
¶1/ AD—AO66 2U0 HONEYWELL INC MINNEAPOLIS MINN SYSTEMS AND RESEARCH —ETC FIG 1715
PROTOTYPE AUTOMATIC TARGET SCREENER. (U)
JAN 79 D E SOLAND. M 0 SCHROEDER. R C FITCH DAAK 7O—77—C—Ofle

IJNCLASSTrTFn 7QSRCU N~.

__ U _
I •1 ni!~E1O

_ _ _ _ _

END
DATE

5-79

‘

~~~

I
PROTOTYPE AUTOMATIC TARGET SCREENER

by
D.E. Sola nd
M.O. Schroede r
RC Fitch

e eyn
IC. Kopet ~~~~~~~~~~~~~~~~~~~~~~~~~~~

:~~~~ ?

8 January 1919

Quarterly Report for Period
I ~ 1 October 1918 — 31 December 1918
C.3

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

Night Vision and Ele ctro optics Laborator y
Fort Belvo ir, Vi rginia 22060

Honeywell
SYSTEMS & RESEARCH CENTER

2600 RIOG WA Y PARKW A Y
MINNEAPOLIS , MINNE SOTA 55413

A



I

P— ~
•‘

~11 . If

“The views, opinions , and/or findings contained in this report are those of
the authors and should not be construed as an official department of the Army
position , policy, or decision, unless so designated by other documentations. ”

‘II



1 ne 1:~ -~- j  fi t~ I
S1~.u R I T~~ C LA S S I F I C A 1  ION OF THIS PAGE (WHEN DATA ENTERED) 

__________________________________________

REPORT DOCUMENTATION PAGE SEP 
D 

JRM

RLPUI1 I Rt.IMBER 2. GO’1 T ACCESSION NUMBER IPIENT S CATALOG NUMBER

•
/~

‘•

~ —.——.~. I 
__________________________________‘I  ~~, T I T L E  (AND SUBTITLE) ~~~

- . - . !1i~J~er fl 8flT,~ Ifl I~~~~~~~v r.Ht IJ/~~— \ Qu;irterly rog:ess,$cp.rt ‘~)[o I’ul’E ~~UTOMATIC JAHGET SCBEENER ~~ 1 Oct — 31 Dec
~.::

LI
~~

1LY78
_~~~~~

___ ..._ ~—~~~
--- 

~~ ~~~S flU~~~ flT flU •
- 79 S U c~J

7, A U~~~~~~~~~.~.— - -  CONTRACT OR GRANT NUMBER(S)

/ I I ) . 1 ;. /Soland) 
I I). v.fserreyn ,

-
_._. 

\ - . .—
~
-..

~~ 
.\ l .  0./Schroeder , T. G. /Kopet ‘/ ),i)AAK~~ -77-C:%248f

ch .  _—~---~ - 
/

~~~~~~~ I~~~~~~~~~~~~ ’IIZATION5~NMMETADDRESS 10 . PROGRAM ELEMENT PROJECT . T A S K  A R EA
& W O R K U N I T N U M B L R S1 1oiicv~vc11 Systems and Research Center

2600 I~idgway Parkway ll~.- 1 E2637]~~DK~~~ 14 01OC3~
Thnn~ aDc)1isr Minnp~ nta 55413 - -

I CO NTR OLt ING OFFICE NAME /ADDRESS 12 REPORT DATE

Night Vision and Electro-Optics Laboratory January 8. 1979 (~; ‘f / I ~ j
1-’ort Bclvoir , Virginia 22060 13. NUMBER OF PAGES

1~~~ MONITO RING AGENCY NAM E/ADDRESS (IF DIFFERENT FROM CONT. OFF .) 15. SECU RITY C L A S S I F I C A T I O N (0 I Tp —

71
Unclassified , ,1 -

15i. DECLASSIF ICATION DOW~~~~~~~~ G SLH~ Ut 6

16. DIS rR IB UTION STATEMENT (CF THIS REPORT)

:\pproved for public release, distribution unlimited

~/ f l I5Tpf f lLC) ION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20 . IF DIFFERENT FROM REPORT)
—

~~~~~

18. SUPPLEMENTA RY NOTES

19. KEY WORDS ( CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOC K NUMBER)
Infrared Target recognition Image enhancement
FLIB Pattern recognition
Target Cueing Image processing
Target screening Real time

~~~~ AB ST RACT (CONTINUE ON REV ERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)

This report is the fifth quarterly progress report for contract 1)AAK7O-77-C-0248 ,
9 Prototype Automatic Target Screener. The objective of the effort is to design an

automatic target screener to be used with thermal imaging systems employing
common module components.

DO F O R M 1473 EDITION OF 1 NOV 35 15 OBSOLETE
•(J A N 7 3 Unclassified I -~~

-
. SECURITY CLASIIFICATION OF rPHS PAGE (WMEN DATA E NTE R~~~(

F~ ~~~~~~~~~~~~~~~~~~~ — -

C ~E j~;

~~~~~~~~~~~ ‘(~ ‘ f l~i’~j ’fl

CONTENTS

Section 
_

i 

Page

I INT R ODUCTION AND SUMMARY 1

II HARDWARE DESIGN 3

Status of Modules 4

System Synchronization and Timing 4
Sync Separation and Video Switching 4
System Timing Generator 10

Writable Control Stor e 21

III EDG E CIRCUIT CHECKOU T 23

IV SOFTWAR E 28

CPU 1 Firmware 28
Bin Matching 29
Flow Chart 36

Bin Matching Summary 36

Microinstruction Format 39

Execution Time Estimates 41

CPU2 Software 42

V PLANS FOR THE NEXT REPORTING PERIOD 47

APPENDIX A CPU2 SOFTWARE MODULE DESCRIPTIONS 49

ill 
I-

- 
_



LIST OF ILLUSTRATIONS

Figure Page

1 Sync Separation and Video Switching Block Diagram 6

2 Basic Sync Signals Generated 8

3 System Timing Generator Block Diagram 11

4 Typical Horizontal Timing Waveforms 13

5 Horizontal Timing Generator 14

6 Typical Vertical Timing Waveforms 17

7 CPU 1/CPU2 Interface 20

8 MDS Writable Control Store 22

9 Video Input 24

10 High Pass Filtered Video (Edge) 24

11 Absolute Value of High Pass Filtered Video 25

12 Video of Figure 11 Integrated Across Each Line 25

13 Video of Figure 11 Integrated, Sampled at End of Line,
and Held 26

14 Edge Board Output (High Threshold Settings ) 26

15 Edge Output ( Lowered Threshold Settings) 27

16 Edge Output Superimposed on Input 27

17 Interval Data Format 30

18 Flow Chart of Bin Matching Algorithm 37-38

iv



-~~ ~~~~~~~~~~~~
.--- - . 

~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 

:‘

LIST OF ILLUSTRATION S (concluded)

Figure Page

19 ModIfied CPU 1 Microinstruction Format (Programming
Model) 40

20 CPU2 Hierarchy of Software Modules 44

V

LIST OF TABLES

Table Page

1 Status of PATS Hardware (Percentage Completed) 5

2 PAT S MUX Output Switch Selection 9

3 Monitor MUX Output Switch Selection 9

4 LAGBC MUX Output Switch Selection 9

5 Horizontal PROM Bit Format 15

6 Vertical PR OM Bit Format 18

7 Format of Bin Data Block 33

8 CPU2 Software Used Primarily for Diagnostics 43

9 Other CPU2 Software 43

vi

—

‘~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~~~~~~~~ -~~~~~~~~~~~~~-~~~~ —- ---

SECTION I

INTRODUCTION AND SUMMARY

This is the fifth quarterly technical progress report for contract number

l)~\ AK7O-77-C-0248 , Prototype Automatic Target Screener (PATS). The

first two quarterly reports documented the Phase I design study . The

third quarterly report included a description of the final target classifier

design for the target data base currently available and the results of the

hardware and CPU1 software system design tasks . This report continues

the descri ption of subsystem design details and the status of hardware

fabrication and software coding and presents results of checkout of the

edge circuit subassembly, the first subsystem to be completed and checked

out. This report covers the period from 1 October to 31 December, 1978.

The program objective is to produce a design for an automatic target

screener. The screener will reduce the task loading on the thermal imager

operator by detecting and recognizing a limited set of high-priority targets

at ranges comparable to or greater than those for an unassisted observer.

~\ second objective is to provide enhancement of the video presentation to

the operator. The image enhancement includes (1) automatic gain/brightness

control to relieve the operator of the necessity to continually adjust the

display gain and brightness controls and (2) DC restoration to eliminate

artifacts resulting from ac coupling of the infrared (IIS ’~ detectors.

Image enhancement will also include local area gain and brightness control

to enhance local variations of contras t and compress the overall scene

dynamic range to match that of the display . This circuitry has been

completed , and examples of its performance on videotaped thermal image

data were included, with the circuit description, in the first quarterly

report .

The DC restoration image enhancement circuit eliminates the streaking

associated with loss of line-to-line correlation on the displayed image

because of the ac coupling of the detector channels .

This report consists of five sections. Section II describes further results

of detailed circuit designs . Section III includes a description and results

of the edge circuit checkout . Section IV summarizes the status of the

software design and coding tasks , including a description of the functions to

be implemented in higher order language code in CPTJ2. These functions

include diagnostic routines for system integration and checkout as well as

functional routines as part of the PATS operational system. Section V

summarizes plans for the next reporting period.

2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J

— - - —~~~~-- -~~ - --~~~~ -~ -. - ----— ----~~ - - - -

SECTION II

HARDWARE DESIGN

This section des cribes those design tasks that were either completed ,
modified , or added during this reporting period. For review purposes , the

PATS hardware tasks were broken down into the following subparts :

• Image Enhancement

• Edge Signal

• Bright Signal

• Interval Generation

• CPU1

• Memory 2 (intensity information)

• CPU2

• Symbol Generation

• Sync and Timing

In previous reports , the design tasks for image enhancement including DC
restore, edge signal, and CPU1 were reported.

During this reporting period , the following has taken place:

1. A modification to the sync and timing section has been made.

2. A task for the interface between CPU1 and CPU2 has been added.

3. A task for building a writable control store in the Intel MDS

has been added.

3

This section includes a status table of the various hardware modules used

in PATS, a disucssion of the designs modified or added , and a disc ussion

of the results obtained on the edge checkout .

STATU S OF MODULES

Table 1 presents the status to date of the functional subassemblies defined
for PATS. The percentage com pleted is a rough estimate of where we are

with each task. One hundred percent means that the task is essentially

complete but changes may be made d ur ing checkout . Included in the status

are preliminary schematics to be used for build and checkout . Some functio .~s

are broken down to reflect the actual number of boards used in the system .

SY STEM SYNCHRONIZATION ANI) TIMING

Since the last reporting period , the system synchronization and timing uni t
has been totally designed. There are two boards in the unit. The first

board provides sync separation and video switching . The second board
generates timing signals common to the other PATS system functions .

Sync Separation and Video Switching

The sync separation and video switching section is shown in a block diagram

in Figure 1. The 52~ - or S7~ -linc format input video goes into a compo~ ite
syn c separator which generates a delayed composite sync signal (CSYN CI)) .

‘I’hc (‘SYNC I) signal goes into a sync signal generator producing a black

video clamp signal (BCLMP) . a field indicator (FLDIN), horizontal sync

(II SVNC D) and vertical reset (VR ST). Timing for these signals for even

4

________________________________—

~~~~~



1’ A BLE 1. STATUS OF PATS H A R D W A R E  (PERCENTAGE COI\IPLETEI ) )

( h • ~~<-
— — I h p:Irt 1( , r t ! —  I~~-~~!C :1  ~—4 ~i~~v t i .s i~~ lI1id I

I : .  ~rt -  I~n}1:ln 4~~~. & I t

•\ . : Ip~iV ( -  ( n i l r a s t  F ha~~~e~ 1 1( 1 (1  101) 100 ()

1C l~~-~ t~’ -  1 100 I n  inn  o

1 100 10 1 0  I I I

1 100 1 1 1 1 1  100

I 1) 0 0

( I’l l ( I  )i~~i :~l Processing S I h - i y - ~ t e r n )
I t - u - or Inc \ lu lt ip lic r 1 1 On 80 0 0
M i - rn ’p~ )1 1 :l m \1 (~f lu i \  1 10( 1 0) 0 0
Fli t ) / I ) \ L \  I / F  1 ~ln n 0
\ t t ~~i~~) I \  1 2 51) 1) 1)

L ’ i 1 / ( J ’ U 2  1 / i  ( in  in  CPU2)  1 0 0 0 0

~li’n~~,rv 2
At I ) , ~~1m~~~~t i n i i  1 100 100 100 0
.~~( -~~lo rv  ( i i  i -ni  and Befresh  1 100 100 100
~I u n 1 u r\ 5 12 x 512 x 2 4 100 100 25 0

r I O . 2
( P t  w i t h  16K Memory ( N I )  11-t i C)  2 N A NA NA 00
PHOM Board ( M B V 1 1— A A )  1 N -\  N A  0 0

-, pr j l Pcirt (I  )LV 1I) inc P r in t e r  /
Kc~ i~~~ rd 1 N .\  \ - \  N \ 100

R u f r e ~ h / l ( o u t s t r a p  ( I I E V 1 1 — ( ’)  1 N A  N A \\ 100
I lop~

-)\ (‘ mt roller ( R N V 1 1— I I A )  inc
Flopp ies 1 N .\ N A  N A  100

~~ ni la l Genera tor  (i ncludcil in
C P C 2)  1 0 0 0 0

sync  arid T iming
Sync Separator and Video Swit -hes i 100 100 100 15

~vnc Generat ion 1 100 50 100 15
Wri tahie  Control Store 1 100 0 60 0

N A  - Not applicable to PA L’S I)esign ‘I’aski-i

5



uJ —

~~ I— ~~0 •~~ w
i: o~ 00

~~~~ U

I
E

aV \
- , I \ .~

I
U1,_ I

_ _ _ _

— hg~~
I_ ~T”~

I
Q.

C Cl)
_ _ _ _ 0

_ _ _ _ _

J

~

1
_ _ _ _

~~
j
~~~d J

0 0 O w  ~~ UJ ca

6



- ----- --—

~~~

-- - ----

~~~~~

--- -------- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~
‘ ‘

~~

-

~

-

~~

~~~~

- - .

~~~

-

~

--- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and odd fields is shown in Figure 2. The bu ck clamp signal (BCLMP) is
generated by the trailing edge of CSYNC D (t

b 1 ~ sec). The horizontal
sync pulse is generated from CSYNCD such that it matches CSYNCD outside

• of the sync serrating and equalizing regions and has a fixed period of (the
horizontal sync period) . A ve rtical res et signal (VRST) Is generated about
10 ~i.sec after the first serrating pulse in each field and lasts until the next
equalizing pulse. The field indicator FLDIN transition occurs at the low-
to-high transition of VRST.

The input video shown in Figure 1 is clamped by the BCLMP signal causing
the black level in the video to be at a zero level. The resulting video
(VIDBC) goes to the input of the synthetic DC restoration unit and to three
multiplexers : the LAGBC mux , the PATS mux and the MONITOR inux .
The mux selection inputs are set by switches designated as PSW~). PSW1,

MSW~~, MSW1 and TSW~~. The LAGB C mux directs VIDB C or the video
from DC restore to the LAGBC unit. The PATS mux sends VIDBC or video
from DC restore or video from LAGBC to the PATS processing units
(interval , A/ D , and summation, etc . units) . The MONITOR mux selects
the same three inputs as the PATS mux plus a digital (TDIG) or analog
(TANA) test signal from the PATS processing units . The values of the
switches and their effects on the mux units are summarized in Tables 2-4 .
Arm ~tX~ in the table means the switch can be ~~~ or

The output of the PATS mux is buffered to the other EATS unit. The output
of the MONITOR mux goes to the SYMBOL mux. The output of the SYMBOL

mux is either the MONITOR mux out put or a symbol pattern (SY PAT). The
mux is controlled by the symbol-on code (SYMON) . The signals SYPAT and
SY MON will come from the symbol generator unit in PATS. The output of

7



4-
i r  I I

a)
4-.
Cd
s-Ia)

~

I



rip-
—- - _-_

~

•

~

_ -

~~~

~

— --•.---—- --- -• •—•- -•--- -- .-,-•-—--• -‘---•-- --‘•— - —--•---- .- -- - --—--— — - —--

~~~

•- -‘ - ------•—• —-- --—- -- - - - - - —- —-—- - — V 

:::—~ 
•

~~~~~

- •

TABLE 2. PATS MUX OUTPUT SWITCH SELECTION

PSW I PSWO PATS Mux Output

0 0 VID13C

o 1 Video from DC Restore

1 N Video from LAGBC

TABLE 3. MONITOR MUX OUTPUT SWITCH SELECTION

MSW 1 MSWO MSWO MONITOR Mux Output

0 0 0 VI DBC

0 1 0 Video from DC Restore

1 X 0 Video from LAGBC

0 0 1 TDIG

0 1 1 TANA

1 X 1 Not Connected

TABLE 4. LAGBC MUX OU TPUT SWITCH SELECTION

PSW1 PswO MSWO LAGBC Max Output

0 N 0 VIDBC

0 X 1 Video from DC Restore

1 0 N VIDBC

1 1 N Video from DC Restore

9

L 4 ~

the SYMBOL mux goes into the sync adder and peak limiter where

blanking (CBLNK) and composite sync (CSYNC) are added to give a standard

1 V peak-to-peak compasite video signal. The video is then buffered

to drive a standard video monitor.

~~~tem Timing Generator

The system timing generator produces sync signals and clocks that are

synchronized to the incoming video sync pulses and are used by the other PATS

units . A block diagram is shown in Figure 3. Two clocks are generated by
phase-lock multip lying the horizontal sync signal HSYNCD from the sync

separator and video switching unit . The clocks produced are 50 percent duty

cycle. The 512-clock has 512 clock pulses per active video in the horizontal
V scan line and the 455-clock has 455 pulses per total horizontal scan line. The

512-clock is used in digital sampling functions and the 455-clock is used for

the analog CCD devices . The phase-lock multiplying loop for the 455-clock

uses HSYNCD and the clock frequency divided by 455 as its inputs . The PLL

functions shown in Figure 3 are a digital phase comparator and a low-pass

filter. Two VCOs are used in the loop to increase the frequency range to

allow both 525 and 875 line operation. The VCO is selected by LIIATE in the

455 max (LRATE 0 for 525 and LRATE 1 for 875). The mux output is

divided by two to obtain the 455-clock with a 50 percent duty cycle.

The 512-clock phase-lock multiplying loop is identical to that of the 455-

clock except that its clock-dividing section is more complex. The 512-clock

drives the horizontal timing generator. The HSYNC output of the generator

is the phase detector input for the loop. The horizontal and vertical timing

generators with the vertical reset circuitry and combining logic make up a

10

- —~~ —~~ --.• V _ _ V V _ ~~ __- —~~~~~~—--—-——--- - * - - . •  •~~~- V



SYNC GENERATOR
VCLK 

_____________ VDRV
I $ VERTICAL V
I ______________ Vii FAR
I VERTI CAL VSH V

VRST __________ 
RESET RESET W IND

CIRCUITRY GENERATO R —______

3 
VBLNI( CSYNC

VSW 0 2  / ~ 
_______________ 

COMB CBLNX
I CUINO ~LOGIC 

• 

V

LRATE

IISW O 2  

~ 

HORIZONTA L 
________

____ 

L TTTT 
_________  

I

512 _ —1 r V

DIGITAL _____ 

A 
~~ HIGH

CLOC K~~ CLK512j~ ? l 
_______ _____________I_ I V CO 

_ _ _ _  
PLL

B L04 ~ FUNCTIONS 
___________ HSYNCD

LRATE
455  ________________

_____ 

MU
~~~1I [~

ICO
~ I PLL

HIGH ¶ j FUNCTIONS
.4—

~ -l -- 2 _ _ _
I _ _ _ _ _ _ _ _ _

I VCO
B

LRATE

Figure 3. System Timing Generator Block Diagram

11

sync generator similar to available integrated circui t 525/ 625 line systems.
h o w ever , since PATS requires an 875-line format and no 875-line integrated
circui t sync generators were available, a general purpose sync generator
was d esigned.

A typical sequence of timing waveforms generated by the horizontal timing
generator is shown in Figure 4. All of the signals have a period of or

5~~~. where is the horizontal period. The signals are derived from

the 512-clock and their durations are integral numbers of pe riods of this

clock. The basic horizontal sync signals are horizontal drive (I IDH V) , V
blanking (IIBLNK), and sync (HSYNC), as well as thos e used during vertical
sync serration (HSERR) and equalization (HEQU) intervals . Additional
signals used by other sections of PATS are two sample-and-hold signals
(IISHI and H SH 2) , a clear pulse (I 1 C L E AR) , a window region (HW1ND) , and

V a clock pulse to the vertical timing generator (VCLK) . The TIWI ND signal
is us ed to mas k out video which is used for viewing purposes but not for

target areas such as temperature reference bars or black regions .

The structure for generating the horizontal sync signals is shown in Figure
5. This horizontal timing generator is a programmable waveform generator
capable of generating 16 separate, independent , and periodic waveform
packets . A 512 x 24 PROM is used to store a count value, a signal select

V code, and a reset or jump bit . The 10-bit count value (Q~~ 9) is the number
of 512-clock puls es that the select code bits stay fixed. Each select code
hit represents one of the horizontal sync signals (U SERR , II SII1 , etc .) ;
there can be up to 13 signals (Q10 22). The reset or jump bit (Q 23) when

set causes the waveform sequence to be repeated. A summary of the bits
and meanings is shown in Table 5. The nine-bit address for the PROM

12

V • V~~~ — — -- - - - - -- -

I .

T~~~
L

— L p

r~r

-
~r

a)
F4

H
13

- - -

-

I PROM
. V

_ _ _

1512 ~~~L R A’E __________________ 13
8 “ 10-22

/

3
• A c 7 Q

0 9

10

A 0 4 Q 23 ________________

~

~~~L~) ~~~~~
~o-4 D0 4  ,

5~~,. 
IIO I

~

0—

LU ) .4—

I DATA
[CNTR

DO_ 9 ~~~
~~ “ 1”

CK 
~~~

— —< 512-CLOCK

HBLNK CK _____

H CLEAR ~~~~~~~~~~~ I LATCH I

HSH1 ~~~~~~~~~ D0 1 2
rn

N/C [

Figure 5. Horizontal Timing Generator

14

- --- ~~~ —-— —-~~~~~~-- • . •
- -

-
~~~~~~

--- - -

~~~~

- -

~~~

-- —-- --—— V

TABLE 5. HORIZONTAL PROM BIT FORMAT

Prom Bit (s) I) efin it ion

Q0~~ 10—Bit  Counter Value
(Negati ve 2 ’s Complement of :\etual Count Value \ I i  nus One)

II SERR ( ‘‘ 1” enables signal)

~~ii 
LIE Q U

hIl)R V

I I H L N N

II SYNC

1ISH1
Q 11S112

16
1ICLEAR

Q18 1IWIND

HCL~K

No t Us ed

Not Used

Not Used

JUMP (if “0 ”)

15



-—~—— -- .— ---—,-

is generated by a five-bit address counter (A 0 4 ), the LRATE signal (A 3),

and a three-bit switch HSW0 2 (A 5 7 ). The most significant address bits

(A 5 8 ) are fixed in normal operation. The address counter is clocked and

reset by the jump bit Q23 and by Q
10 of the 11-bit data counter. When Q10

of the data counter goes from 0 to 1, the data counter is loaded with the

count value (Q0 9
) from the PROM; the data latch is loaded with the signal

select codes Q10 22 and the address counter is incremented if Q23 is 1 or

loaded with zeros if Q23 is 0. Because of the count technique, the count

value loaded into the PROM must be the negative 2’s complement of the

decremented count value. This means that the minimum count value is

two -

The VCLK output generated by the horiz ontal timing generator serves as

the clock to the vertical timing generator. This timing generator is identical V

in structure to that in Figure 5 except that an external reset control is

available to allow external synchroniz ation. Typical timing waveforms for

the serration, equaliz ation, blanking , and drive are shown as VSERR , VEQ U , 
V

VBLNK, and VDRV. Three additional signals are added for other PATS

functions , these being a clear (VCLEAR), a sample-and-hold (VSH), and a

window (VWIND) signal for masking out lines at the top and bottom of the

video field. The vertical PROM form at for generating these signals is

shown in Table 6.

The vertical timing generator must be locked to the video by a reset signal

from the sync separator and video switching section; the horizontal timing

generator is phase-locked and needs no reset signal. The vertical reset

circuitry synchronizes VEST to VCLK and then presets the address counter V

in the timing generator so that the vertical timing starts with the second

serrating pulse in the serration field.

16

— ~~~~~~~~~~~ ~~~~~~~~~~~~~ •~~~~~~V V VV



~~~~~~~~~~~ VIU ~~~-~~ —-- —-.--- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3tH 3tH I

~~~~~3tH
_ _  

V

VSERR f~) (.~4 --

VEQ U V ~~~~ 
—s -ç —

VBLNK ..Jc( I ~

VDRV ) -

~~~~~ 

.-.
_ I

_VSH I I
c i

Figure 6. Typical Vertical Timing Waveforms

17

- —~~

TABLE 6. VERTICAL PROM BIT FORMAT
V Prom f l i t (s) 1)efi ri i t ion

10—Bit Count \T alue

(\ e~~ tivc 2 ’ s Comp lement of Actual Count Value \ I i nus ()ne)

Qi ~
\ S EH H (Il l enables signal)

VEQ U

VI)R V

VI 3LNN

Q
14 \T SII1

\ CLEAR
Q16 V W I N I)

Not used

Jum p (if 11
0

1?)

The outputs of the two timing generators go to the combining logic to
p generate composite sync (CSY NC) I blanking (CBLNK), and window (CWIND) . V

The logic equations for these are shown below :

CSYNC = VDHV - (VEQU - HEQU + VSERR . HSERR + (VDR V . HYSNC)

CBLNK = VBLNK + HBLNK

CWIND = VWIND . HWIND

The outputs on the system timing generator are all buffered to drive 20

TTL-S loads.

CPTJ1/CPU2 INTERFACE

Initially, this function was to be primarily a one-way communication from

CPU1 to CPU2. The only data to be transferred were target position and

18

-

V ~~~~~~~~
—

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-V

~~~~~~~
--

~~~ -—-—~~-—-- --- - —-- V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— - - -V  - - —- -V

classification data. However , during initial checkout we require known data

to be stored in all the memories . Because of this a high speed data transfer

is necessary in both directions .

A first definition of this interface is shown in Figure 7. CPU 1 and CPU2

communicate via DMA transfers between Memory 1 and Memory 2 in

CPU1 and the CPIJ2 (LSI 11/2) memory . Two separate DMA controllers

are used , controlled by a handshake. Each controller has registers

which store the address of the first word to be transferred and the transfer

length.

In order for CPU 1 to talk to CPU2 , the following must occur :

1. CPUI loads its DMA registers and interrupts CPU2 to request

DMA.

2. CPU2 services the CPU 1 interrupt by loading its DMA register

and then sending a go-ahead signal to both DMA controllers .

3. The DMA executes and is terminated by the CPU1 DMA

controller, sending a signal to the CPU2 DMA which in turn

interrupts CPU2.

In order for CPU2 to talk to CPU1, the following must occur:

1. CPU2 loads the register in the CPU1 DMA controller either

via single cycle DMA or a parallel I/O mode.

2. CPU2 loads the register in its own DMA controller and then

issues the go-ahead to both DMAs.

3. The DMA will terminate automatically.

19



li~~~~~~~~~~~~~

_

_ _ _ _ _  

~ 

_ _ _  

I

20 

i-

______

~



-‘

Note that while a DMA is in progress , both CPUs are prevented from

accessing memory . CPU1 can continue to run as long as it doesn ’t

access memory.

This is the preliminary definition of what must happen in order to have

data transfer occur in both directions . A more complete definition will

be included in the next report .

WHITABLE CONTROL STORE

In order to check out the microprogram coding , three options are available.
The options are;

• EPEOM

• PROM

• Writable Control Store (RAM)

The EPROM option would require an additional design since there arc

few EPROM/PROMS that are directly compatible. Also, the EPR OM

option only allov.s non-real time operation of CPU1.

The PROM option will be included in the final operation configurr~tion.

However , during initial checkout , several microprogram coding changc~
can be expected. This could become expensive if a new PROMS were

programmed for each change.

The third option gives us real time checkout as well as the capability to

dump the microprogram from floppy disk directly onto the RAM in the

writable control store.

21



-- - — — - - —- - - - —~~-- ---~ - - — — - -— - -------—---- -- 
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~~ ---—

The requirement for this option is basically an interface between the Intel
MDS bus and the memory. The interface to the microprogram memory is

a cable which connects into the microprogram memory data and address

lines as shown in Figure 8.

I ADDRESS BITS
BUS

E I NTERFACE
L

M 2 K x 7 2

MEMORY
V

DATA BITS V
Figure 8. MDS Writable Control Store

22

SECTION III

EDGE CIRCUIT CHECKOUT
V

The edge circuit board has been built , wired , and functionally checked. V

V Two potential problems necessitating minor hardware redesign have been

noticed. The first is that an edge signal occurs at the beginning of each
scan, due to blanking/grey level transition; this must be gated out . The
second problem is that the video input to the edge circuitry must stay

within prescribed voltage limits or the CCDs will saturate.

Figures 9 through 16 are video pictures taken at various points in the
circuit . Figure 9 is the video input from a camera. Figure 10 is the
difference signal or the input to the absolute value circuit. White indicates
a high rising edge while black indicates a following edge. Figure 11 is
the absolute value output .

Figure 12 is the output of the integrator on a line-by-line basis. The data
is negative and hence will gro-w darker as one goes from left to right on
the image. Figure 13 is the output of the sample/hold. This remains
coastant across a scan line. Figure 14 is the logical edge output with
high multiplier value for KE. Figure 15 has a lower multiplier value.
Figure 16 shows the edge superimposed upon the video. Note the horizontal
delay which will be compensated for in the interval circuit.

23

~~~~~~~~~~~~ V V V V



1

~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~

- ~~~
,

H

Figure 9. VIdeo Input

~~~r’~TTv~ T , ,

\\‘ 
I I ’.. $~~_ - b

j I%)
hI \~~~t~~~~. 

~~jj ’ 
- 

-
- .~~

I

Figure 10. h igh Pass Filtered Video (Edge)

24



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _

V - ---
~~~~
,.

~~~~~~~~~~~~

~ :~jj-- ..~ ~~~~~~~~~~~~~
_ _  

‘~j~ 
,
_

~

•1I’

\ _ _

Figure 11. Absolute Value of lugh Pass !-‘il t - i - c d  \ i ~Ieo

V 
- 
.,- - ‘

V.’ -

• 

- 
aL-~- -. -

- - V . -

4.... - . - . -,.. - .

- -
- 5’

Figure 12. Video of Figure 11 Integrated \ - r o .~-. Each Line

25

-- V~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~ 4



- V V V
V~~~~~ VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

, TJI irr ir~ Ii T T L T 1T V

-- 

u1~1pp1~~ . .

V 

~~~~~ 
-

Figur e 13. Video of Figur e 11 Int egra ted , Sampled
at E nd of Line, and Held

mw— V

~~~~~~~ 

V

~~~~~~~~~~~~~~~~~~~~ 1 V ~~~~~~~~L V I~1I
‘‘ ‘\)~~~~

¶

Figure 14. Edge Board Output (High Threshold Settings)

26

--_~~ V~~ V~~~~~~~~~ V V V ~~~~~~~~~
_

~~~~~~~~~~~~ V~~_~~~~~~~~~~~~~~~~~~~ _~~~~~~~_~~~~~~~~~~~~~
__ V ~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~~~~

- 
- 

~~~~~ 

~~~~

V 
4
_I_ 

-

~~~~~~~~

~~~~~~~~~~~~~

* 
~~~ ~~~~~~~~~~~~~~~~~~~~~ ) V -

• ‘~j 4~
- -

,~~

•. l,_’ _ - -

Figure 15. Edge Output (Lo\vcr~ d Threshold Settings)

Figure 16. Edge Output Sup erimp ~ s t’ .l on Input

27

________________________________ - ~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V - , .4

_ _ _ - _ _ _

SECTION IV

SOFTWARE

In this section, the status of various software functions is discussed .

Several diagnosti c modules have been added. These are primarily

related to the use of CPU2 in checkout of the hardware. A discussion of

the algorithm used for bin matching is also included.

CPU 1 FIRMWARE

This section will describe the bin matching implementation software,

discuss changes made in the CPU1 microinstruction format since the

last report , and give worst case performance estimation for the CPU1

mod ules coded thus far.

The algorithm being used to implement the bin matching function was

briefly sketched in a previous quarterly report’. The algorithm utilizes

all the bin matching criteria embodied in the PATS software simulation , 1, 2

but does so more efficiently.

l [) E. Soland , et. al. , “PATS Quarterl y Progress Report , ” Co:~tr act
Numb~-’r DAAK7O-72-C—0248 , Honeywell Systems and Resca rch Center ,
Minneapolis , Minnesota, June 15 , 1978 , pp. 81-87.

E. Soland , et. al. , “PATS Quarterly Progress Report , ” Contract
Nu ~bcr DAAK7O-72-C-0248 , Honeywell Systems and Research Center ,
Minneapolis , Minnesota , January 15, 1978. pp. 78-82.

28

-- ~~~~~~~~~~~~~~~~~~~~~~~~~
_


~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~

Bin Matching

Algorithm Description- -The purpose of the bin matching algorithm is to

match or combine intervals from successive scan lines into two Jimensional

objects. These objects or “bins ” are then passed to feature computation

firmware and ultimately classified as either target or clutter.

Intervals are placed into Memory 1 in a packed format by the interval

generation and direct memory access hardware. The interval data is

dumped at the end of each line in the format shown in Figure 17. Data

for a given line is terminated with a zero word , which is overwritten

when dat a is generated for a subsequent line (the significance of this zero

-word will be discussed below). Data is only dumped to memory for lines

which contain intervals. The PATS front end also generates end of line

and end of frame interrupts to CPU1. The service routine for the end

of line interrupt increments a counter, and the routine for the end of

frame interrupt sets a flag indicating that end of fram e has occurred.

The bin matching firmware uses a routine called INTERVAL which fetches

and unpacks interval data from memory and passes it back to the main

body of the algorithm. Whenever INTERVAL encounters a zero word

where the next line of data should be starting, it knows that , at least

temporarily, it has reached the end of the data in Memory 1. This

indication, together with the state of the end of line counter and end of

frame flag, allows the routine to set three status flags : EOD (end of data)

is set true when INTERVAL has run out of data in Memory 1 and the end

of frame flag has been set; DATA is set true whenever INTERVAL

successfully finds interval data in Memory 1; and NEWLINE is set true

29



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -~ - V~~

10 BITS _ _ _ _ _ _

V

-ø 2 f11ø-~ k
6 BITS

~
~.4— 8 BITS

INTERVALS I LH& NU~~ER P

H/ Cl STARTING X WIDTh

I LEF~1/FI RS T (RIQIT BRI GHT COUNT
INTERVA L) EDG E

L - 1 ~~I V

•

• ‘ -I

•

H/Cl STARTI NG X WIDTh

LEFT!
LAST RI GHT BRI GHT COUNT
INTERVAL EDGE

I
Figure 17. Interval Data Format

30

- V V - - — -

whenever INTERVAL encounters the start of a new line, whether or not V

it has data. The main body of the bin matching algorithm ex~’mines these

flags prior to processing any of the interval data returned by INTERVAL.

Intervals are either hot or cold and , similarly, each bin produced by bin

matching is either hot or cold; i. e., we do not mix intervals of different

“colors ” in the same bin. The bin matchi ng algorithm is designed to V

process hot and cold bins and intervals independently of one another. That

is, the algorithm produces in one pass through the interval data the same

results it would produce in two separate passes , where each pass was

only processing intervals of one color and ignoring those of the other.

Re-entrant coding of the bin matching algorithm makes this possible. In

essence, the algorithm possesses two sets of state variables, one for hot

interval processing and the other for cold interval processing. The

algorithm accepts interval data from INTERVAL for one interval at a time.

When the algorithm encounters an interval opposite in color to the interval

previously pro~cessed , it saves the algorithm state just prior to the

acquisition of the new interval and restores the state corresponding to

the color of the new interval. This context switch essentially involves

swapping address pointers . The data dependent on each interval color

is organized into a contiguous block of storage in Memory 1. There is

one block for hots and one for colds and a pointer to each. A context

switch is carried out by substituting the working pointer of the algorithm

with the pointer to the block for the appropriat e color.

Once an interval has been acquired and the appropriate context set , the

algorithm attempts to match the interval to a bin. A workspace of

approximately 7K words in Memory 1 is divided into continguous blocks of

31
V

168 words each. Each bin or object is developed in one of these blocks .
Table 7 describes the data block format . A bin ’s data block is updated

each time a new interval is matched to that bin. Each block can accomodate

data for up to 32 intervals . These data blocks are stored by bin color

(i. e. • ho t or cold), and active bins of the same color are ordered in

increasing value according to the midpoint of the last interval assigned to

each bin. Thi s order relation is indicated by linking the bins together
into two singly linked lists. There are two list headnodes (one for hots

and one for colds) and , as Figure 17 shows , each bin data block has- - - .~
word for linking it to another bin. Keeping bins of the same color or dered
by midpoint system atizes the bin matching process . When matching
an interval against all bins of the same color currently in existence,

certain bins may be immediately ruled out. For example, if , in going

through a bin list, one bin is foun d to be horizontally to the right of the
interval, it is then known that all bins following this bin in the list are

also to the right of the interval and cannot match it. Another fact used

to make the bin matching process more efficient is that intervals from a

given line occur in increasing order according to the Interval midpoints .
In this way, for example, if an interval is encountered which is to the
right of all the bins currently in e~dstence, it is then known that all other
intervals from the same line as the latter interval will also not match
any of the bins.

Bin matching proceeds in the following manner . An incoming interval of
a given color is matched agains t elements of the bin list corresponding
to that same color by starting at some bin and working towards the end of V

the list by following address links. When data from a new line is

encou ntered , thi s starting point is initialized with the current headnode

32

-.4

TABLE 7. FORMAT OF BIN DATA BLOCK

Word

0 Add ress lin k t o next bin

1 Midpoint of last interval in bin

2 Starting address of las t interval in bin

3 Sta r ti ng line number

4 Total interval count

5 Active interval count
V 6 lI/ C (� 0: hot; <0: coh)

7 Intensity sum

8 N

9 N + w i d t h — 1

10 Width Interval 1

11 Feature word 2

12 Feature word 3

13 N

14 X + w i d t h - 1

15 Width Interval 2

16 Feature word 2

17 Feature word 3

164 N

165 X + wj dth — 1

166 Width Interval 32

167 Feature word 2

168 Feature word 3

V

33

____________________________________— V
.
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~_ ~~~~~~~~~~~~~~ ~V~~~~~~ VV V __ ~~~~~~~~ _ _ V V_ _

on the list. To start off , the algorithm checks if the bin list being
examined is empty or if the end of the list has been encountered (these
conditions are equivalent since both involve accessing zero or null pointers).
If either of thes e conditions is true , a new bin can be started. Otherwise,
the interval is compared with the bin at the current starting point . If the
left end point of the interval is greater than the right endpoint of the last
interval currently in the bin, then it is known that the interval cannot

V match this bin but it might match one farther down the list. In this case,
the algorithm links to the next bin in the list and repeats the whole
process , starting with the check for end of list. If the left endpoint of the
interval is less than or equal to the right end point of the bin , then we have
a case of possible overlap and another comparison is made. This time,
if the right endpoint of the interval is less than the left end point of the bin ,
it is then known that the interval lies entirely to the left of the bin currently
being examined; since the interval also did not match the bin JU St prior to
the current one, the interval must be between the two bins , so a new bin
may be started. If , however , the right interval endpoint is greater than
or equal to the left bin endpoint , then interval and bin overlap and bin
matching criteria can be checked. The first criterion is midpoint corre-
spondence. If the midpoint of the interval falls within the bin or the mid-
point of the bin falls within the interva l, a match is achieved. If the first
criterion is not satisfied , then the second criterion, intensity correspondence,
is checked. If:

� 10. [~~-T~I
where 1b

= average intensity of last interval in bin

= average intensity of interval,

34

_ - ~~~~~~~

~ ~~

then a match is achieved. If this criterion is not satisfied, then the
algorithm links to the next bin and restarts the whole process with the
end of list check.

V

If a bin match is achieved, then the algorithm applies the same bin matching

process to subsequent intervals, trying to match them to the same bin at
V

which the first bin match occurred. As long as intervals match this bin ,
V

they are concatenated together to form a single larger interval. When an
interval is finally encountered which does not match this bin, then the
(possibly compound) interval which did match it is used to update the bin.
The algorithm then links to the next bin in the list and restarts the bin V

matching process with the new interval .

When a bin is completed (i. e., the missed scans criterion has been
V

V satisfied), the origin of the bin is passed to the clutter classifier . If the
bin is classified as clutter , it is removed from the list of active bins it
was a part of and is instead linked into a list of bins which can he reused.
The bin is processed no further. If the bin is classified as target , it is
also removed from its active bin list and is linked into the lis t of bins
which will be passed to the recognition classifier. In this way, all bins
in a fram e are classified as clutter or target before any are recognized
as being a particular type of target . T)ning classification of bins in

parallel with bin matching relieves the bin memory requirements since
some bins are being thrown away at the same time others are being
started. Only partial classification of bins is carried out at this tin-a
since the recognition classifier requires access to Memory 2. Memory
2 is totally unavailable to CPTJ1 while the frame is being digitized. So,
to make maximum use of the processing time available to CPU 1 during

35

_ _ _

this digitization period , it is best to use CPU1 to do things which do not

involve accesses to Memory 2 , i. e., nonrecognition functions .

When the algorithm determines that a new bin must be started , it first

checks the list of reusable bins mentioned in the previous paragraph. This
list i s, of cours e, initially empty . If this list is empty, th e algorithm then

- ~-
references a pointer to the first location in memory which has not yet been

used for bin storage.

Flow Chart

Figure 18 is a flow chart of the varioas operations discussed above. The

diagram is not extremely detailed but suff ices to indicate the flow of control

between the major operations . A few words about the notation are in order.

INTVL , IV, and IVNX T are all vectors of interval features. INTVL is
fetched by the routine INTERVAL which was described previously . 11 and

12 are, respecti vely, left and right end points of the interval currently

being examincd; Ji and J2 are , respectively, left and right endpoints of

the current bin. The logical flags EOD, NEWLINE . and DATA are all set

by the routine INTER VAL.

Bin Matchi~~ Summary

In short , the bin matching implementation attempts to - .naximize efficiency
by minimizing the expected number of comparisons which must be made
against a given interval. Bins le organized into two separate lists , and

an Interval is never compared against the elements of more than one list.

In addition , within each list bins are ordered according to the way they

:36

_ _ _ A

_ _ _ _ _ _ _ ~~ ~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

STPJ~T

I N I TIAL I ZE :
EDt) - V F .
N E W L I I I • T V

DO N C V
- F -

NL - 1

SW I T C H
G[T I NT V L CO N TEXT

F ~~NE V T EO D? C 1 - - -

N E W L I N T CLOS E BINS NL? NL - F.DONE - .T
~ WHERE

REQU I RED

SWITCH V R CHAN C POINTERS TO I F
CONTEXT HEADNODES DATA?

I NTVL - IV

• N
y I N I T FA L IZ I

BIN L I S T FMPT ~ ~ Y I N WIOTH MAX
BIN

N
LINK TO NI) NEXT BIN 11 - J2

V

I ? i i ? N

OVE RLAP

IIWOIN V
CI) RRE S PC) N DC HC C

N

N I NTE N S I TY
CORRESPONDENC E

B

FIgure 18. Flow Chart of Bin Matching Algorithm

37

—- V V~~ V _~~~~

V -

IN L

100’ V

1~~’~~{ a N X I

_ _ _ _ _ _ _ _ _ _
EWL I

SW I TC H
CONT EXT •—~ COL OR CHANGE?

l i d ?

N OVERLAP

-Il ‘ISi NT V CONCATENA TE
CORRF S)’ UNDE NCE ? IVNXT ONTO

N

I NT E NSIT Y
CORRE S P ONI) [NC F

—— MIN WIDTH
-

MAX ? N

UPDAT E
I I I N

F O P ? IV NX T - IV N FWLINI

T F
;i~ TO CLOS E ALL T N

RFCIX ~N I T I C) N BINS OF
PROC[SS I LITfI[R CO LOR I)

Ni T

S W I l l H

~, ‘ l k ’

Figure 18. Flow Chart of Bin Matching Algorithm (concluded)

38

V - r n ~~~~~~~~~~~~~~~~~~~~~~~~

rV _
~~~~~~

V V

~~~

V V ~~~~~~~~ VVV ~~~~ V ~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

line up horizontally across the frame. The algorithm makes use of this Lv

establishing a simpler necessary condition , namely bin/ interval overlap,

prior to doing a full-blown test of the bin matching criteria. This res ults

in the latter , rather expensive test being done only when necessary , instead V

of on every bin.

MICROINSTRUCTION FORMAT

Since the last quarterly report , the CPU 1 microinstruction has grown to 60

bits . The format of the revised microinstruction is shown in Figure 19.

Changes to the format published in the previous quarterly report are

described below.

A bit was added to control a two-to-one 16-bit multiplexer whose oatput

is connected to the DA input on the Am2903 array . This bit selects either

the literal field from the microinstruction or the Y output from the Am2901

V array as the DA input. This change allows data transf er f rom the 290 1s to

the 2903s; previously, we could only transfer data from the 2903s to the

290 1s. This bit occupies bit 61 in the new format , and its default value is

V
0 (i. e., select literals field).

Another bit was added to control status register swapping . An additional

status register was added to the 2903s for the purpose of saving the contents

of the primary status register when, for example, an interrupt is being

serviced and one wants to preserve the status in the main routine. This

bit occupies bit 57 and its default value is 0 (i. e. , no swap).

39

I L - • V . V~~~ V V~~~~ VV ~~~~~~~~~~~~ V~~~~~~~~V . _ _ _ _ _

V ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C) ~~ I
V ________ ‘~ H-

V LU
L) (‘4

~~ a’cD - j

‘/ ‘ —

(‘_J H- L)
~~~ L~~ -~.

~~ H- If I Q  
V

H-

LU.
~ I-~ ~~ L) ~~

I,-)

- 

V

(‘4 ~O

•1 

i.J ;

L(I~~~~~~~~

‘ 1  
_ _ _ _ _

- V

‘~~~~~ ‘~~ 
H-

“4 H- L) L)
I
~
- ,L

~
J
~~~~W Q V ~~~~a-, — c~~~L’~~ L -~I4~

:

~~~~~~~~~~~~~

_ _  
_ _ _  

I

H-~~~~~~~~~~~~~

-4
LU ‘ LU

V-I I— L)

LU 
I-,

~~~ ~~

_ _ _ _ _ _ ~

—

~~~~

--

~~~~ ~~~~~~~~~

-
~~~

H- 
I— ~~ ~~ I

_ _ _ _  

~~~~~~~~~~~~
~~~~~~L UV V

C. 
; O~~~~~~~~~~~~

j

40

~~~~~~~~~~~~~~~~~ -~~~~
. V _

~~~~- V



A third bit (bit 69) was added to control interrupt enabling / disabling. The

default for this bit is 0 (i. e., enable all interrupts). CPU1 will accept

eight discrete interrupts , each having a different priority . There is no

interrupt mas k (i. e., no selective interrupt disabling).

Other bits in the microins truction word were rearranged to rnak -? room for

these additional bits , as is shown in Figure 19. An additional change was

made to the memory control bits. These two Lits (bits 66 and 67 in the

new format ) were encoded to provide an additional mode of coatrol when

reading Memory 1.

EXECUTION TIME ESTIMATES

- 
/ Execution time estimates for the various CPU 1 firmware modules appeared

• in a previous report. These estimates were made prior to the generation

of any detailed microcode. Revised worst case estimates have now been

made for the clutter classifier, median filter , and moment feature computa-

tions based on generated microcode. The estimates assume a total of

fifty 32 x 32 objects passed to the clutter classifier, 10 of which are

ultimately passed to the median filter and moment feature computations .

The execution times are as follows :

3D. E. Soland , et. al. , It PATS Quarterly Progress Rc~ ort , ” Contract
Number DAAK7O-72-C0248 , H0L-leywell Systems and Research Center .
Minneapolis, MInnesota , June 15, 1978 , p. 91.

41 

~~~~~~~~~~~~~~~~~~~~~


Clutter classifier - 25 .7K~ I x 0.2~ s/ ~~I = 5.14 ms

Median Filter - 36. 5K~j x 0. 2~~ /~&I = 7. 30

Moment Features - 61. 4K~ j x 0. 2~~ /~~I = 12. 28 ins V

24. 72 ms

These new estimates compare favorably with the old ones . New estimates

have not yet been made for bin matching and the K -nearest neightbor

recognition classifier but we believe the final estimates will be favorable,

since the firmware currently generated only uses roughly 25 percent of

the 100 ms available per processed frame.

CPU2 SOFTW ARE

The initial design is complete for CPU2 software. A convenient way to

divide the software for discussion purposes is to split it into two categories :

diagnostics and non-diagnostics. The diagnostic software includes facilities

for memory tests , for CPU interface tests , for display tes ts , and for

exercising the system with tes t data. Non-diagnostic software includes

inter frame analysis . cucing, a supervisor that controls processing, a

routine that controls the system during training, and assorted support

subroutines. Some routines are us ed by both diagnostic and non-diagnostic

procedures .

I
Table 8 lists the routines used primarily In diagnostics. Table 9 lists the

other routines . Figure 20 shows how they all relate to one another.

Appendix A de -cribes the function of each routine.

Notice there ar c two memory tests , two routines for testing memory.

MEMTEST is a far more elaborate test than CHEKMEM. MEMTEST will

42

_ _ _ _ - ~~~~~-— -~~~~~ - - -V

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

TABLE 8. CPU2 SOFTWARE USED PRIMARILY FOR DIAGNOSTICS

CHEKMEM

DIsP’rsT

MEMTEST

PR OTOCL

SIMULAT

TABLE 9. OTHER CPU2 SOFTWARE

General Inter frame analysis Cueing

CPU1INPUT COSTIT APC

~ V 1 V DMACODE ELECT CUEIT

DMAINVL GETUM ERASE
DMARES 1 HUH NONTARC

DMARES2 INTER NOTHING

DMA VEC1 PAIRUM TANK
V

DAMVEC2 PICK TRUCK

INITIAL ~JIT

IsH 1
ISR2

OPINPUT
SUPER

TRAIN

43

1
LU

LU ~~
V) ~~~ L)

~~~ L) J
I- •~~ ~~~ ~~ LI 1 ~~Q~~~~ .

~~ ~~~~Q_ _
~~~~ 

.
~~

~~~~~~

H I  I I
1

~
_ j

~~

I

~~~

~~

‘

~~~~~~~~~~~

B

L I  I~ l i i i

I

I— I’,

A

I T

H —

44



F— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V V  _~~~~~~~
__

be used to help find problems while Memories 1 and 2 are being built

and debugged. After the memories seem error free and are being used
frequently MEMTEST will not be used very often. CHEKMEM is intended
for use as a quick check during the software system build. If the software

suddenly produces strange results the programmer will be able to use

CHEKMEM as a debugging tool to assure himself there are no gross memory
problems.

The simulation of real time execution using SI1VTULAT will allow us to read

frames of imagery and interval data from floppy disk. Thes e data will be

written in Memories 1 and 2 for processing by CPU1. When the object

features are passed to CPU2 the objects can be processed through inter-
frame analysis and cued . Intermediate results will be read from floppy

disk and compared with thos e passed to CPU2. Differences will then cause
error reports to aid in debugging.

The interframe analysis routines increase the reliability of object classifi-

cation across several frames . Currently the number of frames used for

decision making Is one frame while in the training mode. The software will

be coded so the number of frames can be set as a parameter. The default

will be three. When the number of frames is one, interframe analysis is
effectively turned off.

The basic operation in CPU2 is one of waiting for something to happen.

In non-real time mode the supervisory routine SUPER asks the operator

what he wants to do. Given an input SUPER begins the processing as V

requested. In training, simulation, or real time mode SUPER is in a loop

checking flags. The flags are set by the interrupt service routines ISR1

45

- - -- 
~~~~~~~~~~


~

and 15R2 when CPU1 sends data to CPU2. The flags set depend upon the
kind of data passed. Error messages are typed out immediately. Inter-
mediate results are typed and/or compared with expected values by SIMULAT .

V

Object features are passed to INTER for interframe analysis . Then objects
to be cued are used by CUEIT. In training mode TRAIN interacts with the V

operator to classify an object. Then the object features and classification
are stored on floppy disk.

46

___________________________ VVV _•~~~~~~ _ _

- -~~~~~~~~-
V -V— ~~~~~~ ~~~~~~ — —————-- — ———V-.~--- — •~~~~~ V V~~• V V -. ~~~~~~~~~~~~~~~~

V V ~~~~~~~ -. --

SECTION V

PLANS FOR THE NEXT REPOR TING PERIOD

I)uring the current reporting period , we planned to conplete the fabrication

of all circuit boards and begin checkout at the bo.~rd level. IIowe~rer . becau se

of some design problems with CPU1 ari d delays in part deliveries , the

circuit fabrication task will extend through the I rst half of the next reportiri~
period. Checkout of the boards completed to date has begun and will conti me

through the n ext reporting period. Also, software coding and checkout

for both CP1Y1 and CPU2 will continue through the quarter.

S

k 47

V

V

- V

-I

APPENDIX A

• CPU2 SOFTWARE MODULE DESCRIPTIONS V

iF~~~~~~~~~~~IT1T.

L.

V V~~~~~~~~~~~~~~~ V ~~~~~~~~~~ ~~~ - - V V

APPENDIX A

CPU2 SOFTWARE MODULE DESCRIPTIONS

APC : cues armored personnel carriers by superimposing the

letter A over the object . The size of the letter is propor-

tional to the size of the object.

CHEKMEM: performs a simple test of Memories 1 and 2. The test

V uses CPU2 to write the address of each word in the word ,

then reads and verifies the value. Then CPU1 is instructed

to read the words and verify the values. Finally CPU1

writes zeroes to all words and CPU 2 reads and verifies

them. So each CPU writes and reads what the other one

has written.

COSTIT : used in interframe analysis, computes the cost of claiming

that an object in frame N is the same as an object in frame

N-i. The costs are computed for all possible pairings of

objects in the two frames. The cost is the sum of the

absolute differences of the object features . So the most
similar objects have the lowest cost.

CPU 1INPUT: decides what kind of data has been passed to CPU2 from
CPU 1 and then decides what to do with the data. The

first word passed to CPU2 contains a code for the kind of

data sent: 0 = object features, 1 = debugging information
like intermediate results , 2 = an error code. Error codes
cause an error message to be printed immediately.

50

-
V

- _ -
~~~~ _--—-~~—-



~
V V  

VV ~~ •~ ~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~—~~~~“-~

-

Intermediate results are printe d and/or compared with

• expected values for validity. Object features are kept

for use by interframe analysis.

CUEIT: controls the writing and erasing of symbols in the gr aphh -s

memory . It does not do the writing ; it merely sets up t h t -

arguments and calls the proper symbol generation routine.

DISPTST: performs a test of the graphics system . All vertical Zl fld

horizontal lines are displayed one at a time for the operator

to verify. Then all symbols gc.ieration subroutines are

used to produce their symbols for verification.

DMACODE : passes a control word to CPU1 from CPU2. The contro’

word tells CPU1 what procedure is to be followed. The

word to be sent is passed in to DMACODE. Then D~\ 1A CODE

concerns itself with all the interface protocol needed to

send the message and verif y that it has been received .

DMAINVL: sends interval data to Memory 1 during simulation with

test data. The interval data are read from floppy disk

by SIMULAT and passed to DMAINVL. This routine then

concentrates on the interface protocol necessary to Send

the data to Memory 1 and verify that it has been received .

DMARES 1: used during testing of Memory 1, reads Memory 1 beginn in g

at a specified location and stores the ~ralues in vector

RESULTS for verification later. DTUARES 1 concentrates on

interface protocol needed to read the data from Memory 1.

51

- --~~~~~~~~~- - — V _ -_~~V

DMARES2 : the same as DMARES 1 except that Memory 2 is the memory

tested.
V

DMA VEC1: used during tes ting of Memory 1, writes a vector of data
from CPU2’s memory into Memory 1 via the DMA inter-
face. The routine receives the data from the calling routine
so DMAVEC1 concentrates on passing the data by following
the interface protocol and verifying that the transfer has
occurred.

DMA VEC2 : same as DMAVEC1 except that Memory 2 is the memory

under test.

DMPSTAT: used at the end of a training session, statistics collected
for all objects detected in all frames during a training
session are saved in arrays. At the end of the training

4
V session the statistics can be printed by entering execution

code 6 when the system asks for a code.

ELECT: used in interframe analysis to decide what classification
should be assigned to an object, calls the cueing routine
to cue the object. ELECT counts the frames in which the
object occurs and the classification assigned to the object
in each frame. The classification assigned is the one which
occurs most often in the frames queried.

ERASE : used in the cueing procedure to find cued targets whose
cues can be erased. The lifetime of a cue is defined in
terms of the number of frames which will be displayed
while the cue is retained. When the number of frames
exceeds the defined lifetime ERASE removes the cue.

52

— — -
~~~~

GETUM : used in interframe analysis , reads the object features

passed to CPU2 from CPU1. The features were stored in

a temporary buffer when CPU1 interrupted CPU2. GETU1\1

copies the features to a permanent buffer for evaluation by

interframe analysis.

V h Ul l :  used in interframe analysis routines to compute frame

identifiers for use as subscripts in other subroutines.

The identifiers are computed relative to the current

frame identifier.

INITIAL: assigns initial values to variables and vectors .

INTER : controls interframe analysis .

ISR1: the interrupt service routine entered when the interrupt

means a DMA has been completed.

1Sfl2: the interrupt service routine entered when CPU 1 wants to

transfer data to CPU2.

MEMTEST : tests Memories 1 and 2 using a moving inversions test.

This procedure inverts the data of each address sequentially,

creating an access time by the jump from one address to

another which contains different information. Read/wri te/

read operations are performed with both forward and

backward address sequences.

The procedure has been reported by J. Henk De Jonge and Andre ’ J.
Sniulders in “Moving Inversions ‘i’est Pattern is Thorough , Y et Speedy , ”
Computer Design, Vol. 15, No. 5, May 1976 , pp. 169-173.

53



NONTABG : used in the training mode. An object detected by CPU1 is
initially displayed and cued with the letter U meaning
unidentified target. After the operator decides what the
object is and puts in the class code the object is cued with

V the appropriate symbol. If the operator decides that the 
V

object is not a target , subroutine NONTARG is called to
cue the object with the letter 0. The operator then knows

V the proper class code has been assigned to the object.

V NOTHING: used by the graphics system to draw a big letter X across
the whole screen when, in the training mode, CPU1 has
found no targets . The operator then knows processing
on that frame is complete and no targets have been found .

OPINPUT: used by the supervisory routine to interact with the V

V operator. Queries or directives are printed and input is
accepted by OPINPUT . The input is verified as at least
being valid, if not correct , before the input is passed to
other routines for use.

PAIRUM : used in the interframe analysis procedure . Subroutine
PICK links objects in frame N with objects in frame N-i .
If there are objects in fram e N which cannot be matched
with objects in frame N-i . subroutine PAIRUM tries to
match those objects with unmatched ones in frame N -2 . So
PAIRUM links objects in frame N with objects in frame N-2.

PICK: used in interframe analysis to decide which objects in
frame N should be matched with which objects in frame N-i.
The pointers that link objects across frames are established
by PICK.

_______________________________- - ~~~~~~~~~~~~~~~~~~~ 
_ _ _



PROTOCOL: used in the debugging mode to test the CPU interface by

exercising the protocol. Standard messages are passed

back and forth between CPU1 and CPTJ2 many times .

V SIMULAT: controls system simulation during checkout with test data

input from floppy disk.

SUPER: the main program which controls the whole system. SUPER

contains the idle loop where control resides until there is

a command from the operator to do something or until  CPT)l

sends an interrupt . Flags are. checked in this loop to

decide what should be done in response to inputs from these

sources .

TANK: cues tanks by superimposing the letter T over the object.

The size of the letter is proportional to the size of the

object.

TRAIN: controls the sys tem during training . The main functions

are to cue each object passed into CPU2 from CPU1 so the

operator can identify them and input the classification

code. Then the object features are output to floppy disk

along with the classification code.

TRUCK: cues trucks by superimposing the letter W over the object.

The size of the letter is proportional to the size of the

object.

UIT : cues unidentified targets by superimposing the letter U

over the object. The size of the letter is proportional to
• the size of the object.

55

L~. ~~~~~~~~~~ VVV



• AA CANNON : cues track-mounted radar controlled anti-aircraft
cannon by superimposing the letter C over the object .

AA LAUNCHER: cues track-mounted anti-aircraft missile launcher by
superimposing the letter M over the object.

56 - -

A A


