerspeed technology can provide sufficient parallelism of operation and can fit
wit area, than a higher-speed technology, it may be more advantageous to go
techoology . The decision will be partially based on the true maximum speed
fogy 1t the parallelism is too high or the safety mazigin in the perfor-
w the faster technology may be chosen. Thus, the maximum
gy must be included in any FOM.
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Assuming the approach taken for Table 6 has provided some standardization in these factors,
then the figure of merit will be of the form:

_ Nominal Gates per Unit Area
Nominal Speed-Power Product

FOM x Nominal Maximum Frequency

Utilizing Table 6, Figure 24 was derived according to the FOM operation.

Figure of merit is plotted against different uva}l;xblc technologies. No clear cut leading tech-
nology in existenge is indicated, but several 1<L_and MOS’I:ET technologies have the potential
to be leading LSI/VLSI technologies. They are l3L, ISL/I-L, CMOS/SOS and VMOS.

The lzL high-speed technologies, a relatively new and still developing process, has some good
and bad points. Advantages such as process simplicity, packing density, high-current capacity,
Schottky diode contacts, low speed-power product, linear mixed with digital components and
very large scale integration oriented process can be seen. Bad points are low voltage swing
(less than 1 volt), low noise margin, difficult device modeling, additional interface circuitry
(required due to the low operating voltage), gamma sensitivity (106 rad Si degrades power-
delay characteristics), and multilayer metal interconnections. Of course, many of those
problems are being reviewed and resolved by the emerging new technology concepts.

The MOSFET technology is more mature process which also has some good and bad points.
Advantages are high packing density, low speed power product, relative simplicity. strajght
forward device modeling, high yield, good radiation hardening, circuit interface with T=L logic
and high noise immunity. Bad points are: speed limitation due to high voltage swing, thres-
hold voltage, low interface drive, and large area interface drivers.

The future of LSI/VLSI technology lags in the development of submicron technology, innova-

tion in logic circuit design and multilevel interconnection. A semiconductor device, having
masked dimensions of less than one micron, will no longer be fabricated with the use of
standard photilithographic techniques. The technology trends will be based on the use of
e-beam and x-rays to pattern the surface of the semiconductor wafer. Submicron technology
will benefit both bipolar injection logic and MOS devices. It seems that scaled-down tech-
nologies are able to give very large scale integrated circuit (VLSI) with a speed-power product
in the .2 to 1 pJ range and delay times in .5 to 1 nanosecond.

4.2 MACROCONSTRAINTS

Five technologies appear to be candidates with good LSI potential. They are:

R 4. VMOS :
2. CMOS/SOS 5. Up-diffused 1°L
3 M

Exactly how good are each of the technologies?

It is necessary to determine the various constraints that cach technology forces on LSI
developments. These constraints grow from practical limitations of the LSI process to be
used. In essence, one must assess the ground rules of cach technology in the arcas of.

a.  1/O Pin limits
b, Power dissipation limits
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Level of integration limits
On-chip/off-chip gate delays
Interface compatibility
Maximum chip sizes.

o = e

Without becoming tutorial, each of the above ground rule areas are simple reflections of a
given technologies ability to handle a function with LSI.

Virtually without regard to technology, the maximum practical package size for dual-in-line
packages seems to be 64 pins. Larger sizes have not become popular. Leadless packs may
increase this number to 80 or more pins; however, power dissipation must be considered
when dealing with leadless packages.

Interface compatibility is almost always assumed to be TTL voltage and drive levels at the
interface. Since the bulk of presently available commercial circuits have TTL compatibility, it
remains a good ground rule that TTL levels be maintained for interface compatibility. This
ground rule presents some problems for the MOS technologies which operate over a wider
range of voltage levels and do not provide as much sink capability with normal output buffers.
CMOS/SOS and VMOS are each capable of meeting the voltage levels with no difficulty since
each technology is now powered by 5 volts; however, the drive levels require much larger
output drivers which increases surface area of the chip. The bipolar technologies require some
modification of the output devices from their basic on-chip devices, but the difference is
small.

Maximum chip size is dependent upon the surface defect density of the LSI process. Chip
size, therefore, has a direct bearing on the yield of the process. Each technology has dif-
ferent tradeoff points where the chip size/yield curve becomes unprofitable. However, vendors
are more comfortable in considering larger chips with their improved processing capability.

A reasonablé chip size limit is approximately 250 mils on a side, although the average size
for LSI is approximately 170 to 200 mils on a side.

The limits of power dissipation, level of integration, and gate delay are the arcas where the
technology differ, significantly. Using the data accumulated for Table 6, each of the five
technologies l3L, CMOS/SOS, ISL, VMOS, and Up-Diffused I°L s capable of phenomenal
levels of integration. The actually obtainable level of integration is lower than value predicted
from Table 6 data because high functionality forces high on-chip interconnect and a large
number of bonding pads. Table 8, therefore, has reduced the maximum values of gates by
60% to account for the interconnects and bonding pads. From the gate count, power dis-
sipation levels were estimated, using the power dissipation extremes from Table 6.

In general, all the technologies are able to exceed 1000 to 1500 gates, CMOS/SOS, I3L. and VMOS
casily passing the 2000 to 3000 gate range. Power dissipation becomes the limiting factor on

all of the technologies. A maximum for power dissipation should be 2 Watts or less. Although
the dissipation of greater than 2 Watts can be handled with special packaging or cooling, the

overall cost is generally prohibitive.

Thus, assuming this 2 Watt power dissipation limit for custom LSI, the practical levels of
integration for the various technologies is, as follows:

a. BL 400 to 2000 gates
b. CMOS/SOS 800 to 2000 gates
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Table 8. Comparison of LSI Candidates

Chip Size 100 X 100 Mils 200 X 200 Mils
Technology PL
Gates* 650 to 780 2575 to 3100
Power** 650mW to 3.9W 2.6W to 15.5W
Speed (Max) 4ns 4ns
CMOS/SOS
Gates* 390 to 650 1550 to 2575 é
Power** 390mW to 1.63W 1.55W to 6.4W |
Speed (Max) 3ns 3ns |
ISL |
Gates* 260 1040
Power** 780mW to 1.9W 3 to 7.5W
Speed (Max) 2ns 2ns
VMOS
Gates* 210 to 780 830 to 3100
Power** 170mW to 780mW 660mW to 3.1W
Speed (Max) Sns Sns
UP I°L
Gates* 260 1040
Power 1.3W S2W
Speed (Max) 5ns Sns
*40% of maximum gate count indicated by Table 6 for each chip size — assumes high degree |
of inter-gate connections and bonding pads. ‘
**Depends on percentage of high-speed, high power gates.

c. ISL 270 to 700 gates
d. VMOS 3 2000 to 2500 gates
e. Up-diffused I“'L 400 gates ‘

The MOS technologies are definitely LSI candidates, and the bipolar can be if the lower speed
functions are integrated in the very low power I2L and the high speed functions use the
faster I2L variations, i.e., ISL and Up-diffused IL.

The final area of limitation is gate delay - both on-chip and off<chip. In Table 8, all the
technologies are capable of high on-chip maximum speeds; however, not shown on that

Table is the fact that the off-chip delays for the bipolar technologies are 20% to 40% more
than the on-chip, i.e., 3 to 7 nsec, and the off<chip delays for the MOS technologies are
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more than 100% greater than the on-chip delays, i.e., 6 to 10 nsec. This off-chip gate delay
may be critical in some system applications.

A summary of the macroconstraints for the technology says that the following parameters are
limits for general LSI development:

a. 1/O pin limit — 64 for DIP, 80 or more leadless package
b. Interface Compatibility —  TTL voltage and drive levels
c. Maximum chip size — 250 mils on a side, 200 mils practical
d.  Level of Integration Limit — 2000 gates
e. Power dissipation limit — 2 watts
f.  On-chip gate delay — 2 to S nsec
g.  Off-chip gate delay — 5 to 10 nsec
43 THE TECHNOLOGY DECISION a

For LSI to be effective in helping military systems perform their mission, the LSI must be
chosen by balancing the system needs with the technological abilities of the LSI. For a sys-
tem design approach to accomplish this balancing act, new methods are needed for analyti-
cally exploring design tradeoffs in the context of the multitude of LSI technological changes.
This section will endeavor to discuss a methodology for selecting LSI from system needs. It
should be noted, before any discussion begins, that every system requirement forces choices

in technology which affects every other system requirement. Rather than capitulating to the
seemingly insoluble problem of system requirement interdependence, it is hoped that the first
order effects of technology on system requirements can be isolated so that the interdependence
is manageable in our minds.

In the following section, system requirement categories will be presented along with the tech-
nology parameters that directly relate to the system requirement category as first order =~
effects.

43.1 System Requirement Categories

4.3.1.1 Architecture

The architectural design of a system is to accomplish the system’s mission with the tech-
nological tools available to the designer. The system architectural design is a trade-off pro-
cess of allocating system functions between the hardware tools, the system programs
(software) and the firmware use in microprogram subroutines. The overall system complexity
can be reduced by selecting the proper hardware — firmware — software balance in the
system.

From an LSI point-of-view, level of integration, gate delay, chip 1/0, and testing have the
most direct effect on the architecture.

4.3.1.2 Environment

The system is designed and required to be operational under various environmental conditions
such as extreme temperature variations, humidity, vibration, shock, electromagnetic or nuclear
radiation, high or low atmospheric pressure, etc. The chip packaging, the temperature range of
the technology, radiation hardening limits and noise immunity may be used to decide if a
technology can meet the environmental conditions it must operate in.




43.1.3 Physical Characteristics

The physical characteristics of a system are its weight, volume, power consumption and

cooling requirements. Higher system speed generally reduces the physical dimensions of the
circuit and packaging; however, these reductions result in greater heat generation and power
dissipation necessitating improved cooling. ‘

Parameters such as chip packaging, 1/0, power supplies, and total chip power impact the sys- |
tem volume and weight. Power is impacted by the level of integration, gate dissipation, off-
chip drives and the number of power supplies. Speed is impacted by the system architecture,
level of integration, gate delay, number of 1/O, off-chip gate delay etc.

Both the system enclosure and internal module designs are influenced by a number of system [
requirements. The enclosure is the buffer between the system and its operational environment, !
as well as supplying the cooling capability for the system. All the factors affecting the }
Environment and Physical Characteristic system requirements categories impact the system |
packaging. ;

4.3.1.4 Viability — Reliability, Availability, Maintainability and Survivability

A failure-tolerant system is designed to remain operational at some minimal performance level
despite almost any malfunction. At the system level, the impact is redundancy in components,
or at the subsystem level, the capability of diagnosing malfunction and reconfiguring system
fault. Reliability, availability and maintainability of the system are directly affected by
component and packaging technologies, circuit and subsystem design philosophy, and system
architecture. Reliability is the probability that a system will perform its function for the
duration intended. Availability is the system capability to be in operational condition when- ‘
ever needed. Desirable system maintainability is to replace the faulty rmodules without i
significantly disrupting the system activity and keep down time to a minimum.

Survivability of the system is a protection of system hardware against nuclear effects; gamma
and x-rays, neutron influence, and electromagnetic pulse. |

The viability of a system is related to virtually all the technology parameters previously
mentioned. The power dissipation, i.e., the level of integration and gate dissipation, and chip
packaging are measures of the temperature the components will experience which is com-
pounded by the environmental extremes. Reliability is greatly affected by the temperature of
the components.

T Maintainability is related to testability of the components, packaging and I/O pins. Availability
1 is a measure of reliability and maintainability, that is, operational time to down-time.
Survivability is related to noise immunity, input/output protection devices on the chip,
radiation hardening, etc.

43.15 Cost

Systems are characterized by special environmental hardness and survivability requirements,
size, weight, power constraints which require special design, manufacturing techniques and
quality control. Consequently, the system cost is affected by these requirements. With
advances in architecture, in LSI component manufacturing techniques, and design automation,
the cost will remain relatively same but at the same time will increase the system performance.
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43.2 Forced-Pair Comparison®

The preceding section summarized, quite briefly, several system requirement categories which
may be seen in the request for proposal for any major military system. The categories are an
attempt to reflect the mission goals for the specific system. When the system designer begins
the design of the system, he must prioritize the system requirement categories for the whole
system, and often, for many subsystems and functions. After the requirements are prioritized,
it may be seen that various functions could best be implemented by LSI, and more specifi-
cally, by new custom LSI. The LSI designer must now ascertain from the system designer
what the system requirement priorities are before an intelligent decision can be made on the
LSI technology to be used.

To aid the system and LSI designer, an empirical, and somewhat, subjective methodology has
been developed to prioritize the system requirements. The methodology is called the forced-
pair comparison. Using this method is fairly simple, and often, the results are startling to the
designer. He will not realize his major limitations or requirements until he actually uses a
forced-comparison of every category against all remaining categories. “Forced” means that a
decision about that category in relation to the next category must be made.

The Method
The system requirement categories are enumerated by the system designer, such as

Architecture
Environment
Volume

Weight

Power

System Speed
System Packaging
Maintainability
Reliability
Survivability
Acquisition Cost
Logistic Support Cost

— —

i
NESXENO U AW~

The number assigned to the category is used as an identifier at this point.

The system designer then prepares a Forced-Pair Comparison chart, as shown in Figure 25,
which has the system requirement category number from above along the left vertical and top
horizontal axis. The comparison procedure can now begin, working from top to bottom, row
by row. Category 1 is compared with category 2 for relative importance. If 2 is more
important that 1, a zero is placed in row 1, colume 2 (1, 2) and a one is placed in (2, 1) as
in Figure 26. Category 1 is then compared with category 3, 4, etc. until all the categories
have been compared with all the other categories. Then the number of ones is counted across
each row and entered to the right of the row. Category 1 has 6-1's, Category 2 has 7-1's,
etc. From the count of total pins, a ranking can be arranged. In Figure 26, Categories 2, 3, §,
7 and 11 are equally ranked. At this point, the procedure can be iterated to break the tie
for equal ranking.
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The system designer must then analyze his ranking with a final “reasonableness” test. Has

| the ranking procedure put various system requirement categories higher or lower in priority
than they should be? Are some categories equally important, etc? The ‘“‘reasonableness” test
will reveal that the Forced-Pair Comparison method is somewhat subjective, but the method
is useful in getting the system requirement categories in perspective, pointing out where the
system tradeoffs should be made.

From the final ranking the most important IC parameters may then be discerned, thereby
allowing the LSI designer to choose the proper LSI technology to perform the necessary
function.
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7845313 ‘
Figure 25. Forced-Pair Comparison Chart
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SYSTEM REQUIREMENT CATEGORY
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Figure 26. Forced-Pair Comparison Example
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SECTION V

LSI DESIGN AND DEVELOPMENT

5.0 INTRODUCTION

In Section III, the design philosophy and architecture needs of a signal processing computer
were presented and analyzed. Aside from memory, three major functional areas, Data
Processing/Data Addressing, Instruction Addressing, and Multiplier/FFT, were analyzed in

depth, and their architecture structures were chosen to meet the needs of the signal processor.

Within this chapter, the register level design of the DP/DA will be presented. The major
architectural substructures of the RALU will be described, and the number of gates per struc-
ture will be estimated. From these cstmmtcs the LSI development of such a chip will be
analyzed in three technologies, CMOS/SOS. I3L, VMOS. and a practical approach for the
development will be concluded.

The TA and multiplier/FFT functions will not be analyzed. They are beyond the scope of
this contract, although a brief discussion of the TA will be included with only terse conclu-
sions drawn.”

5.1 REGISTER-LEVEL DESIGN DISCUSSION

The two processors, discussed in Section IlI, indicated two RALU or DP/DA designs were
necessary to utilize efficiently the different potential multiplier/FFT structures. The block
diagrams, Figures 27 and 28 are the RALU structures for Processor 1 and 2, respectively.
Within this section, the RALU substructures Multiport RAM, Arithmetic Logic Unit, Bidirec-
tional 1/O Data Ports, Multiplexers, Instruction Registers, and Incrementer will be discussed.
The general design and gate estimates will be included.

5.1.1 The Multiport RAM (MPR)

The major functions necessary for an MPR are read/write addressing, input port and output
port selects, and the register file. The addressing may be least represented as a 4-line to
16-line Decode/Demultiplexer similar to a 74LS138. In the 3-Port MPR for Processor 1, one
read and two-writes are simultaneously possible: theretfore, 3 addresses must be presented to
the MPR at one time. To accomplish the 3-Port addressing, 3 addresses or 4-line to 16-line
Decoder/Demultiplexer must be included. The Read and Write Enables are the inputs to the
demultiplexers. )
For the 4-Port MPR of Processor 2, two reads, two writes, or one read and one write are
possible simultaneously. Two addresses must be available to the MPR at one time. Two
4-line to 16-line Decoder/Demultiplexer must be included for addressing. Additional gates are
necessary for each register word to distinguish the Read/Write functions from each other.

For the 3-Port MPR, 24 gates/addresser. is necessary. For the 4-Port MPR, 40 gates/addresser
is necessary.
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Figure 27. RALU (DP/DA) for Processor 1
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The input port and output port select are simply AND-gates or 2-line to 1-line multipleXers.
One gate per RAM bite per MPR port is necessary to accomplish the selection process. Thus,
a 3-Port MPR requires 3 gates/RAM bit, and the 4-Port MPR, 4 gates/RAM bit.

The memory elements are generally D-latches, which permit simultaneous read and write oper-
ations on the same or different addresses. The D-latch requires 4 gates per latch; therefore,
the memory elements require 4 gates per RAM bit.

The total for the 3-Port MPR is 72 gates for addressing and 7 gates/RAM bit for port selects

and D-latches; for the 4-Port MPR, 80 gates for addressing and 8 gates/RAM bit for port
selects and D-latches.

S22 The Arithmetic Logic Unit

The ALU must be able to receive two operands from a combination of the MPR and/or 1/O
Data Ports and perform full word length operations and supply the output wherever directed.
Thus, the ALU should be a high-speed, parallel function which is able to perform arithmetics,
logicals, and shifts. Furthermore, for data dependent operations, the ALU must be able to
compare the operands, detect overflows, propagate a carry, and detect a zero condition.
Table 9 gives the ALU operations and status flags that should be available.

The ALU, described above, is a very sophisticated function which requires approximately 12
gates per bit to perform all the operations required, including the decoding of the four opera-
tion selection inputs and the generation of the status flags and carry out.

5.1.3 The Bidirectional I/O Data Port

Three major functions are necessary for the I/O Data Ports — Input Register, Output Register
and Tristate Output. Figure 29 shows the configuration of the I/O Data Port. The registers
are D-Latches. The output registers hold the data to be transferred, freeing up the MPR and
ALU for the next operation, i.e. the MPR and ALU are not tied to the bus. The output of
the previous operations is latched, allowing asynchronous transfer. Similarly, the input register
is for asynchronous reception; thus, the ALU or MPR, which are ‘the destinations of the input,
need not be free when data is received. The tristate output is included so that when no data
is being transferred, the RALU presents a high-impedance to the bus.

Each register requires 4 gates per bit and the tristate output require the equivalent of 2 gates
per bit in area.

T 1

INPUT OUTPUT
REG REG

OUTPUT ENABLE

PORT
78453-32

Figure 29. Bidirectional I/O Data Port
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Table’9. ALU Operations and Status Flags

ARITHMETIC OPERATIONS STATUS FLAGS
A+B CARRY OUT
A—-B ZERO
B - A OVERFLOW
A+1 A=B
A -1
A only
B only

Right Arithmetic Shift

Left Arithmetic Shift

LOGICAL OPERATIONS

A

B

A AND B
AORB
A NOR B
A EXOR B

A EXNOR B

5.14 Miscellaneous Functions

The multiplexers within the RALU are extremely simple, requiring a simple AND gate for
choosing the proper input signals to the MPR or ALU and some simple decoding. The rule
of thumb on gate count is approximately one gate per bit per input. Thus a three-input mux
requires 3 gates/bit.

The instruction registers are D-Latch and require 4 gates/bit.

The incrementer for Processor 2 (see Figure 28) is the simplest of adders. No sophistication
is desired for this function. Seven gates/bit are required.




5.2 GATE ESTIMATES FOR THE RALU’s

The discussion in section 5.1 gives the LSI designer the tools necessary to estimate the total
gate counts of the two processors. From the gate counts, the feasibility of the function in
LSI may be discerned.

Figure 30 is an attempt to estimate the gates necessary for the 16-bit RALUs. The RALU
functions require 2828 gates and 3304 gates for Processor 1 and 2, respectively. In the
MACRO constraints Section, a practical limit of 2000 gates was presented. The most logical
approach is an 8-bit, bit-sliced RALU; thus, the RALU function can be made of two 8-bit
RALUEs.

Most of the functions on the RALU are simply reduced to one-half in size and gate count;
however, the MPR Address Decoder and the Instruction Register must remain full-size because
the same level of control is necessary, only the number of bits controlled is reduced.

Figure 31 reflects the 8-bit RALUs and their gate count. Both RALUs are well below the
2000 gate limit. The penalty paid for the duplication of control was minimal in this case;
however, a similar conclusion cannot be drawn about other chips unless a full analysis is
performed.

It is concluded at this point that, indeed, an 8-bit, bit-sliced RALU is the proper approach
for the Data Processor/Data Addresser from an LSI point-of-view. In the next section, three
LSI development approaches will be evaluated.

5.3 LSI DEVELOPMENT APPROACHES

Three LSI technologies — CMOS/SOS, I3L, and VMOS, are reasonable choices to use to
develop the 8 bit RALU’s. These technologies will be analyzed in four areas: chip size,
power, fundamental speed and availability. For completeness the analysis data for the 16-bit
RALU’s will be included primarily to further justify the bit-sliced approach.

5.3.1 Chip Size

The chip size of the RALU’s has been estimated using the gates per MM2 data from Table 6
Section IV. The estimate assumes that an average of 40% of the best-case gate density found
in the Technology Survey is actually attainable because the high degree of interconnect of this
function and the high number of I/O pins will limit the gate density. Even with this assump-
tion, all three subject technologies are capable of exceeding 2000 gates in a 200 x 200 mil
chip. The estimate also assumes a square chip.

Table 10 reflects the results of the technologies. Each chip size is specified in a range which
is a manifestation of the high and low gate densities for the technologies. All three technolo-
gies are capable of producing a chip under 200 x 200 which will perform the 8-bit RALU
function. I3L has the best density, and VMOS has the most inconsistent density. The incon-
sistent density reflects conflicting information sources with different stories to tell.
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RALU FOR PROCESSOR |
FUNCTION QUANTITY (BITS) TOTAL ON RALU GATES PER BIT TOTAL GATES

1/0 DATA PORT 16 X 3 X 10 480
MPR 256 X 1 X 7 1792
MPR DECODE = X 3 X 1) 72
ALU 16 X 1 X 12 192
SELECT MUXES 16 X 4 X 3 192
INSTRUCTION 25 X 1 X 4 100
REGISTER

TOTAL 2828

RALU FOR PROCESSOR I
FUNCTION QUANTITY (BITS) TOTAL ON RALU GATES PER BIT TOTAL GATES

1/0 DATA PORT 16 X 3 X 10 480
MPR 256 X 1 X 8 2048
MPR DECODE - X 2 e 40 80
ALU 16 X 1 X 12 192
SELECT MUXES 16 X 4 X 3 192
INSTRUCTION 25 X 1 X 4 104
REGISTER
ADDRESS PORT 16 X 1 X 6 96 i
INCREMENTER 16 X 1 X 7 12 lj

TOTAL 3304 q

78453.33
Figure 30. 16-Bit RALU Gate Estimates
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RALU FOR PROCESSOR |

FUNCTION

QUANTITY (BITS)

TOTAL ON RALU

GATES PER BIT

TOTAL GATES

1/0 DATA PORT

SELECT MUXES

INSTRUCTION REG

128

10

240

8 X 4 X 3 96
25 X 1 X 4 100
TOTAL 1500

RALU FOR PROCESSOR I

FUNCTION QUANTITY (BITS) TOTAL ON RALU GATES PER BIT TOTAL GATES

1/0 DATA PORT 8 X 3 X 10 240
MPR 128 X 1 X 8 1024
MPR DECODE - X 2 X 40 80
ALU 8 X 1 X 12 96
SELECT MUXES 8 X 4 X 3 96
INSTRUCTION REG 26 X 1 X 4 104
ADDRESS PORT 8 X 1 X 6 48
INCREMENTER 8 X 1 X 7 56

TOTAL 1744

78453 34

Figure 31.
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*Table 10. Technology Analysis

PROCESSOR 1 PROCESSOR 2
TECHNOLOGY 16-bit RALU 8-bit RALU 16-bit RALU 8-bit RALU

CMOS/S0S

Chip Size* 210 - 270 153 - 197 227 - 292 165 - 212

Power (watts) 28 -17.1 1538 33 83 17 44

R-R Add** Time (ns) 33 33 33 33
PL

Chip Size* 191 - 210 139 - 153 206 — 227 150 - 165

Power (watts) 28 - 1411 1.5-75 33165 1.7 - 8.7

R-R Add** Time (ns) 44 44 44 44
VMOS

Chip Size* 191 369 139 - 269 206 - 399 150 - 290

Power (watts) 23-28 12-15 26 33 14 17

R-R Add** Time (ns) 55 5§ N 55

*Measured in mils on a side
**Register-to-Register Add

53.2 Power

The power has been estimated from the gate dissipation data in Table 6. The estimate was
normalized to include speed as a factor in the gate dissipation: consequently, CMOS/SOS has
a gate dissipation in the low milliwatt range when it is normally reported in the microwatt
or nanowatt range. For CMOS/SOS to reach signal processing speed. the supply voltage must
be increased to 10 volts and the power dissipation simply goes up. In Table 10, VMOS has
a lower power dissipation per gate than CMOS/SOS. but VMOS is assumed to have a lower
speed potential.

1BL also has a wide power dispersion which truly reflects the power/speed diversity of the
I12L technology, of which I3L is a variant. Unlike the MOS technologies, I3L could maintain
maximum performance and have a power below the maximum of Table 10 if the lower speed
data paths are carefully chosen and the 1BL gates tailored for lower power.




The power prospects of 3L are limited; howev§r. 3L is the worse power dissipator of the
three. If a low operational speed is assumed, I°L is under the 2 watt per chip limit discussed
in Section 4.2. VMOS will definitely meet this requirement, and CMOS/SOS is probably able
to handle this function under 2 watts if most of the gates are assumed to be “off” during
most of the time. This assumption is reasonable since only the MPR words being addressed
are “on”; thus, most of the MPR is “‘off™ or inactive.

5§33 Fundamental Speed

For this discussion, the fundamental speed will be defined as the time required to perform a
basis operation such as a register-to-register add, a compare, a register-to-register logical opera-
tion, etc. The register-to-register add is assumed to be a representative operation for the
problem set and was analyzed in gate delays as follows:

a. 2 delays for Instruction Register Setup
b. 1| delay to read to data out of the MPR
¢. | delay to pass thru the ALU select

d. 4 delays in the ALU

—

e. delay to pass thru the PR select

rJ

delays to store the data into the MPR

A total of 11 delays is required for this operation. The fundamental speed, theretore, is the
product of the total number of gate delays and the gate delay time.

Table 10 includes the Register-to-Register Add Time. All the times were calculated using
minimum gate delays and include no delay time estimate for interconnect path length. As
seen in the Table, all these technologies are capable of high speed operation. CMOS/SOS has
the best potential at this time.

534 Availability

CMOS/S0S, I3L. and VMOS are probably best described as in the early stages of muturity,
which means that each has 'been demonstrated with commercial products in the marketplace;
however, wide lines of products are not available as yet.

CMOS/SOS has the longest history. The early days were rough, but CMOS/SOS is available
from RCA, HP and Rockwell with new sources coming. Because CMOS/SOS has a good
temperature range, high noise margin, radiation-hardening potential, etc., the military market
is good, thus, the availability is sure to increase with time.

I3L and VMOS are new stars on the horizon. |3L is an extension of lzL which is a simple

process in cqneept, but difficult if high speed is desired. Fairchild is thg only source. Other

high speed I-L variant§ are ?ecoming available  ISL and Up-Diffused 1-L. Time will tell!
L) has limited availability.

For now, high speed I<L (I*
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VMOS for LSI is solely sourced by AML It is a variation of NMOS which gives 1 um
channel length using 4-6 um layout rules.  As the photolithographic process improves, VMOS
will improve in density without the heartaches that HMOS from Intel will have to go through.
VMOS is a winner! Second-sourcing will come, but availability is very limited at this time.

4 A CHIP

This discussion about the instruction addressing will not be detailed, and is only included for
a measure of completeness.  The 1A includes four major subtunctions  a mucrosequencer, a
loop counter, an interrupt control unit and flag logic.

The mucrosequencer and the loop counter are orderly tunctions resembling the MPR/ALU of
the RALU and the incrementer of the Processor 11 RALU, respectively,  To accomplish the
IA function in either Processor, a 12 bit wide “processor™ would be necessary. Fither of
these subtunctions could be bitssliced or included upon the same chip.  The LIFQ Stack
would have to be limited to 8 words X 12 bits, which is a reasonable size betore the func-
tions could logically be placed on the same chip,

The interrupt control unit and the flag logie would generally be called “‘random logic™ which
unplies low gate to /O pin ratios and low gate count totals.  These tunctions have a high
degree of interaction internally (see Figure 32) which would limit the ability to slice these
functions.  Although tlexibility will be reduced, the most etficient LSI approach is to put all
of these subfunctions on one chip,

To mimmize the number of off-chip drives between the four subfunctions, it should be deter-
mined 1t the two sections can be placed on the same chip. The total gate count of all four
major subtunctions appears to be less than 1500 gates.  Following the analysis on the DP/DA,
it s reasonable to assume the total TA function could be integrated onto one chap.

The tinal remaining concern is speed. The total number of gate delays in the microsequencer
should be roughly equivalent to the reguster-to-register add time of the RALU, thus, if the
DP/DA and the TA are developed in the same technology, the LA should be able to support
the high mstruction rate of the DP/DA.
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SECTION VI

SIGNAL PROCESSOR COMPARISON

6.0 INTRODUCTION

As a part of the Multimode Central Processing Unit (MMCPU) Design Study Contract, a
comparison of signal processors has been performed.

The main thrust of the comparison is based upon three benchmark problems which are
applied to 3 microprocessor architectures,

Tracor/RCA

Raytheon

Litton
presented herein, these microprocessors are specifically suited to signal processing applications.
We shall briefly describe the system architecture as a tutorial. This description will then lead
to the microprocessor and its application to the benchmark problems. Details can be found

in the references, section 6.9.

The following sections of the study include discussion of:

e Definition (Section 6.1)
e Macro Computer (Section 6.2)
® Building Blocks (Section 6.3)
e Central Processing Unit (Section 6.4)
e Controller (Section 6.5)
e Microcomputer (Section 6.6)
® Benchmari:s (Section 6.7)
o Comparison of Results (Section 6.8)
e References (Section 6.9)
e Benchmarks — Coding (Appendix B)
e Benchmarks - Timing (Appendix C)
6.1 DEFINITIONS

Since many users of data processing systems are not acquainted with the techniques and
terms used in data processing, we shall briefly describe some of these as they relate to the
system architecture.

It is the hallmark of a scientist that he define his terms, for only then can semantic confusion
be eliminated.

There are terms like “storage™ which is preferred over “memory.” However, the latter term
is so heavy impressed in the literature that it is hard to change it. The term ‘“‘instruction
location™ is more descriptive than ‘‘program counter.”
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Note the difference below between Macro and Micro. and the difference between Computer
and Processor. Figure 33 shows a simplified definition block diagram. It shows the boundary
lines for the purpose of the definitions.

Macro Computer Excecutes Macro and Microinstructions. It is the combination
of the host computer with the Microcomputer.

Host Computer Control Provides Macro instructions, obtained from Program Storage
and puts it into the Instruction Register. Through the Map-
ping it controls the Microcomputer. The feedback from the
Microcomputer is not shown which simplifies the diagram.

Microcomputer Executes Microinstructions. It consists of the Microprocessor
and Storage. Storage includes Firmware Storage and/or
Opcrand Storage.

Microprocessor Consists of the Controller (Sequencer), Decoder, and Register
Arithmetic Logic Unit (RALU). Often very limited Read
Only Storage and Random Access Storage for Firmware and
Opcrands respectively are provided within the Microprocessor.

ALU Arithmetic Logic Unit performs additions, subtractions, and
. ¢ p
logical operations. :

RALU Register Arithmetic Logic Unit, often called Central Proces-
sing Unit (CPU). 1t contains Multi Port Registers (MPR)
Multiplexers including shifter, Arithmetic Logic, and Control

Decode.

CPU Central Processing Unit same as RALU.

MPR Multi Port Registers, Register stack with multiple access ports 4
(addresses) and capable of multiple operations (read and write).

Building Blocks Blocks used to construct a Microprocessor or Microcomputer.

Controller In this context, the sequencing of Microinstructions.

Data Processor Processes operands.

Data Addressing Processes operand addresses.

As Large Scale Integrated (LSD circuits progress to accommodate more circuits, more and
more functions are included in a single chip. Thus, the dividing of functions becomes more
and more difficult.

Pipeline Two meanings:
a.  Arrangement of multiple Arithmetic Logic Units to pro-

vide execution of multiple Microinstructions concurrently.
Similar to array processing.
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b. Concurrent execution of Microinstruction with fetching
of Microinstruction. A better term would be *‘prefetch.”

Array Processor Arrangement of multiple RALUs or CPUs to provide con-
current execution of several Microinstructions, or concurrent
execution of several functions provided by a single
Microinstruction.

Comparison of architectures are based upon the selection of parameters. Further, a hierarchy
of the parameters and weighting of the parameters is to be established. Qualitative param-
eters are to be assigned to cach parameter. To create such a framework is an extremely dif-
ficult task, especially when the architectures differ widely.

As an alternate approach, it is suggested to present the strong and weak points for cach
system. A final comparison is based upon the results from applying the benchmarks to cach
Microprocessor. A future comparison may include, but is not limited to such parameters as
flexibility, growth capability, number of chips, technology, clock speed, cost of hardware/
firmware/software, program support capability, and life cycle cost.

6.2 MACRO COMPUTER

A Macro Computer is capable of executing Macro and Microinstructions. A Microcomputer
executes Microinstructions. A subset of the Microcomputer is the Microprocessor.

Signal processing applications use a Microprocessor as the main hardware.  For completeness
of this report, a brief description of the Macro Computer capability for each of the three
manufacturers is presented below. All three vendors provide such a capability. Interface to
the host computer is included in the description.

6.2.1 Tracor/RCA Macro Computer

Tracor provides a General Processing Unit (GPU) chip which is similar to the Advanced
Micro Device AM 2901 or the Motorola MC 2901 chip. Since Tracor provided only descrip-
tion of GPU which is simply a central processing unit or RALU and not a Microprocessor
nor a Macro Computer architecture, we used the AMD and Motorola descriptions of simple
Microcomputers to conjecture similar structures for the GPU.

Figure 34 is from reference C; it does not show explicitly the RAM which is connected to
the control/address/data bus. The RAM contains the program and operands. Macro Instruc-
tions of the program are loaded into the Instruction Register which are mapped into the
Micro Program Sequencer. Microinstructions are retrieved from the Microprogram Memory.
The Pipeline Register provides for fetching the next Microinstruction while the current
Microinstruction is being executed.

6.2.2 Raytheon Macro Computer

Figure 35 is from reference D, The Sequencer (SEQ) contains both Macro Computer and
Microprocessor control. The Host Computer provides for Macro Instruction control.
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6.23 Litton Macro Computer

Figure 36 shows a typical example of the Litton Macro Computer. A CPU chip is used to
provide for the controller function and for Data Addressing as well as Data Processing func-
tion. The Emulation part in Figure 36 provides for emulation of Macro Instructions. Macro
Instructions are held in the Instruction Register (IR). The Controller exccutes the
Microinstructions.

6.3 BUILDING BLOCKS

As shown in the previous section, a typical Microcomputer consists of the following building
blocks.

RAM Random Access Memory

ROM Read Only Memory, or

PROM - Programmable ROM

MPY Multiply Chip

1/0 Input/Output

CPU Central Processing Unit, including
ALU Arithmetic Logic Unit

CONT  Controller

Further, the operation of the interconnected building blocks is a function of the program o1
firmware.  Program and firmware are produced using a programming language which is not
subject to this report,

INSTR
]
ROM cPU WA LA
MEMORY
)
EMULATION
FPLA'S
cPy AS - R
APPROPRIATE
Jumpe
ADDR " I
SELECT DATA AND
2 MACRO
ROM | cPU'S INSTR
CONTROLLER
32 BIDIRECTIONAL
1O LINES
| op ‘ N
cPuU ROM CPU = (PROGRAMMABLE AS

INPUTS OR OUTPUTS)

'

INT
REQ/ACK

78463 39A

Figure 30, Litton Macro Computer
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It is assumed the reader is familiar with most of the building blocks; therefore, a description
can be omitted. However, the important blocks of a microprocessor — CPU and Controller
will be analyzed in further detail. Differences in the architecture of these blocks will show

an effect on the benchmark problems.
6.4 CENTRAL PROCESSING UNIT (CPU)

The name CPU is misleading, but it is used in this report because the semiconductor manu-
facturers have adopted it. In this report, the CPU is a chip. The architecture of the CPU
varies from manufacturer to manufacturer. It depends upon the chip size, number of gates,
technology, and number of pins. The CPU under consideration may be classified bit slices.
The slices are typical 4-bit and 8-bit wide and can be cascaded to provide 16 bit
Microprocessors.

The references provide for detailed description.  Only highlights are given in this report.
6.4.1 Tracor GPU

This chip is called General Processing Unit (GPU) and is shown in Figure 37. It has the
following characteristics:

8 bit slice

16 registers, 3 ports/2 operations

ALC (Arithmetic Logic Circuit, limited ALU)
Input and Output

Concatenation logic tor any word length

This chip is similar to the Advanced Micro Device AM 2901 or Motorola MC 29C1
(Figure 38) chips. The 2901 is a 4 bit slice chip which contains an additional Q register.

6.4.2 Raytheon Arithmetic

Figure 39 shows a block diagram. The arithmetic is performed in three stages, a so-called
pipeline architecture.  For certain applications, this arrangement has certain advantages. How-
ever, the data passes through the pipe in sequence. A time penalty is paid sometimes for
filling the pipe and for execution of single functions. The arithmetic includes a multiply
function for fast multiplications. The ALU is a double ALU ecach 12 bits wide, which can
perform concurrently two operations including operations on double length or complex oper-
ands in one timing unit.

6.4.3 Litton Multimode Central Processing Unit (MMCPU)

Figure 40 shows the block diagram which has the following features:

8 bit slice

16 bit register, 4 ports, 3 operations
ALU

3 Bidirectional 1/O Ports

This chip can be used for two functions — Data Processing (DP), and Data Addressing (DA).
g
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Figure 37. Tracor GPU Block Diagram
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6.5 CONTROLLER OR SEQUENCER

To build a Microcomputer, one needs the following building blocks:

CPU or RALU
Controller
ROM

RAM

The controller accesses ROM to fetch a Microinstruction. It decodes the Microinstruction to
stéer the CPU/RALU and other functions in the same time interval it updates the ROM
address for accessing the next Microinstruction.

Advanced architectures use a register to hold the Microinstruction while the next Microinstruc-
tion is being assessed. Thus, instruction execution and next instruction access occurs at the
same time. This is often called “pipeline operation.” A more appropriate name would be
“instruction prefetch.” Thus avoiding confusion with “pipeline operation™ referring to
sequential operation through serially connected RALUs or RALUs in an array.

6.5.1 Tracor/MC2909 Controller

In absence of a Tracor Controller, the MC 2909 has been substituted. Figure 41 shows the
MC 2909 Microprogram Sequence block diagram, It is a 4 bit slice and is cascadable. A
4 x 4 file with stack pointer and push/pop control provides for nesting subroutines.  Direct
inputs provide for N-way branches.

6.5.2 Raytheon Controller

The control function in the Raytheon Microcomputer/Microprocessor are distributed.

Figure 42 shows a block diagram. The dotted line encloses the controller function with the
following blocks — SEQ, PIPE A, PIPE B. A FIFO (first in first out) is used to shift con-
trol from block to block in this pipeline architecture. Details of the shift logic is shown in
Figure 43. The PROM is used to decode the control code obtained from the shift registers.

Note: For consistency with our definitions, the Raythecon MACRO (see
Reference D) is functionally equivalent to a Microinstruction.

6.5.3 Litton Controller

Figure 44 shows the Controller block diagram. It is a 12 bit slice. A LIFO stack. 8 deep
provides for subroutine nesting. Interrupt and branch logic is included.

6.6 MICROCOMPUTER

A typical basic Microcomputer consists of a Microprocessor and storage, i.c.. a Controller, a
ROM, a CPU, and a RAM. Microprocessors for signal processing applications must provide
for high throughput. This is accomplished in several ways:

-~ technology
- architecture
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Figure 41, Advanced Microdevice Controller
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Figure 43. Raythecon Controller Detail

The speed of a processor depends upon the sclected circuit technology. For comparison
purposes, it is assumed all processors would use equivalent circuit speed.  Therefore, the
architecture will provide for speed advantage.

First, it is assumed that all processors provide for concurrent operation of controller and
CPU. This means that the exccution of a Microinstruction occurs in the same time interval
as the fetching of the next microinstruction in the sequence.

Second, it is assumed that two CPU type chips will provide for Data Processing (DP) as weli
as Data Addressing (DA) tfunction. This architecture provides for concurrent data address
updating as well as data processing.  Note, in cach time interval, 3 functions are performed
DA, DP, Control.

Third, 1t is assumed a special function chip provides tor tast multiply.

Typically, all Microcomputers and Microprocessors have a very wide Microinstruction format
which reduces the decoding logic and thercfore gives a speed advantage. The number of

functions performed by a CPU dictates the number of bits to be accommodated in the format

6.6.1 Tracor/MC2901 Microcomputer

A single Microcomputer architecture around the MC 2901 and MC 2909 is shown in
Figure 45. This type of architecture is applicable to the Tracor GPU.
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Figure 45. Microprogrammed Architecture Around MC2901’s

An advanced Microcomputer architecture is shown in Figure 46. The GPU chip is applied
to two functions, DP/DA to obtain further concurrent operation.

The Data Addressing (DA) and Data Processing (DP) functions operate concurrently. The DA
provides for address and index computation while the DP performs the operation on the
operands. A multiply chip is a special function chip. Appropriate multiplexers (MUX) route
the data according to the control obtained from the Microinstruction. This architecture will
be applied to the benchmark problems for comparison purposes.

6.6.2 Raytheon Microcomputer

Figure 47 shows the block diagram of the Raytheon Macro Computer/Microcomputer. Only
the Microcomputer function will be used in comparing the benchmarks.

The architecture shows an Address generation (ADGN) which operates concurrently with the
arithmetic. Operand preparation is performed in Pipe A. The arithmetic function is per-
formed in Pipe B. Pipe A and Pipe B are in series. Advantages and disadvantages of such an
architecture will be reflected in the evaluation of the benchmarks.

6.6.3 Litton Microcomputer

Figure 48 shows the Litton simplified Microcomputer using the MMCPU. The controller and
firmware memory provide for Microinstruction sequencing. The Data Address (DA) calculates
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Figure 46. Microcomputer with Tracor GPU
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Figure 48. Litton Microcomputer
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the operand addresses. The Data Processing (DP) function provides for operation on operands.

Controller, DA, and DP operate concurrently. This architecture is compatible with the Tracor
and Raytheon architectures. A more advanced Litton Microcomputer architecture, provides
for additional concurrent operation and is excluded from the current comparison (sce

Section 111).

Note: The multiplexers (MUXs) in Figure 48 do not actually exist. They
have been included in the diagram for case of understanding; however,
the tri-state outputs of the MMCPU do not require additional MUXs.

6.7 BENCHMARK COMPARISON
{'he three Microprocessor arctiitectures

I'racor (Figure 46)
Raytheon (Figure 47)
Litton (Figure 48)

which have been described in section 6.6 will be compared based upon selected benchmarks.
The following benchmarks have been described in Section 1.

Fast Fourier Transform (FFT)

Weighted FET

Cosine Transformation

Coordinate Conversion

Constant False Alarm Rate (CFAR)

Sorting of Pulse Repetition Frequencies (PRF)

I'he first three benchmarks are related to cach other and are subsets.  Therefore, only the
FET will be coded. The Weighted FET and Cosine Transformation benchmarks would give
results which are similar to the FFT.

Fhe PRE benchmark includes the following two problems:

Pulse Classification, and
PRE Sorting

This coding and comparisod of this benchmark have not been included in this comparison
because the Raytheon Micro Signal Processor would be untairly viewed.

Detailed coding sheets tor the benchmark problems are listed in Appendix B, The tining
calculations are given in Appendix €. A comparison of the results will be given in the next
section 6.8,

6.7.1 Algorithms
I'he benchmarks are described i Section fi. Also, derivations of formulas for approxunatians

of trigonometric functions can be found in the same section.  This section will only hst the
equations which have been directly coded

(B 1)
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Coding of isolated benchmarks can be misleading. The designer should always keep the total
system in mind. Therefore, the benchmark may not give the total story. The programming
strategy and style greatly depends upon the application. For example, buffer space may
depend upon the coding of a single data point or the repetition of data points. In other
words, a formula may be applied to one data point followed by the next data point. Alter-
natively, the first step of the formula may be applied to all data points followed by the next
step in the formula. This will effect the indexing through the data base and affect the
requirements for temporary storage as well as the throughput. Careful analysis influences the
selection of an approach.

Small systems versus large systems can influence the coding. In small systems one can code
routines in-line, i.e., with a minimal number of subroutines, jumps, calls, etc. This coding
technique provides for high throughput at the expense of larger program (firmware) storage.

In larger systems, one would code routines as subroutines or call routines. This approach
provides for efficient initialization of routines at the price of an overhead in calling the sub-
routines. Further, the subroutines may use registers which have to be saved at the entrance
to the subroutine and must be restored before leaving the subroutine. The passing of param-
eters to the subroutines is provided by preassigned registers.

In total system programming, the initialization of subprograms, such as benchmarks, must be
considered. This overhead is normally not included in benchmark problems and depends
greatly upon the architecture.

6.7.2 Instructions and Timing

Conventionally benchmarks are compared upon the following parameters:

Number of instructions — storage

Operand and temporary storage

Number of instructions executed throughput
Time to execute benchmark

The Tracor and Litton Microprocessors architecture are similar. Therefore, the analysis of
Microinstructions are grouped together. The Raytheon is of a different type of architecture.
Therefore, the total number of “MACRO™ instructions will not be tabulated nor compared.
The operand storage can be excluded from the comparison when assuming that the data bases
for all Microprocessors are very similar. One should note that the total storage capacity in
bits for the Raytheon architecture is smaller due to its 12 bit word length as compared with
the 16 bit word length for the Tracor and Litton storage. Further, storage inefficiencies in
the Raytheon architecture may occur due to its addressing structure.  Always double words
-12 plus 12 bits — are accessed by a single address.

The number of Microinstructions executed is significantly different from the Microinstructions
in the program. This effect is due to the execution of loops in signal processing applications.
The number of Microinstructions executed is proportional to the total throughput time. Thus,
the time to execute a benchmark is a yardstick for comparison.

The Microinstruction execution time depends upon several parameters such as the logic speed
which depends upon the selected technology. The specd of storage (memory) is reflected in




the execution time. Concurrent operation of Data Addressing and Data Processing functions
allows a reduction in the total run time of certain algorithms. In algorithms, where the
number of operand memory access is high, the reduction may be a factor of 2 or more.
Pipeline or array processing may give additional speed advantage at the cost of additional
hardware.

The clock speed in a Microprocessor depends upon the technology and the logic path through
the logic. All these parameters make a comparison extremely difficult. Therefore, this study
attempts to normalize the parameters for comparison purposes. This means that all archi-
tectures assume the same technology which includes storage speed as well as logic speed. The
normalization factor is called “cycle.” All comparisons are based upon the total number of
cycles. The calculations of cycles is given below.

6.7.3 Tracor and Litton Microinstructions

The Microinstructions for the Tracor and Litton Microprocessors are very similar. The Micro-
instructions have been symbolized for the purpose of comparison in this report. Figure 49
shows the Microinstruction types. The types used for the benchmarks are classified into the
following classes:

add, subtract, logic
multiply

square

shifts

MEMORY

MEMORY, X = ADDRESS

MEMORY, IN = INDEX N ADDRESS
MEMORY,RN= REGISTER N ADDRESS

REGISTERN,N=0TO E
MULTIPLIER OUTPUT

MULTIPLIER INPUT A
MULTIPLIER INPUT B

78453-61

Figure 49. Microinstruction Symbols (Tracor/Litton)
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Jump operations are assumed to be an option of each Microinstruction and operate in
parallel with the above mentioned classes.

The difference between the Tracor and Litton list in Figure 50 is due to the architecture.
The Litton multiport register file provides for 3 addresses as compared with the 2 addresses
in the Tracor Microprocessor. Therefore, several Microinstruction or data manipulation
options are provided in the Lltton architecture which are not able to be duplicated by the-

Tracor architecture.

Two of the multiply operations have to be executed in two steps in the Tracor Microproces-
sor. This is due to the Limited port logic in the General Processor Unit.

Figure 51 shows the Microinstruction timing in cycles. It is assumed that a Register to
Register (R/R) operation is executed in one cycle which occurs concurrently with the access
of the next Microinstruction. A jump instruction takes an additional cycle only when the
jump has been executed. For example, the jump may depend upon the result of an opera-
tion: if the condition is false, then no jump takes place and no additional cycle is needed.
Storage is normally slower than the logic speed. For a simple approach, it is assumed that
the speed factor is two. It is also assumed that a special multiplier chip requires two cycles

to perform its operation.

Note:  Generally, the multiplier speed is more than a tactor of two slowet
than the CPU speed.

6.7.4 Raytheon Timing

The available documents show two versions of the pipeline architecture. One shows a Pipe A
and a Pipe B, the other shows three stages in the pipeline. The overall timing of the pipe-
line is dependent upon the operand storage.  For cach clock period, one data word enters
the pipe and one data word leaves the pipe.

During four clock periods, the memory reads from two addresses, a double word cach and
writes two double words into two addresses.  Buffers coordinate the data flow as follows.

AM use most significant 12 data bits of address “A.”" AL are least significant 12 data bits
of address A.

Clock 1 read AM, AL -~ AM to Pipe In ~ AL to bufter
CM from Pipe Out to buffer

Clock 2 read BM, BL  BM to Pipe In -~ BL to buffer
DM from Pipe Out to buffer
Clock 3 ' AL to Pipe In
CL from Pipe Out — CM from bufter — write CM, Cl
Clock 4 BL to Pipe In

DL from Pipc Out ~ DM from buffer — write DM, DL

Note: Address C and D are delayed by the sequencer to coincide with the 1
data which has been delayed through the pipe |
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R/R 1 CYCLE

R/R JUMP 2/1 CYCLE (JUMP /NO JUMP)
MR 2CYCLE

M/R  JUMP 3/2 CYCLE

MPY R 2CYCLE

MPY/R JUMP 3/2CYCLE

MPY M 3CYCLE

MPY M JUMP 4/3CYCLE

R = REGISTER
M = MEMORY
MPY = MULTIPLY

7845363

Figure S1. Microinstruction Timing (Tracor/ Litton)

Figure 52 shows a simplified block diagram. The routing provides the data (operands 1 to
and from the pipeline as described above. The pipeline consists of three stages — Scaling,

Multiply. and Accumulate. Each stage operates on the operands during four clocks on four
operands or the combination of the four operands. The Multiply can perform four multi-

plies in four clock periods. The Accumulate contains a double adder with teedback which

gives 4 x 2 additions doing cach four clock periods.

It is assumed that there is no time delay in the data input to the Scaling and that the
operands are being programmed to arrive in the right sequence. The intermediate results
within the pipe are buffered and forwarded appropriately. The output from the Accumulate
are buffered to provide the right sequencing for writing the data back into storage.

The flow through the pipeline shows four MACRO times. Each MACRO is shifted through
the pipe every four clock times. Since the clock is related to the data access, one assumes
for normalization purpose that one clock equals two cycles. Furthermore, this normalization
i consistent with the multiplier time assumed for the Tracor/Litton architectures, i.e., two
cycles per multiply.

A MACRO can be repeated for several operands which provides a continuous data flow. The
next MACRO in sequence may start immediately after the current MACRO has obtained the
data. However, the data for the second MACRO (E/F in Figure 52) must be independent
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of the data of the previous data output. Figure 52 shows a four MACRO delay (flush of
pipe) when the data output (C/O in Figure 52) is to be used as a next data input.

Data set-up and address generation are assumed to operate appropriately.

6.7.5 Fast Fourier Transtformation (FFT)

Coding of one buttertly tor the FFT will be shown. The algorithms are shown on the coding
sheets.

Appendix Bl shows the Coding for the Tracor architecture. The Litton architecture uses the
same coding.

Appendix B2 shows the Raytheon Coding.

Timing calculations are shown in Appendix C1 tor the Tracor/Litton architecture and in C2
for Raytheon. A 1024 point FFT was assumed which requires ten passes. The Tracor/Litton
architecture uses a single accumulator and a single multiplier which is equivalent to a *‘real
in-place FFT.” The Raytheon architecture performs a complex in-place FFT. Adding hard-
ware to the Tracor/Litton architecture to provide “complex™ calculation will reduce the time
by a factor of 2 to 4. (See Section Ill.)

Note, the results are tabluated in Figure 53.

PROCESSOR
TRACOR RAYTHEON LITTON
BENCH MARK
FFT 153,600 40,948 163,600
COORDINATE 68 16 65
CONVERSION
POLAR TO RECT
REJVT TO POLAR 222 16 212
CFAR 63,499 = 63,499
BIT PACKED
NOT BIT PACKED 37897 33,328 37,897
78453 55

Figure 53. Microprocessor Cycles tor Benchmarks
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0.7.6 Coordinate Conversion

There are two parts to the coordinate conversion.

a.  Polar to Rectangular
b.  Rectangular to Polar

Appendix B3 shows the Polar to Rectangular Coding for the Tracor architecture. The coding
takes in account in which quadrant the angle s located.  The trigonometric functions. sine
and cosine, use an approximation tor an angle of less than 74, The sign of sine and cosine
are selected according to the quadrant.  The Litton coding differences are indicated and show
a reduction of coding due to the multiply function.

Appendix B4 shows the Polar to Rectangular Coding tor the Ravtheon architecture.  lhe
simplicity of the coding 18 due to the built-<in hardware function which directly provides the
trigonometric function.  Due to the hardware duality in the pipeline, two data points can be
converted at the same time ina single macro. 1t should be noted that the coding assumes
that the pipeline receives first quadrant data. 1 the angle must be tested, a severe penalty
must be paid to pertorm one or more data-dependent branches.

Appendix C3 shows the Polar to Rectangular 7iming tor the Tracor and Litton architecture.
The timing is for a single point. The angle is assumed to be in the second quadrant.  The
path through the coding is shown. The Litton architecture uses fewer instructions as indi-

cated by the # symbol.

Appendix C4 shows the Polar to Rectangular Timing tor the Raytheon architecture.  Again.
a single point conversion is assumed.  Since 2 conversion per macros are pertormed. it s

reflected in the tuming calculation.

Appendin BS shows the Coding tfor Rectangular to Polar conversion for the Tracor and itton
architecture.  The square root (SQ) computation uses an estimation algorithm.  Note. the
coding tests for negative numbers which make the coding applicable as a general routine.
Negative numbers are converted to positive numbers.

The calculation of the angle uses an approximation of the are sine (sin"l) function.  This
tunction is similar to the sine function and differs only in the constants (see B3) A tost

ot the coordinates s performed to determine whether the angle will be smatler or larger than
4 a quadraat. After calculation of the angle, the appropriate quadrant is being
determined.

The algorithm requires divisions.  Since the multiply chip does not contain the divide tunc
ton, a separate approximation is bemng used which computes more than two bits of the
quotient per iteration. Since the divide is a general subroutine, several tests are being made
to deternuine whether the dividend is zero or the divisor is zero. Dividend. Divisor and
Quotient are passed by Registers 10 20 and O respectively.  Other registers being used are
appropriately saved restored

Appendix Bo shows the Rectangular to Polar Coding. tor the Raytheon architecture.  The
angle s determined directly by the built-in tngonometric fuaction assuming it will give the
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appropriate quadrant. The R is determined by a multiplication and addition rather than by
a square root. It takes advantage of the built-in hardware which provides trigonometric
functions. Unlike the polar-to-rectangular conversion, the angle estimation hardware does
not need quadrant information for this conversion. This function provides a real and
significant performance improvement.

Appendix CS shows the Rectangular to Polar Timing for the Tracor and Litton architecture.
Appendix C6 shows the Rectangular to Polar Timing for the Raytheon architecture.

6.7.7 Constant False Alarm Rate (CFAR)

The Constant False Alarm Rate (CFAR) is a sliding window CFAR benchmark. It assumes
a 256 call window. The range contains 4096 cells. Each cell assumes a six bit positive
value from the A-to-D conversion stage.

Appendix B7 shows the CFAR coding tor the Tracor/Litton architecture. The sliding window
is defined by the Indices Il and I2. The midpoint is 14. The threshold decision is one bit.
Each 16 consccutive decisions are packed into one word (Index 15). The resulting word is
stored by Index 13. Operation is in real time. The coding takes full advantage of the
indexing capabilities of the Data Addressing function.

Appendix B8 shows the CFAR coding for the Raytheon architecture. The first macro accumu-
lates the window, four bits at a time. The second MACRO updates the window for the next
two cells; this is a pass over the whole range. After flushing the pipe, the next macro per-
torms two decisions. Note, the decisions are not packed. The sign of each word represents
the decision.

The operation is not in real time since the range has to be processed twice requiring large
intermediate operand storage. If there would be a feedback from the accumulator into the
multiplier, then the accumulator would be available internally to the pipe. In other words,

the storing of the accumulation “S™ would be eliminated. Each decision would be made from
the internal accumulation with an accessed midpoint. The accumulator would be updated trom
2 range cells. This scheme requires clever arrangement of the range cells. Program execution
would alter between a pair of macros after 128 decisions each.

Appendix C7 shows the CFAR Timing for the Tracor/Litton architecture. Note, the
processing is in real time and cach 16 decisions are packed into a word.

Appendix C8 shows the CFAR Timing tor the Raytheon architecture. Processing is not in
real time and decisions are eacn in a separate word.

Appendix C9 shows the CFAR Timing tor the Tracor/Litton architecture. This coding and
timing assumes that each decision is stored in a separate word. Note, operation is still

in real time, but coding is shorter and therefore the timing has been reduced significantly
as compared with Appendix C7.

6.7.8 Microprocessor Cycles for Benchmarks

Figure 5-3 tabulated the microprocessor cycles for each benchmark and for cach microprocessor
architecture. A discussion of the results follows in the next section,
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6.8 COMPARISON OF RESULTS

The comparisons of microprocessor architectures in this section are based upon the results
presented in the section 5.8. The results are based upon the evaluation of three micro-
processor architectures and its application on signal processing benchmarks. The evaluations
are based upon available documentations. Some of the documentation may be voluminous
but lacking of necessary details to allow sufficient analysis. Therefore, in many instances,
assumptions have been made assumning the good guesses are right. The lack of details and
consistency in the available documents may be due to the state in which the presented archi-
tectures were at the time of their publishing. This reflects in the appearance of the architec-
tures to be conceptual rather than designed or being implemented.

An effort has been made to evaluate the architectures in the best light and to be rather
optimistic than pessimistic. Parameters have been normalized to provide a fair comparison.
Despite adverse circumstances, significant discoveries have been made. Further studies and
subsequent comparisons may make use of these facts and a refinement of the analysis, evalu-
ation and comparison of results may be achievable. 7

6.8.1 Architecture Comparison

The comparison of the Tracor, Raytheon and Litton microprocessor architectures showed
the following:

a. The Tracor and Litton architectures are very similar; the Raytheon
architecture is different. Tracor and Litton architectures are readily enhanced
to reflect an array processor architecture, similar to Raytheon’s architecture.

b.  All three architectures have a controller/sequencer which fetches microinstruc-
tions and operates concurrent with microinstruction execution.

c.  All three architectures have data addressing/address generator hardware whnch
operates concurrent with the data processing/pipeline. :

d. Al three architectures have a multiply hardware as a special function. The
Raythcon architecture reflects the State-of-the-Art “optimum” in this
respect, i.e. a multiplier followed by an accumulator. That function reduces
the data traffic on the data bus which is extremely important in signal
processing. (See multiplier discussion in chapter 3)

e. The Tracor/Litton architecture have a single Data Processor and operate on a
single operand (data point) at a time. Raytheon has a parallel Pipeline which
can operate on two operands (data points) at a time due to its dual data
path and dual arithmetic. Therefore, more hardware provides for apparent
higher throughput as compared with the Tracor/Litton architecture.

f. It is anticipated that a Tracor/Litton array processor architecture provides
a speed advantage of 2 to 4 over a single Data Processing architecture
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g. The Litton CPU chip as compared with the Tracor GPU chip has more ports on the
chip; and these ports are bidirectional. Thus, fewer microinstructions are required to
route data, and more powerful microinstructions are provided in the repertoire. This
is reflected in the benchmark coding. Furthermore, operation as a data addressing
chip is enhanced because additional processing of literals is obtained.

h. The Litton CPU has Multi Port Registers (MPR) with three addresses and performs
three operations on all three addresses. Litton can read from two addresses and
write into a third address. Tracor has a two address, three operation MPR. Tracor |
can read from two addresses; one of those addresses can be used to write data back |
into the MPR. The three address feature in the Litton CPU did not provide an f
advantage in the given benchmark coding: however, the advantage is most significant '
in Data Addressing.

1. Special divide algorithm shows not a significant improvement over conventional ‘
algorithms due to a large overhead in determination of special cases of dividend and '
divisor. :

L
6.8.2 Timing Comparison :

Figure 54 is a summary of the benchmark comparison expressed in cycles (normalized). This i
figure also shows estimates for array architectures. The speed improvement of an array archi-
tecture over a single Data Processing architecture is assumed to be a factor 2 to 4.

PROCESSOR
TRACOR RAYTHEON LITTON ARRAY e vt
BENCH MARK 12 174
FFT 163,600 40,948 153,600 76,800 38,400 i
COORDINATE 68 16 66 32 16
CONVERSION
POLAR TO RECT
RECT TO POLAR 222 16 212 106 53
|

|
CFAR 63,499 = 63,499 31,749 16876 ‘
BIT PACKED

{
NOT BIT PACKED 37,897 33,328 37,897 18,948 9.474 i

78453-56

Figure 54. Microprocessor Cycles tfor Benchmarks
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Figure 54 shows the following:

a.

b.

d.

o

6.8.3

b.

Litton as compared with Tracor timing shows a small advantage due to the micro-
instruction repertoire which requires fewer executions.

Raytheon as compared with the Tracor/Litton Timing shows to be superior on the
surface. Therefore, a detailed comparison follows.

FFT  Raytheon is significantly better than Tracor/Litton timing. When compared
with an array architecture, i.e., equivalent or less hardware, the timing is about
equivalent.

Coordinate Conversion/Polar to Rectangular — The array architecture timing is com-
petitive with Raytheon.

Coordinate Conversion/Rectangular to Polar - the array architecture is significantly
slower than Raytheon. Raytheon’s speed advantage is due to the hardware built-in
trigonometric special functions to avoid data-dependent operations.

CFAR  The Tracor/Litton bit packed algorithm is a factor of two slower as com-
pared with the non-bit packed algorithm. The trade-off is speed vs storage require-
ment. Comparing the non-bit packed Raytheon timing with the Tracor/Litton

timing shows about the same figures. However, an array architecture is much faster
than the Raytheon timing. A bit packed Raytheon algorithm would be even slower
because the algorithm necessitates data-dependent branches.  This shows the Raytheon
architecture is not geared for this type of application.

Special functions such as trigonometric hardware provides a speed advantage.

Divide function, it required, in the Raytheon architecture would be slow.

Divide tunction should be incorporated into the multiply chip.

Importance of the Data Addressing function has been shown in the CFAR benchmark
and can be shown in the total FET. Several index operations are performed concut
rent with Data Processing.

Conclusions

Special purpose processor is faster than general purpose processor, 1.e., i processot
which has built-in trigonometric functions.

Special purpose processor is inflexible as compared with general purpose processor
i.e. CFAR, divide, non-first quadrant angles.

Raytheon computer is a type of array processor i.e., 2 data path in 2 pipe stages
= 4 processor equivalent.

Array processors are faster than single processors because of parallel processing
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(2]

Divide in the Raytheon computer is extremely slow. Square root, if necessary, in
the Raytheon computer has an unknown implementation.

Raytheon should have feedback from the adder to the multiplier to improve its
ability to process the CFAR.

Multiply chip should include divide to significantly speed-up processing. How often
the divide is needed is unknown?
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

7.0 INTRODUCTION

The attempt to design a single large scale integrated circuit, the Multimode CPU has revealed
some interesting insights into digital signal processor design, LSI technology and the signal
processing problem set. Analysis has shown that the Data Processing, Data Addressing and
Instruction Address functions are all within the reach of LSI.

In this chapter, conclusions will be drawn and recommendations will be made in the area of
the Benchmarks, the Architecture, the Technology, and the Comparison. The conclusions,
presented herein, are supported in the preceding chapters.

7.1 CONCLUSIONS

711 Benchmarks

The problem set in Section Il was included to be representative of the signal processing tasks
required presently and through approximately 1990. The problem had to be bounded so
that the MMCPU could be designed to span a wide range of applications and still be “spe-
cialized” enough to handle the unique requirements of the problem set. The tasks can.be
separated into high speed and low speed requirements. The FFT along with the weighted
FFT and cosine transtform are extremely high speed computation problems. The pulse clas-
sification algorithm requires a high speed computation but more importantly, a high speed
data dependent testing capability. The other problems are lower speed and will not be dis-
cussed here.

The FFT and the classis Cooley-Tukey butterfly have a very orderly and repetitive arithmetic
flow and a simple addressing scheme. From the analysis of multiplier structures in Section 111

it is concluded that the optimum processor structure for the FFT is a hardware special
function unit which performs all the butterfly arithmetics. Furthermore, because the address-
ing requires simple additions and tests, a fairly simple, but high speed, general purpose RALU
or CPU is required to support the special function unit.

The pulse classification algorithms is virtually at the other end of the processing spectrum.
Although the operand set-up requires a repetitive set of adds and multiplies for calculating
the distance measure, the bulk of the processing (about 23 percent by actual operation
count) is involved in testing and selecting a branch path from the outcome of the test. 1t is
concluded that a very sophisticated, high speed, general purpose CPU is required with a mul-
tiplier to support it.

The emphasis of the CPU and the special function unit (butterfly unit or multiplier) is re-
versed. Part of the objective of this program was to determine if a single orchitecture could
accomplish this task. It is concluded that a single architecture would be somewhat inetticient




but a single CPU structure capable of handling the pulse classification problem can be defined
which would be more than sufficient for the remaining tasks in the problem set.

T.12 The Architecture

To support the high 1/O rate of the FFT butterfly, the addressing unit must supply addresses
to the data memory so that operands can be read or written at a high rate; therefore, the
bus system must support the FFT speed requirements. In Section 11, the bus system was de-
fined as a result of the problem set and became the prime concern for supporting the multi-
pliers and RALUs. It is concluded from a top-down viewpoint that the processing system
should be built around the maximum bus necessary for the job. By defining the bus first,
the speed requirements for the processing elements or the speed limitations of the processor
imposed by the bus are clearly established.

After the bus requirements were established, the multiplier structure was investigated in rela-
tion to the problem set. It is concluded that the processor structure is highly dependent on
the multiplier structure as evidenced by the two DP/DA structures presented in Section 1lI.

For a maximization to the “general purpose™ goals of the MMCPU, the Multiplier/FFT struc-
ture is preferred because it handles the high speed problems of the FFT, weighted FFT and

Cosine Transform, as well as the other problems in Section 11.

Array processing is generally a difficult procedure because bus transfers, resource sharing, etc.
is difficult. The architecture presented was developed with a desire to expand via array proc-
essing so that the processing speed could be increased.  The limitations of bus transters,
resource sharing, and timing were resolved by allowing only nearest neighbor intercommuni-
cation and several 1/O Data Ports; furthermore, the processors must be operated in lock-step
or time synchronism if the array approach will work with maximum efficiency.

7.1.3 The Architectural Comparison

Using the constraints of Section VI, several significant points can be concluded about the
Tracor/RCA processor (GPU), the Raytheon processor (Micro-Signal Processor), and the
Litton processor (MMCPU).

The GPU is similar to the 2901 processor. It is excellent for general purpose problems in-
cluding emulation. The RALU structure provides great flexibility of operation; however, the
limited number of 1/O ports inhibits the bus interconnection flexibility necessary for signal
processing. Furthermore, the 1/O limitations make array processing virtually impossible be-
cause the data buses must be tied to each other, thereby, forcing a battle tor bus usage.

The Micro-Signal Processor is designed specifically for signal processing problems. It will han-
dle the FFT, weighted FFT, and Cosine Transform well because the pipeline structure is
oriented toward the FFT. 1t resembles the multiplier/accumulator with holding registers dis-
cussed in Section IIl. The major weakness of the architecture is the lack of provision for
data dependent operations; therefore, EW problems arc beyond its scope. Any data depend-
ent testing must be done in the sequencer, and the result must wait for the FIFO to clear
before it can be implemented. The primary problem is the overdependence on the pipeline
for all arithmetics.
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The MMCPU is similar to the GPU and the 2901 RALUs; therefore, it is extremely capable
of the general purpose problems. It has enough ports available to give it signal processing
flexibility in a single or array configuration. The major limitation to this processor is the
multiplier. Current commercially available multipliers are not responsive to the FFT needs.
Without such a multiplier/FFT unit, this processor is greatly limited for the FFT type prob-
lem; however, the EW problems are well within reach.

A final point should be made. The pipeline arithmetics of the Raytheon processor along
with the MMCPU for general processing and data dependent operations would be a powerful

processor configuration.

7.1.4 The Technology and the MMCPU

In section 5.3, CMOS/SOS, 13L, and VMOS were analyzed, and each is capable of high gate
count LSI. Although the 1500 to 1750 gate 8-bit RALUs appear to be a limit for the tech-
nologies, any of these technologies could perform well now or in the near future.

The final question remains, Is the MMCPU chip concept feasible? 1f so, in what context?
To answer this question: the gate count must be estimated. Using the RALUs as a basis,
the microsequences and loop counter could be accomplished by using the MPR/ALU func-
tions of the RALUs. Approximately 200 additional gates would be necessary in the MPR so

that it could perform as a 16 word by eight bit register file and as an 8 word by 12 bit
LIFO stack.

The interrupt control unit, flag logic, and instruction addressing instruction decode would
have to be included on the single chip. Another 500 gates would be necessary. Because the
IA made is significantly different than either the DP or DA mode, additional gates would be
necessary to permit multiple modes at the 1/O data ports as well as to allow 12 bit instruc-
tion addresses to be generated instead of 8 bit data 1/O. Lastly, the internal chip buses
would have to be structured to accommodate 8 bit data and 12 bit instruction addresses.
The total estimate for an MMCPU is between 2300 and 3000 gates.

From a commercial point of view, the single chip is inefficient, requiring a significant amount
of the chip to be unused in various modes. Unused portions of a chip are costly because
when the unused portions of the chip are stripped away, the chip is smaller, the yield is
higher and the cost is lower, However, from a military point of view, a single chip type may
offset the cost of unused portions of the chip. A single chip type reduces the number of
types that must be supplied. Lower life cycle cost can be aided by such reductions.

A single chip might be advisable to the military; unfortunately, the problem set requires high
speed gates be utilized to perform the FFT and EW problems. As previously discussed,
higher speed means higher gate dissipation. Power is the major limitation. The total chip
power dissipation would be greater than 3 Watts for any of these technologies. The only
way the MMCPU chip would be feasible is if the unused functions on the chip were not
powered. Such a scheme is possible, but generally not practical.

It is, therefore, concluded that the MMCPU chip concept is not feasible in today's technol-
ogy. A two chip type system  one a DP/DA RALU chip, the other an 1A controller chip
would satisfy the needs of the complex processors discussed in Section 11
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At the present rate of increase in technology, the single chip concept remains two to three
years away for high speed applications. Lower speed chips are possible today which may
mean that a lower speed version could be developed and utilize the array processing concept
to perform the higher speed problem.

1.2 RECOMMENDATIONS

T.2.1 Electronic Warfare

The Electronic Warfare problem was briefly discussed in Section Il as one of the benchmarks
for the MMCPU. The ultimate solution was not presented and is not totally known. The
solution given herein is a fairly simple-minded approach, assuming all the emitter data para-
meters are the same word length. In truth, the word lengths are greatly different, and
weighting would be necessary to “‘standardize™ the word lengths for processing.

The pulse classification algorithm has a very repetitive distance-measure calculation using the
parameters. Array processing should be explored as a means of greatly increasing the speed
of the simple calculation via parallelism. A possible solution is simple hardware for the cal-
culation and an MCCPU for probability comparisons. More study of architectures is needed
in this area.

7.2.2 Array Processing

Array processing has been presented herein in a very limited manner. The approach given is
a cross between the full parallel processor and the multiprocessor. The major area of appli-
cation for the nearest-neighbor approach is very structured problems such as signal processing.
The concept needs more study in two areas. 1) Slower processors are possible if more ar-
raying can be efficiently done. 2) Processor speed increases may be possible without obviat-
ing software for the slower processer because one processor simply works twice as fast as its
predecessor, thereby doing the work of two. Both areas seem quite fruitful.

7.2.3 Demonstration of MMCPU

A practical demonstration of the MMCPU to demonstrate the concept and to study the array-
ing possibilities in EW and other applications is necessary to “prove the concept.”™ The dem-
onstration processor could be built of 2900 series parts very casily because the MMCPU s
very similar to the RALU's and microsequences of that series. The necessary speed could not
be simulated but the function could be proven.

7.24 VMOS Technology

Lastly, the VMOS technology should be carefully watched as a potential LSI signal processing
technology. Although it is an NMOS variation, many of the temperature range problems seem
to be ameliorated. With the possibility of miniscule channel lengths using standard geometry
rules, this technology has the potential of outdistancing every available technology in the LSI
field.




APPENDIX A
TIMING BENCHMARKS FOR COMPLEX PROCESSORS

TASK: PERFORM BUTTERFLY FOR FFT.

Algorithm: A + B are input points

X + Y are output points
TR = BR*CO - BI*SI
TI = BR*SI + BI*CO

XR AR + TR

Xl Al + Tl

YR = AR - TR
YI = AI-TI

Alternate Algorithm:

TR} = BR*CO

XR;= AR + TR, YR; = AR - TRl
TR2= BI*SI

XR = XRI - TR2 YR = YRI + TR2
TI = BR*SI

XIj = Al+Tl, YI; = Al-TI
TI2 = BI*CO

XI = Xlj +Tl, Y1, - Tl,




PROCESSOR 1

Task 1: FFT Butterfly
Coding:
R1 = M(B)
R2 = M(O)
R3R = RIR*R2R
R3I = RIR*R2I
R4R = RI1I*R2*
R4l = RII*R2R
R3 = R3 + R4
RO = M(A)
M(X) = RO + R3
M(Y) = Ro - R3

Total Timing:
4097 Butterflies require loading of A and B
1023 Butterflies require loading of A, B, and C
Total Cycles = 17 X 4097 + 19 x 1023

= 89086 cycles

PROCESSOR 2
Task 1: FFT Butterfly
Coding:
MPYLI = M(O)
MPYL2 = M(B)
MPYL3 = M(A)
COMPLEX MPY = LI*L2
COMPLEX ADD L3+CMPY
L3-CMPY
M(X) = CADD
| M(Y) = CSuB

13§

Timing (in cycles)

-~

(2) if necessary
55

S
2
2
1
2
2
2
17 (19)

the new rotation vector

Timing (in cycles)

(1) if necessary 5

— bt bt bt P ) s

I




Total Timing:
4097 Butterflies require loading of A and B
1023 Butterflies require loading of A, B, and C

Total Cycles 8 X 4097 + 9 X 1023

]

41983

- the new rotational vector




TASK: PULSE CLASSIFICATION

Algorithm:
ERROR
RO, = M(BI) get bi
RI = MC(BJI) get bji

R2 = RO - Rl
R2 = R2*R2 (bi-bji)°
R2 = M(SJ)*R2 (bi-bji)?
R3 = R3 + R2: 10 =10 + 1 : JUMP ERROR IF 10 NE I1
R4 = R3 shift right EJ = -EJ/2
RS = M(R4) Memory look-up exp (R3)
{Could calculate the exponential]
RS = RS*M (SPJ) M(SPJ) = P
ALu= RS - R6: JUMP JCOUNT IF ALu 0
R6 = RS MUI5) = I2,IS=15+1 Store Gj
JCOUNT :JUMP THRES IF IR = JMAX
I2 = IR+1 :JUMP ERROR
THRES ALU = RS - M(T); PC = PC+2 IF ALU 0
M(T) is the threshold

:JUMP ERROR
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PROCESSOR I AND 11

Task: Pulse Classification

Coding: ; Timing (in cycles)
CLR MPR 1
I0 =0 1
I1 = IMAX 1
12 = JSTART 1
I3 = JMAX 1
14 = JDELTA 1
16 = THRESHOLD 1
7
ERROR RO = MI0) : 15 =2¥0 2
Rl = MIS+I12+ 1) 2
R2 = RO - Rl 1
R2 = R2*R2 2
R2 = R2*M*[5 +12 + 1) 3
R3 = R3 + R2;10 =10 + 1:JUMP ERROR 1/2
IF I0.NE.11 11/12
I5 = -R3 Shift Right 2
R2 = M(59) 2
R2 = R2*M(12) 3
ALU = RS5-R6 : JUMP COUNT IF ALU 0 2/3
9/10
R6 = R5 :d6=1I2 2
JCOUNT :JUMP THRES IF 12 = IMAX 1/2
d2 =12 2
S/6
THRES ALU = R5 - M(I2 + 16) :SKIP IF ALU 0 2/3
:JUMP ERROR 1
3/4

STORAGE ROUTINE - END OF ALGORITHM




TOTAL TIMING:
SETUP - 7 cycles
CLASSIFICATION
Assuming 100 possible classes
ERROR ROUTINE
Assuming 4 parameters to calculate distance
4 total passes per class

3 require jumps
1 requires no jump

Total per class = 11 X 1 X 12 X3 = 47
TOTAL = 100 x 47 = 4700 cycles

PROBABILITY ROUTINE

Each class requires 14/13 cycles depending on jumps.
Assuming 50% require jumps
Final pass requires 2 jumps

TOTAL = 14 x50+ 13 x50+ 1 = 1351 cycles
THRESHOLD ROUTINE

Entered only once per classification

TOTAL = 3 cycles

TOTAL = 7 + 4700 + 1351 + 3 = 6061 cycles




APPENDIX B

BENCHMARKS - CODING i{
é.’
|
!
1 FFT, Tracor/Litton .
f
2 FFT, Raytheon }
;
3 Coordinate Conversion A, Tracor/Litton ,
Polar to Rectangular j
i
4 Coordinate Conversion A, Raytheon {
Polar to Rectangular 1}
S Coordinate Conversion B, Tracor/Litton i
Rectangular to Polar |

6  Coordinate Conversion B, Raytheon

Rectangular to Polar
7 CFAR, bit packed. Tracor/Litton
8 CFAR, non bit packed, Raytheon

Bl FFT, Tracor/Litton Coding

1. Benchmark: FFT 1024 Points

2. Algorithm:
TR = CO*BR - SI*BI
T = SI*BR + CO*BI ;
XR = AR + TR }
XI = Al + TI
YR = AR - TR
YU = Al - Tl L‘

3. Coding:

Labels Instructions: Comments :
R1 = MCO)
RS = RI*M(BR)
; '
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Labels Instructions: Comments

R2 = M(SD)

R6 = R2*M(BI) ,

Ré6 = RS - Ré6 TR :

RS = R2*M(BR)

R7 = RI1*M(BI)

R7 = RS + R7 TI

R3 = M(AR) |
} R4 = M(AI) |

M(XR) = R3 + R6 i

M(XI) = R4 +R7 ;

M(YR) = R3-Ré6 !

M(YI) = R4 -R7 |

4. Remarks:
a. DA operation is transparent to DP operation %
b. Coding is for one butterfly f
l

c. For 1,024 Point FFT there are 10 passes

Number of Number of {j.
Pass CO/SI Butterflies/CO.SI 3
1 1 512 i
2 2 256 |
3 4 128 |
4 8 64 ;
|
10 512 1 :

d. A.B are inputs of butterfly |
X,Y are outputs of butterfly t

Second pass uses the following:

For ((‘O.Sl)l Al = Xl and Bl = X2
A2 = X3 B2 = X4 !
etc I
(CO,SI)H Al = YI Bl = Y2 |
T A2 = Y3 B2 = Y4 |
etc

Note: DA requires multiple indexing for operand access.




e. The reordering of final results is not included because Data Addressing can perform
this operand access in reversed order with no penalty.

B2 -~ FFT, RAYTHEON CODING

1. Benchmark: FFT 1024 Points

2. Algorithm:
XR = BR + AR X CR - AI*CI
XI = BI + AR*CI + AI*CR
YR = BR - AR X CR + AR*Cl
YI = BI - AR*CI - AI*CR

3. Coding:

Data Data
In Scaling Multiply Accumulate Out Comments
Al AR CR Repeat
B2 BR Cl 512
Al x 10 PASS
Bl
Flush M1 = AR*CR
M2 = AI*CI
M3 = AR*CI
M4 = AI*CR
AT W SO PR S
SI = BR + M1 YR = S1 + M2
S2 = BR - M1l . XR =82 - M2
S3=RBI+ M3 YI =83-Md4
S4 =Bl -M4 . YR =83 + M4
XR
YR
XI
Yl

4. Remarks:

a. Coding is for one butterfly.

b. The reordering of final results is not included.




B3 -

COORDINATE CONVERSION A, TRACOR/LITTON CODING

to

Benchmark: Polar to Rectangular

Algorithm:

X
Y

it n

Coding:

Labels

SIN:
MP:

R cos @
R sin 8

Instructions:
RO = 0
R1 = M(O)
R2 = /2 - R1
ALU = Rl - 7#/2
RO = RO + 1
R2 = -R1
R1 = - M(O)
ALU = -RI
RO = RO + 1]
R1 = Rl -m/2
R2 = 3 7/2-M(@8)
ALU = -R2
RO = RO+ 1
R2 = -R1
R1 = 21 - M(8)
RE = 2
R1 = RI1*R]
R3 = M(K4) + R1
MPYB = RI1 }
R3 = MPYB*R+
R3 = R3 + M(K3)
MPYB = RI
R3 = MPYB*R3
R3 = R3 + M(K2)
MPYB = RI }
R3 = MPYB*R3
R3 = R3 + M(KI])
RE = RE -]
R4 = R3
R1 = R2
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IF < 0 JUMP SIN

IF < 0 JUMP SIN

IF < 0 JUMP SIN

Litton:
R3 = R1*R3

Litton:
R3 = R1*R3

Litton:
R3 = R1*R3
IF ZERO JUMP SIGN

JUMP MP

Comments
quadrant indicator

]2 -8
6-m/2
Rl =7/2 -8

6-m/2
m-6

6-n
Rl = 6 -n/2
Q-
37/2-8

€- 3m/2
R1 = 37/2 -8

8- 372

Sei up 2 passes

Zg

Z)

Z

Z3, (sin) cos
Save sin 0

for cos




Labels Instructions: Comments I
e e e e e— t
SIGN: ALU = RO IF ZERO JUMP POL ‘
R3 = -R3 cos = - sin i
RO = RO-1 IF ZERO JUMP POL i
R4 = -R4 sin = - sin
RO = RO -1 IF ZERO JUMP POL '
R3 = -R3 cos = sin i
Litton:
POL: MPYB = M(R) RS = M(R) i
M(X) = R3*MPYB M(X) = R5*R3 t
M(Y) = R4*MPYB M(Y) = R5*R4 :
END

4. Remarks:
a. /2 etc are constants, literal operands u
b.  Sine subroutine uses approximation
c¢. Cosine uses second pass through sine subroutine 4
d. Coding included quadrant determination of 4. !

B4  COORDINATE CONVERSION A, RAYTHEON CODING

1. Benchmark: Polar to Rectangular Coordinate Conversion

2. Algorithm:

X = R cos 8 |
Y = Rsin 6 t
3 Coding i
|
Data In Scaling Multiply Accumulate Data Out Comments ]
a1 Cos 61 f
62 Cos 62 !
R1 Sin 61 i
R2 Sin 62 ‘
X1 = RI1 Cos 61 |
X2 = R2 Cos 62 |
Yl = RI! Sin 61 |
Y2 = R2 Sin 62 ‘

X1

X2

Y1

Y2




4. Remarks:

Coding does not include quadrant determination of 8.

B5S ~ COORDINATE CONVERSION B, TRACOR/LITTON CODING

1. Benchmark: Rectangular to Polar

2.  Algorithm:
R = Vx2+v?
8 = sin’l %‘ 0 < % \%
6 =—72T-sin'l'—)l§—I Y—%\%l\I
Special Purpose Divide Algorithm:
Z = X/Y Registers R1/R2 = RO
Fos Xl d)or LROph L
Assume user provides test that [X]< [Y]
(N If X=0 then Z = 0 (even if Y = 0) , END
(2 If Y=0and X>0 then Z = max . END
3) If Y=0and X<O0 then Z =- max . END
(4) If Y =-max then Z =X+ 1 . END
5 If Y>>0 then complement Y and X
6) If Y - -05 then shift left. “count’ until in range
(M Kx = X (I _}1_\ note Y <0
@) Ky = (1-Y)°
9 Z, = Ky
(10) n = 0 set iteration counter

an Zpy = Kx +Kky 2,
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(12) n

)

(13 z

If n#7 JUMP 11

(14) Z shift right until “count” (6 above) = 0

(15) END

When using

index registers, then

R1 = M dl)
R2 = M (12)
M(13) = RO
3. Coding
Labels Instructions:
RO = MX) } Litton
RO = RO*RO RO = M(X)*M(X)
R1 = M(Y) = ; ,
RI = Rl*Rl} RO = MCE ) MCY)
R1 = R1 + RO CALL SQ
M(R) = RO
and
SQ: M(T) = R2
RO = 0
R2 = R1' IF EQUAL JUMP SQOT
ALU = R2 IF NEG JUMP POS
R1 = R2+1
POS: R2 = 0
RO = RI1 - 0.5625 IF NEG JUMP SQI
R2 = R2-1
RO = RO SHR 2 JUMP SQ4
SQ1: RO = RO+ 0S5 JUMP SQ3
SQ2: R1 = R1 SHL 1
R1 = Rl SHL 1
R2 = R2+1
RO = RI - 0.0625
SQ3: ALU = RO IF NEG JUMP SQ2
SQ4: MUU) = R2
R2 = - 13
M(V) = RI
RO = 0.50

e > S RT
o ',-,"':"‘\t-,-— -~
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e e,

~

Comments

Calculation of R

Save R2

n0 = VRI
Check tor 0
Check tor NEG
2' COMPL
Scaling

If < 0, 5652

SHL 2
Scaling

It < 0.0625
Save Scaling
Iter count
Save Value
Approx




Labels Instructions: Comments

SQS: RI = RO X RO i3
RO = RO -RI z7-2-°
RO = M(V) + RO + N
R2 = R2+1 IF NEG JUMP SQS
R2 = M) IF NEG JUMP SQ7 Scaling
ALU = R2 IF ZERO JUMP SQOT
R2 = R2-1
SQ6: RO = RO SHR I
RY = BRI~} IE ZERO JUMP SQ6
JUMP SQOT
SQ7: RO = RO SHL I
SQOT: R2 = M(T)
RETURN
M(E) = 0 Calculation of 6
R = M(R) IF ZERO JUMP END  Center
RO = 0
Rl = M(Y) IF ZERO JUMP QUAD
R3 = RI' I¥ NEG JUMP POS
RI = R3+1
POS: CALL DIV R1/R2 = RO
ALU = RO - V2)2 IF LESS JUMP 2 > /4
CALL ARC SIN RO = AVG
QUAD: Rl = MX) IF NEG JUMP Q2
R2 = M(Y) IF NEG JUMP Q4
M(8) = RO JUMP END * # ‘A
Q2 R2 = M(Y) IF NEG JUMP Q3
M(8) = 7-RO JUMP ENG -+ )>
Q3: M(@) = m+ RO JUMP END
Q4: M(@8) = 2rm-8 + 4
END
Q2 RI = M(X) IF ZERO JUMP (3
R3 = RI' IF NEG JUMP POS
R!I' = R3+1
POS: CALL DIV :
CALL ARC SIN ;
C3: RO = m/2-R0O JUMP QUAD Fl
DIVIDE: RO = R1/R2 i
RO = RI JUMP END IF 0 X =0 ;
R4 = MUD) |
ALU = R2 IF NOT ZERO JUMP D2 Y # 0 |
J
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Labels Instructions: Comments

ALU = RI IF NEG JUMP DI Y=0
RO = MAX JUMP END
Dl: RO = -MAX JUMP END
D2: RO s Rl +1 - X
R2 = R2 +1 IF OV JUMP END Test Y = -MAX.
Z =-X
ALU =R2 IF NEG JUMP D3 i
R1 = RI + | For NEG Y .
R2 = R3+1 !
D3: M(S) = R3 ’
R3 = ]
D4: ALU = R + 0.4999 IF NEG JUMP D3 Test Y =2 -5 ‘.’
R3 = R3i+ 1 Bring in range
R2 = R2 SHL 1 JUMP D4 '
D3 M(X) = R4
MY) = R3S
R4 = R2 SHR 1 -Y/2
R4 = R4 + (-MAX) el e YD
MPYB = R Litton: ¢
R4 = R4*MPYB R4 = R4*R1 KX
R3 = R2 + (-MAX) ot gt 4
RS = RS5*RS ( )=+ KY
RO = R4
M(N) = Ro6
R6 = 7 Counter
Do: MPYB = RS Litton:
RO = RO*MPYB RO = RO*RS
RO = RO + R4
R6 = Ro6 - | IF NOT ZERO JUMP Do ;
RO = RO SHL 1 27 |
D7: R3 = R3-1 IF ZERO JUMP DS 'v
RO = RO SHR 1 JUMP D7 f
DS: R3 = M(S)
R4 = M(K)
RS = M(Y)
Ro6 = M(N)
END: M(3) = RO
ARC SIN: RO = RO*RO
R1 = M(K4) + RO
MPYB = RO } Litton
R1 = MPYB*RI R1 = RO*R1
R1 = R1 + M(K3)
MPYB = RO e *
RI = Mpyper3f RI=RO*RI
R1 = R1 + M(K2)
MPYB = RO } R1 = RO*RI
R1 = R1 + M(K1) RETURN
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4. Remarks:

a.  Arc sine subroutine uses same approximation algorithm as sine but different
K values

b. Divide subroutine user approximation
¢. Coding includes quadrant determination
d. Angle 8 is calculated and not determined by table look-up.

B6  COORDINATE CONVERSION B, RAYTHEON CODING

1. Benchmark: Rectangular to Polar Coordinate Conversion

2. Algorithm:

8 = f(X,Y) X = R cos 8 Y = Rsing
R = X cosf@ +Y cos@ = R cos39 + R sin’8
3.  Coding:
Data In Scaling Multiply Accumulate Data Out Comments
X1 61 cos 01
X2 82 cos 82
Yl sin 61
Y2 sin 62
X1 cos 61 = A
Yl sin 81 =B
X2 cos 82 =C
Y2sin 82=D
RI =A+B
R2=C+D
61
6>
R1
R2
4. Remark:

Angle 6 is determined by table look-up via the hardware in the scaling stage.
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B7 — CFAR, BIT PACKED, TRACOR/LITTON CODING

' 1. Benchmark: Sliding window CFAR
2.  Algorithm:

| 256
| a. S1 = Z X Xl
0

b. RI S1 x K/257
e Dl = Xjog-Ti pack into 16 bit word

d. S2 = Si1+ X257 - X0

Repeat b - d
A Window B
— Q- o —» Range Cells
11 134 12
| < D] IS5 16 Decisions
13 - Result
I1 - IS are indices
; 3.  Coding:
Labels Instructions: Comments
3
CFO: RO = 0 For Sum
CFI: I1 = 256
RO = MO0+ 11 1l =11-]
IF NOT ZERO JUMP CFlI
11 = 0
12 = 257
13 = 0
14 = 128
I5 = 0
CF2: IF IS # 0 JUMP CF3
13 = 13+1
, ALU = 257 -13 IF ZERO JUMP END 4090:10 + 1
i 15 = 16
¥ R1 = 0 Temp
R2 = 1 Bit Mask




Labels Instructions: Comment
CF3: R3 = RO*M(K) T = K*Sum
R3 = R3I-MU0O+14) 14=14 + 1 T-X
IF NEG JUMP CF4
R1 = R3 and R2
CF4: R2 = SHL 1 IS =15 -1
RO = RO+MUO+12) I2=12+1 Sum + B
RO = RO-MUIO+11) I1=11+1 Sum - A
JUMP CF2
END
4. Remarks
a. Threahold K/257 is a constant, not a literal.
b. Range cells are 6 bit unsigned quantities.
¢c. 256 cells of 6 bits, accumulated rquires 14 bit accumulator.
B*  CFAR, NON BIT PACKED, RAYTHEON CODING
i. Benchmark: Sliding window CFAR
2. Algorithm:
256
$1 = 3 X $2 = S1 + X257 - XI
1
Tl = K*SI D1 = X127 - Tl
T2 = K*S2 D2 = X128 -T2
3. Coding
Data In |Scaling Multiply Accumulate Data Out Comments
X1 Repeat 64 times
X2
X3
X4
Xl Repeat 2048
X257
X2
X258
NOP ACC = X1 + X2 + X3 + X4
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Data In |Scaling Multiply Accumulate Data Out Comments
NOP S1 = ACC
S2 = S1 - X1 + X257
ACC = S2 - X2 + X258
NOP S
S2
S1 Repeat 2048
X127
S2
X128
T1 = S1*K
T2 = S2*K
D1 = X127 - Tl
i D2 =

X128 - T2

DI
D2 i

4. Remarks

a. Window contains an even number of cells. Therefore center is off by 1/2 cell.
b. Constant is 1/256 of threshold.

¢. Coding may require double length arithmetic to accommodate the summation
of 256 range cells of 6 bits each.




APPENDIX C
BENCHMARKS — TIMING

1 FFT, Tracor/Litton
2  FFT, Raytheon

3 Coordinate Conversion A, Tracor/Litton
Polar to Rectangular

4  Coordinate Conversion A, Raytheon
Polar to Rectangular

5 Coordinate Conversion B, Tracor/Litton
Rectangular to Polar

6  Coordinate Conversion B, Raytheon
Rectangular to Polar

7  CFAR, bit packed, Tracor/Litton
8 CFAR, non bit packed, Raytheon
9 CFAR, non bit packed, Tracor/Litton

C1 — FFT, TRACOR/LITTON TIMING =%

1. Benchmark: Fort Fourier Transformation 1024 Points

2. Program

Cycles Instructions executed
2 R1 = M(CO)
3 RS = R1*M(BR)
2 R2 = M(SI)
3 R6 = R2*M(BI)
1 R6 = RS5-R6
3 RS = R2*M(BR)
3 R7 = RI1+M(BD)
1 RS = RS5+4R7
2 R3 = M(AR)
2 R4 = M(AD
2 M(AR) = R3+R6
2 M(AI) = R4+R7
- M(BR) = R3-R6

- 4 M(BI) = R4-R7
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3. Cycles calculation: 1
For 10 passes, 512 iterations per pass f‘
Total = 10 passes X 512 i:;;r;;stions 33‘_:‘%”"5 :
= 153,600 cycles — Tracor/Litton ’
4. Remarks:
a.  Total cycles excludes set-up 7 :
b.  Program exccuted as an In-Place FFT with single accumulator and multiplier. !
¢.  Complex In-Place FFT will reduce cycles by a factor of 2 to 4. ‘
€2 FFT, RAYTHEON TIMING .
' Benchmark:  Fort Fourier Tran-formation 1024 Points
2. Program '
1 MACRO XR, YR = f(AR, BR)
3.  Cycles calculation: '
2 cycles/clock,  whole pipeline is tied to *“‘external” memory access where other
architectures may have “internal” memery access that one factor i
MACRO TIMING = 4 clocks (MACRO Clock) = 8 cycles (normalized)
MACROS = 512 M_APC‘,I,{TO‘S— * 10 passes + 3 M‘;\’(l‘llj?s ;
= 5,120 + 3 = 5,123 MACROS F
Total = 5,123 MACROS X%ﬁ% = 40,984 cycles - Raytheon |
4. Removals:
Program executed as a Complex In-Place FFT which takes advantage multiple
accumulation and multiplications.
C3 -~ COORDINATE CONVERSION A, TRACOR/LITTON TIMING ‘
1. Benchmark: Polar to Rectangular
2. Program: Single Point R, 8 to X, Y l
Assume R > 0, 8 in second quadrant F
|
: L 154 |




Cycles Instructions executed
| RO = 0
2 R1 = M@®
| R2 = 1/2-R1
l ALU = Rl-1/2 ALU>0 NO JUMP
1 RO = RO + 1
1 R2 = -RI
2 R1 = -M(0)
2 ALU = -RI ALU< 0 JUMP SIN
11
1 SIN: RE = 2
2 MP: R1 = RI1 * RI
2 R3 = M(K4) + RI
1 # MPYB = RI
2 R3 = MPYB * R3
2 R3 = R3 + M(K3)
1 # MPYB = RI
2 R3 = MPYB * R3
2 R3 = R3 + M(K2)
1 # MPYB = RI
2 R3 = MPYB * R3
2 A R3 = R3 + M(K1)
1 s RE = RE -1 IF = 0 JUMP SIGN
| R4 = R3
2 Rl = R2 JUMP MP
24
1 SIGN: ALU = RO NO JUMP
1 R3 = -R3
2 RO = RO -1 JUMP POL !
2 POL: MPYB = M(R) i
2 M(K) = R3 * MPYB !
2 M(Y) = R4 * MPYB |
10 END ’»!

3. Cycles calculation:
Total = 11 + 24 + 22 + 10 = 67 cycles - Tracor. |
# Subtract 3 x 1 cycles for Litton; 64 cycles - Litton

4. Remarks:
a.  Array processor reduces this time by factor of 2 to 4

b. This example shows average case time
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C4 — COORDINATE CONVERSION A, RAYTHEON TIMING
1.  Benchmark: Polar to Rectangular
2. Program: Single Point R, 8 to X, Y
2 conversions per MACRO
3 MACROS to flush
3.  Cycles calculation:
o0 _ 4 MACROS _, 8 cycles _ 16 cycles e
Total = 5 nversions - MACRO ~ conversion - Raytheon
4. Remarks:
For multipic conversions, flush of pipe becomes less significant in calculation of
totul cycles.
(5 COORDINATE CONVERSION B, TRACOR/LITTON TIMING
I.  Benchmark:  Rectangular to Polar
2. Program: Single Point XY to R,8
Assume X< 0, Y0 - seccond quadrant
Cycles Instructions executed
2 } 43 RO = M(K)
2 RO = RO * RO
2 R1 = M(Y)
:} #3 RI = RI * RI
2 R1 = Rl + RO CALL SQ
2 M(R) = RO
12 END
2 SQ: M(T) = R2
1 RO =0
1 R2 = RI NO JUMP
2 ALU = R2 JUMP POS
1 POS: R2 = 0
2 RO = RI - 0.5625 JUMP SQI
2 SQI: RO = RO + 0.5 JUMP SQ3
1 SQ3: ALU = RO NO JUMP
2 M(U) = R2
1 R2 = -13
Z M(V) = RI
1 RO = 0.56
18 2 2 S8 R1 = RO * RO
| RO = RO - Rl

.y

o




Cycles Instructions executed

2 RO = M(V) + RO

2 -l R2 = R2+1 JUMP SQS5
(12x7) +6

2 R2 = M) NO JUMP

1 ALU = R2 JUMP SQOT

i SQOT: R2 = M(T) RETURN

6

Subtotal for R 12+ 18+ (12X7)+6+6
12+ 18+84 +6+6 126 cycles - Tracor

# subtract 2 = 124 cycles - Litton

Cycles Instructions executed
2 M(6) =0
2 R2 = M(R) NO JUMP
1 RO = 0
2 R1 = M(Y) NO JUMP
2 R3 = Rl JUMP POS
2 POS CALL DIV
1 ALU = RO - V2/2 NO JUMP
2 CALL ARL SIN
3 QUAD RI = M%) JUMP Q2
2 2 R2 = M(Y) NO JUMP
3 M(8) = - RO JUMP END
22 END
| DIV RO = RI NO JUMP
2 ALU = R2 JUMP D2
1 D2 RO = RI'+ 1
1 R2 = R2 + 1| NO JUMP
2 ALU = R2 JUMP D3
2 D3 M(S) = R3
1 R3 |
2 D4 ALU = R2 + 0.4999 JUMP DS
2 D5 M(Y) = R4
72 M(Y) = RS
1 R4 = R2 SHR 1
] R4 = R4 + (-MAX)
1 # MPYB = RI
2 R4 = R4 * MPYB
1 RS = R2 + (-MAX)
2 RS = RS * RS
1 RO = R4
2 M(N) = R6
| R6 = 7
28 1 # D6 MPYB = RS
2 RO = RO * MPYB
157
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Subtotal for 8

Cycles Instructions executed

l RO = RO + R4
R6 = R6 - |
5x 7 =35 RO = RO SML L
2 R3 = R3 -'l
2 D8 R3 = M(S)
2 R4 = M(*)
2 RS = M(Y)
'3 R6 = M(N)
11
1 ARC SIN: RO = RO * RO
2 RI = M(K4) + RO
| # MPYB = RO
2 RI = MPYB * RI
2 RI = Rl + M(K3)
| # MPYB = RO
2 RI = MPYB * R3
2 R1 = Rl + M(K2)
| # MAB = RO
3 R1 = Rl + M(KD)

—
~]

22+ 28 iy T T
28 + 35 + 11 + 17

nou
o
[ §9]
&+

#= 22+ 27 + 28 + 11 + 14 z
4. Cycles calculation:
Total = subtotal R + Subtotal §= 126 + 113
#= 124 + 102
5. Remarks
a. Time varies depending on the quadrant of X and Y.
b. This cxample shows average case time
C6 COORDINATE CONVERSION B, RAYTHEON TIMING
I.  Benchmark: Rectangular to Polar
2. Program: Single Point X, Y to R,8

2 conversions per MACRO

3 MACROS to flush
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JUMP D6

JUMP D8

RETURN

RETURN

113 cycles - Tracor
102 cycles - Litton

239 cycles - Tracor
226 cycles - Litton
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C7

Cycles calculation

) - 4 MACROS 8 cycles _ 16 cycles 3 {
Total 2 converson .~ MACRO conversion Raytheon

Remarks

For multiple conversions, flush of the pipe becomes less significant in calculation
of total cycles.

CFAR, BIT PACKED, TRACOR/LITTON TIMING

!J

Benchmark:  Sliding window CFAR

Program: Assume 4,096 range cells
256 cell window
Cycles Instructions executed
1 RO = 0
1 CFl1: t1 = 256
3 RO = M (0 + Il) Il = 11-1 IF NOT ZERO
3 X 256 JUMP CFI
1 11 = 0
1 12 = 257
1 I3 = 0
1 14 = 128
1 IS = 0
5
1 22 CF2: IS # 0 NO JUMP/CF3
H 1 I3 =S
S ALU = 287 ~7I3 NO JUMP/END
1 S IS = 16
1 R1 = 0
1 R2 = ]
33 CF3: R3 = 1 RO * M(K)
3 R3 = R3-MUJ0 +14), 14 =14 + 1,
JUMP CF4
11 CF4.: R2 = SML 1 IS =15 - 1
212 RO = RO+ M
33 RO = RO -M JUMP CF2
18 1
X 15
= 210
228 X% 256
58,368
159
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3.  Cycles calculation:
Total = 1
4 x 256 = 1,024
5
58,368

4. Remarks:

59,403 cycles - Tracor/Litton

a.  Algorithm includes packing of every 16 threshold decisions into one word

b.  Processing is in real-time, single pass.

C8

CFAR, NON BIT PACKED, RAYTHEON TIMING

1 Benchmark:

Sliding window CFAR

Y Pyooram \ssure 4796 rinee cells
256 cell window
MACRO 64 times
MACRO 2,048 times
FLUSH 3
MACRO 2,048 times
FLUSH 4
4,166 |
|
3.  Cycles calculation |
e i
Total = 4,166 MACROS x &—A%%‘ = 33,328 cycles - Raytheon 5’
|
4. Remarks: '

a.  Each threshold decision is in a separate word.
b. Two decision per MACRO.

¢.  Processing is not in real-time. A complete sweep of all range cells is
required before processing begins.

d. Interim result requires 4096 words of temporary storage.

e

Accumulation of 256 cells (window), each of a 6-bit unsigned quantity, into a
12 bit accumulator may be a problem.

f.  Bit packed CFAR would require more MACROS and would be significantly slower.
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C9 ~ CFAR, NON BIT PACKED, TRACOR/LITTON TIMING

I. Benchmark:  Sliding Window CFAR *

2. Program: Assure 4,096 range cells
256 cell window

Window Range
R 14 12 D
3 INDEX
Cycles Instructions executed
| CI0: RO = 0
I Crl: 11 = 955
o e RO = M A0 *I1) 11 =11 - 1 IF # JUMP CFl
o5 e 1 =0
1 12 = 255
1 13 = 0
1 14 = 127
2 RF = M(K)
61 2 CF2: ALU = 257 - 13 IFO JUMP END
3 M(I3), R3 = RO * RF I3 = I3 +1
2 RO = RO+MA0O+12)I12 = 12 + ]
3 RO = RO M0+ I I = 11 +1 JUMp CF2
9 x 4096 END
3. Cvcles caleulation:
Total i
4 < 256 = 1,024
9 X 4,096 = 36,864
3

-

37,897 cycles - Tracor/Litton

4.  Remarks
4. Algorithm uses one word for cach threshold decision.

b.  Processing is in real-time, single pass.
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