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E~CIT&TION OF ELECTROMAGNETIC OSCILLATIONS IN OPEN RES ONATORS

I. A. Vayn s h t.y n

An open reson ator in tie çeneral case is a system of homogeneous

cz heterogeneous bodies (their ç oçecties ate assigned by thc’

diattibuticn of complex permeabilities in s[ace) which are surrcunded

H, ty a vacuum. Oscillaticns in such a syste m are accoa~anied by

radiaticn into free space. It is proposed tbat among the natural

oscillations of the syster tber€ are natural oscillations with high

quality with which we are familiar . The prctlea of induced

oscillations of an open rescnator under the effect of outside

cutrents and the  Cau ch ~ p r ct l ea  are scived t eing expan sion with

rea lect to eigen functicns of a continuous sFectrua. In the solutions

there is clear separation of the rescnance cart ca used by  natural

cacillations vith high quality. The ge~eral theory is illustrated 

—,— ---- .— -. _ _ _ _ _ _
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naing the example of a homogeneous transparqnt sphere excited by a
radial electric di~ cle.

ItT~OUDCTION

Open teEonators are oscillatory systems whose oscillations are
accca~anied by radiaticn into free space. W~ define such a syste.

assigning in space the distribution of coiFlex Eeraeabilities —

dielectric and magnetic

(1)

dependent on the wave number k = w/c (Ct, what  is the same thing,
frca the frequency ~) and from coordinates z, y, z w~~reby we shall

ccrsider that

1

(2~ a p = I npu R = J”~ + y’ + z1> ~~,

i.e., beyond the limits of a s
~ iere with radius I — is a void in
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which diverging electromagnetic waves are £ropa gated w hich are formed

1. during el.ctrcaagnetic oscillations of the system. Com plex

permeabilities (1) cortEsiond tc absorbent .ct.ncnabsocbent

substances, so tha t

(3) Ims )O , lmp)O.

~e shall not examine active substa nces (with negative losses).

According to this deficiticn an open resonator is a dielectric

or metallic sphere just like the majority of cther electrod ynamic

systems used in practice. The general theory presented in the article

is applicable ~to a troad class cf systems defined by condi tions (1) —

(3), however , it leads to siaFle results, which are of int erest only

iq the case when t h e  g iv en  syste m is a rescçance system , i.e.,

sufficiently high— quality natural oscillaticns are possible in it

(see §1). The Latter requirement is satisfied by a dielectric sphere

(see §5) whi le  a meta l  sih e re  has cractical]y ~uo resonance properties

(see [1), §6). Open rezonators, formed by mirrors , placed in a

• vacuum , obviously are enccm Fassed by the above definit ion: for them

th€ thecry whic h is presente d belo w is a natural development of the

theory given in [1) where we were limi ted by a scalar wa ve equation

.~d ideall y reflecting •irrcrs. Conventio;al cavity resonators become

cçen resonators if they are connected with free space.

~~~~~~ ~~~~~~~~ - -

-- V

- -  ~~~~.
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§1~ ATIENUATING NATU RAL OSCILLATIONS

Natural electromagnetic oscillations of a system are

o.cillations with which tie electrcugnetic field is dependent on

time t acccrding to the law

$14) E(i) — Re(E~e”), H (I)

where

(5è

is a ccaplex frequency of natural cacillaticu with subscript a.

Tector functions F = = E,(x, y. z) and H, =H.(x,y, z) s~~is fy Naiwell’s

onifor. equations

rot E,—ih,pN,, rot H, — — L k sE (k1 _ 4).

Permeabilities s and ji are determined by fcimulas (1)—(3) and

—-

L~ 
•. -~~~~~ .— --“ ~~~~~~~~~~~~~~~ r V • - ~~~~~~ ~~~~~~~~~~~~~

-- V__ __ ____:____ ~ — - ~~~~~~~~~~ -
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subsequently we shall tak e k at the frequency of excitation and only

at the end of §14 will. we need vectots E, an d H,, which satisfy
equaticns (6) with s — s ( k,) and p~~ p (k,), i.e., with

p.rieatilities at the frequency Cf the natural oscillations

t he  ise I ‘v.a.

If and ~a , as functions of x , y, z, undergo sudd en changes then

equations (6) are supplemented by boundary conditions on the

~nterfaces. With R .4 • vectots E, and H satisfy the conditions of

radiation

‘m’s(7) E —g,(O,ç) R • H, ii= fng, (O, ç)J ‘R

wh ere R, O,, are spherical coordin ates ; n is a -single radial vector

= i n ,  ~~n, ~~O); g, (O,ç) is a vector functiop wk~icb is single—valued on

a single sphere and tangent to it so that ng, (fl ,ç) — 0.

Atten uation of natural oscillation in t ime (value .) serves as

its measure) is determined both by cadiatic u of a di vargent wave (1)

a~d by losses in the system itself (with cciplezity of or ~t ) .  The

qualit y of oscillation

S
.

(8) Q, = !- 
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Ca; be quite high (cf .  §5).

~~~ U~ ENFUNCTIONS OP A CCNTINUOUS SPEC’IRUN

Let us examin e electr cuaguetic field s satisfying Maxwell’s

u~ Ifcru eq uations (iitb 0<x<ao)

(9) rotEu- hqiH, rot H~~— ixsE

and having the follcving fczm with L~ 4 —:

-
~~~~~ .4n5

(1 Q) F — x’(0 c) R + x(O c) R ‘ 1

where vectors f and X are single—valued cu a single sphere and are

ta;gent to it. The y are ccnnected by the relationship

(11)

where S — the operator of scattering — is a linear integral operator, 

-

~~~~ TJITITII JIIIIJ
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deFendent (w i th  a f ixe d dis tr ibut ion of an d 
~ 
in space) on

parameter ic With ~~t i i ( O ,~~~) let us designate t ie  nat ural vector

to;cticns of the inve rse operator S-~ and with ~~F,(x), 
•the

cozres~onding eigen values. We have

412) S’g,~,=r~(x)g~~,

whre v is the discrete subscript numberin g the eigenfunctions with

fixed x. Pot a sphere (see §5) subscript 7 replaces symbols E,~,1 and

II, ,, i.e., two regular subscripts a and r alcug with the indicated

polar izati on.

Natural vector functions F?. I  and ~~~ of a continu ous spectrum

are introduced as a solut icus of equations (9) having -the following

torn with N 4 — :

= ~ (0, ~) R + gT. * (0, ~p) —v,
(113)

-4,i5

R +fng,,.(&q’)J —~.— ,

whereby on the strength of relationship (12)

(I s)  
, (0,,)— rT (x)g,~ ,(O, ,).

L~~~~ _ _  

._~~.±11±IITTII IT
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For functions E.~ and ~~~ the ccnditicn of orthogonality is

- 

V 

‘valid

~ 5) 
~r~

- S eE~ ,E,~ .dV — — 5 pHi, RH,’, ..dV = D. (ic) 6,~,4 (x —

into which enters the product Cf the coaple vector functions

(without cosplex conjugation!) . Under ccndit ion (15) i ntegration is

carried out throug h the en t i re  in f in i t e  space , and the last integral

is taken on the single sphere. RelationshiF (15) is derived from the V

identities

1 8 
div tE,. ~~~ ,~

.j — iic’nE1, ~~~ + iiqmH~ ,Ht.. ~.,( 
div ~~~~ H,~ ,J — 1,csE,, ~E,., ,,. + ix’pH~, ~H1,

using the same arguments  as in th e case of the scala r wa ve equation

(see [ 1 ), §2) . Fun ction (16) plays the role of the nor m of

wigenfunctions of the continuous spectrum .

Vector functions E~., and ~~~ may be ccrtinued analytically both

on the neg ative part of t h e  rea l  axis  and ci the entire plane of the

ccmpl e z variable ic. With negative x they are determine d by the

— _ _ _
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formulas

(1 ¶) — E1E,, ~~, 
H ,._~ — —EIHT.

where

(20) E, — ± I .

With complex ic (namely in the lower bait p lane) the f unct ion

r1(,c) may vanish. Each root cf the equa tioq r~c) =0 coincides with

cne of the values k , examine d in §1. In additiofl we hav e

(21) 
- EI~~=ES, ~~~~~~~ ..“he~ sc = k,. ç

Actually in this case according to fornulas (13) and (14) there is

cue divergent spherical wav e in accordance with formula (7). The acm

of the at tenuat ing f u n d a m e n t a l  oscillation wit h subscr ipt s is the

value

j dD.,(h,) j  ~dF~(k,)(22) N. —~~- ~,, —~~~~
- ~~~

vi, ire

— - — --——- -- ----- -—- —— - -—--

~ 

- .~~~~V _ _
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(23) O,_ O, (k1) 1._ 5g dQ~

Value N, appears during calculation of remainders in the points ,c =

k , (see §3 and §4) . It is pcssitle to prove (cf. ( 1],  §3), that

(211) N,=~~m ~j -5 eE~dV=— IIm ~-5 pH ~dV,
R..co.1Y VR ‘° “

where V5 is the volume of a sphere of radius R , and the angle p is

chosen so that  the integr~ ls converge. Dur ing  approxim at e calculat icn

of the nor m it is sufficient tc integrate through the f ini te range

(cf. (1], §7).
1-
0

§3. E%CITAT ICN OF OPEN RESCNATOES WITH ASSI1~NED POINTS

Let the sources of the  f ield be outside electrical and magnetic

cuzrents (with densities i and j”9,. vbich oscillate wit h a frequency

of i~ ck an d are lccated at finite distances. The field E, H excited

by the m must satisfy maxwell’s eguatiops

(25) rot E = ik~&U—~~-j”, rot H

—-  _ _ _ _
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aii d the conditions for in f in i t y

(26) IIm RE— 0, HmRH — 0 npm lmk> 0,

which prov ide singularity of the solution (see, for ex am pl e, (2 1,

§1-0) and which mak e it possible tc lcck f-or it in the form of

iip tegrals (30) and (42) on the real axis. I; tie final formulas (43)

and ( 144) it is possible to assume that in Ic = 0.

Since vectors F,0 , and H,,~ sat isfy relatio;ships

div(eE,, ,)= 0,~div (pH,.,) — 0 ,
(27) arising f rom equation s (9) , the sough t  fields P and H should be

represente d in the form (cf. [2), § 101 or (3))

12~~) E = E ’+E ’, H=II’+H’,

where F’, and 11’ are transverse (solenoidal) fields which satisfy the

relationship

(29) div(eE’)=O, d~v cjLII’)=0

V 

and nay be represented in the form

(3C) E’— ~S ~4,(x)E10 1dx, 11’= E S B 1(x) H,..dx,
‘ I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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and F’, and H’ ate lcng itudi nal (potential ) fields whic h may be

writ ten in the for .

(31) E’—— grad ø’ H’—— grad cb”.

l~sre 0’ and 0~ are the electrical and magnetic scalar potentials

which sa t i s fy  the equat ions

(32) div(sgradO) T4’~ ’ div(p grad0m) = —

where

(33) V p’— —~~~dIvJ’, P’1._LdLv j”

are the densities of the outside charges.

Equat ions (32) are solved usin g electrostatic and magne tostatic

methods (ci. §5) . Lcngi tudir a] .  f i e ld s  dc act have resonance

pxcper ties. Since all charges are at finite distances,, 0’ and 0’ with

F -~~ — decrease like 1/N or faster. Longi tudinal  tields are orthogonal

to the vector functions of the continuous spectrum:

— _ _ _ _ _ _ _  _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _
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-(34) 51E~,~E’dV — 0, 5i&H ~.,N
h4v_ 0.

Actually we may wr i te

~ eE ,.grad cD’dV . i_~ dIv(eE,~ cJJ)~,V÷
(35) 

+~ 0’dlv(sE,,)dV=_ ~~o’nE,,4g,
S S

a~ d th e integra l o ver S5 (sphere of radius ~) with a 4— vanishes
si~ce 0’ decreases as 1/F or faster and the radial com ponent F,,, •
like 1~ R2.

Substi tuting expan sion (30) into equations (25) we obtain the
relationsh ips

= 
~ -j’— fk,F’

(36)

S (wA (x) — kB, (x)) II,, ,dx — j
~ + ik~&1I’,

is which scleqoj da l vectors stand on the r igh t ; for th em it is
pessibi. to writ, the expansions

437)

• •~ ~~•Vfl- V_~~V~_% - _ -~a___~~~~~~~~~_
_ 

—tV- — 

~Vi_ _
~~~~~

__ .

- ---~~ .. ~~- -- . - - V .. _ _ _ _
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and coefficients a,(x) and b,(x) on the strength of formulas (15) and

(34) are obtained in th e  form

(38) Gs (X)
~~~D~~,I) Sy E110 *dv. b,(x)hhhui

D,~~~ S
uuumf 1~~

w

Ccefficients A,(x) and B,(x) must satisfy equations

(39) hA, (x) —xB , (x) —

V 
xi4~(x) _ kB,(x) —— 4. bi (x) ,

00

i 
_____________

(liC) 
A,(x )—— -~- ~~~~~~~~~~~

I ~~~~~~~~~V 8,(x)——- - ~~~~•

Using relaticnships (19) and (20) and introducing coefficients

a(~~1) C,(x)—— -—— 1— -—,

0 
— - — -V -— -—-— V—V—--VVV-V———— V — - . . - — — — —

L- 
— 

~~~~~

—-. -

~~~~

—-V -

~~~

. -- V. - 

-~~~
—- ..__ —--- -- __z_ —— —~~ — —---.‘- — — —-- —---
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we may replace exp a nsicn (30) by the tcllovlng:

~~~Vt~

(42) E’_
~~~~S

C,(*)!,,dx, H’_ESC ,(w)N,, dw,

~a which i r tegr a t icn  is perfor med along the entire real. axis.

f
In these integrals let us displace t h e  integr at ion curve

downward and designate wi th  r the new curve , a n d b y A the a rea

between the cid and new curves . We obtain

( 143) ~~~~~~~~~~ H’=E Cl I .+ ff ,

where summation is spread alon g a11 of the attenuating fundamenta l

cscil--lations, the wave numbers A, of whic h lie in the range A; t and

1% are represented by integrals (42) not op the real axis, but on

c~mrve r. Coefficients C, on the strength of fctuulas (22) and (23)

are obtained in the  form

j  e,—b,(44) C. _
~~~~—_ç~

wh ere

L. -

k’~ - . . - -V
~~~~~~~~

-V

~~~~~
—V --- - --V

~~~~

— - --- -
~~~~-- V -~ -- -~~~~~~~~~ V - ~~~~~~~~~~~~~~~~~~ ~~V -~~~~ - - —-
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(145) — S J’E.dV, b, — 5 -;

With proper selection Cf th e  r ange ~ ( see [1], §14) the sums in
V 

formulas (43) determine the rescnance part Cf the fiel d and against

the background of which appear rescnance pzcperties of the given

system . It m ay  hap pen that  the given system does not have resonance

pr~.perties either in genera l  or with a certain arrangement of the

so.rces or observation points: then the separation of the resonance

part does not make sense (see (1). §4).

the fcriulas derived above are in many ways analogous to the

foimulas which are cbt-aincd in the thecry of excitation of “closed”

cavity reacnators (see (2), (3)).

{4. CAU CHY PR ON LE N FOR EL PC ’IR ONA GN ETIC OSCILLA !ICNS

If (formally) • we count all currents of conductivity among

currents of displacement then P~axwel.J ’s equaticns for nonstationary

fields can he written in tle fczm

V 
(‘P6) rotE(I)~~_4. ~~~

0
, rotft(t)i— 4o 

M

— _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The Cauchy problem reduces to the  integratica of these equations

neder the initial conditions

(47) D(I)—D , B(t)—I’np~~1=O,

where DO and 00 are assigned vector munct iors which decr ease

sufficiently rapidly with P 4—.

Let us introd uce E (k) • the vector fuactic~ of coo rdinates x , y,

z. acccrding to the formulas

(U) E (k) — ~E(O&, E(I~ 
_
~~
oS .-’

~
E
~
k)o

ar-d analogously d• ter u ine 0 (k) , 0 ( k ) , and 8 (k) . Ftoa equat ions (40)

w• obtained for these vectors the equations

( *5)  ro t E(k) = ikB (h) + 4.r , r o t H ( k ) — —I A D (h)—4.. Ir .

If we consider the relaticaships

T1T_Ii•-Lii~ ±II.III1. ~ITTTIIIII~
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(50) D (k) — s(k) E (k) , B (k) —~i (k)H (k),

in which s (k) and M (k )  are the same as in foriu las (1) • then equations

( 149) are reduced to  equations (25) with outside curren ts

(5 1) 
- 

J’— — ~~-D°, ~~~~~~~~~~ V

Tb. ccndit icns

(52) d iv D =0, div -B° =0 
V

ensure the absence of lcngi tud ina l  fields Sc that  the complete field

1(k) , 0(k) is a ttained in tte fct m of integrals (30) and (t~2).

Fsve ver , f or  writing  these integrals and f o x  formulati ng the

conditions (26) wh ich ensure singularity ‘of the sol u ti on , in formulas

(48) it is necesar y to consider that 1. k ) 0 and to integrate by k

somewhat above the real axis.

Separating the resonance part into E(h) and H(k) according to

formula (‘43) and selecting rance A in the f i rm of a band

(53) —6 (lmx<0, —oo<Re%<oo,
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we make a transition to E( t )  and 0(t) using the second formula (148).

Shi f t ing  the integ ration curve downw ard toward  the str aigh t line is x

• —6 , we a t ta in  the expression

(54) E( t)~~~~C,(,) E.+ . . . ,  H(1)~~~~C,(1)H,+...,
4 £

in which the terms are exElicity writter ~bich dscrease with t 4—

with respect to absclute value sore slowly than r’~, and moreover

(55) C.(t )— — ~~(a,—b,).~ ”,
a _ _ ~~~,, 5 D E Z dV. b.—_ ~~~, 5B °N~dV.

Zn formulas (54) and (55) figure weakly attenua ting oscillations

with a fr equ.pcy e,~~~~~ (Jmh.)—6). which satisfy equations (6) with

s— s ( h.) and p —) I ( h .). If tb substances f i l ling cz forming the open

lescuator themselves possess resonance properties, ths iks to which

there appears a strong dependence of a aid on k then these

cscil-lations can differ ccnsid€xably fro. the cscillations examined

ea.ilier. E ven the number of these oscillat icns say be diff erent. Let,

tot example , the work ing  part of the resov4ator ( let *~~ say , the space

between the mir r ~~ s) be f i l l ed  wit h a hcaogenecias substance in whi ch

T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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(56) s(k)_ s._
~~+~~~~~ *

. i& (k) — I ,

where v, A~ , aid p
~ 

do not depend cm frequency. If k,~~ k,, then d u r i n g

r eplacemen t of s(k) ~g s(k.) splitting of frequency ck, into two

frequencies which correspcnd to various oscillations is possible.

Natural  values A, are distributed in t h e  plane of a complex

variable symmet rically relative to the imaginary axis so that to

freque nc y ., and to vectors E,,H, always correspon d frequency—w and

vectors E , H:: this follows f rci  expressions (4) • In the problem of

excitation of monochromatic fields (~3) values k, which lie near the

regative part of the real axis are not of interest; in the Cauchy H
preblem they ensur e reality of the sums (54). H

: 1
Derivation of formulas (113)—(4 5)  is based on the su pposition

(of.  ( 1], end of §4) that integran ds (42) in the  ran ge A except for

simple bands k, do not have any cther special features. In §5 we

examin e the behavior of these functi ons ii~ a particula r case of a

homoge neou s isotropic spher e and are convinced that th is is actual ly

sa
~ 

During derivat icn of f o r m u l a s  (514) and (55) we fu r ther proposed 4
that the essentially singular pcints of functicns e(k)and 1i (k) lie

below the straight line 1mw = —
~~~, i.e., that 6 is suff iciently sma ll.

Ba nd s of the funct ions e(k) and 4 (k) , for example is the case of

applicability of formulas (56) the points ±Vk ’~~~p~~~ ip. , say lie

LI: - ~~~~~~~~~~~~~~~~~~
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abcve this straight line (i.e, it may he c~psidered tha Pa < 6).

4

~~~ HOMOGENEOUS ISOTROPiC SPHEPP A S AN OPEN RESCOATOR

Let a homogeneous sphere of radius a w ith perseabilities and p

be excited by the radial electtic dipole lgcated in point R Ba,, ~ =

0~ Ou tside the sphere is a vacuum (a = p 1 with R > a) .  th e dipole

say be outside the sphere as well as inside, the moment of the dipole

p~ the frequency u = ck. Ttc  in duced field is expres~~d, as is known ,

by the scalar f unction U = U(R, 8):

1 8 1  ~~ 
V

(57) ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - -

V Ihs J UE,~~ H R .H. = 0, ~~~~~~~~ V

The eigenfunc tions of the continuous spectru. which ye need are

equal to

(58) 1B~ (x)h~ (xR)—S~(x)h~ (xR)J p4(cg,s ,) ups R>a. 2
ups R<a,

where J~, h~ aid A~” are connected with the Lessel and Hunke l functions

L—~- - ~—- _ _j T~~~~~~~__ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

V



- ~V V~V_VV~. - ._~-V ~~~~~ ~VV- VV _V___
~V _ VV V ~~
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(~~9) J,(x) .. I/IJ 1 (x). h~”~(x) ~~J/
’
~~H””i (x).

and

(60) B~P (x) — j/i.E. f,(x Y~~a) h5~ (wa) —j (x ) ’j ~a) h ’f (xa),

B~~(x) = J/ -~t j ,(~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Substituting functioms (J ~~ into formulas (57) where k is

replaced by x, we find the vector functions ~~~ and H,~ 1. Functions
we obta in by replacing L egend r e ’s p’clyioaia l P.(cos G) by

P~ (cosb)~j~~~, in formulas (57), however, in our prob le m they are not
recessa ry.

The sc]ution of the posed problem has the form

161) U=.~~~U~P~(cos O), UA =tJ~-f- (J~,

where U’,~ ‘corresponds to the transverse, and (J ~ to the longitudinal

electrical field.  We fV i f l d  va lues  14 sclviqg the electrostatic
p r oblem. W ith  R~ ) a w€ have

_ _ _ _ _ _
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$2 
.U~—P (~~~~~~1~~

’ - 

-

p[i ~~~~~~~~~~~~~~~~~~~~~~ ~i
’p~~a<R<R.,

(4— p[i + ‘
~~~~~

‘ (j-fl3 t~’P~~ R> R.,
a’~d with R0 < a 

V

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ R<R,,

(63)

R) a.

Values c4 we find fvcm the general theory (*3) replacing the

dipcl. with a concentrated electrical current  an d usin g the f o rm u l a s

r ~ 
..~B?~(’),1(x)— (— ~

G,,~(x)== 4~t(— I)~~~~~~~x7[B~
1) (x)J2,

D,,~(x) — —2~~~~~~ x’B~” (x) B~ (x) .

Using the identity P,(1)~~1, the result may be written in the form

(6 S) 
~~, 

(211 + ~~~~~~~~~~~~~~~~~~~~

The correctness ot this formula is not difficult to check

supplementing it with the term (4 and using the theorem of

remainders; with R 0 > P > a we cbtain

~~~~~~~~ ~~1:~I:: :
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I
’ (6/6 ) U, + I)h~’~ (kR,) [h~’(k R)_

~~:~~iLi~(k R)] .

V and formulas (57) and (61) give us the solution in the classical

tots.

integral (65) may ~e converted by defcrming the integ ration

curve downward . Integrand (65) is meromorphic which is easy to

perceive from the properties of functicns (~9). In the point x — O  it

is regular. In the lower half plan e 1mw < C its bands coincide with.

the rocts of the equation B~(x) =0, which can he written in the fcrm

6)  ~ =1 ‘ I,, (ii )‘~j a) h~ (,sa)

lb. possibility of representing integral (65) in the form of a sum of

remainders in points k,,,, • the roots of egeation (6 7) • is determined

only by the behavior of the irtegrand with 1m w-. —a .

Let us limit ourselves to real  posit i ve values Y~ Wi th P~ > a

a~d N ) a the integrand in the lower half pla ne incr ea ses as

, therefore the integr al on the closing semicircle l w t
Z with K~) does not vanish (ci. [1], §6) and it is not possible to

- - - V V  V - V  - .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—-V _ _ _ _  

_____________________
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reduce the integra l to only  the  remainders.  With  P 0 < a and P < a

th is reductiom is always possible. With R0 ) a and U < a the integral

is reduced to remainders  under the couditio~

(6 E)

However , the possibility of reducing integral (65) to a sum of

remaimders is not ccnn cted direct ly with the pr esen ce of resonance

~rcperties cf the sphere. The latter are determined by the existence

of ~~ bands k,, wit h a sufficient ly small imaginary part and also by

the existe nce of nonintersecting resonance curves , i.e., by th e

disposition of Lan ds k1, ir range ~~, adjacent to the real axis (see

§3).

4

Let us examin e t h e  roots ci eguatica (67) with xa> 1 and j/~j > i ,

wh en -t he beams inside the sphere can experience total reflecticn from

its boundary.  Thanks to t t e  perae a t i c n of energy into the surroun d ing

space the fundamental oscillations correspcnding to such beams will

attenuate. It is apparent that the siallest radiation attenuations

wil l  be po ssessed by oscillaticns having tbe  charact er of waves cf a

whispering gallery , for w h i c h  t t e  angle of incidence of beams on the

boundary of the sphere is close to ./2.. For such oscil lations

fuicticns j~(x) and j,1 (x) say be replaced by Yak ’s asymptotic expressions

(see, for exam ple , (4]) , which are suitable with x z,n • 1/2 and

V V - V - ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — — —
. — — 

--- -- --  _ _ _  _ _ _  _ _ _ _ _
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I V functicas h~~(x ) skL~(x)by leb ay ’s asymptotic expressions, which are
suitable wit h z C ii • 1/2. Equa t ion  (67) the n take s the fo rm

where
-

- IV I

I *+T~~I1Y~~a (iu+y~H (7~O)

chi~= ~ ,

Considering paramete r . to be large it is possible to represent

t in the f o r m  1+& I,,, where f,— q is the root of the equatio n

(71) .(I) — O (q— ~, 2,...; f < O),

and value &,,, is equal to

at 
_ _ _ _ _ _ _ _  

-

(72) ~~~~~~~~~~
r,, _(n ÷ }) (Arci~ Y~ — 3/i_ J:) + ~ J/i~~ + 

~
-. (

A+ 1—v (1 +M,,,)(73) kM = Y~-a

~~~- -—- V - - - —-- V— - - - - - - V  - _~~~~~~ ~~~~~~~~~~~~~~~~~ - — ~~~~~~~~~~~~~~~~~~~~~~~ —

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~V V ~~~~~~~~~~~~~~~~~~ ~~~ VV 
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so that the radiat icn quality Is equal to

I 
_ _ _

(74) Q j
J
/j (~~~_ ()~aTi,~

It increases with an increase in subscript i and decreases with an

ir$crease of sub script g.

F crmulas  (67) — (714) relate to electrical oscillations E,,i,, of a

homoge neou s isotro pic sphere. If in these fcraul*s s and ~a change

places then we will obtain formulas tcr magretic oscillations H ,,,.

the rescnance properties cf spherical particles are displayed during

scattering of electromagnetic aaves ca the. (see, for  exam ple, (~~)).

In (6] light was generated in a spherical—sha ped crystal;

csciLlatioas E,,,,, were induced — waves of a whispering gallery, with

2n + I — the multiple confluence of eigenvalues (73) led to the

simultaneous generation of man y oscillations. Bovever, the

predominan t excitation ci oscillations with small q is connected not

with fcraula (714) , which gives an extremely high quality, but with

the fact that for them , acccrding to the kn cwn crite ri on of Ra yleigh

(see, for example, (7]), the rcughness of tte boundary is less

p~cnounced . Let us not e tha t  the f o r m u l a  given in (63 for quality,

___ -—~~~~--~~~~~ - - - -- ~~~~~~~~~~ - - -~ -V-- -~~~~~~~-~~--.~~~ - - - - - V - - V -~—~~~~~~~~~~~~~~~
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siaila z to fcrmu la  (74) is erroneous .

CO NCLUSICN

This wor k examined the pro t l em of ex cztaticn of an open

resonance system by outside currents and also the Cauchy problem.

Potua-l solutions of these prcblems were cc~imttucted us ing expansion

cf the sought fields with respect to eigenfvnctions of a continuous 
V 

-

spectrum. For the resonance part of the field simple expressions are

derived wh ich sake it possible to calculate it ~f the weakly

attenuat ing fundamental oscillaticns are k~icwn which determine it.

These expressions make it pcssible to calculate a number of

pzcperties of open rescnatots approximately the same way as this is

dose fcr ccnv entiona l  c a v i t y  r e scna tc r s .

I would like to take this opporturity to thank P. L. ICapitsa and

V. A. Eck for  t hei r interest in this work.
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