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EXCITATION OF ELECTROMAGNETIC OSCILLATICNS IN OPEN RESONATORS

1. A. Vaynshteyn

An open resonator in tle general case is a system of homogeneous
cx heterogeneous bodies (their grogerties are assigned by the
distributicn of complex permeabilities in space) which are surrcunded
ty a vacuum. Oscillaticns in such a system are accompanied by
radiaticn intoc free space. It is proposed tikat among the natural
oscillations of the syster there are natural oscillations with high
quality with which se are familiar. The prctles of induced
c¢scillations of an open rescnator under the effect of outside
currents and the Cauchy prckles are sclved ctsing expansion with
resgect to eigenfuncticns of a continuous sgectrum. In the solutions
there is clear separation of the rescnance part caused by natural

¢scillations with high quality. The general theory is illustrated
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tsing the example of a homogeneous transparent sphere excited by a

radial electric digcle.

INTFODUCTION

Ofen resonators are oscillatory systems whose oscillaticns are
acccapanied by radiaticn into free space. W¢ define such a syster
assigning in space the distribhuticn of complex permeabilities -

dielectric and magnetic

(R3] e=¢e(k)=¢e(kx, y,2), p=pk) =pn(k; x,y, 2),

dependent on the wave number k = w/c (cr, what is the sanme thing,
frem the frequency «) and from coordinates X, Yo Z whereby we shall

ccrsider that

(2) e=p=1muR=ViIty7+7>R,

i.e., beyond the lirits of a sptere with radius § - is a void in

N S s 5 s
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which diverging electrcmagnetic waves are fropagated which are formed
during electrcmagnetic oscillations of the system. Complex
permeatilities (1) corresgond tc absorbent «cc.ncnabsorbent .

sukstances, so that
3) Ime>0, Imp>0.
e shall not examine active substances (with negative losses).

According to this definiticn an open resonator is a dielectric
ocr metallic sphere just like the majority of cther electrodynamic
systess used in practice. The general theory presented in the article
is applicabie,to a troad class cf systess defiped by conditions (1) -
{3), however, it leads to simple results, wkich are of interest only
in the case vhen thke given systes is a rescpance system, i.e.,
sufficiently high-quality natural oscillaticns are possible in it
(see §1). The latter requirement is satisfied by a dielectric sptere
(see §5) while a metal splere tas practically :nc resonance properties
(see [1]), §6)- Open resonators, formed by mirrors, placed in a
vacuum, cbviously are enccmpassed by the abeve definition: for thesn
the thecry which is presented below is a natural development of the
theory given in [1] vhere we were limited by a scalar wave equation

and ideally reflecting mirrcrs. Conventional cavity resonators beccae

cpen resonators if they are conrected with free space.
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§1: ATIENUATING NATURAL CSCILLATICNS

Natural electromagnetic oscillations of a system are
osciliations with which tle electrcragnetic field is dependent on

tise t acccrding to the law

“ E()) = Re{Ee ™), H(l) = Re {H,e"™"),
where
i @y = O;—i‘:

is a ccmplex frequency of natural cscillaticn with subscript s.

Vector functions E, =E,(r,y.2) and H, =H,(x, g, 2) sat isfy Maxwvell's

vnifors equations

‘6‘ m Bl - ik*"‘. fot H. = '—“..B. (k. - %) .

Permeakilities s and u are detersined by fcrmulas (1)-(3) and
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subsequently ve shall take k at the frequency of excitation and only
at the end of §4 vill we need vectcrs E, and H,, which satisfy
equaticns (6) with e¢=c¢(k) and B=pnk), i.e., vith
permeatilities at the frequency cf the natural oscillations

thesselves.

If and p, as functicns of x, y, 2, undergo sudden changes then
equations (6) are supplemented Ly bcundary ccnditions on the
interfaces. With R 9 =« vectors E; and H, satisfy the conditions cf

radiaticn

JuR Jur
n E. =g (0, 9)—¢ , Hi=[ng, (8, 9)] —p—.

vhere R,%,9 are spherical coordinates; m is a single radial vector
(np =1,ne =ny =0); g,(8,¢9) is a vector functiop which is single-valued on

a single sphere and tangent to it so that ng,(%.q) =0.

Attenuvation of natural oscillation in time (value w,) serves as
its measure) is determined Lott by radiatice of a diwrgent wave (7)
apd by losses in the system itself (with ccaplexity of or p). The

gsality of cscillation

(8) Q= —‘-.r'
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canp be quite high (cf. §S).
§24 EICGENFUNCTIONS OF A CCNTINUOUS SPECTRUM

Let us examine electrcsagnetic fields satisfying Maxwell's

vrifcrs equaticns (vith 0<{x< o)

(9) rot E = ixpH, rot H = —ixeE

and having the follcving fcrm with § & =:

E o (O C"-R (o ) CM
- =x(.v)—k—-|::R O =g & }
Hj= — [nx*(0, )1 < + [nxX (8, @) —%— .

vhere vectors ¥’ and X are single-valued c¢o a single sphere and are

tasgent to it. They are ccnnected by the relationship
(1 X =S¥,

where S - the cperator of scattering - is a linear integral operator,
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degendent (with a fixed distribution of apd 4 in space) on
farameter x. With g..(®,¢9) let us designate tle natural vector
fuscticns of the inverse operator S-! and with =-F.(xfy, ‘tie - -

corresgcnding eigenvalues., We have

(12) S-‘lt. x=1T, (%) e, x»

whre v is the discrete subscrirt nusbering the eigenfunctions with
fixed x. FPor a sphere (see §5) subscript r replaces syabols E.. and
Hmny, ie@e, tweo regular subscripts m acrd r alcng sith the indicated

polarizaticn.

Natural vector functions E., and H.. of a continuous spectrum
are introduced as a soluticns cf eguations (9) having the following

fore with R & =

‘-lx

p xR xR
Eex=g (0 9)—7—+ .. 0) &,

(13) iR 4R
"f. WS [ll!:. x (00 q’)l"_R_ + [ng-, « (0. 9l “R !

wvhereby cn the strength of relaticnship (12)

(34) g (0,9 =T:(x)g:, (0 9).

o

Lot
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For functions E., and H,, the ccrnditicr of orthogonality is

valid
(15) ‘-}‘-S eE., Ev, pdV = — ZL—S pH, Hy, vdV = D, (x) 8.8 (x —x'),

into which enters tte prcduct cf the complex vector functions

(without comglex conjugaticn!). Under ccndition (15) integration is
carried cut through the entire infinite space, and the last integral
is taken on the single srhere. Relatiomship (15) is derived from the

identities

s div[E, «He, w] = ix'eE,, xEv, w + ixpH,, Ho, o) }

div {E¢ o He, ] = ixeE,, «Ev¢, » + ix'pH,, xHe, o

using the same argugents as in the case of the scalar wave equation
(see [ 1], §2). Function (16) plays the role of the norm of

eigenfunctions of the continuous spectrua.

Vector functions E.x and H.. may be ccrtinued analytically toth
on the negative part of the real axis ard cr the entire plane of the

ccoplex variable % With negative x they are determined by the
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fcreulas

19 Ei cu=6Er x Hip= —€.H, ,,
vhere

(20) €=41I

With complex x (namely in the lower half glane) the function
l«(x) may vanish. BEach roct cf the equation TIi(x) =0 coincides with

cne of the values k4, examined in §1. In additiop we have

(27 Eqx=E, H,x=H, when *=*k,.

Actually in this case acccrding to fcrmulas (13) and (14) there is
cne divergent spherical wave in accordance with formula (7). The ncrm
of the attenuating fundamental oscillation with subscript s is the
value

*dD, ( T, (k
@2 R e

where
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(23 G, = G (k) = { @200,

Value N, appears during calculation cf remainders in the points x =

ky, (see §3 and §4) . It is pcssikle to prove (cf. [1], §3), that

1 e
(24) N, =lim eEMV = —lim —\ pHdV,
; R-»eoc"ﬁ_s R-nu"““ SR
where Vgp is the volume of a spkere of radius R, and the angle y is
chcsen so that the integrals ccnverge. During approximate calculaticn
of the norm it is sufficient tc integrate through the finite range

cft. [1], §7).
§3. BXCITATICN OF OPEN RESCNATORS WITH ASSIGNED POINTS

Let the sources of the field be cutside electrical and magnetic
currents (with densities J' and j"), which cscillate with a frequency
of w = ck and are lccated at finite distances. The field E, H excited

by them must satisfy Maxwell's equaticps

23) rotE = ikpﬂ—%j", rotH -—lkgg._'“ijc

e

AT CORAIT 3 A L, > v

i
i
i
;
.
E
3
E
§
i
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and the conditions for infinity

(26) ImMRE =0, limRH =0 npu Im&>0,
R-»00 R-»c0

which provide singularity of the solution (sze, for example, [2],
€10) and vhich make it possible tc lcck for it in the form of
integrals (30) and (42) on the real axis. Ig tte final formulas (43)

and (44) it is possible tc assume that 1lm k = 0.
Since vectors E.. and H. . satisfy relatiopships
div(eEq, ) = 0, div (He, ) = 0,
{(27) arising from equations (9), the sought fields E and H should be
refresented in the form (cf. [2], § 101 or {3))

12¢) E=E'+FE, H=H+H,

where E', and II' are transverse {solenoidal) fields which satisfy the

relaticnship
(29) div(eE") =0, div(pH) =0

and may be represented in ttre form

(30) s’-@&A.me.,.dn. 1l‘-$§

B (%) H,udn,

T m——
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ard E', and H' are longitudinal (potential) fields which may be

written in the fors
31 E'= —grad @', H' = —grad o™,

iere @' and O™ are the electrical and magnetic scalar potentials

which satisfy the equaticns

(32) div(egrad ©°) = —.4up‘. div (p grad ®™) = — 4npm,
shere
(33) = — v, pr e — L dive

ar€ the densities of the cutside charges.

Equaticns (32) are solved using electrostatic and magnetostatic
methods (cf. §5). Lcngitudiral fields dc n¢t have resonance
frcperties. Since all charges are at finite distances, @' and @™ with
F - « decrease like 1/R or faster. Longitudinal fields are orthogonal

to the vector functions of the continuous spectrum:




Substituting exparsion (30) into equations (25) we obtain the
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] (34) \eE...E'w =0, (u. By = 0.
|
[}
} dctually ve may write
3-5...5“1}'-—3 ¢E., . grad o'dvc—s div (¢E., «0") dV +
o R R
, (39)
: +$ @* div (¢E., .)dv-—-f ®'nE., 4S,

_ R R
:!

and the integral over Sp (sphere of radius F) with R 9 « vanishes

sipce O° decreases as 1/BR or faster and the radial component Bex o
i like 1/R2,
i
i
]
§

4 relationshigs

4

uES {RA: (x) — xB, (x)} E., «dx = % J* — iksE’, ‘
‘36) e

‘Pg;.g (%A (%) — kB, (%)) I, ydx = — ‘% =+ ,'km" f

IOt

in vhich sclenoidal vectors stand on the right; for them it is

pessible to srite the expansions

‘%y; M'i'—:-zs'c,(u)l,,;dx,
.0

37

ol ikpH' = L ( b, (%) H,, dx,

om'
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| @
A
: and coefficients a.(x) and b.(x) on the strength of formulas (15) and
; (34) are ottained in tke form
(38) ax (%) = gy | B V. bs (%) = gy 1o, V.
! ; . !
A Cceff icients A,(x) and B,(x) must satisfy equations
i i
%A, (x) — kB, (x) = — —- b, (x),
hence
i kay (x) — xb, (x)
| ) A'(“)-_T—'T_‘—:—(_)' .
| xa, (%) — %,
By = — LT A |
) Using relaticnships (19) and (20) and introducing coefficients
{i

a (%) —b
() C.(n)-—-,'—'—&}:,}-‘i.
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ve nmay replace expansicn (30) bty the fcllowing:

(82) E=3{ Coolun, =3 | Cooi

ia which irtegraticn is performed along the entire real axis.

In these integrals let us displace the integration curve
downvard and designate with I' the nev curve, and by A the area

between the cld and new curves. We obtain

(43) E’:-?C.B.+I§. H'=§C.ll.+l'l.

vhere summation is spread along all of the attenuating fundamental
cscillations, the wave numbers &k, of which lie in the range A; B and
R are represented by integrals (42) not on the real axis, but on
curve [I. Coefficients C, on the strength of fcrmulas (22) and (23)

are obtained in the form

(%4) C.-—-;‘—-‘——‘.—

vhere

JS—




(45) a;--ﬁ:Sre.dV. b.'--;.-gru.dv.

With proper selecticn c¢f tte range 4 (see [1]), §4) the sums in
forasulas (43) determine thke rescnance part cf the field and against
the background of which appear rescnance prcperties of the given
system. It may happen that the given system does not have resonarce
Froperties either in general or with a certain arrangement of the
scurces or observation points: then the separation of the resonance

part does not make sense (see [1], §4).

The foraulas derived above are in many ways analogous to the
foraulas vhich are cbtained in the thecry of excitation of "closed"

cavity rescnators (see [2], [3)) -
§4. CAUCHY PROBLEN FOR ELECTROMAGNETIC OSCIILATICNS
If (formally) # we count all currents of conductivity among

currents of displacement then Maxwell®s equaticns for nonstationary

fields can Lke written in tte fcrom

(w6) rotE(f) = — L B0 ot =L BO
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“ore®

The Cauchy problem reduces to thte integraticn of these equations

cnder the initial comditicns
u7) D(f)=D" B(f)=B* npn ¢ =0,

vhere D® and B® are assigned vector functicrs which decrease

sufficiently rapidly with R =),

Let us introduce E(k), the vector fuamcticn of coordinates x, Ye

Zs acccrding tc the formulas
e . e .
(48) E (k) -Swema. E() =5 S VM (k) dk
—
ard analogously determine H(k), D(k), and B(k). From equations (u40)
ve obtained for these vectors the equations

() rot E () = ikB (k) + -1-B°, rot H (k) = — kD () — L D°.

If ve consider the relaticnshigs

!
1

wer e .‘/“—".‘.T‘.. >
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(50 D (k) = e (R)E(k), B (k)= (k) H (%),

in which e(k) and u(k) are the same as in foresulas (1), then equations

(49) are reduced tc equations (25) with outside currents
1 ro

(51) . r-—‘_’.‘_o. jn-_&'.o..

The ccnditicns

(52) divD®*=0, divB8°=0

ensure the absence of lcngitudinal fields sc that the complete field
E(k), H(k) is ottained in tte fcrm cf integrals (30) and (42).
However, fcr writing these integrals and for formulating the
conditions (26) wvhich ensure singularity of the solution, in formulas
(48) it is necesary to consider that 1l k > 0 and to integrate by k

sosevhat above the real aiis.

Separating the resonance part into E(k) and H(k) according to

formula (43) and selecting rance A in the f¢ra cf a band

(s3) —0<Imx <0, —o0o <Rex <o,
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ve make a transiticn tc E{t) and H(t) using the second formula (48).

j Shiftirng the integraticn curve downvard towvard the straight line 1lm x ;

= -8, we ottain the exgression

(54) E«)-§C.(t)5.+,.... HO)=JC(OH+...,
a

| A in vhich the terms are explicity writter which decrease vith t > =

vith respect to absclute value more slowly tham €%, and moreover

(59) Gl =—g(@—bye ™,
.:.._w‘v._Sot.dv. b.-_ﬁﬂvn.dv.

In formulas (S4) and (S5) figure weakly attenuating oscillations
with a frequency o, =ck, (Imk> —48), which satisfy equations (6) with |
8 meg(k) and p=p(k). If the substances filling cr forming the open r
rescnator themselves possess resonance propeérties, thamks to which
there appears a strong dependence of ¢ and 4 on k then these
0 ¢scillations can differ ccnsiderably from the cscillations examined §
earlier. Even the number of these oscillaticns may be different. Let,
for example, the working part cf the resonator (let us say, the space

betveen the nmirrors) be filled vwith a hcaogenecus substance in which 1




=3

“fﬂ--—-n-—---lIIIIlIIIlIIIlIlIIIIIIIlIl!BHEHIIIEEIE=H==ﬂE==:$:::z!!

Dpoc = 2234 EAGE 20
(56) R mtg——2 . u) =1,
A4 2iphk — B

vhere ¢, Ay, 3nd py do not depend cn frequency. If A=k, then during
replaceseat of ¢(k) by e(k) splitting of frequency ck, into two

frequencies shich correspcnd to various oscillations is possible.

Natural values Ak, are distributed in the plane of a complex
variable symsetrically relative to the imagdnary axis so that to
frequency o, and to vectors E, H, alvays correspond frequency—-w:and
vectors E;, H;: this follows frce exgressions (4). In the problem of
excitaticn of monochromatic fields (§3) values k, which lie near the
regative part of the real axis are not of interest; in the Cauchy

Frebles they ensure reality of the suas (S4).

Derivation of formulas (43)-(45) is based on the suppositicn
(cf. (1), end of §4) that integrands (42) in the range A except for
sisple bands & do not have any cther special features. In §5 wve
examine the behavior of these functicns in a particular case of a
hcscgenecus isotropic sphere and are ccnvinced that this is actually
sd: During derivaticn of formulas (S4) and (S55) we further proposed
that the essentially singular pcints of functicns e(k) and u (k) lie
below the straight line Imx = -&, i.e., that 6§ is sufficiently srmall.
Bands of the functions e(¥) and p(k), for exasple in the case of

applicability cof forlulas‘ {56) the points :j-_-Vk'—pg—ipo. may lie

3
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abcve this straight line (i.e, it may te copsidered tha p, < 6).

§54 HOMOGENECUS ISOTROPIC SPHERE AS AN OPEN RESCNATOR

Let a homogenecus sphere cf radius a with permeabilities and u :

bte excited by the radial electric dipole lgcated in point R = By, 3 =

0. Outside the sphere is a vacuum (8 =y = 1 with R > a), the dipcle

say be outside the sphere as well as inside, the moment of the dipole
Fs the frequency w = ck. The irduced field is expressed, as is known,

by the scalar function U = U(R, 8):

1 9 w\ v
(57 Ena-_—k-'—-ﬂn ﬁ(&il.lox)., E.-k-a-m. e
Ev=Ha=He=0, H,='R¥.

The eigenfuncticns of the continuous sgectrum which we need are

€gqual to
UO'I.I (Rt o) o 1

(54) =B (%) b3 (xR) — BY (%) A (%R)] Px (chs 0) npn R>a.
Usnx (R, 9) = 31, ( Ve R) Pa (cos ) apn R <a,

where L,hﬁ’ and &Y are connected with the Eessel and Hunkel functions
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(59) W =VE @ W =) FHER 0
and

(60) BP0 =Y L j, (ViR a) AP (xa) — j, (x Ve a)lh?” (a),

{

B2 () =/ L [, Vepa) i (a)— j, (x Vi a) A (va).

Substituting functions Ugp,x intc formulas (57) where k is

teplaced by x, ve find the vector functions E,, and Hea,x. Functions

Um,« we obtain by replacing Legendre's pclyncaial P,(cos®) by
P"‘(coso,.,...,, in formulas (57), however, in our problem they are not

reicessary.
The sclution of the posed problem has the form

(61) U= 3 UnPa(cos 9), U,=U'+ UL,
Re=g

where U, corresponds to the transverse, and U. to the longitudinal

electrical field. We find values U! sclving the electrostatic

frcbles. With Ry > a we have

B e
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2n 41 R““ o with '
(62) U'-' s+Na+igs . pH R <a, 1
(@—=1)(n 1)/ a\?* s with f
U [l+ (s+1)n+1 (k-) ] :ﬂ npH a<R<R0. : J
@=1)(a+1) [ 0 \" R wiTh
[l+ .c+i n+1 ( .) ]_;a"' e R> R,

amd with no < a

vi=li-aimt (@R B R<R

(63) u._T[' (T‘;—;;‘,,l:ﬁ() ]533 npxt:/’R.<R<a +

ot »is B! with '
U= rernarie W e

Values U! we find frca the general thecry (§3) replacing the

digcle with a concentrated electrical current and using the forwmulas

B (x) |

I‘..(n)=(—l)"'m. 1 ;
i Gon () = 4 (— 1" 250 (B (e, 1
Dea () = — 2227 L” x*BY (x) B (x).

Using the identity P,(l1)=1, the result may be written in the fornm

Ugn.x (Ros 0) Upy (R, 0)
—x) ,‘la(l) (%) Bm (x)

(65) U'--——(2n+ )S

=

The correctness of this fcrmula is not difficult to check
sugplementing it with the term U, and using the theorem of

remainders; with Ry > R > a we chtain




POC = 2234 FAGE 24

B (1)

(6/6) Un= W""" + 1A (£Ry) [n:” (kR)— "m

h.‘."(kR)].
and formulas (57) and (61) give us the solutiom in the classical

fornm.

Integral (65 may te ccnverted by defcraing the integration
curve downward. Integrand (65) is meromorphic which is easy to
perceive from the properties cf functicns (£9). In the point x=0 it
is regular. In the lower half plane Imx < € its bands coincide with

the rocts cf the equation BP(x) =0, which can be written in the ferr

l, (% Vey a) h‘"’(u)

(6 T Ve e

The possibility of representing integral (65) in the form of a sus of
rerainders in points 4, , the roots of equation (67), is determined

cnly by the tehavior of the integrand with Imx— <=,

Let us limit ourselves to real pcsitive values Vep. With Fq > a
and R > a the integrand in the lowver half plane increases as
e/"R+R~3 , therefore the irtegral on the closing semicircle |[x| =

K with K> « does not vanisk (cf. [1], §6) and it is not possible to

B e e
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reduce the integral to only the remainders. With R, < a and R < a
this reductica is always fossible. With Rg > a and R < a the integral

is reduced to remainders under the comnditich

(6€) Ry—a<Vep(a—R).

However, the possibility of reducing integral (65 to a sum of
resaimders is not ccnnected directly with tbe presence of resonance
focperties cf the sphere. The latter are detersined by the existence
of @64 tands k., with a sufficiently ssall isaginary part and also by
the existence cf nonintersecting resonance curves, i.e., by the
disposition of tands &, ir range A, adjacent tc the real axis (see

§3) -

Let us exanmine the roots cf equaticn (67) with xa> 1 and Vep> |,
vhen the bearms inside the sphere can experience total reflecticn from
its boundary. Thanks to tle perseaticn c¢f epergy into the surrounding
space the fundamental oscillations correspcnding to such beams will
attenuate. It is apparent that the smallest radiation attenuations
will be possessed by oscillaticns having the character of waves cf a
whispering gallery, for which tte angle of incidence of beams on the
boundary of the sphere is close to »/2. Por such oscillations
fuscticns j,(x) and j, (x) may be replaced by Fok's asymptotic expressioas

(see, for exaamgle, [4]), which are suitable with x 2z n ¢ 1/2 and
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functicns hf."'(x)uh.'.“@r) by letay's asyamptotic expressions, wvhich are

suitable vith x < n ¢ 1/2., Equationr (67) then takes the form

(6:5)

vhere

(70)

{ =

: A Vi_vsh (1 —ier),

'a+~}—~ Yepa "ty
v -"'—TJ

R
g 84
chn-—"r. T-(n-}-%)(n—th .

Considering paraseter v %c¢c be large it is fossible to represent

t in the forn l;+.él... shere l:—q is the root of the equation

n

o()=0 (g=1,2,...;£,<0),

and value A/, is egual to

(72)

Eence

(73)

T.,-(n+~,-) Arch Vep ]/ )+w,,/1_a+.l,r

$ 4 i e

) ' 5 }

n4 f—v(l,+A )
Vepra 7

Rng =
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so that the radiaticn quality is equal to

1
4 Que = 2;_?_ l/-;— (o — 1),

It increases with an increase in subscript r and decreases with an

increase of subscrigt qe

Fcrmulas (67) - (74) relate to electrical oscillations E,, of a
hcsogeneous isotropic sphere. If in these fcrmulas ¢ and y change
Flaces then we will obtain forrulas fcr magretic oscillations Hua,.
The rescnance properties cf spherical particles are displayed during
gcattering of electromagnetic vaves cn them (see, for exaaple, [€]).
In [6] 1light was generated in a spherical-shaped crystal;
cscillations Emn¢ were induced - waves of a vhispering gallery, with
2n ¢+ 1 - the multiple ccnfluence of eigenvalues (73) led to the
sisultaneoss generation of many oscillatiopns. However, the
predominant excitation cf oscillaticns with ssall g is connected not
with fcraula (74), which gives an extremely high quality, but with
the fact that for them, acccrdicg to the kncwn criterion of Rayleigh
(see, for example, [7]), the rcughness of tte tcundary is less

grenounced. Let us note that the fcrmula given in [6] for quality,

e L (ISR

TNUCSPEVE-SO% S
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sisilaz to fcrmula (74) is errcneous.

CONCLUSICN

This work examined the protlem of excitaticn of an open

resonance system by outside currents and also the Cauchy protles.

Formal solutions of these frcblems were ccpstructed using expansion

cf the sought fields with respect to eigenfunctions of a continucus
spectrum. For the resonance part of the field simple expressions are
derived which make it possible to calculate it if the weakly
attenuating fundamental oscillaticps are kpncvwn which determine it,
These exgressions make it pcssible to calculate a number of
frcperties of cpen rescnators approximately the same way as this is

dope fcr ccnventional cavity rescnatcrs.

I would like to take this cpporturity to thank P. L. Kapitsa and

Ve A. Fck for their interest in this worke.
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