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SOLUTION OF THE THERMOELASTICITY PROBLEMS
FOR A WEDGE BY, MEANS OF THE INTEGRAL MELLIN
TRANSFORM

V. M. Khorol'skily

Let us assume that the temperature field in the wedge 1is known

and has the form
T=Tert): 0<r<oo —¢<o<y,
where 2y - angle of opening of the wedge;
(r, ¢) - polar coordinates of the point.
The thermal stresSes and shifts we seek in the form of the sum

(3]

3, -3,-{—;.;; c,-;,{j,; 1,,-?,,-{-:1,,; u-i-&-:; v-v.-l-;
Stresses and shifts, marked by one line, are determined by the
thermoelastic potential of shifts ©, which 1s determined from the
equation

o? 1 ad 1 o
AO=4T; A'F"'TF"’TS“ (1)

Here u, Qs and G - Poisson coeffilcient, coefficient of linear ex-
pansion, and shear modulus; for the case of the plane stressed and
deformed state the coefficient 6 1is equal to (14, and 4554,,
respectively; u and v are shifts along the axes r and ¢. ]
It 1s known that the temperature field, which satisfies the
heat-conductivity equation uA‘l'-‘%, is analytical with respect to

e ————— P ——

the coordinates [4]; consedliently, this field can always be presented
in the form




To=gar { Mo b OF7'dh; g, A, ) = [T(g, 7, Or'~'dr,

where a - heat-conductivity coefficient;
A=k+iw - complex variable;
z - a certain straight line which is parallel to an imaginary

axis; k1<k<k2; the numbers kl and k2 are selected on the basis of

the behavior of the temperature field at 0, «.
The thermoelastic potential of shifts we seek in the form

0= 5 Mo A +2, 0 du.

Proceeding from relationship (1) we obtain a differential
equation for determining the unknown function f(¢, A, t),

Ao, & 1) (@—1P 41"y (@0 M 1) = SN, A, 8). (2)

Stresses and shifts from the thermoelastic potential of shifts
are written as [3]

G o= —200T = — . b, A, N,
St Trgm—20 (8 —19,% (3)
a4 L Ty=— %{ (f@: & 1) @=N)—ify" (@ &, D] (1=N)r—dk;
. (&)
Y= S0 (0. 1 ) @—AR+1y" (90 b D] . (5)

If the sides of the wedge are free of loads, the boundary con-
ditions for stresses marked by double lines are written as

(@ot iyt T 11 (12, ) @=N)—ity (00 &, 8)] (1—A)r— e, (6)

where
Jj=1,3; L [l H Y = =9

If the sides of the wedge are rigidly secured, the boundary condi-
tions for shifts, after differentiating for r, have the form

~20(8, - V' Jyr, =( + % by, ("

The boundary conditions are written with the same simplicity if one
slde of the wedge 1s free and the other 1s secured.
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It is characteristic that the indicated thermoelastic problems
are reduced to the basic problems of the elasticity theory with
boundary conditions which are presented in the form of the Mellin's
integrals. Let's examine individually the basic problems of the
elasticity theory for a wedge and present thelr general solution.
| Let's assume that surface stresses, assigned in the form of

Mellin's integrals, are distributed on the sides of a wedge

1
(@r +¥%dymy, = g7fa; ()=
Stresses and shifts we will seek in the form of complex Kolosov-
Muskhelishvili potentials [2]

(99 + 15y =0(2)+D(2)+ e ¥ [20"(2)+9(a)],
ay —¢,+2lt,,-2¢*v[;-0‘(z)+'(l)], A0 ""'

—=2G(’',~ v’ )= [ — xB(z) +.9(2)] + ¥ [20/(2)+9(2))-
The unknown analytical functions in the wedge we seek in the form
wz) = -,%{q).)g“‘n; ¥(z) = -,'750(1):-‘43.
i Taking the boundary conditions into account, we obtain a system of
equations for determining the unknown functions of the complex vari-
able a(1), b(1), the solution of which has the form
a(h) = m[n.m (1=A)sin2p—Dy(A)sin2(1—i)p) ;
W(x) = Dyfh)—a (k) (1—4) cos2y—a(A) cos2(1—2) ¥,
where '
A1-Ak) = (1=A) sin 29 ksin2(1—1) 9; Did) = D{h);
D)) = ___!I_‘_ [3,(1)e . %(l).-lu-'m )

| .

In particular, for a symmetrical normal load

-i=2)y

DN = 5 laile " +ugire

1
3y [sumpy = E! AW dl Ty ey =0
we have
aw) = Lh-sin@—ry; bA) =~ L. sin Ay,

For the second basic problem of the elasticity theory, when the
shifts on the sides of the wedge have the form

o e Al




—20(8', =0/ Ny = 10,00,

we obtain e
a0)= g7ryam[DHR) (t—N) sin2y-+:Di(Aysin 2(1—A)w):
B(A) = Dy(A)+xa(A)eos2 (1—Ayp— a(h) (1—A)cos2¥;
A12(M)= (1—2)sin 29xsin 2(1—2)¥.
The obtalned solutions of the basic problems of the elasticity
theory for a wedge represent an independent interest due to their
generality and compactness. From general solutions it is easy to
obtain calculation formulas for the various particular cases, which
is convenient in the problems of thermoelasticity. The solutions,
avaiiable in the literature, of the baslic problems of elasticity
for a wedge are based on the Papkovich-Neyber concepts and have a
more complex form [6].

Let us examine an important particular case where the tempera-
ture field in the wedge has the form |

T=52(. rdh;  Hae) =Achag +Bshag.
Assuming that in the equation [2] we have I,
flg, 2y 1) -:(uv)p(}. £); M@, 4y 1) =5(ae) 84, 1),

PO =B

Stresses from the thermoelastic potential of shifts and the bound-
ary conditions will be written by the formulas (3)—(7), if we as-
sume that

we obtain

o A, ) moiongt)

Assuming that in the preceding formulas ¢(s3)=1 we obtain a case
of an axlisymmetric temperature field

T, 1) = (g0t o).

Let us wtite the formulas for temperature streses. The boundary
conditions for complex potentials for the free sides are written as

R VR |

S —




Adding the stresses and shifts with one and two lines, we have

srtor =g [y SN — cosie—1] a2, Or—d

ay—a,m I CNAD) (0 osin3—ap +

=iz 2—=Al ()
+ sinAgcos(A—2)q] —1]&(, t) r-di;
P @ @ A(1~1)
=iz (2—M)A,(0)
-smhpsm(z—-/\):plc()., tyr=*da;

[sinAgsin(2—A)p—

¥ 3 . 1—
—u',=- 2'12‘ T A.(A)“l x—A)cosApsin(2—A)yp—

-Asm}.qaeos(l—z)tp] —1/8(A, tyr=*da;
Vs = e iy [MinAvein(a—Ae—
— (1 4x—1)sinkgsin(2—2)p] g(A, t) r—2da.
In the case of a rigid fixing of the sides the boundary conditions

are written as

— 200 fym gy = 2112200, 070 T g =0,

The calculation formulas have the-form

b [ —A)vcosg—11e0, 0)r = d;
Gd (I L(_20=0)
"iz2—-A | A, ()
+ (14-x—MA)sinapeos(A—2)p] +X)g(k, t) r=dA;
Ga 1—A
Te= o !m)— [Asin(2—A)psinr@+

+(1+x—A)sinAgsin(2—A)plg(r, t) r —*dA;

Sp=—0, = —

——[(—*)sin(2—A)yp cosrp+

W i [ T —s—Aeoshesina—1) ¢+
+(1+x~—2)sinApsin(2—A)p] —1)g(A, t) r =2dA;
V= )1 4 umd
O i iy LSO —Dypsinig
+sin(@—A)gsinAp]g(r, Hr—>dh.

Thus, the problem of determining the temperature stresses for
an axisymmetrical temperature field is reduced to the calculation
of the function

o, 1) =17 tdr,
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As an example, let's examine the case where a heat source with
intensity q acts at the apex of the wedge for the period of time ¢.
If the initial temperature is equal to zero and the sides of the
wedge are heat insulated, the temperature field has the form [3]

T =— -’&;-E:(-p-),
where At - heat-conductivity coefficient;
Ei(-r) - integral power function;

*=rY4at - value which is inverse to the Fourier criterion.
The function g(A, t) in this case has the form [1]

¢, = .I'f r (.;_) i) - gamma function, A‘-'W'X_ -

¢
Taking into account the singular points of the gamma function and
using the theory of deductions, we obtain the calculation formulas
for thermal stresses in series. Thus,; for example, for the case of
free sides the stresses and shifts will be written as
; n+ 1 3
Temsin2y+ 2PN A_ R g 1 g
3,43, _2‘4! (=1 “_Mh+2»¢°¢~+ .

n=1 nln (n+ 1)1, :
Sl i A (=" p”[ e €0:(2n 4 2)¢sin2a—sin(2n +2)Lcos2np
P o nat (A1) L2 7 T 5 (9)

trp =2 ngl{;:—{;ﬁ sin(2n+2)psin2ng—sin(2n+2)gsin2ny J (10)

B 3 (10 ((1—n+2n)cos2nysin2 + 2n)—2nsinnicon(d+ Sndy _
2 ami(nt ) | T
r | 1
-I+2n

o BB (=1
-,-E‘ oy [(1+x+?n)sin3min(l+h)’+

+ 2nsin2nysin(24-2n)¢ ).
We note that the series which correspond to the roots of the denom-
inator A..,(i)-o. represent homogeneous solutions [5], 1. e., do
not cause stresses on the sides of the wedge and, therefore, can be
omitted.
The formulas for the stresses, (8)—(10), coincide with the
solution obtained by the method of power series in work [7].

'
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