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ABSTRACT

A model for a generalized image tracking system is presented.

Characteristics of minimum norm similarity detectors are investigated.

A first orde r local tangent plane model for  digitized image ry is used

to successfully predict properties of the auto— and cross—distance

functions for  real data. A matrix s ignal—to—noise r i~;io is shown to be

the natural signal—to—noise ratio for  the minimum norm detection

problem and an approximation is derived and experimentally ve rified for

an upper bound on the probability that a minimum norm detector make s a

particular registration error. A non—linear two—dimensional f i l ter  is

presented which shows a significant reduction in noise variance in low

contrast regions of an image. An optimum weighted norm is derived

which minimizes the probability of making a registration error , and an

adaptive reference set selection algorithm is presented which maximizes

the tracking signal—to—noise ratio. The adaptive reference set

selection algorithm uses the histogram of gradient magnitudes and

includes a new gradient estimator/classifier with a t- Lxed probability
0)

of error. An adaptive Kalnia n f i l t e r  is developed ‘
~~o u~ydate the

reference image and the fil ter is shown to be stable in all a reas of

interest. An integrated sequential image tracki ng algorithm using the

non—linear two—dimensional f i l t e r, adaptive reference set selection,

and the adaptive Kalman f ilter for reference u pdate is shown to perform

significantly bette r than a conventional minimum norm tracking

algorithm. 
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II~~RODUCTION

This investigation is concerned with developing n~~ t echniques

for t racking images: specifically, sampled and digi t ized images. The

major thrust of this study is that there are a number of ways to

impr ove a tracking system ’s performance in the presen~~ of noise.

• Pot ential improvements in system performance can be traded off for

lower system cost or retained for  higher speed , improved accuracy, and

a large r class of trackable images.

1. 1 Research Obje ctives and Approach

The primary goals of this research are to develop and evaluate

techniques for tracking sequences of digitized images. The approach to

be used in searching for improved tracking techniques will be to first

• develop a meaningful signal—to—noise ratio by examining the

characteristics of a minimum norm similarity measure fo r digitized
I)

images, and then investigate ways to increase the signa2—to—noise ratio

• through “intelligent” processing. By adopting a model fo~~a g~neralized

image—tracki ng system which is partitioned by task, and examining each

task fo r ways to impr ove the effective signal—to—noise ratio , the

• overall system performance may be improved. It is essential to

recognize the importance of interactions an~ ng the various tasks or

operations within the tracking system and to av id employing

innovations in one area which might be detrimental to the total system.

• - -~~~~~-- - -~~~ - •

- _ - -

~
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1.2 The Image Tracking Task

Consider for a few moments the problems of building a machine

to play tennis. Obviously ,  there are a number of functions that must be

carried out by this machine if it is to do any more than simply serve

the ball. It must certainly be able to move around the court with

sufficient speed to return the ball; it must be able to swing a racket

and hit the ball; but above all, it must be able to track the ball with

sufficient accuracy to be able to predict where and when to swing the

racket.

If we build this machine with an electronic eye, how will it

actually track the ball? To answer this question , we must investigate

the various pieces of the general machine—implemented image—tracking

task.

The tracking task can be thought of as consisting of two

separable and sequential subtasks: acquiring the target and tracking

the acquired target image. Before an object or target can be tracked ,

it must be located within the image . For a human , this may be simple,

but even this almost unconscious action consists of a sequence of tasks

which are quite difficu lt for a machine. An orderly search must be

conducted using stored data about where the target is likely to be.

Then, for each object found , the recognition or classification task

must be attempted , perhaps with the aid of contextual information . This

problem, while it may be trivial for a 10 year old , is very difficu lt

to solve using a ma chine . In fact, for mcst current app lications, a

huma n operator mus t still  perform the acquisi t ion or target  designation

task for the tracking machine.

2
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1.3 A Model of an Image—Tracking System

Once an object to be tracked is found in the image, how is the

actual tracking accomplished? The particu lar algorithm used by the

huma n eye/brain combination is not known , but one possible model of a

generalized image—tracking system is illustrated in Figure 1. The

components of the model are discussed in the following paragraphs to

provide some insight into the problems of mechanizing an image—tracking

machine. The sequence of steps to be followed by the machine is as

follows :

I. Reference image initialization

II. Image sensing

III. Image motion compensation

IV. Preprocessing , consisting of

A. Filtering

B. Enhancement

C. Feature extraction

D. Comparison set selection

V. Similarity detection

VI. Reference image up date

VII. Target modeling and target state prediction

VIII.Sensor movement to maintain the target In the field of
vi ew

- In the following subsections, each of these steps will be

discussed separately. Due to the interrelationships wh ich exist

between the various step s , some definitions will be deferred to each

subsection .

~~~~~~~~~~~~~~~~~~~ _ _ _ _
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1.3. 1 Reference Image Initialization

The solution of the acquisition problem implies that an initial

reference image exists since there mus t be something with which to

compare the data ima ge. For some sys tems this may be a photograph or a

computer generated image of the target ;  it could be a prestored set of

target characteristics ; or , it might be one of the raw sensor images.

In order to track the largest possible class of images , it  seems

essential tha t the initial reference be derived from the raw Sensor

- da ta. In Chapter 5 we will concentrate on extracting the best possible

reference image from the sensor data.

The ability of a t racking system to maintain track On a

part icula r targe t is strongly dependent on the quality of the reference

image. If the initial reference image is not s imilar to the current sensed

data image due to image motion or rapidly changing vi ewing angle , the

similarity detection process (see Section 1.2.5) may not f ind a “best

match” which is satisfactory , and the u pdat ed reference image may

not represent the tru e targe t any mo re closely than did the initial

reference image. In other words, a “trackable” target image is defined

by having a reference image seq uence which “conve rges”’~~o the targe t

image.

1.3.2 Image Sensing

Many different types of sensors can be used in image—tracki ng systems :

vidicons, Correla t rons(1) , cha rge —coupled devices ( cCD ’s) ,  charge —

injection devices ( CID ’s), one—dimensio nal and two—dimensional

photodiode arrays, sing le—detector line—scanning systems, and many mo re

( 1) A regis tered trademark of the Goodyear Corp.
5
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that are still in the early stages of development. Among the sensors

available today , there are a variety of scanning me thods and

sensitivities with a wide range of resolution , geometric f idelity ,

spectral response, and speed . The noise characteristics of the various

types of sensors also vary between types. In some cases, the noise

characteristics can vary within a single device due to environmental or

operating conditions, or due to manufacturing methods. For example, a

• large area two—dimensional array sensor mi gh t be made up of many

smaller arrays, each of which has a characteristic noise which is

uniform over that small device; or a CCD sensor may have a nonuniform

sensitivity over its active area, thus producing what is known as

“fixed pattern noise” [7] . As a result , care must be taken in

designing a tracking algorithm or preprocessor to assure compatibility

with the sensor.

1.3.3 Image Motion Compensation

In the general case, the sensor may be both translating and rotating

with respect to the target, but for the cases that we will be

Investigating , it is assumed that image motion on a frame—to—frame

basis consists of translation only. There are a number of reasons why

this assumption seems to be well founded for a large fraction of the

tracking problems of interest. First, sensors that are stabilized in

either pitch and yaw or azimuth and elevation On a moving vehicle will

observe Only small components of roll about the sensor optical axis as

long as the vehicle is roll stabilized [21] .  Second , when the sensor

optical axis is pointed away from the instantaneous angular velocity

- vector by more than one half of the sensor instantaneous f ield of view ,

6
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the center of rotation for the image is not contained within the image

itself. Thus , the result ing apparent image motion is in large part

translation perpendicular to the vector f rom the Center of the sensor

field of view toward the instantaneous center of rotation of the image

(see Figure 2). Third , for  reasons that will be discussed later (see

Section 2. 2.1) the ma jority of the sensor instantaneous f ield of view

is masked out by the tracker and only a small subsection of the

available image is passed to the similarity detector. This smal l

region is referred to as the field of rega rd or ga t ed region of the

• image. This process result s in a considerably smaller effective field

of view than even the instantaneous field of view of the sensor , thus

minimizing the error that can occur When correcting for  rotation thr ough

translational adjustments.

An important part of any image—tracking scheme is the sensing

of and Com pensation for the sensor motion. The size of the search

region within an image depends on the uncertainty in the relative

sxtion of the target wi th respect to the sensor optical axis. Any data

F which can be used to reduce the relative motion , or compensate for  it
I)

will h ave the effect of limiting the requi red search a ria, fo r the

similarity detection process. Reduction of the search area is directly

translatable into an increase in the available computation time for

each search point since fewer com parisons need to be made for  each new

data f rame.

• 1.3.4 Preprocessing

The preprocessing step in an image —tracki ng system has historically

been necessary because of the relatively poor perf ormance of the

similarity detection process when operating on raw imagery (8J

.7
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• Figure 2. Image Motion Due to Rotation About a Point
External to the Instantaneous Field of View
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Typical preprocessing func t ions  are amp litude normalization , signal

enhancement, noise reduction through linear and nonlinear filtering,

Walsh or Fourier transformation , and other feature extraction

techniques. The resulting image is generally tailored to the

requirements of the similarity detection process. The design of the

preprocessing function is still more of an art than a science, and the

success of most of the presently available image—tracking systems can

be attributed in large part to the insight of the preprocessor design

engineer into the characteristics of the sensor , the operating

environment, the typical imagery that would be encountered in the

field , and the similarity detection algorithm that is to be employed .

It is significant to note that the noise statistics in the raw data

image are generally determined by the sensor phys ics and the signal

detection and processing electronics. But , whatever the characteristics

of the sensor noise, the preprocessor will modify them. This fact also

enables the system designer to tailor the noise statistics if the

result is compatible with the remai-nder of the image—tracking process.

For example , noise in a sampled raw da ta image can be made

approximately Caussian by processing the raw data image with a moving—

window averaging operator if the window contains a sufficient number of

points for the central limit theorem to be applied [26].

- 
1. 3.5 Similarity Detection -

The similarity detection process compares the reference image with a

number of candidate subimages taken from the data image. The result of

each comparison is a similarity measure. The location of the subimage

which produces the maximum similarity measure (see Sections 2.2.1,

L • •
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2.2.2, and 3.9) is taken as the current estimate of the location of the

“target” as represented by t he most recent reference  image . The

similarity detection process is the heart of any image—tracking

algorithm. Some tracking algorithms produce only a direction from the

center of the data image to the assumed locatioLl of the best match

subimage without actual]y finding the best match (characteristic of

most analog point—trackers , see Secticn 2.2.1); other tracking

algorithms carry out the search for the most similar subirnage and

output its true location .

An exhaustive examinadon of the subimages within the search

region requires a period of time which grows linearly with the area of

the search region or as the square of the search radius. As a result,

any new similarity detection algorithm which improves the speed fo r a

single similarity measurement operation will allow either an increase

in the rate at which data frames can be processed for a f ixed search

region size, or an increase in the size of the search region for a

• given data image rate.

1.3.6 Reference Image Update

A fixed reference image may be possible for those systems which are

required to track objects which do not change their characteristics or

which can be modeled as not changing their characteristics while they

are being tracked . For our tennis—p lay ing machine, it migh t be possible

to model the tennis ball as a circle which never changes size and

adjust the scale factor of the sensor output to make the received image

of the ball match the reference image. An alternate approach is to

change the reference image to incorporate the apparent  change in the

10
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size of the tennis ball. A refinement of the simple circular model for

the tennis ball night include the location of the seams. This migh t

make possible the estimation of the spin on the ball but would require

that the reference image be updated to reflect the change in the

location of the seams. The spin would then be estimated from the frame—

to—frame change in the location and orientation of the seams. For an

image—tracking system which maintains an actual image as the reference

rather than a table of characteristics , the problem of updating the

reference is equally complex. The basic decision that must be made is

how much of an observed difference between the reference iin~.ge a nd a

data image is due to a change in the actual scene and how much is due

to noise. In the past, the quality of the match between the reference

image and the data image has been used to indicate when the reference

image needed to be updated . The actual process of updating the

reference has varied with the particular system. Some systems update by

getting the next reference image from a storage file [37) . This type of

system is obviously limited to tracking objects and images that are

both definable ahead of time and not changing with time. Other

systems, once they decide to update the reference, simply use the most

recent data image as a new reference image [40]. In general, updating

the reference image in a system without prestored reference data is a

difficult problem . The criteria for evaluating the update scheme vary

from system to system depending on the particular application. The

update problem is one of measuring the changes between two images that

are declared to be “most  s imilar” by the simi lar i ty  det ec tor and

deciding wh ich changes are real and wh ich ch~~~fr~~~c~~due to noise

phenomena. The similarity detector co~~~-r~~ the given reference with a

11
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set of t rial images and p icks the “ i~~st similar” image for use by the

-~ reference u pdate algorithm. For this reason , the reference image u pdate

task is treated as separable from , and independent of , the simila rity

detection task.

1.3. 7 Targe t Modeling And Target State Prediction

An output of the similarity detection block in Figure 1 is the location

of the “best match ” between the reference image and t~he data image. In

a classic feedback control system , this output s ignal would be used to

drive sensor pointing angles di rectly. In a mo re mo dern “aided”

tracking system, the target position signal is compared with a

predicted target position , based On a model of both the sensor dynamics

and the targe t dynamics. The difference is used to modify the state

estimates rather than to drive the sensor directly. The c ontrol system

then computes the appropriate drive signals to null the obs erved error

based on the new upda ted state estimates and measured target position.

If the model of the system ( sensor and target) is perfect , there should

be no observed error , and the models will not need to be updat ed.

However, system noise and unmo deled States will produce -errors

which will disturb, the models so that they are constantly~ in .i~~ed of

adjustment. Err~ors In the t arget model can lead to a requirement for

an enlarged search area in the similarity detection process in o rder to

compensate for  bad ( noisy ) pr edictions of futur e t arge t position. This

increase in search area can result in a longer period of t ime being

required to find the “best match” Image. Thi s increase in solution t ime

then requires a longe r prediction time with a fu r the r  increase in the

possible error , and thus , an eve n large r search area. Thu s, computation

_  - - 
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speed in the similarity detection process may define the maximum

allowable search a rea, and any additional computation t ime taken by

~~deling mus t be compensated for  through a r educed search area.

1.4 Zumaary of Report

In this chapter the research objective s h ave been outlined , the

image tracking task has been defined , and the component parts of a

generalized image—tracki ng system h ave been discussed. Chapter 2

presents as background material  a summa ry of applications for  image

tracking systems, and some classical similarity detection t echniques.

In Chapter 3, a two—dimensional s ignal—to—noise ratio is developed for

minimum norm similarity detectors and an uppe r bound is developed and

• experimentally verified for  the probability of error associated with a

particular type of misregistration. Chapter 4 presents three

techniques fo r enhancing the signal—to—noIse ratio , Chapter 5 presents -‘

an adaptive Kalman f i l t e r  which is shown to be very helpful in reducing

m-Laregistration errors , and Chapter 6 develops and a nalyzes the

performance of an integra ted t racki ng algorithm which i -~corporateS a

complementary set of component algorithms. Chapter 7 pr4yides a

summary of this research and some suggestions for  future work.

13 
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Qiapter 2

IACXGROUND

In this chapter , some historical and current appli cations for

image tracking systems are presented , and some classical similarity

detection techniques are discussed. Much of the historical information

presented in this chapter is drawn from the author ’s personal

experiences over a ten year period in development , test , and evaluation

of image tracking systems at the Air Force Missile Development Center

and at the Air Force Avionics Laboratory.

2. 1 Applications of Image —Tracking Systems

This section will briefly discuss some historical and current

applications of image—tracki ng syst ems in an attempt to provide some

insight and background for  the unfamiliar reader , and perhaps relate

this research to his experience. The reader is encouraged to think of

some application for an image —tracking system which is peculiar to his

field of expertise. For the purpos e of enumeration here~ ~ mage —tracki ng

• systems are divided into categories by the location of t~~ tra
i~king

device:

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I. Space Applications

A. Automatic rendezvous with noncooperative targets

B. Autonomous orbit determination

C. Aiding earth based tracking for outer planet probes
and orbiters

D. Precision pointing for remote sensing systems

II. Airborne Applications

A. Air—to—surface missile guidance

B. Air—to—air missile guidance

C. Navigation system updates

D. Line—of—sight stabilization for:

1. Angle rate bombing systems

2. Air—to—air gunnery
I
~~

3. Reconnaissance sensors

4. Target identification sensors

III. Ground Based Applications

A. Range instrumentation systems for tracking aircraft
and missiles with mult iple cinetheodolite cameras

B. W ind estimation in remote areas derived from cloud
tracking in satellite imagery

C. Anti—aircraft gun pointing systems

B. image registration for remote sensing using satellite
imagery

2.1.1 Space Applications

In the space applications area, the theoretical basis for autonomous

orbit determination using line—of—sigh t information from landmark—

tracking systems has been established [283 . The recent Viking missions

to Mars demonstrated the feasibility of using on—board imaging sensors

15
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to aid in deriving the precision spacecraft tracking informa tion

required for accurate orbi t insertion around the outer planets [20] .

2.1.2 Airborne Applications

The airborne applications are the most highly developed real—time

systems on the list. The Wa].].eye electroopt ically guided glide bomb ,

the CBU—8 and GBU— 1 5 Modular Guided Glide Bombs ( MGCB) , and both the TV

guided and imaging infrared ve rsions of the AGM—6 5 Ma~yerick missile

use image—tracking systems to guide the weapons from launch to

target (5] , (22 3 .  Other- missiles use image—tracking systems in their

terminal phase of fli ght to obtain ext remely h igh accuracies [41.

Air—to—ai r image—tracking systems were tested as part of the AIM—82

program to develop a new air—to—air missile [6) . Pro blems were

encountered when the trackers had difficulty maintaining Stable

tracking as the target flew in front of a cluttered backgr ound scene.

Examples of line—of—sight stabilization systems fo r  targe t

acquisition and identification are the Targe t Identification System

Electrooptical ( TISEO ) employed on the F—4E and the Video Augmented

Tracki ng System ( VATS) modif ication to the PAVE TACK p 0 .  to provide

automat ic scene stabilization for the forward—looki ng inf ~ ared~sensor

in that system [22] , [3 ] , (23 ] .

Another application which is being actively pursued is the use

of range and line—of—si ght rate inf ormation in lieu of a d oppler radar

to update inertial navigation sys tem velocities. This requires very

stable t racking of available landmarks. In a s imilar application, the

U.S. Marine Corp s A—4M will h ave a t racker on board to provide line—

of —sigh t inf ormation for  an angle—rate bombing system [231. The use of

16 
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an image—tracking system is being investiga t ed to de termine the

feasibili ty of using a director me chanization for  air—to—air gunnery

[331. In this system, the tracke r must s tabilize the line—of—sight to

the target.

2. 1.3 Ground—Based Appli cations

~~ny ground—based applications of image—tracki ng systems are similar to

the airborne and spaceborne applications in t hat they~are real—time

target tracking appli cations. G round based processing of satellite

imagery (such as earth resources data) is an exception. The

difficulties of ima ge registration fr-ova one satel lite pass to another

have been studied by Smith and Phillips [34]. This is an a rea where

impr ovements in nonreal—time image—tracking appear to be usable.

Another application for  advanced tracking techniques is the estimation

of wind speed and direction at remote locations. This has been

demonstrated using satellite imagery [18].

2.1.4 Constraints On System Mechanization

The grouping of applications into space, airborne, and ground—based
/)

systems serve s to divide the applications by both speed a,nd equipment
~~~ 

‘ 1)

cost as well as by processing location. For the space applications, the

hardware costs will be relatively high , and real—time processing will

be required for  those applications listed.

The airborne systems in the blowaway category (missile

guida nce units ) must have a low unit cos t and a high processing ra te to

accomplish thei r task. It is in this grou p that subop t imal performance

may be tolerable to obtain the low coat and high speed req uired. The

airborne scene stabilization systems can be more costly than the

17
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throwaway guidance units but must operate at real—time rates, typically

30 or 60 images per second, and n eed a lowa r value of pointing—angle

i~~ise to accomplish their task of stabilizing long focal length

telescopes. The ground—based applications for  satellite image

registration and range instrumentation can employ powerful and

expensive large—scal e computers and can operate at nonreal—time rates

to obtain maximum accuracy. At the same t ime these systems are the

slowest and the most expensive of the present image—tracking systems,

yet with impr oved algorithms, fu rther research into the underlyi ng

problems , and faster  computers , these applications may eventually be

carried out at real—time rates.

2.2 Classical Similarity Detection Techniques

Basic image—tracking techniques can be grou ped into three

categories:

1) Point—Tracki ng

2) Minimum—Distance—Tra cki ng

3) Correlation—Tracking 1)

2. 2. 1 Point Tracking

Point t racking proceeds on the assumption that objects to be t racked

possess characteristics (features) which are not present in adjacent

regions of the image. Under this assumption , a characteristic feature

which identifies the target class is detected via a feature extraction

process and used to derive the target position within the field of

view. Sequential images are processed independently although adaptive

feature extraction methods are usua lly employed . In their mos t

18
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elennntary form feature extractors have binary valued outputs , i.e. if

a feature is present at a point in the image the output of the feature

extractor is a one at that point , while, if the feature is not present

the output is zero. Features which have been used include the

following :

1) Intensity above a threshold

2) Intensity—derivative magnitude above a threshold

3) Intensity—derivative sign change

Examples of the results of these feature extractors operating on one—

dimensional data are illustrated in Figure 3.

For single—feature point—trackers, error signals are computed

using either an area—balance or centroid algorithm. The area—balance

algorithm integrates the area of detected features in each quadrant of

the gated region of the data image and forms an error signal for each

axis by subtracting the resulting values in opposite halves of the

gated region.

The so—called “centroid” algorithm is more often a first—moment

algorithm than a true centroid computation. The first—moment of the

area detected by the feature extractor is the usual error signal. Both

- - the area balance and centroid error signal generating equations can be

written in terms of a weighting function mult iplied by the preprocessed

data image value and integrated over the gated region. The horizontal

•and vertical error signals are

ff  
~~~~~~~ 

f ( x ,y ) dy dx (2.1)

gated area

and

- - - T~i:~~ 
- 
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SIGN OF~
DERIVATIVE

Figure 3. Feature Extractors Operating on
One—Dimensional Data
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y xx— p . ci

f (x ,y) = 1

f(x y) = 0

HORIZONTAL ERROR SIGNAL

c = 
ffw

(X~~~~~~f ( X~~~~)dYdX

GATED AREA

VERTICAL ERROR SIGNAL

= ffw~ i~x ,Y f i x ,Y dYdx

• GATED AREA

FOR AREA BALANCE
w ( x ,y) = SICN (x_ x

~i
) w~ (x~Y) = SIGN (y_y~1)

FOR CENTROID

w
~
(x,y) = x~x~1 w(x ,y) =

Figure 4. Error Computations for Point Tracking Algorithms
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€ — f f  ~~~~(x ,y) f(x ,y) dy dx (2.2)

•t ed a rea

where the weighting functions are:

for area balance

~~ (x ,y) — sign(x — x ) (2.3)
x ci

~j  (x ,y) - sign(y -y  ) (2 .4)
y C].

1—i for  z < O
*ere sign( z ) 4 0 for  z — 0

1 1  for z > 0

and for the centroid algorithm

~~ (x ,y) x — x (2.5)
x ci

~~~j 
(x ,y)  y — y (2.6)

y ci

and the notation is as shown in Figure 4.

I’ common method for  using the error s ignal in point trackers is

to drive the gate within the image to null the err-or s ignal and adjus t

the sensor pointing angles to center the gate within the f ield of view.

Centroid trackers are quite susceptible to noise in the preprocessed

data image when the detected target area is small compared to the ga ted

area. Under this condition, a small region of noise at the edge of the

gated area can cause an error of one quarter of the gate dimension

22
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because of the relatively large magnitude of the moment contributed by

the noise. This is one of the reasons why most of today ’s centroid

trackers are mechanized with adaptive gates (Maverick, GBU—15 , VATS).

The gate size is decreased as the detected target area gets smaller in

order to reduce the tracker ’s noise sensitivity. A variety of point—

tracker exists which does not convert the intensity image to a Dinary—

valued image but uses the intensity values themselves to compute an

intensity centroid . This algorithm is limited to tracking targets which

are significantly brighter (or darker) than their surroundings. The

polarity of the incoming sensor data is reversed to track dark targets.

A primary advantage of this arrangement is that there is no threshold

to be set in the feature extractor.

Point—tracking algorithms are the basis for most of the current

generation of real—time trackers for airborne applications. For these

applications, the input signals are generally in the standard

television format (525 or 875 line scan , either 2:1 or random

interlace, 30 frames/second). The assumption that the selected feature

is not present in the adjacent regions of the image guarantees only

that the target feature is bounded and not that it is unique within the

field of view. As a result, a subregion of the field of view must be

gated for use by the tracker. A large number of different algorithms

have been developed , some with adaptive gate size, some with fixed gate

size, and some with mult iple gates. Early algorithms used fixed feature

extraction techniques ; later, adaptive threshold~ were employed. Error

signal generation was by analog area—balance techniques for early

designs, but first moment and true centroid algorithms have become

standard in the most recent models. Selection of features (target

23
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characteristics) for use in point—tracking algorithms has received

substantial support from the Department of Defense. The two most common

feature extraction processes are intensity thresholding and gradient

thresholding, combined with elementary forms of spectral and spatial

filtering. These forms of feature extraction have been selected in

large part due to the ease with which they can be implemented with

analog signal processing techniques.

2.2.2 Minimum Distance Tracking

In order to talk about the “distance” between two image s as a measure

of their similarity , it is ne cess ary to r epr esent image s a s elemen ts of

a vector space. While two—dimensional images are commonly visualized as

two—dimensional arrays or matrices of intensity values, they can Just

as easily be thought of as vectors . Thus , the reference image, ir, will

have both a two—dimensional and a one—dimensional representation.

where the possibility of ambiguity exists, the bracketed notation will

be used to indicate the matrix form.

Ir (1 ,1) . . . Ir(1,M ) 
—

C

[Ir] = (2.7)

Ir (M ,1). . . lr(M ,M )
- R R C

24
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Ir(1,1)

Ir = Ir (M ,l)  (2 .8)
R -

Ir(1,2)

Ir (M ,M )
R C

where H and M are the numbei of elements in each row and column
R C

respectively.

A function D is called a distance function if for a vector

space X, with xl , x2 , and x3 in X, D satisfies the following conditions

[35] :

D ( xl ,x2) D ( x2 ,x l )

D (x l ,x3) ~ D (x l ,x2) + D ( x 2 ,x3)
(2.9)

D (x l ,x2) 0 if and only if xl =x2

D(xl,x2) ~ 0

It is possible to define legitimate distance functions in

unconventional ways and use these functions to measure the degree of

• similarity between two images. One such distance function is a

relational metric which depends not on the intensity at each point in

the image but only on the relationship between intensity values at

adjacent points and in adjacent regions. By coding the components of

the vector as follows

25
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the Hamming distance can be emp loyed to me asure s imilarity between

images [36] . The impo r tance of this idea is to recognize that

unconventional distance funct ions  may be useful if they improve

pe r fo rman ce o r s imp lif y computat i on.

The conventional dista n ce f un ctio ns fo r images are the norms of

the d i f fe rence  image forme d between two image vectors . The norm of a

vector x will be indicated by l ix i l  and is related to a specif ic  inner

product by the formula

2
l ix i l  = (x , x) (2.10)

where ( . , . )  de notes a generalized inner product [35] . The generalized

inner product of two conformable vectors is defined by a positive

definite Hermitian matrix [24] . If H is a positive definite liermitian

matrix, and xl and x2 are column vectors, the inner product (xl,x2)

defined by H is

T
(xl , x 2 )  = x l  H x2 (2 .11)

H

where T indicates the transpose of the vector. If H = I, the identity
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matrix, then ( ., . )  is the f ami l i a r  vector dot product . Minimum—no rm

tracking seeks to minimize the norm of a difference image formed by

subtracting the data image from the reference image on a point—by—point - 
-

basis. The two most common norms are

~~xfl = (2.12)

and

1
r N (2 .13)
I~~ 2 1 2

IIx H = I L(x )
2 L i=i I

These correspond to the Minkowski norms of order one and two ,

respectively [35] . Henceforth, when a norm is used without a

subscript , it will be understood to be the Minkowski norm of order two

with uniform weights (H = I).

Barnea and Silverman have developed a class of imum distance

algorithms for fast digital image registration called Sequential

Similarity Detection Algorithms (SSDL’s) [8] . These algo r ith ms allow

the use of any distance function which can be defined at each point in

an image pair , and under conditions of high signal—to—noise ratios for

the imagery being processed , require considerab ly less computation to

find a minimum than the exhaustive search techniques used previously.

Webber has described techniques for setting the SSDA threshold [38].
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2. 2. 3 Correlation Tracking

* - 
Correlation trackers seek the location of the subset of the data image

which maximizes either the cross correlation function or the normalized

cross correlation function between a reference image and that

particular sub—Image . Let Ir (i,j) be an L by L reference image, and
L

iet Id(i ,j ) be an H by M data image. The elements of the unnormalized
R C

cross correlation surface R (u ,v) are defined to be
rd

R (u,v) — ~~~~~~Ir ( i,j)Id(i+u,j~~) (2.14)
rd i—l j —l L

l < u < M +1—L
R

1 < V ( M +1-L
C

By finding the (u ,v) which maximizes this function , the t ranslational

registration error is determined [8]. Normalization is accomplished
1)

by dividing this f unction by the product of the au tocoz~relation

functions of the reference image and the data subimage. 1~ e no6~alized

cross correlation surface is defined by

28
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~~~Ir (i~ f)Id(i+u~J+v)]
i—l i—i t

R (u,v) — —— 
— (2. 15)

rd N

E~r- (i j)
] [

~~ 

~~ Id( I+U , J +V) 2]i— i i—i L i—i j —i ~,

F These expressions can be rewritten as inner products in the following
form :

R (u ,v) — ( I r ,Id ) (2. 16)
rd u, v

2
(Ir ,Id )

U, V
R (u ,v) — (2. 17 )

rd N
( Ir ,Ir) (Id ,Id )

U, v u , V
<1

/~ ~~~
-
~l

- - where Id (i, j )  — Id(u+i,v-i-j), and Ir is a suitable reference image.
u,v

Various preprocessing techniques have been investigated to

enhance the raw image ry prior to performing the c ross correlation.

Hayes has suggested that thresholding, Laplacian enhancement, edge

enhancement , and neighborhood averaging may be appropriate techniques

to apply depending on the sensor used to obtain the imagery and the

29
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imagery itself [13]. Cross correlation between transformed images has

also been demonstrated wi th inversion [13], Fourier transformation 
—

(magnitude and phase correlation) [1], marginal s ummation [41], and

phase correlation on the ma rginal suns [11]. Pratt has shewn that the

peak of the statistical correlation measure can be appreciably

sharpened by application of lInear spatial preprocessing (29].

2.3 Summa ry

In this chapter an historical summary of image tracking

applications and similarity detection techniques was presented. In the

following chapters an appropriate s ignal—to—noise ratio will be

developed for  the image tracking task, and fou r new techniques will be

introduced to increase the effective t racking signal—to—noise ratio.
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Chapter 3

SIMILARITY DETECT1OIi

In this chapter , the relationship between minimum norm and

maximum cross correlation techniques for similarity detection is shown,

the characteristics of the minimum norm distance function as applied to

a difference image are investigated , and a signal—to—noise ratio which

is applicable to the minimum distance similar ity detectio n pr oblem is

developed . In Chapter 4, signal—to—noise enhancement techniques are

developed , and in Chapter 6 these techniques are applied to an

integrated tracking algorithm.

3.1 Minimum Norm vs Maximum Cross Correlation

Similarity detection via minimization of the norm of the

difference between two images is equivalent to maximizing the cross

correlation function between the same images under a restricting set of

assumptions. To see this, express the square of the norm of the

difference between two Image s as an inner product.

2
Il I r— Idil = (Ir—Id ,Ir—Id) (3.1)

Expanding this expression yields

- 2
I lIr — IdI I = (Ir ,Ir )  — (Ir ,I d)  — (I d,Ir) + (Id ,Id) (3.2)
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and since the ima ge components are real valued , the conjugate symmetry

of the inner product allows us to write this as

2
Il I r — Id il = (Ir ,Ir )  + ( Id ,Id) — 2 (I r ,id) (3.3)

Since Ir is the reference image, it is a constant for all trial

data images. The last term on the r ight—hand s ide of (3 .3) is the

cross correlation between I r  and Id (see Section 2 .2 .3) .  From this  we

observe that if (Id ,Id) is a constant, then minimizing the norm of the

difference image is equivalent, to maximizing the cross correlation

function between Ir and Id. When (Id,Id) is a constant, the procedures

wh ich will be developed in the following sections with respect to

minimum norm algorithms will produce results which are equivalent to

maximum cross correlation tracking algorithms. In all other cases,

while results may be similar, no guarantee is made ab out thei r

equivalence.

All of the tracking algorithms to be investigated will be

minimum norm algorithms. Specifically, with the exception of the non—

uniformly weighted norm which will be developed in Section 4.1 all

norms will be un if ormly weighted Minkowski norms of order two.

3.2 Notation

In order to facilitate precise descriptions and a compact

notation , the following list of terms and symbols will be useful:

UNDERLYING IMAGE , Is — A perfect representation of the scene being

viewed by the sensor. Both Ir and Id are noise corrupted

versions of Is.

32



~-------~~~ 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— — ___c_ - — - -—- - - ~~~~~~~~~ ~ --•~~-

Is( i,j)

1~~~~~I~~~~~M

R

1 ~ j  ( H
C

REFERENCE IMAGE , Ir — The stored reference image is the “best

available” representation of the scene being viewed by the

sensor. In this context , “best available” depends on the

particular tracker, sensor , etc.. If the tracker uses a

prestored reference, the reference image may be an old

reconnaissance photograph , or a manually generated drawing. Ir

is an 14 xM digitized image.
R C

I r ( i,j)

1 ~ i ( H
R

1 ( j~~~~~M
C

DATA IMAGE , Id — An H xM digitized image , taken directly from the
R C

sensor.

Id( i , j )

1 ~ i~~ M
R

1 ( j  ~~M
C
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REFER ENCE INDEX SET , L — An Nx2 index set specifying the row and column

associated with a particular element of the reference set. If

the reference set was always going to be a contiguou s block of

pixels of a fixed size, then the location of one corner and the

length of each side would suffice to identify all of the pixels

in the reference set. Historically this has been the

configuration for the reference set (40]  , [8] . In Section 4.3

we will see that the effective signal—to—noise ratio is

increased by selecting p ixels from high signal regions of the

image fo r  inclusion in the reference set .  Because the pixels

in the reference set may be spread out over the whole image,

the reference index set is required to keep track of the row

and column associated with each inèluded p ixel.

L(i,j)

1 (i~~~N

j = 1 ,2

REFERENCE SET — The subset of the reference image indexed by the

reference index set.

I r ( L ( i,1), L(i,2))

1 ~ i~~~ N

DIFFERENC E IMAGE, D — The image forme d by sh i f t ing  I d ( . ,.) with respect

to I r ( ., . )  and taking the point—by—point  d i f f e r ence .  The

difference image is not defined where Ir and the shifted Id do

not overlap.

34
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D (dy, dx ,i,j)

—dy ~~dy (d y
MAX MAX

—dx ~~dx~~~dx
MAX MAX

max [1 ,dy] ~ I ~ mln [M ,14 —dy)
R R

max [ 1 ,dx] ~ j  ~ min[M ,M —dy]
C C

COMPARISON SET , Ic — The set of dif ference—image elements specified by

the reference index set.

Ic(dy,dx ,i) ~~D(dy,dx ,L(i,1), L(i,2)) (3.4)

1~~~i (N

—dy ~~dy c d y
- MAX MAX

— dx ( d x ~~~ dx
MAX MAX

TRIAL REGISTRATION — The relative shift of the data image with respect

to the positions of the picture elements as received from the

sensor. Each trial registration produces a different comparison

set. The trial registration which produces the comparison set

with minimum norm will be denoted 
~~~~~~~~~~~~~~~~ 

otherwise the trial

registration will be denoted (dy, dx).
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3.3 Assumptions

It is assumed that:

1) Id d if f e r s  from Ir by a t r anslational
misregistration and additive zero—mean noise in each
Image

Id(i,j) — n (i,j) = Ir(i+~~,j+~~)—n (i+~~,j+~~)d r
(3.5)

2) The noise components of I r  and Id are
uncorrelated

E[n (i,j)n (i4d y,j+dx)] = 0 (3.6)
d r

where n (.,.) is the zero mean noise associated with the
r

reference image

n C . ,.) Is the zero mean noise associated wi th  the data
d

Image , and

E(.) is the expected value operator.

Both of these assumptions will hold when the principle source of noise

is elect roni c shot n oise , and the average scene illumination changes

slowly with respect to the frame rate.

3.4 Distance Function

2
The distance func t ion  d (d y, dx) is def ined as the  weighted norm

A

of Ic (dy, dx , .)

36
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2 T
d (dy, dx) Ic(dy,dx ,.) A Ic(dy , dx,.)
A

N 
2

= a Ic(d y, dx ,i)  (3.7)
i=1 ii

where A is a di agonal mat r ix  of positive weighting factors with

elements a • When A is the identity matr ix , we will u se t he notatio n
ii

2
d (dy, dx) to indicate the specific case of equal weights for all
I

components of Ic(dy, dx,.).

3.5 Tracking Algorithm

2
The tracking al go ri thm will compute d (d y, dx) for a r ange of dy

A

and dx values, and select the (dy,dx) which corresponds to the  minimum

2
value of d (dy, dx ) as the r elati ve t r anslatio n o f Id with r espect t o

- •  A

Ir. The range of values for dy and dx specifies the size of the search

region. All search regions will be treated as being symmetric with

—dy ~ dy ~ dy and —dx ~ dx ~ dx . This is based on the
MAX MAX MAX MAX

assumptions that the search is centered On the most likely location for

the image , and that  the d i s t r ibu t ion  of errors is symmetric about tha t

location.
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3.6 Noise Characteristics

The reference image Er is of course not a perfect

representation of the underlying scene being viewed by the sensor. If

Ir is obtained directly f r om t he sequence of data images, it contains

noise with the same characteristics as all of the other data images.

If the reference image is obtained by filtering the sequence of data

images, then the noise component of Ir  will d i f f e r  from that  of the raw

data images. The variance of the reference image noise component

associated with the image location Ir(i,j) will be denoted by

2
(i,j), that is

n,REF

2 2
(i,j) = E[ n (i,j) ] (3.8)

n,REF r

The noise variance associated with the (i,j) coordinate of the

2
data image Id is o (i, j) .

n,DATA

2 2
(i,j) E[n (i,j)] (3.9)

n,DATA d

- 
For sensors with s ing le channel outputs where therma l noise is

the dominant component of n , we will assume that the noise is ergodic
d

and hence has stationary statistics [27) . Vidicons, laser line

scanning systems with single detectors , and certain infrared scanners

fall into this class of imaging sensor [39] . In addition , since the

__________  ~~~~~~~~ ~~~~~~~~~::
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sensor output is generally low pass filtered prior to digitization , a

first order Markov model will be used for the sensor noise s tat is t ics.

In Section 3.8 a model for imagery will be developed and the Markov

nature of the sensor noise will be seen.

Stationary noise statistics allow us to eliminate the spatial

2
specificity of the noise variances and simply write them as 0 and

- n ,REF

2
Spatial and temporal ergodicity will allow us to es t imate  the

n,DATA

noise variance at an arbitrary point in the image from the sample

variance of the noise over the whole image (note that for scanned

sensors spatial and temporal ergodicity are equivalent).
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3.7 Characteristics of the Auto—Distance Function

The auto—distance function is the two—dimensional distance

2
function which results from computing d (dy,dx) between an image and a

A

translated copy of the same image. The auto—distance function has

characteristics which are dete rmined by the s tatistical signal and ¶

noise properties of the image itself.

Consider the case of shifting the reference image with respect

to itself in a direction parallel to a scan line from an initially

2
registered position. At r egistration , the distance d (0 , 0) is zero

I

since all of the elements of the comparison Set are zero.

Ic ( 0,0,i) D[O ,O,L(i,1),L(i,2)]

Ir[L(i,1),L(1,2)] — Ir [L( i,1)+0,L(i,2)40)

— 0 (3.10)

2
For a shift of one picture element, or pixel, d (0,1) has contributions

I

from both signal and noise components.

I c (O ,1,i) = Is (L(i,1),L(i,2) ]+ n [L( i,1),L(i,2)]
r

—Is[L(i, 1),L(i,2)+1]—n [L(i,1),L(i,2)+i] (3.11)
r

40
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Let

a (dy,dx) — Is[L(i,1)+dy,L(i,2)+dxJ—Is[L(i,1),L(j,2)] (3.12)
i

then

N
2 r

d (dy, dx) a a (dy, dx)+n [L(i , 1), L(i ,2)]
A i—i ii~~~ i r

12
—n [L(i,1)+dy~L(i~2)+dx]J (3.13)

r

2
The signal component of d (dy, dx) is the contribution from

A

{m  (dy, dx) J. The noise terms represent the difference between the
i

noise at two p ixel locations separated from each other by a translation

of (dy ,dx). For line scanned image ry , the noise will be modeled as a

Markov process in time; thus the noise will be correlat -ad with itself

much more s trongly in the di rection of scan than in the ~~ rect~~on

perpendi cular to the scan.

Taking the expected value of (3. 13) yields

41
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N
2 ~~ 2

E l d  (d y, dx)] = 
L.., a in (dy, dx)

A i=I ii i

N

+ ~~~a E 

- 

(
~~ì [L(i , 1) , L ( i ,2)]

i=1 ii r

• 2

— n [L(i~ 1)+ dy~L(i,2)+dx)) (3.14)

and by writing the noise contribution in terms of the reference image

2
noise variance Ø and the correlation coefficient for the noise

n,REF

.f(dy, dx ) ,  we have an expression for the auto—distance function of the

reference image

N
2 ~~ 2

E[d (dy, dx ) )  = L.., a m (dy, dx)
A i=1 iii

N
2

+ 2 a- [1— p(dy, dx)]La (3.15)
n ,REF ~

‘ 1=1 ii

Using uniform weights and taking an average over the N elements in Ic

yields

42
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2
d (dy,dx)
I 2 2

E — = m (dy, dx) + 2 a- [l_ f(dY~dx)) (3.16)
N N ,AVE n,REF

where

N
2 1~~~’ 2

m (dy, dx) = —L tn (dy,dx) (3.17)
N,AVE N i=1 i

Let Y(dy, dx) be the scan time difference between two pixels

separated by (dy , dx)

T(dy,dx) 
~ T dy + Tdx  (3.18)

y - x

where 3’ is the time that the sensor takes to scan one entire line and
y

is the scan time between two adjacent pixels in the same line.
x

For a first order Markov process (see Section 3.6) the

normalized autocorrelation function has the form [12]

-o< Ii- I
- 4 ’(T ) e (3 . 1 9 )

where 1/o is the correlation t ime of the process. The correlat ion

coefficient  f(d~~ dx) in (3.16) is the value of the normalized

autocorrelation function of the noise when the time delay is the scan

time d i f fe rence  between two pixels separated by (d y, dx ) .  Subst i tu t ing

(3.18) into (3.19) yields an expression for  the correlation coefficient

in terms of d y and dx.
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f(dY dx) — exp [ + T dxI J (3.20)

For a minimum resolution TV compatible scanner with 256

pixels/horizontal line (~~ > 2567 ) and a correlation time of a few
7 x 

-

pixels ( say 1/c* < 4T). it is clea r that p (dy,dx) is approximetely zero
x )

for dy~~~O.

r i
p(dy,dx) < 

~~~~p ( —  J256 T d y + T dx l1 4 T  x

_
64JdYJ — .251 dx l] (3.21)

Thus we can assume that the noise component of line scanned imagery is

imcorrelated between pixels which are adjacent to each other in a

direction perpendicular to the direct ion of scan, but we must take into

account the correlation which exists between p ixels that are adjacent

to each other in the direction of scan.

h~ “

3.8 A Facet Model for Imagery

2
In order to do anything useful with d (dy, dx) , we need an image

A

mode], with tractable characteristics for ua (dy,dx). The model that we

mill use assumes that the image intensity is a well—behaved function

that can be approximated by a local tangent plane (facet) in the

44

_ _  - 

-• —



— — ~
- --~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- ---
~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

-,

vicinity of each pixel coordinate . The resulting expression for

Is(i4dy,j+dx) is a truncated Taylor series in two variables

Is(i+dy,j -fdx ) — Is(i ,j )  + dy Vls(i , j).?
y

+ dx Vls(i ,j ) .t 
• 

(3 .22)

x

~there V is a discrete gradient operator defined by

Is(i+1,j) — Is(i—1 ,j)
VIs(i,j) — 1

- 

2 y

Is(,j+1) — Is(i , j— 1) A
+ 1 (3.23)

- 
2 x

A

and 1 and 1 are unit vec tors parallel to the x and y axesx y
respectively.

For L(k , 1)—i and L(k , 2) —j the expression for a (dy ,dx) is
• k

m (dy, dx) — VIs(i , j).(dy 1 + d x l  ) - (3.24)
k y x

and substituting (3. 24 ) into (3.17) the general expression for

2 -

a (dy, dx) is
N,AVE

—~~~~~~~~- - “--~~~~- - - -~~~~~~~~~~~~~~~~~ - ~~~~- - -
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A A

a (dy,dx) —L ~~Is(L(i,l),L(i,2)].(dy 1 + dx 1 )
N,AVE N i-I L ‘ x

(3.25)

Figure 5 shows the expected value of the normalized auto—

2
distance function for a signal—free image (a (dy, dx)—O ) wi th  a

N,AVE ~~
-

2
noise va riance of 0 — 3  and a noise—correlat ion coefficient of the form

ft

exp [_ .7 I dx I ] for dy — 0

f
(dy,dx) — ( 3 . 2 6 )

-~~~~ -- 0 otherwise

Figure 6 shows the value of the auto—distance function for a noise—

2
free image ((7—0) with average signal strength

U
1)

2 2 2 ~
a (dy, dx) — 1.66 dy + .16 dx (3. 27 )
N,AVE

where the coefficients are adjus ted to ma tch the empi rical data listed

in Table 1. Figure 7 shows the expected value of the auto—distance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ characteristics from

Figure 5 and the signal characteristics from Figuré 6. --- -

To de~~nstrate the facet image model by comparison with

46
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Figure 5. Auto—Distance Function for Pure Noise
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FIgure 6. Auto—Distance Function for a Simulated
Noise—Free Image
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Figure 7. Auto—DIstance Function for a Simutated Noisy Image
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experimental data , Table I lists the values of the  au to—dis tance

function f o r  a small  subimage taken from a f rame of television image ry

(see Appendix I for source data). Figure 8 shows the plotted

value s for  d y 0 and dx = 0.

Note the markedly smaller signal component in the direction

parallel to the axis of the scan (x— ax is)  and the s imilarity between

Figure 7 and Figure 8. The differential signal strength in the x and y

directions is attr ibu table to a high digitizer sampling rate relative

to the bandwidth of the output signal from the sensor. The similarity

~f Figure 7 and Figure 8 demonstrates the validity of the facet model

and the Markov nature of the noise.

3.9 Cross—Distance Function

2
When d (d y, dx) is used to compare a reference image Ir with

I

2 2
noise variance 0” to a data image Id with noise variance 0’

n,REF n,DATA

the resulting two—dimensional distance function will be called the

cross—distance function . The cross—distance function is biased with

respect to the auto—distance function by an amount equal to the sum of

the noise variances from the reference image and the data image. For a

correctly registered data image
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Figure 8. Auto—Distance Function for Frame 1
of Image Seq uence AIRPLANE
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2
d (0,0) r N
I 

~~~~~~~ 
2

E = — E J  L~~Ic(0 , 0 , i)
N N L i=l

2 2
= 0’

~ + 0” (3.28)
n,REF n,DATA

and for a relative translation of (dy , dx)

2
d (dy, dx)
I 2 2 2

E = m (dy, dx) + O’ + 0’ (3 . 29)
N N,AVE n ,REF n,1)ATA

Table it lists the values of the cross—distance function

between two successive frame s of actual T .V.  imagery, and Figure 9

shows the plotted va lues fo r dy = 0 and dx = 1 . In this case, the

minimum distance match occurs at a t rans la t ion of (0 , 1). It i~ the

location of this mi n imum distance coordinate that  the tracking

algor ithm declar es to be the pr ese n t position of the curr ent reference

image. If the location of the minimum distance coordinates change On a

f rame—to—frame basis , the change is interpreted to be ei ther  sensor

motion or image motion.

In the next two sections we will develop an expression for the

probability of making a particu lar error in determining the correct

registration of a data image with respect to the reference image,

propose a natural “signal—to—noise ” ra t io  f o r  the minimum norm t racking

problem and show the relationship between this signal—to—noise ratio

and the probabili ty of error .
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0

dy (dx l)

REFERENCE SET:

1024 PIXELS IN A 32x32
CONTIGUOUS BLOCK WITH
UPPER LEFT CORNER AT

• - 15 (43,43) IN FRAME 1
0

100 
o 0

0
5

I I I I I I I I I I

— 5 —4 — 3 —2 — 1 0 1 2 3 4 5

dx (dy - 0)

FI gure 9, Cross—Dliitance Function for Frames 1 and 2
of Image Sequence AIRPLANE
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3.10 Distance Function Statistics -

Since each component of IC is the difference between two noise—

corrupt ed image in tensity values , Ic is a random vector .  The mean

t h
value of the i component is

E [Ic(d y, dx ,i)) = —m (dy, dx) (3.30)
i

and the variance is

v a r [ Ic(dy , dx,i)] = va r (n ) + var [n  ]
r d

2 2
= 0 ~ + 0’ (3.31)

n ,REF n,DATA

If n and n are Gaussian random variables (we will see later
r d

that this assumption is in good agreement with experimental lata) then

2
d (dy, dx) -

2 2

n ,REF n ,DATA

is a floncentral chi—squar e distributed random variable with

noncentrality parameter e and N degrees of f reedom where [161

56
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2
N m (dy , dx)

e(dy , dx) L
1=1 2 2

0- + 0 -
n,REF n,DATA

2
Nm (dy, dx)
N,AVE

= (3 .32)
2 2

0~n,REF n,DATA

For (dy,dx)=(O,0) the resulting distribution is central chi—square with

N degrees of freedom.

For each (dy , dx), there exists the possibility that as a result

of noise in both the reference image and the data image, the distance

function value at the correct registration is greater than the distance

function value at an incorrect registration. For a correctly

registered data image the tracking algorithm will make an error any

time that there is some (dy’,dx’) such that

2 2
d (0,0)—d (dy’,dx’) < 0 (3.33)
I I

Under what conditions will this occur , and how is it related to the

noise parameters ? To exp lore these questions we let
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2 2 2
0” O~ + 0 ( 313 4)

n n ,REF n ,DATA

and define two normalized random variables U and V

2
d (dy, dx)
I

IJ (dy, dx) = (3.35)
2

a-

and 

U

2 -

d (0,0)
I

v =  (3.36)
2

n

In general U and V are not independent random variables since it is

possible to have a reference index Set with

[L( i,1), L(i,2)) = [L( j, 1)+ dy ,L (j, 2)-~-dx] (3.37)

for some legitimate set of (i,j , dy, dx) .  In fact , this case

pr edominates when the reference set is composed of a contiguou s b lock

of p ixels. Under this condition , a noise sample may contribute to both

2 2 2
d (0,0) and d (dy ,dx). The only way to assure that d (0,0) and
I I I

- 58 

- - - -—

~~~~~~~~~
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— 
-

2
d (dy ,dx ) are independent is to require that for  all i, j  < N
I

L(i,1) — L(J , 1 )I  > dy (3.38 )
MAX

and

L(i ,2) — L(j,a) > dy (3 39)
MAX

Figure 10 illustrates the spacing required to assure that U and V are

imcorrelated when the noise samples are independent in a uniformly

spaced reference 8et with dy — dx S and N — 64.
MAX MAX

Let .P (dy dx ) denot e the probability that for a correctly
C

2 2
registered data image d (0 ,0) is less than d (dy,dx)

A A

2 2
P (dy ,dx) P(d  (0 ,0) — d (dy, dx) < 01 (3. 40 )

c A A

Ift
P (dy dx) is the probability of being correct with respect to the
C

decision on whether the reference image is registered at (0,0) or at

(dy,dx). The probability of error , P~ (dy dx) is the ccxnplement of

P (dy,d 3~
” 

-

P (dy dx) — 1 — P (dy, dx) (3.41 )

7
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SINGLE PIXEL
SEARCH REGION N = 64

dy dx 5I 2dx +1 I max maxmax
I UI I ~ 1

: :: : : :
D U U U U U

U 0 0 0 0 0 0 0

U U 0 0 0 0 0 0

U U U U U ci

— 0  0 0 0 0 0 0 0
dy +1

m ax

—0 ci 0 0 ci U ci ci
H Jdx +11max

FI gure 10. Relative Positions Specified by a
Reference Index Set for U and V to
Con t -dn Ilncorrelated Noise
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W(dy, dx) V — U(dy,dx) (3.42)

For large values of N, both U and V tend toward a normal distribution

(16] . We will normalize W(d y, dx) to zero maan and unit variance by the

transformation
- 

r i ~~~
-

- - W(dy,dx)—E[W(dy,dx)J
X(dy,dx) — (3.43 )

/ r[W (d7~dx)}

and for large N, approximate the probability distribution function of X

by the unit normal distribution. Thus

I 
P (dy,dx) — P [W(d y ,dx) < 0]

* —4w (dy, dx )I
erf

* 

/var-[W (d~ 1dx)}

erf 
[~ N~~

7
~dx} 

(3.44)

*
vhere erf (.) is defined by

* 1 r
x 

r— ~
2
i

- erf (30 J ”J ~
[ 2 j dt 

- 

(3.45 )

- 
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We now derive the expressions for the argument of en (.) in terms of N

and 0 , the parameters of the noncentral  chi—square distr ibutions

associated with U and V.

E [W(d y, dx )] E [V) — E [U (dy,dx) ]

= N — [N + e(dy,dx)]

= — ecd y, dx) (3 .46)

var[~ (dy,dx)] var [V — U(dy, dx ) )

2 2
= E[V I + E [U (dy,dx) ]

2
+ 0(dy, dx) + 2 9(dy, dx ) E[ V )

—2 E (VU (dy, dx))

—20(dy, dx ) E [ U (dy,dx)] (3.47)

E [V] = N  (3.48)

2 2
E ( V  3 N + 2N (3.49)

~
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E (U (dy,dx ) )  N + ~~(d y, dx) (3.50)

2 2
E [U (dy,dx)] = (N + G(dy, dx ) ]  + 2 [N + 2 0(dy, dx)) ( 3.51)

E [VU (dy, dx ) ]  = 011 p + E [V ) E [U ( dy,dx)]
V U ( dy, dx )JVIJ

- 

=f /4N[N+2 e(dY~dx)I + N [N+~~(d y, dx)]

(3.52)

where p is the correlation coefficient between V and U(dy,dx).
‘ V U  

-

Substituting (3.48) through (3-52 ) into (3.47) yields

var [W(d y, dx )]  = 4N + 4~~ (dy , dx)

- 4 
f~~~~~

÷2N O(dy, dx)

(3.53)

63

L~~~~~ 5- - 5- — — 5-~~~~~~~~~~~~~~~~~



-— - - 

~~~~~~~~~~~~ — 
-

~~~~— - -  
- 

--

and now substituting (3.32) for e, the a rgu~~nt of - 
(3.44) be c~~ 8

2
(dy,dx)

N,AVE

2
a-
n

E 
(dy,dx)— ___________________________________________

N / r —- - - — - — —— —— -— ’
/ 2 / ~,24Nm (dy,dx) 2N a (dy,dx)

N,AVE 

4r~
/

~~~ 
N,AVE

2
a (dy,dx)

J_~~~NIAVE

— 

/ a (dy,dx)
N,AVE N,AVE

- 

- 

/1+ -f ~/ +-- ~~ 
‘ 1)

(3. 54)
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Let

2
- - — m (d y, dx)

2 N,AVE
‘f (dy, dx) ~~ — (3.55)
N ,AVE 2

0~n

2
It appears that  ‘

~
‘ (dy, dx) is the natu ral signal—to— noise rat io for
N ,AVE

2
this minimum—norm detection problem. Notice that ‘(‘ (dy, dx) is

N,AVE

different for each (dy, dx). This signal—to—noise ratio is a two

dimensional function !

An upper bound can be established for P~ (dy,dx ) ,  the

probability of a particular error , by letting 
p 

= 0 In (3 .54) .  Then

_ 

~~~~~~~~~~ 

2

N ,AVE (3.56)
E- (dy, dx )= _____________

N 
/ 2

2 / 1 +  1
N ,AVE

and

*

P~ (dy, dx) < I — erf [~~ (dy, dx)] (3 .57)
N
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The upper bound is a function of r and N only. F igure 11 shows
N ,AVE

2
how the maximum probability of error varies with 

~ 
for various

N ,AVE

values of N.

3.11 Experimental Probability of Error Determination

In orde r to assess the a c cur acy of the pr obability of error

bound of (3.57) and to investigate the improvement that might be

obtained when the noise component of the data image is correlated

between t r ial r egistrations, a series of simulations was performed.

For each simulation, the reference image was noise—free and noisy data

images were generated by adding artificial Gaussian noise with variance

2
0- to a copy of the reference image. Since the reference  image is
n

assumed “perfect ”, the auto—distance function provided a direct measure

2
of m (dy ,dx). Thus, for any reference index set and any trial

AVE

registration , the signal—to—noise ratio was known . The probability of

error was estimated by counting the fraction of the total number of

2 2
trials on which d (dy,dx) was less than d (0,0). FIgure 12 and Figure

I I -

13 present the results of two Honte Carlo s imula t ion runs of 100 trials

each. The 100 trials provide 95% confidence intervals ranging f r o m ± . 1
- +.05

for P~ .5 to for  P near 0 (14] .
C. —.001
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In each case the reference index set ~~acing was selected in

2 2
such a way as to make d (d y, dx ) independen t of d (0 , 0) fo r  the  points

I I

plotted . Figure 14 illustrates the decrease in probability of error

2 2
that occurs when d (dy, dx) and d (0,0) are correlated . The reference

I I

set in this case was a contiguous block of pixels. It is clear from

these results that correlation betw een co rr ectly r egistered and

misregistered distance func t ion  values may be exploited to reduce the

probabili ty of error below the- upper bound established by (3 .57) .

3.12 Summary

2 2 2
Since ‘

~f (dy, dx ) depends On the sum of 0- and 0-
N ,AVE n ,R~F n ,DAT A

the probability of error can be reduced by r educing either of these two

quantities. A trade—of f will generally be necessary with respect to

2
reductions in 0- for  line scanning sensors . Insert ing a low pass

n,DATA

filter into the sensor output will reduce the noise variance after

digitization but will also increase the correlation time for the noise

and decrease the bandwidth of the sensor. The effect of reduced sensor

bandwidth is to decrease the magnitude of in (0,dx) from what it would
I

be without  a low—pass f i l t e r .  While it is clearly necessary to provide

some low—pass filtering of the sensor output to suppress aliasing, the

decision on whether to reduce the bandwidth of the sensor any further

v~.ist be based on the anticipated scene content and sensor noise.
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Filtering can also be performed after sampling and/or

digitization. In Section 4.2 we will discuss a promising nonlinear

technique.

2
The reduction of 0- through processing of the raw data

n ,REF

images to form a low—noise r eference image mus t be vi ewed as a strong

candidate. The objective is to register the sequence of incoming data

images and filter the time series presented at each p ixel location to

form an estimate of the intensity at the corresponding point in the

underly ing image. Filtering on a frame—to—frame basis preserves the

resolution of the raw sensor data and reduces the noise level of the

reference image by averaging the noise over a number  of frames. It

also incorporates any changes in the underlying image into the

reference image, though necessarily with some delay. Chapter 5 will

deal with this subject in greater detail.

2 2
The only remaining variable to affect I is in (dy, dx) ,

N,AVE AVE

the square of the average gradient of the image in the neighborhood of

the set of p ixels wh ich comprise the comparison set .  I t  is clearly

possible to select the set of pixels to be included in the comparison

set based on the gradient. In Section 4.3 we will discuss an approach

to this selection process based on a new gradient magnitude estimation

algorithm. -I

An a l ternate  approach to ma ximiz i ng P (dy , dx) is to find an
C

appropriate weighting matrix A which weights the “better” components of

Ic more heavily. Section 4.1 contains the development and discussion

of this approach .
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Chap ter 4

SIGNAL—TO—NOISE ENRA�4CEMENT TECHNIQUES

In t h is ch apte r th r ee n ew techniques a re developed to reduce

the probability that the tracking algorithm will make a registration F

error . Each technique is demonstr ated and tw o of them a re In cluded in

the int egr ated t racking algor ith m which is developed and evaluated in

Chapte r 6.

4.1 Nonuniformly Weighted Norm

In the previous chapter , we dealt with the case of uniform

weights for each component of Ic. In this section , we will derive an

expression for  the weights a which maxi mizes the lover bound on
13.

2
P (dy ,dx) for a given set of {m (dy, dx)} and noise variance 0-.

C i n

Let

2 2
d (0,0) — d (dy, dx)

-
‘ A A

Y (d y, dx) 
~ (4.1)

2
0-

n

and normalize Y(dy, dx) to zero mean and unit variance with the

transformation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Y(dy , dx)_ E [? (d y , d x)}
Z ( d y, dx)  —, (4.2)

/ var Y(dy, dx)

For large N , Z(dy,dx) converges in distribution to a un it  norma l random

variable [16]

P (dy, dx) = P [ Y ( d y, dx) < 0]
C

- 

I _E[Y (d y , dx)]
P L z ( d ) 4 dx) 

J r  Y(d y,~~ 3’

* _E[Y (d y, dx)J
= erf —— 

( )J 5 -
r Y(dy, dx)

where
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1 2 2
E ( Y ( d y,dx) ]  = E [d  (0 ,0)] — E [d (dy,dx ) ]

2 A A
0-

= 4~~~ a [E ((n (0 , 0 ,1) - n (O , O , i) ] 2)

2[
i=1 Ii r d

2
—E En (0,0,i) — in (d y, dx) — n (d y, dx , i )]

r i d

N
1 

~~~~
‘ 2

= - — La  in (d y, dx) (4.4)
2 1=1 ii i

0- -

n

Sin ce E [ Y ( dy,dx)] is negative, the lower bound on P (dy,dx) represents
C

the case in which varEY(dy, dx)] takes on its maximum value.

i i  2 2 1var [Y(dy,dx)] < —~va r [d (0 ,0)] + va r [d (dy, dx ) ] J  (4.5)
A A 

J0-
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2 Iv’ 21 I-
~~r[d (0,0)] varlL.,a Ic(0 ,0,I)

A Li— l u

N
2

— j ,., a var[Ic(0 ,0,i) I
i_i ii

N
4 2

“‘2 0- a (4.6)
n i—l u

2 
N 

2
wr (d (dy, dx)] — var[Ea Ic(dy,dx ,i) i

A i—l u

N
~~~~~
‘ 2 2

“La var[Ic(dy,dx ,i) J
i—i ii

N
2~~~’ 2 2

— 2 0 -  La  [ 2in (dy,dx) + 0- ]  (4.7)
n i—l u I I~

~~4

1~ 
-u

Substituting (4.6) and (4.7) Into (4.5) yields

N
4 V ’  2 2

var [Y(dy,dx )] <—L a Em (dy,dx) + 0 - ]  (4.8)
2 1—1 11 1 n

a-
U

Again substituting (4.4) and (4.8) into (4.3), we get the desired

expression for the lower bound of P (dy dx).
C
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N
1 2

— a in (dy,dx)

* 

1=1 11 1

P (dy, dx) ) erf 
________________________ ( 4.9 )

I ~~~~~~~1C I

I
/ b

~~~~~~ 2 2
2 L.a [m (d y, dx) + 0 - )

1=1 11 1 n

Since we are interested in finding the matrix coefficients a which
ii

Li 
*

maximize P (dy, dx ) ,  we observe tha t  erf (.) is a monotonic increasing
C

funct ion, and i t  is only necessary to maximize the  argument in order to

maximize the value of the function. Let

N
2

La  m (d y, dx)
1=1 i i i

N [5-

~~2 2 2

’ 
(4.10)

2 0- /~~~~a m (d y , dx) + 0-
nV i=i j i i n

~~ 
take the partial derivative of ~~~(dy, dx) with respect to each non-

zero element of A , and set the resulting expressions to zero.
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~~E (dy, dx)

0 ; k 1, 2 , ... ,N

2
In

k

1
N —

2 ( 7  ~~~a
2 2

n i—h i n

N
2 2 

~~~~

‘ 2
a (m + 0-)  La  m
kk k n i=l ii i

3
N — (4.11)

V’ 2 2 2 2
2 0- L.a (in + 05 -)

a ilii i n

Collecting terms containing a and m yields
kk k

N
2 2 r’ 2 2

a Em (dy, dx) + 0-) L. E m (d y, dx) ÷ 05-]

k k k  n i—l i

2 N (4 . 12)in (dy, dx) 
~~
‘ 2

k L. a m (dy, dx)
i— i i ii
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for each k , k—1 ,2,... ,N. We now have N simultaneous equations , all of

which have the s ame term On the righ t—hand side. Since the term on the

right—hand side of (4.12) does not depend on k, it Is an arb i t rary

constant.  We set this  constant  to one ,

N
~~‘ 2  2 2
L. a E m (d y , dx) + CT]
1=1 ii I a

— 1 (4 . 13)
N
r 2
La in (d y, dx)
i—i :t~ii

then

2
m (dy, dx)
k

a (dy , dx) = __________________

- - kk 2 2
in (dy ,dx) + CT

k n

2
I (dy,dx)

k
(4.14)

2
1 + ‘f (d y, dx)

Taking the second derivative of (4.10)
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2 , 2 2  2
2a m (m + 0 5 -)

N 1 k k k k  n

1 N
da N — 2 2 2

kk 2 2 2 2 a (in + CT )
a (in + C T )  i—l u i n

i— i ii i a

N 2 N
2 2 ~~~

5-5- ’  2 2 2 2 ç-’ 2
(in + C T )  La in 3a (in + C T )  La in

k a 1 1  ii i kk k n i—i ii I
-*5-- +

N N

~: 2 2 2 2 2 2
a ( m + 0 - )  a ( r n + C T )

i=h ii i n i=h ii i a

(4 .15)

substituting

N
~~ 2 2 2

- a ( m + ( 7 )
1=1 ii I a

= 1
N

2
L.a in

1=1 ii I

and

2
m

k
a —

kk 2 2
m + C T
k a

from (4 .13)  and ( 4 . 1 4 )  yields
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2 a 2 2 2
m + O  a m

N k n k k k
— 1 < 0

‘--i 2 1 N (4 .16)
Ci a N — 

~~~~
‘ 2

kk 2 2 2 2 La m
L.a (in ÷ ( T )  i—i i i i
1= 1 ii i a

Thus (4 .14 )  maximizes
N

For any practical application of the weights derived here ,

their dependence on (dy,dx) must be removed. For any trial

registration attempted , the actual translation relative to correct

registration is unknown , and thus, the appropriate set of weights is

unknown. Several approaches are possible.

If the sensor response time is long compared to ‘J , the
x

reciprocal of the sampling rate , then it seems reasonable to assume

2 2
that a (0, k) will be consistently smaller than in ~ 1 ,0) for small

values of k (Figure 8 shows evidence of this f a c t ) .  Under this

condition it migh t be desirable to use the weights associated with

minimizing the probability of error in a direction parallel to the scan

direction.

If the sensor resolution is the s ame in both the horizontal  and

vertical directions It is possible to argue that the direction of the

gradient vector is uniformly distributed on [O ,2~~). Assume that
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— Vic (0,0,k).I~~~~~~~~~~~~~~~~~~~~~~x

2 

(4.17)

then

2 2 2
r JVIc(0 ,0,k) J cos ‘V

a (r ,’f’) = ~,- (4. 18)

05- + r I c7I c(0,0,k) J  cos ’t’

where

2 2
r- — dy +dx (4.19)

and is the angle from 1 to the gradient vector. Now we take the

expe cted value of a (r , ’j’) ove r the interval (0 21T )
kk

21r

r2 2 ‘~~2
1 / r  N~Ic(0 ,0,k ) I  cos

E,~,[a (r ,’f’) ] a ( r )  — — ~- - —
~~

-- d ‘f

-- 

kk . 2

~
i 

~~ + r VIc(0 ,0 ,k ) I  coa~~~

— — 

~~~ 
r VIc(0 ,0,k) I  

2 ‘

(4.20)
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If a probabili ty distribution for r was known, then the

expected value of a could be found . In the absence of a model for r,
kk

we note that the most likely errors are those associated with small

values of r (zero or one if the tracker is working well) so that it

would seem prudent to select a to avoid the most likely errors. With
kk

r~~~1

1
a = 1 —  

_ _ _ _ _ _ _ _ _ _ _ _

kk 

~ /
/1 I~7Ic(O ,0 ,k ) I  (4.21)

The benefits of using nonuniform weights when computing the

distance function depend on the presence of both relatively good and

relatively bad points in the reference set. If all of the pixels in

the reference set are of the same “quality ”, then they will have the

same weights, which is equivalent to having uniform weights.

Figure 15 and Figure 16 illustrate the improvement in the

normalized cross—distance function that is obtained by the use of the

nonuniform weights as spccified by (4.21).

The reference set was the 32 by 32 block of adjacent p ixels

with upper right corner located at row 43 and column 43 of the

reference image shown in Figure 63. FIgure 15 and Figure 16 are

normalized so that the distance function value corresponding to correct

registration is 1.00.

It is of questionable value to utilize both nonuniform weights
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and an adaptive reference set selection process since the reference  set

selection process will presumably incorporate into the reference set

only those p ixels wh ich wou ld be h eavily wei ghted a nyway . Another

caveat that must be placed on the use of n onuniform weights is t h at the

assumptions which were made to eliminate the dependence of the weigh t s

on the trans lation may not be appropriate for  all s ensors and c lasses

of imagery , and may , in f act , be invalidated by an adaptive reference—

selection algori thm.

4.2 Nonlinear P eak Zliinlnation Filter

In addition to frequency—response—shaping f i lt ers emp loyed

ahead of the  samp ling and digitization step s of the t racker , the

opportunity exists to f i l t e r  the sensor output in the discrete domain

prior to performing the similari ty detection ope ration. The following

adhoc nonlinear f i l t e r  is an examp le of an easily mechanized algorithm

which shows a potential  for  reducing the random noise component in

sampled image ry .

The algorithm to be used is as follows :

1) Examine each pixel in i~n image sequentially by
r ows s tar t ing wi th the upper l e f t  corner.

2) If the pixe l under examination does not have a
n eighbor above, be low , on the l e f t  and on the righ t , go
on to the next pixel (i.e. if it lies On an edge , don ’t
process i t) .

3) If the p ixel under examination has a value
greater than the maximum va lue of It s  four  nearest

~~~~~ neighb ors , rep lace i t  wi th  the maximum of the four
neighbors .

4 )  If the pixel under examination has a va lue
smaller that  the minimum va lue of i ts fou r nearest
neighbors , rep lace i t  wi th the  minimum of the four
nearest neighbors.
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In order to understand the motivation behind this operation ,

just look around and try to find a spot that is at the same time either

brighter (an intensity peak) or darker (an intensity pit) than its

neighbors and so small that it does not have a detectable shape. This

spot, it you can find one, is the visual analog of a single resolution

element in a digitized image which satisfies the requirement of being

detectably brighter or darker than its surroundings. The general

difficulty of finding such points leads to the following questions :

1) How often do single pixel peaks and pits occur
in an image made from pure noise?

2) Is there any benefit to removing single pixel
peaks and pits from images which contain both signals
and noise, and if so, how big is the benefit, and how
can it be characterized ?

To answer these questions, we will first show that for

independent, identically distributed random variables arranged and

labled as in Figure 17, the probability that x is either the largest
1

or the smallest of the set of five is .4, regardless of the form of the

probability distribution .

Let F be the cumulative distribution function associated with
x
I

x , let f be the corresponding probability density function , and
I x

I

assume that all of the density functions are continuous. We wish. to

establish the probability that x is a local extreme point , I.e.
1

J~1T~L. . ±•~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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P [x > MAX{ x , x , x , x } or x < MIN{x , x , x , x
1 2 3 4 5 1 2 3 4 5

~P [x > MAX{x , x , x , x
1 2 3 4 5

+ P [x  < MIN (x , x , x , x )) (4.22 )
1 2 3 4 5

Let y = MAX{x , x ) , then [26]
1 2 3

F (y ) = F (y ) F (y ) (4 .23)
y 1 x 1 x 1

1 2 3

similarly, let y = MAX {x , x ) , then
2 4 5

F ( y ) F ( y ) F  ( y )  (4.24 )
y 2 x 2 x 2

2 4 5

Since

P [x > M ~X(x , x , x , x )]=P [x > MAX{ y,y }]
• 1 2 3  4 5 1 1 2

(4.25)

we let y = MAX{ y ,y ) , then
3 1 2
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L F (y )= F  (y)F (y)
y 3 y 3 y 3

3 1 2

=F ( y ) F  ( y ) F  ( y ) F  ( y )
x 3 x 3 x 3 x 3

2 3 4 5

4
= [F (y )]  (4 .26)

x 3
1

and

P [x > MAX {x , x , x , x )] P [x  > y J
1 2 3 4 5 1 3

F (A )d ~~
J x y
c~ 1 3

4 ’
= 1 [F ~X ) ]  F ~~~ d \
J x

1 1

1
= (4 .27)

5

Throu gh a similar, though more tedious, argument with

z = MIN{x , x (4 .28)
1 2 3
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F ( z ) = F  ( z ) + F  ( z ) — F  ( z ) F  ( a )z I x 1 x 1 x 1 x 12 3 2 3

2
— 2 F ( z ) — [F (a )J (4 .29)x 1 x 1

1 1

z = MIN{x , x ) (4.30)2 4 5

F ( z ) = F ( z ) ÷ F ( Z ) — F ( z ) F ( z )

2
= 2 F (a ) - [F (a )]  (4.31)x 2 x 2

1 1

a = MIN{z , z ) (4.32 )3 1 2
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F = F ( z ) + F  (z ) —F ( z ) F  ( z )
z z 3 z 3 z 3 a 3
3 1 2 1 2

2
2 2= 4 F  ( a ) -  2 [F (z )] - 2 F (a) - [F (a )]

x 3 x 3 x 3 x 3
1 1 1

4 3 2
—F (z)+4F ( z )— 6 F (z)+4F (z)

x 3 x 3 x 3 x 3
1 1 1 1

(4.33 )

we find that

P[ x < MIN (~~ , x , x , x )) P [x  < z  J1 2 3 4 5 1 3

10r 4
= 1 ÷ f (F (

~~ ) - 4F (~~
)

J x
-
~ 1 1

2
+6F  (?¼ ) — 4F (?~) ] F  (A) d \

x x x
1 1 1

1

(4 .34 )
5

thus
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2
P[  x is an extreme point ]  =—  (4.35 )

1 5

independent of the distribution of the x
i

How does this 40% figure for a pure noise image compare with

natural imagery after it has been sensed , sampled , and digitized? • I
Figure 56, Figure 57, and Figure 58 show samples from the image

sequences CARS, TREES , and MRPL AW .

Table III lists the percentage of pixels in each of four

images that are local extrema, and Table IV illustrates the change in

the percentage of local extreme points as noise of increasing variance

Is added to frame 1 from image sequence AIRPL ANE . As the noise

variance is increased , the fraction of pixels that are local peaks or

pits app roaches the limit of .4 predicted b y theory.

Figure 18 illustrates the noise distribution before and after

application of the filter for an image containing pure random noise .

B ased on these r esu lts , the non—linear peak elimination f i lt e r

shows considerable p romise f or r educin g th e noise compon ent of imager y

in r egions of low contrast (reg ions with a hi gh degree o f loca l

randomness) whi le leaving relatively unchanged the signa l component

(persistent local Intensity gradients) of the same imagery. The

performance improvement of a tracking system using the pea k elimination

pref l iter will be documented in Chapter 6.
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Table III. Extreme point statistics for real data images

Image % of total pixels that are
peaks or pits

Frame 1 of CAR S 15.5

Frame 1 of TREES 20.7

Frame 1 of AIRPLAN E 24.0

Pure noise 39•4

Table IV. Effects of additive noise on extreme point statistics

Tariance of additive noise % of to tal  p ixels that are
peaks or pits

0.00 (ori ginal image) . 24.0

.04 26.6

.25 30.2

1.00 34.4

4.00 36.6

16.00 38.9

25.00 38.8

100.00 39.5
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with the Non—Linear Peak Elimination Filter
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4.3 Adaptive Reference Set Selection

In Section 3.12 we saw tha t  i t  is advantageous (wi th  respect to

2
minimizing the probability of error) to maximize in (dy, dx) for any

N,AVE

particular N. In this section, we will develop a technique for

2
adaptively selecting the reference set which maximizes in

N ,AVE

Consider an arbitrary p ixel Ic(0,0,k) in the comparison set.

The facet model assumes that the gradient is approximately constant in

a region surrounding any point . The contribution of c7Ic(0,0,k) to

2
in (dy,dx) is

N I AVE

2 A 2
in (dy, dx) = (VIc(0 ,0,k).(dy 1 + dx 1 )]

k y x

2 2  2
= I v’Ic(O , O ,k )  r cos (4 .36)

A A

where 4) is th e angle b etween (d y l + dx l ) and VIc( 0 ,0 ,k ) ,  and
y x

2 2 2 2
r = dy +dx • We see that  in (dy, dx) is proportional to the gradient

k

2
magnitude at Ic(0 ,0 ,k ) .  To maximize  m , select the  N p ixels in the

N ,A yE

reference Image which h ave the largest  gradient magnitudes.  This

selection can be performed in three steps:

1) Calcu late the gr idient magnitude for each p ixel
In the reference image and form a his togram of gradient
magnitudes.
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2) Starting with the largest gradient magni tude
and working dow n , f in d the la rgest th resho ld  v alue suc h
that there are at least N pixels with gradient
magnitudes greater  than or equal to the threshold .

3) Find N pixels in the reference image which have
a gradient magnitude greater than or equal to the
th reshold .

A hazard exists with this approach to selecting the reference set. If

the resolution of the sensor in the scan direction is substantially

less than the resolution perpendicular to the scan direction , it is

possible for this algorithm to select N pixels with all gradient

vectors perpendicular to the scan direction . The result is a very

2
small value for in (0,dx) and an increased probability of errors

N ,AVE

pa rallel to the scan direction . The Indication is that the angular

resolution of the sensor af ter  digit izat ion should be approximately  the

same in each axis . This problem can be lessened somewhat by wei ghting

the gradient component parallel to the scan direction more heavily than

the component perpendicular to the scan direction when computing the

gradient magnitude , or by using only the component parallel to the scan

direction to form the histogram. For the three data sequences used for

evaluation of t racking algorith ms , nei ther of these st rategies was

required.

Since the gradient magnitudes are used in decreasing order to

assemble the reference set , the possibility exists that the probability

of error is not a monotone decreasing function of N. What conditLons

would have to exist In order for  this to occur , and what  precautions

should be taken to prevent it?

If P
& 

is not a monotonic decreasing function of N, then there

exists some k such that
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P~ [d y, dx I N k+1] > P~ [dy, dx I N=kJ (4.37)

2
For examp le , suppo se that  r .160 whe n the 50 pixels with

50,AVE

larges gradient magnitude are included in the reference set, and in

addition , suppose that the next 200 pixels in the gradient magnitude

F 

histogram had signal—to—noise ratios o .07. From (3.57) the maximum

probability of error for N = 50 and ~ 
= .160 is 1 — erf [.52523) .

N,AVE

If the  next pixe l to be incorpor ated into the r efe r en ce set h as

2
= .07 , then

I
~i 

51

2 .160 x 50 + .07
= = .158

51,AVE 51

2
and the maximum probability of error for N = 51 and ~ = .158 is

N,AVE

• 
*

1 — erf [.52500]. This increase in the probability of error indicates

2
that the pixel with T = .07 should not be incorporated into the

reference set. However, if all 200 pixels wIth ‘( = .07 are included

In the reference set, then

2 . 160 x 50 + .07 x 200
1 = = .088

~~~ 250 ,AVE 250
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*
and the probabil i ty of error is 1 — erf [.66697] . From this  we see

that there a re cases where t he inc lusion of addi t ional p ixels in the

refer ence set does not au t omatically dec rease the probabili ty of error.

2 2
We will next establish a lower bound for ~

‘ as a func t ion  of ~~N+1 N,AVE

2
and N such that P will always decrease so long as )‘ is greater

6 N+1

L than the bound.

Let

2
in

2 I
= (4 .38 )

i 2
0~n

N
2 I~~~ ’ 2

=—
~~~~~~ 1~ 

(4 .39)
N ,AVE N i=1 i

N,AVE
£ = ____________ 4 .40 )

• N / 2
2/ 1 + ‘1

N,AVE

where we drop the specification of (dy dx) to simplify the notation.

Recall that ~ is the argument of erf*(.) which establishes the upper
N

— 
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bound on the probabili ty of e r ror .  From (3 .57) we see tha t  Increasing

E decreases the upper bound on the probability of error
N

< # P [dy, dx I N k 3  > P~~ [d y, dx IN N+1

(4.41)

2
We are looking for a lower bound O~~ ~ which will cause ~~ to be

N+1 N-I-i

greater than 6
N

2 

~~ ,AVE
(4 .42)/ 2 

~~~~

‘ 2
2/ 1+ S( 2 / 1 + y
I N ,AVE 1 N+1,AVE

2 2
substituting (4.39) for ‘

~~~ 
and 

~~~

‘ and collecting terms in
N ,AVE N+ 1,AVE

• powers of 
~(N+1

4 2 2 2 2
1 [ 1 +  ~~j +  ‘f N [( 1 )
N+1 N N+1 N ,AVE

2 2 2
+ 2 1 ] — N (  

~~ 
) > 0 (4.43)

N,AVE N ,AVE

2
and solving for the lowe r bound on

N+l
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1

2 (2  \2  2 2
N I  I l  \

2 N ,A VE f N ,AVE N ,AVE
1 >  I + 1 1 +
N+i 2 ~ 2 J N

1 + 1  ‘ I
N ,AVE

2
I

N , AVE
— + 1 (4.44 )

2

For N greater than 10 , this lower bound f o r  ‘

~~ 
is r elatively

N+1

insensitive to N. Figure 19 shows the behavior of the ratio of the

2 2
• lower bound ~or I to r for  N > 10. At each s tep,  the signal—

N+l N ,AVE

to—noise ratio for the next p ixel divided by the current average

signal—to—noise ratio must lie above the curve to assure that the upper

bound on probability of error is a monotonic decreasing function of N.

There seems to be only one realistic s i tuat ion where i t  is

likely that the upper bound on probability of error is not a monotonic

decreasing funct ion of N. This case will occur when the reference

image contaIns a small number of ve ry high contrast p ixe].s on a low

contrast background. The histogram of gradient magnitudes will contain

a few points in the high value bins with a large span of vacant bins

separating these from the remainder of the image. This case did not

arise in any of the imagery used for the evaluation of this reference

set selection a lgor i thm.
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Figure 19. Incremental Signal—to --Noise Ratio Requirements
for Monotonic Decreasing Probability of Error
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There is an additional restriction on the inclusion of a

particular pixe l in the reference set. For integer—valued imagery, a

pixe l should be considered fo r  inclusion in the  reference set only if

the gradient magnitude in the region surrounding the p ixel in question

is s u f f i c i en t ly lavge to assure tha t  there will be a contribution to

the distance f u n c t i o n  fo r  some trial registration .

• To see this , consider a one—dimensional examp le. Figu re 20

illustrates a hypothetical one—dimensional Intensity profile for a

digit ized image .

The pi xel labeled X can be s h i f t e d  r igh t or l e f t  by as much as

four pixels withou t contributing anything to the distance function. If

the search region is plus and minus two p ixels, the inclusion of X in

the reference set contributes nothing to discovering any

mlsregistration between the reference image and the data image, even if

the actual misregistratIon Is the maximum allowab le value ( two p ixe l s ) .

The local average derivative in the region surrounding X must be

1
greater than to contribute to the distance function at any

4R + 1
MAX

allowable misregistration , and a more practical limit would require a

local average derivative sufficiently large to produce a distance

function contribution at the edge of the search region even when the

da ta image and the r ef erence image ar e p e r f e c t ly regist ered . For this

reason, we place the following constraint On th e pixels to b e inc luded

in the reference set :
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1 I .
• IVIr(i ,j)I > (4 . /~5)

R
MAX

where

r
R ~./ d y + dx (4 .46 )

MAX / MAX MAX

For Ir(i,j) less than this limit, and a perfectly registered data

image there is no trial registration in a noise—free Image which has

any error signal attributable to the inclusion of (i,j) in L.

There are two types of regions which will exhibit the desired

characteristic:

1) Local extreme points (either peaks or pits)
will exhibit a change in intensity in every direction.

2) Points which lie on edges will show a change in
intensity in directions perpendicular to the edge.

Since any significant peak or pit will be surrounded by an

edge, the approach to be taken will be to estimate the gradient

• magnitude at each point In the image an d use the N points with the

largest gradient magnitude values for the reference set.

In the remainder of this chapter we will develop a gradient

magnitude estimation technique for selecting the reference set and

2
demonstrate the potential for increasing 

~ 
by adaptive reference

N ,A yE

set selection.
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• 4.3.1 Gradient Mag n itude Estimation

The app roach to estima t i ng the g r adien t ma gn i tude a t  a poi n t in the

refe r ence image will be to es t imate  the  ho r izon ta l a nd ve r t ical

components separately and combine them according to

2 A l 2 I A l 2
• Vir = VIr~ 1 I + IVi r~ 1 (4.47)

x y

The error to avoid is that of incorrectly estimating that

1
IV I r( i ,j ) ~ > (4.48)

R
MAX

and hence making Ir(i,j) a candidate for inclusion in the comparison

set when it will only contribute to the noise and never contribute to

the signal.

A rectangular search area will be assumed , with

2 2 2
R = R  +R (4.49)

x y

where

R = dx (4.50)
x x MAX

R = dy (4.51)
y y MAX
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and and are the scale f ac to r s  which convert pixe l spacing in x
x y

and y to horizontal and vertical angula r disp lacements.

The following assumptions are made about the characteristics of

the image:

1) The distance over which a gradient component
persists is roughly proportional to the inverse of its
magnitude (i.e. low gradients persist for longer
distances than do higher gradients). If this was not
true, then a histogram of gradient magnitudes would
cluster away from the origin. As we shall see, this is
not the case.

2) The occurance of single p ixel extreme points
that are not due to noise phenomena is relatively rare
in a randomly selected image. Table 3 indicates that
this is reasonable.

3) The covariance of the noise In the image can be
modeled as a zero—mean , first—order Markov process in
each axis (see Section 3.8).

In order to bound the rate at which low gradient points are

erroneously determined to have sufficient signal strength to be

• included in the reference set , a r est r iction is p laced on the allowable

performance of the estimator. For each component of the gradient , the

• following criterion must be met :

A A

~ V1r 1 — —

(j I R
1 (4.52)

• ~ constant = C
A A
c’Ir• 1

i

A A A
where VIr.1 is the estimated gradient component in the 1 direction ,

I I
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A
R is the search radius in the 1 direction , a~d A 

is the

A 

c7Ir.1

standard deviation of the estimate of ‘71r 1 • This restriction on the
i

estimator will insure that there are at least C standard deviations

between the estimate of the gradient component magnitude and the h R

point (see Figure 21). The effect is to build an estimator which has a

variable confidence interval, but operates with a t ixed maximum

probability of error .

With this approach to estimating the gradient magnitude

components, the probability of erroneously including a point in the

reference set can be approximated as

* 2
P(ERR0~1E01JS LNCLUS1O~ 1 = (er! (—C)) (4.53)

where we assume that  errors in the x—co inponent and y—co mpon ent

estimates are independent .

• This probability can be made arbitrarily small by increasing C

• at the cost of reducing the number of pixel locations that are

candidates fo r inclusion in L.

In estimating the gradient components , each component is

i~adeled as a constant in the region used to form the estimate. For the

purpose of develop ing the necessary equations , only the x—component

will be dealt with. The y—component di:fcrs only in the correlation

time used in the Markov mode l for the noise. Let
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Figure 21. Desired Chara cterist ics of a Gradient
Magnitude Estim ator
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= I r ( i,j+n) - Ir(i,j-n) (4.54 )

With the approximation that

I r (i , j+n ) = Ir (i , j)  + 
~~

1

~? 
VIr( 1, j)~ I (4.55)

Sx (i,j) becomes
k

K

= 

~~~
2n?? VIr(i,j)4

N

2 VIr (i,j).I ~
x x i=1

A
= K (K+l )17~~S7Ir(i,j).1 (4.56 )

From 4.58 we define the estimate for ~7Ir(I,j).I using 2k adjacent

pixels to be

Sx (i,j)
A A K (4.57)

• VIr(i,j)•1
x K(K+1 )’~7

The required constraint reduces to
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C 1
A A.
VIr(i,j) 1 ~ +— (4.58)

x VIr.1 R
x x x

A A
or after substituting (4.57) for VIr(i,j) 1

x

Sx (i,j) J ~ K(K+1) C O~~ + (4.59)
K Vtr.l R

x x

Ii

Determination of the variance of the estimate requires a

knowledge of the covariance of the noise associated with the 2k

adjacent p ixels used in forming the estimate. Let zx (i,j) be the
K

vector made up of the set of 2k+1 pixels used to form the estimate,

• then

T
[zx (i,j)] = [Ir(i ,j—K), Ir(i,j—K+1),... ,Ir(i,j+K)] (4.60)

K

and

T
E 
[(

zx (i~i)_E Ezx (i~i)]) (zx u,J)-Eczx (i ,i)]) ]
~ 

Px (i ,j)

(4.61)

Since the noise is modeled as a tirst—order Markov process with

zero mean , the elements of the covariance matrix are
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2
Px ( i,j) = (T exp( —J j 17? l i — i l ) (4.62)

K n x x

2
where ~T is the variance of the error in Ir, and is the

correlation time for the noise. Let (~) be a 2k+1 element constant
K

vector

—1 for 1 < i < K

£~) (1) 0 for i = K (4.63)
IC

• 1 for K < i < 2 K

Sx (i,j) can now be expressed in a more compact notation
K

T
Sx (i,j) = (,) zx (i,j) (4.64)
K K K

An expression for the variance of the estimate is now obtained in a

straightforward manner
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• 1 2A
var [VIr(i,j).1 ] E [Sx (i,j) )

x 2 2 K
K (K+1)

1 T T
zx (i,j) zx (i,j) w ]

2 2 K K K IC
K (K+1 )

1 T
W Px (.~.) (4.65)

2 2 K K K
k (IC+1 )

The estimator now takes the form

T
(.t) zx ( i,j)

A A K K
VI r (i , j) 1 = (4.66)

x , ,
• K (K+ 1)Q~?

x

subject to the constraint that K’ is the smallest K such that

1
r

T ~x I T  1 2
zx (i,j) ~ + C L(I) Px (A) J (4.67)

K K R K K K
x

The gradient magnitude components are individually estimated and then

combined to form an estimate of the overall gradient magnitude .
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1
2 2

A [A  A l  1.” A l  2
VIr(1,j) = LV (i,j).1 + LV (i ,j.1 j (4.68)

xj y

If the noise in the reference image is uncorrelated , then Px
K

2
is diagonal with all nonzero entries equal to 0 , the global

• n

reference—image error variance. This results in s impli f i ca tion of

(4.65) to 
-

2
20

1 T a
(A) Px (A) = (4.69)

2 2 K  K K 2
K (K+l) K(K+1)

There is an upper limit On K which is determined by the minimum

distance between the pixel at which the gradient magnitude is being

estimated and the nearest image boundary. A smaller upper limit may be

desirable In practice due to considerations of computation time or

hardware complexity. In either case, if the upper limit of K is

reached withou t satisfying the constraint , the gradient magnitude

component can simply be estimated to be zero. This precludes the

possibility of an increasing classification error rate near the

boundary of the image. Figure 22 shows the minimum detectable

A
gradient—magnItude component as a function of VIr.1 and C 0

i n,REF

We now have a gradient magnitude estimation algorithm with the

fl4
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Figure 22. Minimum Detectable Gradient Magnitude Components
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desired characteristics.  In the next section we will investigate the

performance of this estimator , the distribution of gradient magnitudes

2
in some actual images, and the improvement in r that can be

N ,AVE

obtained by using the gradient magnitude histogram to select a

reference set.

4.3.2 Experimental Reference Selection Using Gradient

Magnitudes

Figure 23 through Figure 25 shows the distribution of detected

gradient magnitudes for the three different images with selected values

• of C and estimated values of Q .
‘I

Figure 26 through Figure 31 display the gradient magnitudes as

detected .

In these images, large detected values of gradient magnitude show up as

bright p ixels. From this it is clear that itt all three images there

are a few p ixels with very high gradient magnitudes and a Large

majority with relatively small values. The result i5 that the value of

2
m (dy, dx) decreases rapidly as N increases. Figure 32, Figure 33,
N,AVE

and Figure 34 locate the pixels incorporated into the reference set for

N = 128.

Figure 35 shows the auto—distance function for a 32 by 32 block

of adjacent p ixels from the reference image shown in Figure 63.

The upper right corner of the reference set was located at row

43 , column 43. When the gradient magnitude detection algorithm was

used to select the reference set , a very significant increase in
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Figure 23. Gradient Distribution for CARS
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F i g u r e  27 .  G r a d i en t  i~~~n i t u d e  ir~age of CARS for C = 14

121 

- . .~~~~ -- - -~~ - — —— --,--- ~~~~~~
—--



- T:- ----- :— 
~~~~~~~~~~~~~~~ 

—•-•- .- -—,-- --- .—• .--

I

C = 1

C = 2

FI gur e  28.  Grad i cut magni L~idt~ Ji ~age ü í  T}~ f o r  C I and C 2

172

_ _ _



_____  ~~~~~~—~~~~ ———-- —-  —

F i g u r e  29. Gradient magntti:dc’ 11~~ ’C of TflEES f o r  C 4
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Figure 31. Gradient rna~nitude inage of AIRPLANE f o r  C = 4
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average signal strength was realized . Figure 36 illustrates the

improvement that was realized when the 1024 pixels with maximum

gradient magnitudes were used to form the reference set.

When N was reduced from 1024 to 128, a further increase in average

signal strength was realized (see Figure 37).

• In any tracking system which uses -a single processing element

2
to perform all of the computations associated with evaluating d ( . ,. ) ,

there will be a trade—of f to be made between the number of trial

registrations that can be attempted and the number of pixels to be

carried in the comparison set. If the interfraine time and the target

dynamics relative to the sensor optical axis are known, a maximum

search area size can be determined . Search area size , in combination

with pixel spacing and processor speed , leads directly to an upper

bound on values for N. At this point, specification of a maximum

allowable probability of error will determine the minimum acceptable

signal—to—noise ratio. If the combination of scene and sensor cannot

provide the required signal—to—noise ratio, a faster processor or a

smaUer search area is indicated.

4 .4  Summa ry

In Chapter 4 we have assumed that the reference image was

given, and dealt with three techniques to increase the effective

tracking signal—to—noise ratio: first, by using non—uniform weights for

the norm ; second , by reducing the random noise component of raw data

imagery in regions of low contrast; and , third , by selecting the

reference set in a way wh ich increases its average signal strength. In

the next chapter we will consider how to get a good reference  image .
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chapter 5 ~
- -

REFERENCE IMAGE ESTIMATI ON

In this chapter , we develop an adaptive Kalman filter to

perform the reference—image—update task, prove that it is stable , and

dem nstrate the performance of the filter.

In Section 3.10 we investigated the sensitivity of the

probability of error to both the signal and noise components of the

image.- While the ni (dy,dx) are a function of the sensor and the scene,
i

the noise is a function of the sensor and the processing that is

performed on the received images. If the signal—to—noise ratio at the

input to the similarity detection process is maxic’ized, then the

performance of the system , as measured by the probability of error , is

2
dependent on the reference—image—update process to minimize 0

n,REF

There are also benefits to the reference—set selection process when

2
is reduced since the gradient estimator performance is also

n,REF

dependent on this noise variable.

5.1 Adaptive Kalina n Filter

The classic formulation of the Kalrnan filter assumes a complete

a priori knowledge of the process and the measurement noise statistics .

In most p ra ctical app lications these s ta t i s t ics  are  inexact ly known.

The use of incorrect a priori statistics can result in a Kalma n f i l t e r
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which has large estimation errors or which may even be dive rgent. The

purpose of an adaptive filter is to reduce these ~rrors by modifying

the filter to adap t it to the real data.

At this point we digress for a moment to review the general

Kalman filtering problem , we will then establish the the equivalence

between the conventional Kalman filter notation and its specific
,

• 
‘ 
‘

application•to the sequential image tracking problem and deve lop the

estimation procedure to be used to obtain the process and measurement

noise statistics . For a more detailed review of Kal man filter theory

see Gelb [12). The particu lar approach to be followed in develop ing

the adaptive filter largely follows Mehra [251 . Let

x =~~~~x + u  ~~(5.1)
1+1 i • i

z = l l x -f- v (5 .2)
I I i

w~e - e x is the state vector , c~~is the state transition matrix, u is
I i

the process noise vector which induces changes in x , z is the
i i

measurement vector , H is the measurement matrix, and v is the
i

measurement noise vector. Both u and v are assumed to be zero—mean ,
i i

uncorrelated Gaussian sequences with

E[u ] 0 (5.3)
I
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T ç
E[u u J Q a (5.4)

I j  ii

E[v I = 0 (5.5)
i

T I-
E[v v ] = R a (5.6)

I j  ij

where is the Kronecker delta function and Q and R are bounded
Ii —

positive definite matrices. Let be an estimate of x based on the
i/j I

observation set Z where
3

Z = ( z  , z , . .. , z ) (5.7)
j 1 2  j

Let P be the covariance of the estimation error based on Z
i/i j

T
P = E (x —~~ I (x —

~~~ 
] (5.8)

I/j  I i/,j I i/j

When Q and R are known, the minimum variance linear estimator is given

by the Kalman filter of the form

(5.9)
1+1 /i I/i
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x = x  + K  (z  — H  x ] (5.10)
i/i i/i—i I I i/i—i

T T — 1
K = P  11 ( H P  H + R )  (5.11)
I i/i—i i/I—i

P = (I — K H)  P (5.12)
I/i I i/i—i

P =~~~P c~ + Q  
- 

(5.13)
1+1/i i/i

where K is the Kalmaia gain, and j} z —lix is called the innovation
I i i  I

sequence. For the sequential image es timation problem bo th Q and H

will be estimated from measurements made during the reference image

update process.

The following equivalences establish the relationships between

the notation of conventional Kalma n filter theory and the particular

variables of the Image tracking problem as used in the preceding

chapters. We let

x Is, the underlying image (5.14)

Ir , the reference image (5.15)
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z Id , the data image (5.16)

11 = I, the Identity matrix (5.17)

2
H = I , the measurement noise covariance matrix

n,DATA

(5.18)

2
Q = q I , the process noise covariance matrix

(5.19)

2
P I , the estimation error covariance matrix
i/i—i n,REF

• ( 5.20 )

where all of the identity matrices are of dimension H 14 (th e number of
R C

pixels in the reference Image). We employ a covariance—inatching

2 2
technique to determine appropriate values for O~ and q • Note

n ,DATA

that while the underlying image Is strictly positive (or zero), the

state model allows for negative state vector components . To the extent

that this does not represent the  t rue  situation with real images, the

filter may produce suhoptima l results. The expected va lue of the

innovat ion sequen ce is [ 25 )
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E[Z)j,I ) E[ (z —Fi x )(z — M x  ) I

I I i i/ i—i  i i/ i— i

i / i—i

2 2
= ( C + G~ ) I (5.21)

n,REF n,DAT A

~.ny detected deviation above this value is taken as an indication that

the f i l t e r  is not optimal (in the  sense of minimum variance) and t h a t

2 2
q and 0” should be adjusted to bring the filter back toward

n,DATA

optimal performance. The reference image up date filter will maintain

2 2
estimates of both (r and ~7 and use the difference image

n,DATA n ,REF

associated with the minimum distance registration as the innovation

sequence.

Since the difference Image contains a large number of pixels,

the sample statistics for the difference image should closely

approximate the true underlying statistics , i.e. the bias and variance

of the sample statistics will be small. The sample statistic that will

be used in the estimation of Q and H is the difference image sample

variance V .

L 
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1 2 
D(~~,~~~,k,j) 

.2

v = D (dy,dx ,k,j) — ___________________

i 1~ V~~~~~3 I M
D D

(5.22)

where H is the number of p ixels in the difference image associated• D

with the minimum distance.

D 
= [MINO4 , 

R 
— MAX{1 , dy)] x

[MIN{M , M —dx) — MAX{ 1, dx)] (5.23)

The mean and variance of V are
i

2 2
E[v I = 0” (i—i) + (Y (i—i ) (5.24)

I n,REF n,DATA

and

2 2
2( 0’ (i—i ) + O (i—I) I

n,REF n ,DATA -

var [v 3 —__-_________ .. (5.25)
I H - 1 

-

D

WhIle v is a biased estimate (N should be smaller by one to be
I D
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unbiased), 5.21 Is prefered over the unbiased estimate since It gives

2
less mean—square error [15] . We will use v — (i—i ) as a measure

I n,REF

2
of change In , and define a time constant ~S (0 < < 1) for

n ,DATA

2
changes in

n ,DATA

2 2 2& (I) = (i—i ) + (1—~~)[v — & (i—i)]
n,DATA n,DATA I n,REF

(5.26)

2
The basis for this restriction on the rate of change of 0 Is the

n,DATA

assumption that sensor noise variance is a function of parameters which

change relatively slowly compared to the sensor frame rate. In a

vidicon sensor , it could be the facep late temperature or target

voltage. In other sensor types, other noise sources respond to the

environment with finite time response. The remainder of the difference

2 2
between v and the filter estimates of 0’ and 0 , denoted

I n,DATA n,REF

• T , is attributed to change In the underlying image Is and is assigned
2

• 

2 2
to q to increase the filter estimate of O prior to the

i n,REF

calculation of the next Kalman gain.
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2 2
T = V — 0” (I—I ) — (1—1) (5.27)

2 I n ,RE F’ n,DATA

Since Q and R must be positive definite matrices , a precautionary

restrIctIon Is p laced on q and on & (see (5.33))
I n ,DATA

2
• q = MAX-C 0, T ) (5.28)

• 1 2

T o in i t ia l ize  the filter , we take the first data Image as the

first reference image since there is no better information available

2 2
about Is, and for & , we use & , an a priori guess at the

n ,REP n,DATA

varIance of the noise component of Id.

The full set of adaptive filter equations is summarized as

follows in terms of the variables unique to this problem:

Initialization

2 2
& (1) = (1) (5.29)
n,REF n,DATA
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Update

• 
2

a- (i—i )
— n,REF

K — (5.30)
i 2 2& (i—i ) + ô’~ (i—i )

n,DATA

It (k ,j) Ir (k—dy , j—dx ) + K [Id (k,j) (5.31 )
i i— i i i—i

- — Ir (k—dy, j—d x)]
i—i

Ptop agat ion

2
__ L L D (dy, dx ,k , j )

1 ” ~~~~”~ 2 1 j  i.
v —

, ~~ 
D (dy,dx ,k,j) — (5.32)M k j I

D D

2 2
T — (1—1 ) + (1—~~ ) [v — 8- (r—~)] (5.33) -

1 n,DATA I n,REF ~

(i) — MAX{ 0, T ) (5.34)
n,DATA 1

2 2
T — V — 

~~~ 
(1—1 ) — (1) (5.35)

2 1 n ,REP n,DATA
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2
q = MAX { 0, T ) (5.36)
1 2

2 2
(i—1)fr (I)

2 n ,REF n,DATA 2 -
•

(I) = + q (5.37)
n,REF 2 2 i

cr (I—1) + o— (I)
n,REF n,DATA

In the next section we will analyze the stability of this algorithm.

5.2 Filter Stability Analysis

In the design of an adaptive Kaluan filter, because of the

adhoc nature of the covariance matching process, the question of

stability must be addressed . In this section, we show that the filter

is stable excep t during periods when the observed difference Image

2 2
varIance indicates that the filter estimate of 6 + 6” is

-

‘ 

n,DATA n,REF

too low. During these periods the filter enters an unstable region of

operation, Increasing O + O’ until the sum Is Once again In 
•

n,DATA n,REF

agreement with the observed data.

2
Eliminating q from (5.26) and (5.36) and letting

- - - 
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2
(1-1)

+ n,REF
K — (5.38)
I 2 2

(i—i ) + ô~
- (I)

n,REF n,DATA

2 2
we have recurs ive equations for & and & with v a~ the onlyn,DATA n,REF

forcing function

2 2 2
Er (i) = & (i—i ) + (1—p )v — (i—p ) & (‘—1)
n,DATA n,DATA I n,REF

(5.39 )

+ 2
0 (i) = [1—K 3 & (i—i ) + v (5.40)
n ,REF I n,REF I

— (i—i) — 0 ( I )
n,REF n ,DATA

The constraints placed On the propagation equa tions define four

potential regions of operation for the filter:

Region I

T < 0
1

T < 0
2
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Region II

T > 0
1

T < 0
2

Region III

T > 0
1

T > 0
2

Region IV

T < 0
1

T > 0
2

From (5.32) and (5.34 ) we see that

2 
~ 2

• T ~ 0 ~~~~
- v > & (i—i ) — —n 

~ (1—1 ) (5.41 )1 1 n,REF 1—~~ n,DATA

and

2 2
T > 0 =~ - v > 

~~ (i—i ) + & (i—I ) (5.42)
2 1 n,REI? n,DATA

hence It is clear that T > 0 is the more restrictive constraint, i.e.
2
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T > 0 4  T > 0
2 1

which precludes the possibility of operating in Region IV.

Incorporating the constraints associated with each region of operation

and writing the resulting equations in matrix form:
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Region I

2
T ~ 0 & (I) = 0 (5.43)1 n ,DATA

2
T ~ 0 4 q = 0 (5.44)
2 i

therefore

2
& (I) = 0 (5.45)
n,REF

and

s = 0  (5.46)
i

where

(I)
n,REF

s = - 
(5.47)

1 2
(I)

n,DATA
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Region II

2 2
T > 0 4 & (I) = (3 & (i—i)

1 n ,DATA n,DATA

2
+ (1—~3)[v — & (i—i)) (5.48)

1 n,REF

2
T ( 0 ~~ q = 0 (5.49)

2 I

therefore

2 + 2
8- (1)—K & (i)
n,REF i n,DATA

+ 2 +
K ~3 & (I-i) + K (1-~3)vi n,DATA I I

+ A 2
— x ( 1— ~3) O (1—1 ) (5.50)

I n,REF

and

+ + +
—K (1-(3) K (3 K (1—(3)

I I I
s = s + v (5.51)

-(1-~3) (3 
I-’ 

1- ~3
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Region III

I-

2 2
T > 0 ~~ 8— 

~~ 
= & (i—i ) (5.52 )

1 n,DATA n,DATA

2
+ (1—~~~ [v — & (i—i))

I n,REF

2 2 2
T > 0 4 q = v — & (i—i ) — & (1—1) (5.53)

• 2 1 I n,REF n,DATA

therefore

2 + 2
& (i)=K & (i)+v
n,REF I n ,DATA i

2 2A A
— a- (i—i ) — a- ( i—i )

n,REF n,DATA

+ 2 + + 2
(3 (1—1 ) + K (1— ~~~v — K (1—13) & (i—i)

i n,DATA I I i n,REF

2 2
+ v — a- (i—i ) — & (I—i )

I n,REF n,DATA
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+ 2 + 2
— — (K (1—13) + 1] ô + [K (3 —1 ) Er (i—i )

i n,REF I n,DATA

+
+ [K (1—13) + 1]v (5.54)

I I

and

+ + +
—K (1—13) -i K (3- 1 K (i-(3) +1

- 
1 I I 

_ 
-

8 = s + v (5.55)
1 1—1 i

-(1-13) (3

In order for the filter to be stable, the homogeneous solution

-• to the propagation equations must decay to zero. This requires that

the eigenvalues of the propagation matrix lie inside the unit circle.

In Region I, s = 0 is a degenerate case. K will be indeterminate
I 1+1

and can be taken as either one, based on the prediction that the next

data image will be perfect , or zero, based on the observation that the

reference image is already perfect. In practice , this case will rarely

2 2
occur , and when it does, both a- and a- will be restored to

n,DATA n,REF

nonzero values as soon as a nonzero v is observed ; thus, the filter i5
I

stable in this region of operation.

For Regions II and III, we solve the characteristic equation

for the elgenvalues of the propagation matrix and investigate the range

of possible elgenvalues in each case.
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Region II

+ +
-K (1-p) - K

I I
— o

2 +
- + K (1-

~~~,~\ 
(5.56)

I

the solutions are — 0 and 
~ 

— ~3 —K (1--~~ ).  For 2~ to sat isfy

I 2 1 
there are two cases:

ease l

- K (1-~~ ) < 1 (5.57 )

• 
-K < 1 * ~~ (5.58)

ith ich is alway s true, and

case 2

• 
— ~~~ K (l—~~) < 1 (5.59)
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+
K (1—p) < 1 + (5.60)
I

but

K ~ 1 and 1 — < 1 (5.61)

so that

K (1-~~ ) < 1 < 1 +~~ (5.62 )

and Region II operation is stable.
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Region III

+ +
-K (1- (3) - 1 -2~ K (3 - 1

I I
= 0

-(1-13) 13 —i

2 +
= + (1—13)(1 +K ) ) l\ — 1  (5.63)

I

the solutions are

I -
~~~

+ / + 2
(1— ~~~ (1 + K ) / , (1—e) (1 + K )

= — 

2 

~ 
+J1 

+ 

2 

(5.64)

and

+ / + 2
(1-(3)(1 + K ) (i-~~~ (1 + K )

= — 

2 

~~ 

/ ~~

• 

2 

< - I

(5.65)

Region III is an unstable region of operation for the filter , but the

only time that the filter will operate in this region is when there is

A2
evidence (from the Innovation sequence) that the sum of Q and

n,DATA
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2
& Is too small  and shou ld be increased to match the observed

n,REF

sample variance of the difference image .

This migh t occur if the frame—to—frame translation error

exceeded the radius of the search region. In this case the correct

registration would not be one of the trial registrations and the

minimum distance would be greater than the predicted value. This event

is indicative of a change in the underlying image with respect to the

reference image and could be interpreted as a manifestation of a loss

oi track. Thus, the filter will operate in Region III until T becomes
2

negative ; at which time, the filter reverts to stable operation in

Region II.

In Chapter 6 a simulation result will illustrate this

cha racter istic r ap id adaptat ion of t he f i l t e r  to a loss of lock

condition and the ability of an integrated tracking algorithm to

reacquire the target automatically.

5 3  Kalman Filter Performance

The performance of the reference—Image update process is

strongly dependent on the ability of the simIlarity detection algorithm

to correctly register the incoming data image . If the location of the

best match does not correspond to the correct registration , the filter

will incorporate the resulting error into the reference image and

increase the reference—image noise variance.

Figure 38 illustrates the ability of the adaptive Kalman filter

to correctly estImate the data—image noise variance , even though the

initial estimate is considerably in error.
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Figure 38. Kalma n Filter Variance Estimates and
Residual Error Variance
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In this case, the data image sequence was generated by

corrupting the Image of Figure 63 wIth an uncorrelated Gaussian noise

2 2
sequence with a- = 25. The initial value for a- was 29 and

n,DATA n,PATA

13 was set to have a time constant of 15 frames. Even though th e

incoming data has a noise component with variance 25, application of

the non—linear  peak el imination f i l t e r  as a presme other  results in a

filter estimate of the reference—image noise variance of only 14. This

agrees quite closely to the approximately 50% reduction in noise

variance which was realized when the non—linear peak elimination filter

was applied to a pure noise Image. Operating at this noise level with

N = 128, the similarity detection process does make errors, as shown by

Figure 39.

After 60 frames, the tracker has built up an error of 2 pixels

In the horizontal direction , and 1 pIxel in the vertical direction.

Note that most of the errors accumulate during the initIalization

transient and before the Kalman filter has had time to reduce the

reference image noise variance.

In Section 4.2 the nonlinear peak elimination prefilter was

developed to reduce the random noise in regions of the image with low

gradient magnitudes. Figure 40 shows the difference Image distribution

with and withou t the prefilter in use.

From this, It seems clear at while the prefilter does reduce

the difference—image variance, the characteristic shape of the

distribution is preserved.
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5.4 Summary

In this chapter an adaptive Kalman filter was formulated to

perform the reference Image up date function in a generalized image

tracking system . The filter was analysed to determined its stability -•

characteristics and its ability to significantly reduce the reference

image noise variance was demonstrated through simulation. In addition ,

the use of the non—linear peak elimination filter as a p r e fi l t e r  for

the sensor data was shown to not affect the difference Image statistics

other than to reduce the sample variance.

In the next chapter , the various pieces of a tracking system

that have been deve loped in chapters three , four , and five will be

integrated into a single algorithm and evaluated as a whole via

simulation using real sensor data.
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Chapter 6

TRACKER PERFORMANCE

Up to this point, the individual techniques for improving

tracking performance have been analyzed and demonstrated in isolation.

In this chapter , an integrated tracking algorithm is proposed wh ich

incorporates the concepts developed In previous chapters , and the

performance of this integrated tracking algorithm is demonstrated in

the presence of both noise and image change .

6.1 An Integrated Tracking Algorithm

An integrated tracking algorithm was developed to incorporate

the nonlinear peak elimination prefilter, the adaptive , reference—set

selection process using ~~he gradient—magnitude estimation algorithm

from Section 4.3.1 and the adaptive i~alman filter to perform the

reference—image update function . The logic flow for this algorithm is

• shown in Figure 41.

Whe n this algorithm was implemented for computer simulation the

following features were included~

1) The number of pixels in the comparison set was
adjustable up to a value of N 1024 (limited by
co mpute r memo r y ) .

2) The data image source was selectable between
either a sequence of noise corrupted copies of a f ixed
Image or one of the three data image sequences
discussed in Appendix I.

3) Each of the three component algorithms could be
turned off to allow the effects of its absence to be
evaluated .
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Figure 41. Integrated Tracking Algorithm -
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When the nonlinear peak eliminatIon prof liter was turned off , no

prefiltering was performed. When the adaptive , reference—set selection

algorithm was turned off, the reference—set was taken as a t ixed grid

of pixels centered On the aiuipoint with a selectable inter—p ixel

spacing . Thus, a contiguous block of p ixels could be used for one

simulation run, and a sparse grid could be used for another. When the

Kalman filter was turned off , the reference Image update process simply

copied the data image as the source for extracting the next reference

set. This procedure presented the maximum number of opportunities for

the tracker to accumulate erro: in a fixed amount of computer

simulation time.

The performance of the tracker can be separated Into two parts

for evaluation purposes . The first part Is the performance of the

similarity detector (with or withou t prefiltering) in the presence of

noise in the data image. In Section 3.10 It was shown that the sum of

the noise in the reference image and the noise in the data image is the

factor which determines probability of error and thus, for a particular

image, the mean—square tracking error. The second part is the

• performance of the adaptive Kalman filter in estimating the underlying

image from the data image sequence. While the filter can never reduce

the reference—image noise component to zero, it can come very close to

2 2
reducing the sum of Q and ~~ by a factor of two from what

n,REF n,DATA

It would be withou t the filter (without the filter ,

• 2 2
a- = ). Recall that for moderate values of N , a signal—
n,REF ri ,. .‘A

to—noise ratio improvement of a factor of two can make a very
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significant contribution to reducing the probability of error (see

Figure 11).

In Section 5.3 the performance of the adaptive Kalman filter

was demonstrated with respect to its ability to reduce the reference

image noise variance. That performance is independent of N and depends

only on the ability of the similarity detector to provide a sequence of

registered images. The similarity detector performance was measured by

Monte Carlo simulation. Using the image in Figure 63 as the reference

Image , N = 32, 64, 128, and 1024, and the adaptive reference selection

algorithm , 100 noisy data images were matched against the known perfect

reference set. The mean—square registration error was computed for

each set of 100 data images and is shown in Figure 42 for various

2 -

values of o • Monte Carlo runs of 64, 81, 100, and 200 images
n,DATA

were made for N 64 with only small changes in mean—square error.

The nonlinear peak elimination filter provides approximately a

20% reduction in mean—square error for this particular image at a noise

— variance of 25. Figure 43 illustrates the decrease in average signal

strength that accompanies the increase in N for this particular

reference image for a shift of +1 pixel along the x—axis. This

phenomenon of decreasing mean squared error in the face of decreasing

average signal strength scr~’c-s t~ illustrate the fact that increasing

the number of elements in the reference set more than offsets the

decrease in average signal strength.

Up to this point , all simulations have used a single known

underlying image. While this technique provides excellent control over

the simulation parameters and absolute knowledge abou t the relative
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motion of the Image On a frame—to—frame basis, it does not allow

exploration of the capability of the integrated tracking algorithm to

track an object which is tru ly changing size and shape as wel l  as

position within the image . It is the potential ability of the adaptive

Kalman filter to maintain an accurate estimate of the underlying image

in the presence of change that promi - -t-e--improve the performance of

the total tracking system. The capability of adapting to a changing

scene and deriving a measure of system performance from the noise - -

variance estimates and the measured signal strength will provide a

system designer with features not previously available in image—

tracking systems.

As an example of the performance that can be obtained through

integration of nonlinear prefiltering , adaptive reference selection and

the adaptive Kalman Filter , the integrated tracker was used to track

the data inage sequence AIRPLANE for 89 frames. The nose of the

aircraft was designated In the first franc, and the detected frame—to—

frame motion was accumulated to produce the estimated position of the

aircraft within each sequential image. After each reference image

update , the reference iriage was written onto magnetic tape with the

location o the estimated target position ma rked with a cross hair. A

sample of these reference images with the indicated aiinpoints ma rked is

shown in Figure 44 through Figure 48.

These images correspond to the reference image after being

updated from the corresponding image in FIgure 58 through Figure 62.

FIgure 49 shows the detected motion of the image sequence with every

t -nth frame numberud (some frames had no detected mot ion so there are

not nc• -s~;:rri 1y nine points between each ma rked frame).
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• Figure 49. Detected Image Motion for Image Sequence
AIRPLANE , N=128, w i t h  No n—Linear  Prefilter
and Kalman Filtered Reference Update
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2 2
The filter estimates of 0 and ~ are shown in

n,DAT A n,REF

Figure 50 and the variance of the difference image is plotted in Figure

51.

For this simulation , there were 128 elements in the reference

set. For comparison , Figure 52 shows the detected motion for a minimum

norm tracker using a 256—pixel reference set arranged in a contiguous

block (16 by 16) centered at the initial position indicated by the

cross hair in Figure 44 but with no prefiltering and no Kalman filtered

reference update.

While this tracker takes maximum advantage of the correlation

between correct and incorrect trial registrations, and uses twice as

many p ixels in the reference set, it cannot track the motion of the

image Sequence.

Figure 53, Figure 54 and Figure 55 illustrate the performance

of the integrated tracking algorithm in the presence of added noise.

Two Important tracker characteristics are demonstrated in this —

tracking sequence. First, the filter was initialized with a value of

2
(0) = 29 which Is an unnecessarily pessimistic value. The

n,DATA

filter however rapidly diagnosed that this value was not consistent

With the observed difference image sample variances and reduced the

2
est imate of ~~ to about 20 over a period of 30 frames (2 time

n ,DATA

constants for the selected value of ~ ). This value then remained

approximately constant for the rest of this run wi th the exception of a

perturbation around frame 65 due to a loss of track and the ensuing
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—. I
reacquisition. Second , the loss of track wh ich occurs at frame 63 is

immediately recognized by the filter as a significant event. The very

2
rap id increase in & which allows the reference  image to change

n ,REF

quickly, is a direct result of the f i l t e r  entering Region III of

ope ration (the  unstable region) . By frame 67 the f i l ter has reentered

Region II and has reduced & to near i ts  previ ous value by frame
n,REF

71.

2
The gradual increase in from frame 72 to the end of the

n,REF

data sequence is attributable to the variation In size and shape of the

aircraft ima ge , and demonstrates the ability of the filter to

accommodate itself to actual image change .

The conclusions to be drawn from these simulations and those of

Section 5.3 are that :

1) Adaptive reference selection maximizes the
signal component of the reference set.

2)  Performance of the minimum nort~ tracking
algor ithm as measured by mean square registration error
impr oves with increasing N and also improves with
increasing signal—to—noise ratio for fixed N.

3) The nonlinear peak elimination p r e f i l t e r
red uces mean square tracking error through r eduction of
the data  ima ge noise variance.

• 4) The adaptive Kalman filter can significantly
reduce the reference image noise var iance and

• simultaneously estimate both the reference image noIse
variance and the data  image noise variance.
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6.2 Summary

In this chapter the performance characteristics of an

• integrated tracking algorithm have been investigated . The selected

algorithm incorporated the non—linear peak el imination p ref i l t e r ,

adaptive reference set selection using the gradient magnitude histogram

for selecting reference pixe ls, and the adaptive Kalman filte r for

reference image update .  The b enef i t s  of increasing reference set size

were illustrated and the capability of the integrated tracking

algorithm to accurately track an image sequence was demonstrated .
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CONCLUSIONS AND RECOMMENDAT IONS

The ma jo r t hrust of this research was directed toward

developing new techniques for tracking Sequences of digitized images.

A model of a generalized image tracking aye tam was defined for use as a

basis for analysis , and four new techniques were dev~~ oped. The

• practical implications of these techniques are summarized in the next

section , as are the conclusions which can be draw n fro m this work. In

the last section several rec~ nmended areas for futur e research are

pointed out.

7.} Summa ry and Conclusio ns

• - Four n~~ techniques were developed for application to the

~~neral sequential image t racki ng prob lem :

1) A non—linear peak elimination prefilter

2) Two techniques for s imilarity detection:
/)

a) A non—unifo rmly weighted norm •~
‘

b) An adaptive r eference set
• selection algorithm based on the

• gradient magnitude histogra m ( including
a nw and very effective gradient
magnitude estimator)

3) An adaptive Kalinan filter to perform the
reference image update

While the four techniques which were deve loped are applicable

to three different functional areas in the general image tracking

system, and with the exception of the non—uniformly weighted norm and
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the adaptive reference set selection algorithm which are not directly

comparable, it is poasible to provide a subjective evaluation of their

relative merit.

The greatest payoff is obtained by using the adaptive Kalman

filter to maintain a high accuracy, low noise reference image at all

times. The effective signal—to—noise ratio for the tracker is almost

doubled when the filter is used , with a corresponding improvement in

tracker performance .

The next most usefuil of the techniques developed is the

- adaptive reference set selection algorithm. The performance

improvement which is obtained by tracking on subsets of the reference

and data images comes from the correspondingly larger image that can be

processed . For example , a tracker which today can process 256

reference pixels and 256 trial registrations per frame may only
I

maintain a data image containing 1024 total pixels and a reference

image of 256 pixels. By using the adaptive reference set selection

algorithm, a much larger reference image can be maintained (perhaps as

large as the entire data image ) while only processing a small subset to

determine image inisregist ration. The resulting signal—to—noise ratio

is substantially enhanced by using only the “good” pixels for the

reference set and the same processor speed can be tolerated. The one

factor on which this projection depends is the availability of a device

to perform the gradient estimation task at realtime rates. While the

gradient estimator developed in Chapter 4 has many attractive features,

a less complex gradient estimator in hardware might prove to be

satisfactory in implementing the adaptive reference set selection

algorithm for a particular application.
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The nonlinear peak elimination prefilter appears to be very

easy to implement in either hardware or sof tware , and for low contrast

image s seems to provide up to a factor of two reduct ion in noise

variance. h oweve r , for  high contrast imagery the adaptive reference

set selection algorithm will incorporate into the reference set p ixels

which lie on high gradient edges, and are less likely to h ave been

affected by the prefilter. Under this  condition , the nonlinear peak

elimination filter may not provide its maximum potential benefit.

An important aspect of the integrated t racki ng algorithm is the

serendipitous behavior of the component parts. The non—linear peak

elimination prefilter reduces the random noise component of the

incoming data images. The adaptive reference set selection algorithm

maximizes the signal component of the reference set 80 that  the minimum

distance registration is correct a higher percentage of the time, thus

• reducing the average difference image sample variance. The adaptive

Kalman f i l t e r  maintains a high quality (low noise) reference image and

estimates both the data image noise variance and the reference image

noise variance. The gradient magnitude estimator uses the Ka.lman
• I)

filter estimate of the reference image noise variance €~o control the

~~

• detection threshold and thus maintains a tixed probability of

erroneously including a bad pixel in the refereace set. Since the

pixels in the reference set tend to lie along edges in the image, the

natural adjacency of the reference set p ixels takes advantage of the

noise correlation that exists between the correct and incorrect trial

registrations and reduces the probability of selecting a~ incorrect

trial registration. The reduced noise component of the Kalman filtered

reference image fur ther  decreases the probability of error.
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7.2 Recommended Future Work

Several areas of potent ial ly  f r u i t f u l  research are apparent.

Since the smeothness of a two dimensional di~~t ance f u n c t i o n  determines

the appr opr iateness of the search ty pe, an exhaustive search is

dictated where the trend information from adjacent trial registrations

is an unreliable indicator of the direction toward the minimum of the

• distance function.  It seems reasonable to expect t h a t  a rou ghness

pa rameter can be developed which is a func t ion  of the s ignal—to—noise

ratio. ‘This parameter  should indicate the probability that the utitvtmum

distance lies in the di rection indicated by a distance function
I

gradient measure associated with a particular trial registration.

The development of techniques to determine the location of the

registration coordinates by interpolating between trial registraticns

would be a useful extension of this research . This seems to have some

potential fo r  reducing error.

The question of when to extract a new reference set from the

reference image in order to minimize the aimpoint drift rate remains

unanswered , as well as a number of questions regarding the relative

performan.~e of trackers employing more easily computed distance

functions (absolute va lue or It amming distances f or example).

In the near fu tu re  there Is probab ly a speed advantage to be

had In any digital processor using f ixed point arithmetic. As a result

there are questions to be answered regarding the appropriate word

length and scaling to be used in mechanizing the adaptive Kalinan

f i l t er.
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Appendix I

Data Characteristics

Three image sequences were gathered for use in tracking

experiments. Sample images from each sequence are illustrated in

• Figure 56 through Figu re 62.

All image sequences were obtained from vidicon sensors,

recorded on commercial video recorders , and t ransferred to a video disc

fo r digit izing . A subsection 128 pixels wide by 96 p ixels h igh f rom

alternate T.V. fields was then digitized to six—bit accuracy with an

inter—pixel separation of 100 nanoseconds in the scan direction . Total

system video bandwidth was approximately 3.5 MHz. No correction was

made for nonlinearity of the vidicon input—output transfer function.

For purposes of reproduction the dynamic range of the images was

expanded linearly to the point where one tenth of one percent of the

brightest and darkest pixels were clipped. To obtain the original

aspect for the images, tilt the page until the ratio of height to width

is 1.17. Figure 64, Figure 65, and Figure 66 present the distribution

of intensity levels for the first frame of each sequence.

Figure 67 shows the relationship between the original T.V.

• format and the images as reproduced here.

Both CARS and TREES were obtained under controlled conditions

with a rigidly mounted , high quality, commercial T.V. camera. The

sequence CARS presents a highway intersection with cars stopped at a

red light. The image sequence TREES presents a f ie ld  of r ipe winter

• wheat containing some weed growth with a line of trees in the

background.
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AIRPLANE was obtained under less controlled conditions from a

small ruggedized T.V. camera mounted on the gimbal of ~ gr ound—based

aircraft t racking System. Thi s image seq uence p~ esents an Air Force F—4

aircraf t making a low pass over the tracking site. The aircraz t is

moving with respect to the background , the sensor field of view is

moving with respect to the line—of—sight to the aircraf t, and the

aircraft is changing in both aspect and apparent size during the

approximately three seconds represented by this image’sequence.
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