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Abstract

The terms adaptation, learning, concept-formation, induction, self-organization, and
self-repair have all been used In the context of learning system (IS) research. In this

• article, three distinct approaóhes to machine learning and adaptation are considered: (1) the
adaptive control approach, (U) the pattern recognition approach, and (LU) the artificial
intelligence approach.

Progress In each of these areas is summarized in the first part of the article. In the
next part a general model fo r learning systems is presented that allows characterization and
comparison of indivtduai algorithms and programs in all of these areas. The model details the
functional components felt to be essential for any learning system, independent of the
techniques used far its construction, and the specific environment in which it operates.
Specific examples of earning syste m. are described in terms of the model.

1 To appear in J. Seizer (Ed.), in~ydop.dM Of Corn p vtr $dince And Tichnology, Marcel
Dekker, Inc., New York, 1978, Vol. 11. ThIs research has been supported in part by the
Nationai Institutes of ~~~ fLGr.ntMQ. 5R24 RR 00612-09; Advanced Research Projects
Agency Grant No. MDA 003-7 ?-C-0277 7; a.~dthI Dop~rb~ent of National Defence of
Canada .
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I introduction

Giving a machine the ability to learn, adapt , organize or repair itself are among the
oldest and most ambitious goals of computer science. In the early days of computing, these
goals were central to the new discipline called cybernetics (Wiener , I 048], (Ashby , I 068].
Over the past two decades, progress toward these goals has come from a variety of fields--
notably computer science, psychology, adaptive control theory, pattern recognition, and
philosophy. Substantial progress has been made in developing techniques for machine
learning in highly restricted environments. Computer programs have been written that can
learn to play good checkers (Samuel , 1983], (Samuel, 1967], learn ~o filter out the strong
heartbeat of a mother in order to pick out the weaker heartbeat of the fetus (Widrow,
1073], or learn to predict the mass spectra of complex molecules [Buchanan, 1978]. Each
of these programs, however, is tailored to its particular task, taking advantage of particular
assumptions and characteristics associated with its domain. The search for efficient,

• powerful, and general methods for machine learning has come only a short way.

The terms adaptation, learning, concept-formation, induction , self-organIzation, and
self-repair have all been used in the context of learning system (IS) research. The
research has been conducted within many different scientific communities, however, and
these terms have come to have a variety of meanings. It is therefore often difficult to
recognIze that problems that are described differently may in fact be identical. Learning
system models as well are often tuned to the requirements of a particular discIpline and are
not suitable for application in related disciplines.

Thu term learning system is very broad, and often misleading. In the context of this
article, a learning system is considered to be any system that uses information obtained
during one interaction with its environment to improve its performance during future
interactions. This rough characterization may include man/machine systems (see (McCarthy,
1968]) in which humans take on active roles as required functional components. In some
systems there is continuous interaction with the environment, with feedback and subsequent
improvement. In other systems there is a sharp distinction between the interaction, that
constItute training and subsequent performance or predictions with no further training.
Another way of differentiating between various learning systems is on the basis of what

• kinds of alterations they perform.

• Figure 1 shows several classes of systems that fit the above characterization and lists
the kinds of alterations that they perform. Data base systems are among the earliest kinds
of systems that fit our definition. Such systems represent information about their

• environment by sets of alterable assertions. In the late 1950’s and early 1960’s, adapt Ive
control techniques were first used to build- programs that aiter parameters in equations which
model some aspect of the external world (Samuel, 1983), (Wldrow, 1973]. The
perceptrons of the early 1960’s (Minsky, 1972], (Rosenbiatt, 196$) represent an attempt

; to use adaptive control techniques to train recognition networks by altering weighting
- ‘ parameters. More recentl y, concept formation (and other ) systems have been written which

• build and alter structural representations as their model of the external world. In short, an
• Important difference to be noted in IS. is their internal representations of the outer

environment: some are mathematical models , some -are linguIstic assertions, and stt ii others
are structures encodin g symbolic relations. 

- - -- - - ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ — , • __  
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Figure 1 • A Spectrum Of Learning Systems.

• In this articls, three distinct approaches to machine learning and adaptation are - •considered: (I) the adaptive control approach, (U) the pattern recognition approach, and (iii)
• artificial intelligence approach.

Progress in each of these areas is summarized in the first part of the article. In the
next part a general model for learning systems is presented that allows characterizatIon and
comparison of individual algorithms and programs in all of these areas. Specific examples of
learning system. are described in terms of the model.

2 AdaptIve System Approach to Learning

- - in the control literature, learning is generaily assumed to be synonymous with• adaptation, it is often viewed as estimation or successive approximation of the unknown
parameters of a mathematical structure that has been chosen by the IS designer to• represent the system under study [Donaison, 1966], [Fu, 1970]. Once this has been done,
control techniques known to be suitable for the particular chosen structure can be applied.
Thus the emphasis has been on pararnet.r learning, and the achievement of stable, reliable
performance (Skisnsky, 1964). Problems are commonly formulated In stochastic terms, and

I • the use of statistical procedures to achieve optimal performance with respect to some• - • performance criterion such as mean square error is standard [Wlttenmark, 1075].

There are many overlapping and sometimes contradictory definitions of th. terms
related to adaptive systems. The foftowing set , formulated by GiOrloso [GlorIoso, 1076],
serves to illustrate the main features. An adaptive system is defined as a system that
responds acceptably with respect to some performance criterion In the face of changes In

• the environment or Its own Internal structure. A learning system is an adaptive syst em that• responds acceptab ly within some time interval following a change in its environment, and a
self-repairing system is ons that responds acceptably with in some time interval following a 
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change in Its internal structure. Finally, a self-organizing system is an adaptive or learning
system in which the initial state is unknown, random, or unimportant.

Adaptive control is an outgrowth of automatic control that has attracted significant
research effort since the mid-1950’s (Asher, 1976]. These investigations have been
motivated by a desire for development of real-time control of incompletely known systems or
plants. Limited plant specification I. normally assumed to entail unknown, drifting parameters
in a prescribed mathematical description. Various methods of adaptive control have been
implemented for control of aerospace and industrial processes, as weii as man-machine and
socioeconomIc systems.

Adaptive controllers have been coarsely divided Into two large classes of active and
passive adaptivity [Tie, 1973). ActIve adaptive controll•rs are based on dual control
theory [Fel’dbaum, 1966]. in addition to the available real-time Information, they utilize the
knowledge that future observations will be made that will provide further possible
performance evaluation, and regulate their learning accordingly. Passive adaptive
controll•rs utilize the available real-time measurements but ignore the availability of future
observations. This limitation results in much simpler adaptive algorithms. Thus passive
techniques have been much more extensively Investigated.

2.1 Passive Controllers

Passive adaptive controllers can be subdivided into two classes: indirect and direct,
• denoting the primary focus of the adaptation mechanism either on plant parameter

determination or control parameter determination, respectively.

indirect adaptiv, control, originally suggested in (Ka lman, 1066], arbitrarily
separates the control task Into plant identification and control law calculation from the plant
parameter estimates. This approach was designed to utilize the existing arsenal of control
techniques requiring exact specification of the plant. Acceptance of this method has led to
considerable interest in system identification (Astrom, 1971]. Most parameter estimation
schemes, however, are inherently open loop and suffer consistency and identifiability
constraints when encompassed by feedback. This limitation can be circumvented by the
injection of a perturbation Input (Saridls , 19753.

• The alternative, which avoid, the necessity of proper plant identification, Is
direct adaptive control, in which the available control parameters themselves are adjusted
in order to Improve the overall performance of the control system. Two broad techniques• exist for establishment of convergent control parameter adaptation schemes: search

• methods and stab ility analysis. Search techniques generally suffer local convergence ,
whether based on gradient [Hasdorfi, 1676) or heuristic (Fu , 1970] methods.
Alternatively, adaptive control a~ ortthme arising from stability analysis can guarantee global
asymptotic stab ility as a by-product. The widest application of stability theory to adaptive
control design has util ized Uapunov s second method [Lindortt, 197$). The earliest
application of Llapunov funct ion synthesis los’ designing adaptive loops [$haokcloth , 1966)
utiiized a model reference approach.
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Learning Systems 5

Model reference adaptive control techniques (see example In appendix) Implement
adjustment of reachable parameters in the overall controlled system so that its response to
some reference signal exactly matches that of a predetermined model due to the same
reference. Such a atruoturai arrangement In general requires the ability to adjust each
parameter independently in the overall controlled system. Assumption of this capability
hampers the current sophisticated schemes at adapting feedforward and feedback
parameters solely from plant Input and output measurements (Landau , I 974a], (Monopoli,,
1074] by occasionally necessitating an unbounded control effort. Control effort
boundedneso I. encouraged by abandoning exact output matching for input matching

I (Johnson, 197$], which requires nonparametrlc, a posteriori determination of the optimal
Input.

Plo single adaptive control approach mentioned is without limitations in attempting to
provide adequate control of a plant known only to be descrIbable within a general structural
class. The primary focus of adaptive control on parameter selection has led to provably
convergent single level schemes. The ongoing merger of heuristic, layerabie learning system
concepts (as described below) with these convergent parameter adjustment algorithms of
restricted applicability should improve the efficacy of adaptive control.

t
3 Pattern Recognition Approach to Learning

Pattern recognition techniques are primarily employed at the interface of intelligent
agents and the real world of physical measurements and processes. The interface attempts

• to provide some sensory capability to the agent, such as vision, touch, or some other non-
human sensory modality. In this context, a patient may be an image, a spoken word, a radar
return from an aircraft, or whatever is appropriate to describe or classify a physical
environment that Is viewed through a particular set of sensors.

The problem of pattern recognition Is often viewed as the development of a set of
rules that can be used to assign observed patterns to particular known classes by
examination of a set of patterns of known class membership. There are, however, a variety
of related problems that can be discussed in the same framework. These Include
pattern classification, in which the classification rule. are known, and the problem is simply
assignment of patterns to classes, pattern formation, in which the classes themselves must
be defined, and patt.rn description, in which the problem is to form descriptions (which are

• often symbolic In form) of the observed patterns rather than assign them to classes.

The major concerns in pattern recognition are:

convergence: the learning system should eventually settle on a stable set of rules,
classes, or descriptions.

optimality: the objective is minimization of - some cost functional, such as the average
• 

-
~~ risk associated with classification.

computational complexity: the objective Is minimization of the difficulty of using an

— • •
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algorithm , measured in terms of computation time, memory requirements, or programming
complexity.

3.1 Pattern Recognition Subc lasses

Pattern recognition Is presently characterized by two major approaches: the statistical
decision-theoretic or discriminant approach, which employ. a classification model, and the
linguistic (syntactic), or structural approach, which employs a description model. The first
approach has been more extensively studied, and a modestly large body of theory has been
constructed, whereas the second approach Is relatively new, and many unsolved problems
remain.

The decIsion-theoretIc approach commonly #~~~ the extraction of a set of
characteristic (typically low-level) measurements, or Veatures , from a set of patterns. Each
pattern is thus represented as a feature vector in a feature space, and the task of the -

•

pattern recognition device Is to partition the feature space in such a way as to classify the
individual patterns. Features, then , are usually chosen so that the distance (on some suitable

• metric) between patterns in the feature space Is maximized (Roche, 1974]. This approach -

has been successful for applications such as communication of a known set of signal
waveforms corrupted by some form of distortion, such as noise or multipath interference.
However, it has been criticized because It Is concerned only with statIstical relationships
between features, and tends to Ignore other structural relationships that may characterize
patterns. (Kanai, 1974].

The linguistic, or structural approach has been developed in part to correct some of the
difficulties seen in the decIsion-theoretic approach. With this paradigm, patterns are viewed
as compositions of components, called subpatterns, or pattern primitives, that are typically
higher-level objects than the features of the decision-theoretic model. Patterns are often
viewed as sentences in a language defined by a formal grammar (sometimes called a pattern
grammar). Segmentation of patterns Into primitives and formation of structural descriptions

• are thus the primary issues. This approach embodies an attempt to use other sources of
information as aids to pattern recognition (e.g., In a speech understanding system (Reddy ,
1973], (Erman, 197$], [Lesser , 1976], (Rovner, 1976], (Reddy, 1975], syntax,
semantics, and context act as powerful sources of information in addition to the recorded

• Information).

In that both parametric and structural techniques are applied, pattern recognition
effects a bridge between the adaptive systems and artificial intelligence approaches to
learning system desIgn. We have recently begun to see a merger of the two approaches
(see, for example Stockman, (Stockman, 1977]), that may result in more powerful systems.
For a review of the current state of the art, see (Chen, 19773, (PavlId~s, ¶977], (Kanal,
1977] and [Proceedings, 1976].

The remainder of this section contains brief descriptions of major approaches to
- • pattern recognition. Specific techniques are grouped according to their bias toward one of
• the two primary modals: the cisaslflcation model and the description model. Artificial

intelligenc, research, discussed in the next section, has been a major factor involved in the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
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Learning Systems 7

movement away from complete adherence to the classification model and towards exploration
of the description model.

3,1.1 ClassifIcation Model -

In this model, patterns (feature vectors) are viewed as members of a class and the aimI is to assign observed patterns to Classes. The classification may be either statistical,f wherein the patterns are thought to belong to one of a number of classes according to a set
of probability den&ty functions, or fuzzy, wherein patterns are thought to have dif fering
degrees of membership in a number of classes (Zadeh, 1073].

Variations

Classifiers may be categorized In a number of ways, depending an the type of
classification rule, and the sampling procedure they employ (Hunt, 1976].

Parallel classifiers base their classifications upon the complete set of features,
extracted simultaneously during a single observation of a pattern. Sequential classifiers
assign a pattern to a class on the basis of a sequence of observations. After each
observation is made, and Integrated with past observations, a decision is made as to whether
sufficient information has been gathered upon which to base a classification, or whether
,,anotlier observation must be made, according to a test like the Wald Sequential Likelihood
Ratio Test [Waid , 1947].

Adaptive classifiers (see example in appendix) are distinguished by the tact that their
classification rules are themselves adjusted to improve performance as experience is gained
with patterns drawn from the various classes of interest (a variety of procedures have been
developed to adjust the rules--see, for example (Widrow, 1950]). Non—sriapUv.
classifiers , on the other hand, use a fixed set of classification rules, and In the language of
this paper are not considered to be learning systems.

Bayesian Classification

This type of classification is optimal In the probability of error sense. The strategy is
minimization of the average risk of a classification and compiete knowledge of the a priori
and condItional probability densities is assumed (where the a priori probability is the

• probability that a pattern I. drawn from a particular class, regardless of its observed
characterIstIcs, and the conditional probabIlity I~ the probability that a pattern with the
observed characteristics could have been drawn from a particular class). The notion of risk
arises because costs are assumed to be associated with different types of classification

• errors. When equal costs are assumed for all types of error, the result is the maximum a
posteriori (MAP) classifier (where the a posteriorl probability is the probability that a pattern
has been drawn from a particular class , based on its observed characteristics).



- ~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~ — 
—V-—’-- —• -

~~~ -

8 HPP-77-39

Maximum Likelihood Classification

Likelihood is the conditional probability that the observed characteristics of a pattern
Indicate that it should be assigned to a particular class. No knowledge of a priori
probabliities is assumed, but the method does assume knowledge of the form of the density
functions (e.g., Gaussian).

Nonparam.tric Classification

This type of classification does not guarantee the best possible performance but
requires no knowledge of the underlying probability density functions that govern the

• generation of patterns. Techniques used in non-parametric classification include the K
Nearest Neighbor Rule, which bypasses probabilities altogether, and assigns patterns to
classes based on the proximity of their observed characteristics to those of neighboring
patterns of known class membership, and the Fisher Linear Discriminant, which Is used to
transform the feature space into another (decision) space (typically of lower dimensionaiity),
in which parametric procedures can be employed (Ouda, 1973].

3.1.2 Description Model

With this model, emphasis is placed on segmentation of the patterns into a set of
meaningful primitives, and on generation of structural descriptions (generally symbolic in
form) of the patterns. It is further assumed that a great deal of a priori knowiedge of the
pattern types that are of interest Is available.

The approach is useful in applications like scene analysis (Duda, 1973], (McCarthy,
1974] where classification Is clearly Inappropriate. It also tends to be useful when the
patterns themselves are complex (Fu, 1977], as It emphasizes hierarchical decomposition of
patterns into their constituent components.

There are a variety of descriptive formalisms in which to express the structural
descriptions. These include pattern grammars (Fu, 1974], and relational graphs (Winston,
1075]. Pattern grammars embody an attempt to carry over a large amount of theory from
the study of natural and programming languages. A variety of pattern grammars have been
developed (Kanai, 1974], both deterministic and stochastic in form. Relational graphs have
been used in pattern recognition systems developed by the artificial intelligence communIty$ (see, for example, Winston (WInston, 1970]). Pattern primitives are taken as nodes in a
directed graph whose edges indicate the relations between the primitives. Such graphs form
a convenient representation for patterns with a high degree of hierarchical structure.

1 The text by Dud. and Hart (Duds, 1973] is an exceiient introduction to the methods
used in the structural approach.
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4 Artificial IntellIgence Approach to Learning

In the 1950’s and early 1960’s there was considerable discussion of learning programs
In the Artificial Intelligence (A l) literature (e.g., (Oettinger , 1962], (Priedberg, 1968],
(Selfrldge, 1969), (Newell, 1902], (Felgenbaum , 1903), (MInsky, 1963] and (Simon,
1966]). It was hoped at the time that a general learning program could be written to
accumulate and refIne a large, detailed knowledge base about a domain [Minsky, 1972]. The
knowledge base, then, could be used by ever-improving high performance programs that
reason In that domain. Samuel’s programs that learn to play excellent checkers (Samuel ,
1963] were en early demonstration of success, but also demonstrated the amount of effort
necessary to achieve success. On the reasons why learning tasks have been central in Al ,
Newell wrote (Newell, 1973):

Inductive tasks have always been a prominent part of the 41
landscape.~ The reasons for this seem to be twofold. For one, we
have Inherited a classic distinction between deduction and induction,
so that the search for intelligent action should clearly look to
Induction. Second, American psychology has largely identified the
central problem of conceptual behavior with the acquisition or
formation of concepts--which In practice has turned out to mean the

• induction of concepts from a set of presented exemplars.

• This tendency, shaped strongly by Bruner, Goodnow, and Austin’s
Study of Think ing (Bruner , 1956], derIves fundamentaily from the
emphasis on learning that has characterized American psychology
since the rise of behaviorism.

The motivation for writing these programs is diverse. Some are written as testable
psychological models of how human subjects perform a learnIng task (e.g.,[Simon, 1963] (Hunt ,
1963], (Felgenbsum , 1963] and (Hunt, 1966]), others are written to demonstrate the

feasibility of a method (e.g., [Soloway, 1978]), and Still others are written with the express
purpose of aiding human problem solvers codIfy and explain data (e.g., [Buchanan, 1978]).
Insofar as all the programs mentioned below perform well at their stated tasks, they all
illustrate the emerging power of heuristic programming methods for Improving the problem
solving power of computer programs.

All the Al learning programs written to date have strong limitations on their generality.
Some are applicable to just one kind of problem, others work with several types of problems
within a larger class defined by the representation of objects and relations in the domain.

Early Al research was closely tied to pattern recognition and the adaptive systems
approach, (see, for example (Seltridge, 1963], (Uhr, 1963] and [Uhr, 1973)). Much work
has been performed on learning automata (Nilsson, 1965) (see also (Narendra, 1974)), and
neural networks that grow in response to stimuli (Minsky, 1972]. All of these effort. have
aimed at defining simple machines that learn to rss pond to their environments (Pindler,
1969]. Newell (Newell , 1973] traces one line of growth from stimulus-response learning In

_______._...
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psychology to (I) pattern recognition and self-organizIng systems, as well as to (ii) concept
formation, induction and other Al work. The two fields diverged in the 1960’s, and are now
quite distinct. Whereas pattern recognition and control research emphasizes adjustment of
parameters, Al research emphasizes construction of symbolic structures, based on
conceptual relations. For example, Felgenbaum ’s EPAM program (Felgenbaum, 1963) used a
discrimination net (i.e., a tree of tests and -branches) to store the relations required to
recall nonsense syllables In a rote learning experiment (see (Pikes, 1972], (Sussman ,
1973], and (WInston, 1976] for further examples).

In Al , it is commonly believed that a learning system should have sufficient Internal
structure to develop a strong theory of Its envIronment (Feigenbaum, 1971], (McCarthy,
1968] and (MInsky, 1 972a]. Much emphasis has therefore been placed on building
knowledge-based or expert systems that not only have the capacity for high performance,
but can also explain their performance in symbolic terms (Davis, 1976].

• Various levels of sophistication in learning systems are described by (WInston, 1975]:
learning by being programmed, learning by being told, learning from a series of examples, and
finally learning by discovery. We see in this categorization a gradual shift in responsibility from
the designer/teacher to the learning system/student. At the highest level, the system Is
able to find its own examples, and carry on autonomously; at the lowest level the system is
learning only in the sense that a programmer is explicitly programming it to do something.

The formalism of Inductive inference has captured much attention also (e.g.,
(Solomonoff , 1977], (Holland, 1962), (Hajek, 1976], (Meltzer, 1970], (M.ltzer, 1973]
and (Plotkln, 1971]). The purpose of much of the work on abstract formalisms is to find
general principles of Induction that can be mechanized. This was also a goal of Bacon and
Lelbniz centuries ago.

Considerable work is still expended on the Leibnlzian dream of an abstract formalism for
scientific inference. Some of this work Is done specifically with Computer programs in mind.
Much of It, however, Is done in abstraction. Programs based on these formalisms form
hypotheses from data without any special knowledge of the domain from which the data were
collected. The drawback of very general methods is that while they may produce some
Interesting empirical generalizations, they are likely to produce many generalizations that
experts in the domain would regard as trivial or meaningless. In short, they lack a working
model of the domain to guide judgments of plausibility.

Some recent programs explicitly recognize the need for problem-specific constraints. The
Meta-DENDRAL program (Buchanan , 19783 dIscovers general ru les about the behavior of
chemical compounds in an analytic instrument known as a mass spectrometer. The data are
noisy, they do not come already classified, the space of possible explanations is very large,
and there is no single -correct answer. Nevertheless, the program finds regularities in these
data and formulates general rules to explain them.

• The AQVAL program (Larson , 1978] accepts a set of descrIptions of objects, and
produces rules that can correctiy classify these object, and others like them. For example,
for descrIptIons of Eastbound and Westbound railroad cars containing circles , triangles ,
rectangles , etc. , the program is able to find the shapes and relat ions among shapes that
disc riminate the two trains.

• • ~ - - • - 
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StIll another program, named Thoth-pb (Vere, 1978], is able to learn rules for (1)
extending letter sequences, (It) recognizing geometrIc analogies, (iii) relating before and after
situatIons, and (Iv) relating sequences of situations. It uses background knowledge about
the domain to help It recognize Important relations among features of objects that are not
codified in the descriptions of the objects themselves.

4.1 Game Playing

Much of the work with learning systems In Al research has been done in the context of
games. Improvement of the game playing program is the ostensive goal, but the learning task
itself is often the reason for the work (see, for example, (Newman , 1965]). The nature of
the learned information ranges from parameters governing the evaluation of moves (and
ultimately their selection) to symbolic rul•s expressing how to play well In different
situations.

Samuel’s work is best known In this field (Samuel, 1963], (Samuel, 1967]. in the
context of a checker-playIng program, he has explored rote learnIng, parameter tuning, and
building signature fables, which are clusters of dependent features with weights that can
be used to evaluate moves (cf. (White, 1970]). (GrIffith (Griffith, 1974] later compared
the methods used by Samuel with a simple heuristic procedure.) Waterman (Waterman,
1970] compared the performance of a poker-playing program after learning with a human
teacher and automated learning. The program represented Its heuristics of good play in a
table of condItional rules, or productions, that the learning system altered In light of mistakes.
Waterman has generalized many of these ideas to other tasks (Waterman, 1976]. Findier

• (Flndler, 1977] has also studied the game of poker. Pltrat’s work on learnIng patterns in
chess (Pitrat, 1974] applIes many heuristic search ideas to learning useful combinations
from examples of given games. Programs have also been written to learn dominoes (Smith,
1973], Go-Moku (Elcock, 1967], and the rules of Tlc-Tac-Toe (Poppieston., 1969].
Banerji (Banerji , 1974] has studied learning processes for several classes of games and
puzzles from a more formal point of view. Koffman (Koftman , 19683 has also related game
playing to pattern recognition.

4.2 Concept Formation

in concept formation tasks, a computer program (or human subject) Is presented with
objects , or descriptions of objects, that exhibit a common concept. The program (or subject)
is expected to generalize from these Instances well enough to classify new objects

• accurately. Negative Instances--objects which fail to exhibit the concept--are sometimes
presented to the program (and Identified as negative Instances) in additIon to the exemplars
of the concept. When training includes negative instances learning is faster and more
accurate. Concept formation has long Interested psychologists as a learning task. As with
other iearnlng tasks, computer programs have been written to simulate the performance of
human subjects--and thus test a psychological model (SImon, 1983]. Or they have been
written to learn by mechanisms other than those humans use--and thus demonstrate some
modIcum of intelligence on the part of computers.

L_ ~. _ _ ~~~_ .  ~:.I:
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Two frequently cited Al concept formation programs are those written by Evans
[Evans , 1968] and Winston (WInston, 1976]. Evans’ program finds analogies among
geometric figures to solve standard Intelligence test problems of the form A i~ to B as C is to
(pick one of Dl, 02, 03, D4, 05). The concept here Is a transformation or rule which maps
figure A into B and also maps figure C Into one of the answer choices.

For Winston’s program the task is to produce a correct description of a concept
exhibited in a set of line drawings of block figures. An Important feature Is the Introduction
of near misses, I.e., fIgures that fail to exhibit the concept because they differ with respect
to a small number of essential properties. The program learns the correct description of an
arch, for example, from descriptions of two posts and a lintel (exemplar) and of near misses
such as tees and posts with a fallen lintel.

Another recent program learns concepts, such as Hit and Out, for the game of baseball
from a set of descriptions of events over the span of a game [Soloway , 1978]. Other
concept formation programs are described in (Simon, 1963], (Johnson, 1964], [Hunt,
1975), (Zagoruiko , 1976), (Langley, 1977), (Larson , 1978], (Buchanan , 1978], [MItchell ,
1977], (Hayes-Roth, 1976], (Hayes-Roth , 1977), (Hedrlck , 1976) and (Ryche ner ,
1978).

4.3 Grammatical Inferenc , and Sequence Extra polation

Grammatical Inference and sequence extrapolation have often been taken as prototype
Induction problems. The task is to find a rule (or set of rules) that can serve as the
generating principle for a training set of symbol strIngs. For example, the training instances
may be the following allowable sentences in a hypothetical language: A, AB, ABB, ABBB. An
uninteresting set of rules is just the training instances themselves. WIthout some
generaiization from the training instances, prediction of new sentences is impossible. The
following two rules, then, will serve to define the grammar of which these strings are correct
sentences:

(Ri ) A (‘A’ alone is a eentenceJ

(R2) A -.> AB (‘A’ can be replaced bu ‘AB’] .

The sequence extrapolation task Is similar: given a sequence of symbols (usually, but
not always numerals) such as 1,3,6,7,9, find a rule that allows correct prediction of the next
member of the ordered sequence. in this case, the generating principle Is

(R3) fl th me mber • 2n-l

Both of these problems exhibit many characteristics of scientific hypothesIs formation.
Regularities In the data must be found and characterized, different generating princ iples
must be proposed and tested , and alternati ve hypotheses must be ranked, for example by
simplicIty. Most programs [B an, 1972], (

~~~~~

, 1908) assume the Htlai data
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free of errors. Many of these programs explicitly search a space of hypotheses, (e.g.,
Cook’s grammatical Inference program (Cook, 1976]), but most recent work on grammatical
inference emphasizes more formal methods (Blarman, 1972], (Gold, 1967] and (Fu, 1975].

inferring natural language (Siklossy , 1972], and simple computer programs from
examples are other Induction tasks that have been studied using Al techniques (Waterman ,
1975), (Hardy, 1976), (Shaw, 1977], (Waterman , 197$). The training Instances are often
Input-output pairs and the task of the Induction system is to find the rule (procedure) that
will produce the specified output symbols for each associated input. While the tasks are
similar to concept formation and grammatical inference, the languages are so much rIcher that
progress Is slow.

6 A Model of Learning Systems

This section is concerned with a simple functional model that is useful for
characterizing, comparing, and designing learning systems. Many of the functional
components of an LS are essentIal to Intelligent problem solving systems in general, as noted
by Simon and Lea [SImon, 1973); that is, learning (Induction, concept formation, etc.) Is
problem solving of one kind, which means that Al problem solving methods and
representations can be expected to apply to thIs task as well as to others.

8.1 Effects of the Environment

The environment from which training Instances are drawn, and in which an LS operates,
may have a profound effect upon the IS design. IS environments can be divided Into two
major categories: those that provide the correct response for each training Instance
(supervised learning) and those that do not (unsupervised learning). Supervised learning

• systems operate within a stImulus-response environment In which the desired LS output Is
• supplied with each training Instance. Examples Include Samuel’s book move checkers

program (Samuel , 1963), (Samuel , 1967), and grammatical inference programs [Hunt,
1976].

Unsupervised LSs operate within an environment of instances for which the correct
response Is not directly avaIlable. The version of Samuel’s program that learns by playing
checkers against an opponent falls into this category (Samuel, 1963) since moves are not
classIfied by opponents as, say, excellent, good , poor or terrible. Learning systems
operating within this type of environment must themselves infer the correct response to• each training instance by observation of system performance for a series of Instances. As a
result, assignment of credit or blame for overall performance to indIvidual responses is
generally a problem for these systems (MInsky, 1963]. Tsypkin (Tsypkin, 1Q08] has
pointed out that unsupervised learning is somewhat of an Illusion in the sense that a
teacher /designer defines the standards that determine the quality of operation of the IS at
the outset, whether or not he I, present during the actual operation of the system.

Environments can be further categorized as noise-free or noisy. Noise-
S

1~___~
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free enWronmsnts, such as that of Winston’s structural description learnIng program
[WInston, 1975], provide Instances paired with correct responses which the system
assumes to be perfectly reliable. Most Al systems assume noise-free environments. (One
exception Is descrIbed In (Buchanan, 1978).) NoIsy environments, on the other hand, do
not provide such perfect information, as is usually the case when empirical data are involved.
Pattern recognition and control systems frequently operate within noisy environments
(Barrow , 1972), (Duds , 1973], (Donalson , 1906].

5.2 The Model - Overview

The proposed IS model is shown In Figure 2. The PERFORMANCE ELEMENT is
responsible for generating an output In response to each new stimulus. The
INSTANCE SELECTOR selects suitable training instances from the environment to present to
the performance element. The CRITIC analyzes the output of the performance element in
terms of some standard of performance. The LEARNING ELEMENT makes specific changes to
the system In response to the analysis of the critic. Communication among the functional
components is shown via a BLACKBOARD to ensure that each functional component has
access to all requIred system Information, such as the emerging knowledge base. Finally, the
IS operates withIn the constraints of a WORLD MODEL which contains the general
assumptions and methods that define the domain of activity of the system.

The components of the model are conceptual entities that specify functions that must
be performed to effect learning. Although the functional decomposition suggested by the
model Is not necessarily reflected in the physIcal decomposition of many existIng systems,
the model is useful for comparing systems and may aid In future learning system designs.

world
model
(Wif) 

_ _ _ _ _ _ _  _ _ _ _ _ _

per forsance learning
element element

(PE ] (LE)

_ _  

\ / 
_ _

Instance •
~1selector blackboard critic

(IS ] (88] (CR]

Figure 2. The Components of a Learning System 
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The following sections present detailed discussions of the IS model components shown
in Figure 2. in addition, the appendix contains detailed characterizations of representative
Al, pattern recognition, and control systems in terms of the model. The reader may find it
helpful to refer occasionally to the appendix while reading the followIng sections.

6.3 Performance Element

The performance element uses the learned InformatIon to perform the stated task. It
has been included In the IS model because of the Intimate relationship between what
information Is to be learned and *0w this learned Information is to be used.

Performance elements are usually tailored more to the requirements of the task domain
than to the architecture of the IS. In general, the performance element can be run in a
stand-alone mode wIthout learning, independent of the rest of the IS. In any IS, however,
the ability to improve performance presupposes a method of communicating learned
Information to the performance element. Since its architecture must allow learned information
to affect its decisions, additional constraints are placed on the performance element within

-~~ an LS. The performance element should be constructed so that Information about its internal
machinations is readIly avaIlable to the other system components. This information can be

I used to make possible detailed criticism of performance, and Intelligent selection of further
instances to be examIned by the system.

I 

.

The performance elements of existing systems also vary In the ways they may be
altered by learning. For example, systems whose operation is determined by a set of
production rules [Waterman , 1970], (Waterman , 1976] have the potential to exhIbIt richer
variations than systems whose operations are keyed only to the adjustment of parameter
values (Landau, 1974], (Michie , 1974]. -

6.4 Instance Selector

The instance selector selects training Instances from the environment that are to be
used by the LS. It Is a functional component not clearly Isolated in earlier adaptive system
models.

In existing ISa, methods for Instance selection vary mainly along the dimensions of
responsibility and sophistication. The responsIbility for instance selection varies between

t the extremes of completely external (passive) selection, and completely internal (active)
selection. In psychological experiments or, concept formation, Instance selection Is closely
controlled by the experimenter and the subject Is completely passive in this respect.
instance selection In Samuel’s book move checkers program (Samuel, 1963] is externally
controlled, whereas Poppleatone’s program [Popplestone, 1969), which learns the features

• that characterize a winning posItion in tIc-tac-toe, generates Its own training instances. It
forms alternate hypotheses, and then generates Instances to choose among them (relying
upon an external critic to evaluate these Instances). (See also (SImon, 1973].) in the

• adaptive systems literature , Tee and Bar-Shalom (Is., 1976] use a form of active Instance
selection known as dual-control. They adjust the input to a system in such a way as to
sImultaneously control its output and obtain Information about its internal structure.

-
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The degree of sophisticatIon used for IS instance selection Is also an important
consideration, in order to qualify as sophisticated, an instance selector must be sensitive to
the current abilities and defIcIencies of the performance element end must construct or
select Instances which are designed to improve performance. Winston (Winston, 1976] has
shown the advantages to be accrued through presenting carefully constructed examples and
near-misses of the concepts to be acquired by an IS. In general, careful Instance selection
can improve the reliability and efficiency of an IS. It Is important to note, howe ver, that this
may not always be permitted by the environment in which the IS operates, as is generally
the case for adaptive control systems (Donalson, 1966).

5.6 CrItic

The critic analyses the current abilities of the performance element. it may play three
roles: EVALUATION , LOCAUZATION, and RECOMMENDATION. The crItic always operates as
an evaluator in that It embodies a standard by which to assess the behavior of the
performance element. This Is the role that has been emphasized in earlier adaptive system
models (Fu, 1970), (Glorioso, 1975], (Skiansky , 1964]. Feedback from a critic at least as
evaluator is essential for learning.

The critic may also localize errors and localize the reasons for poor localize the reasons
for poor performance. This type of behavior is essential for resolution of the credit

• assIgnment problem described by Minsky (MInsky, 1963]. In its dIagnostic role, the critic is
exemplified by the bug classifier and summarizer In Sussman’s HACKER (Sussman, 1973].

Finally the critic may recommend repairs by making specific recommendations for
improvement or suggestions about future Instances. In Waterman ’s poker player (Waterman ,
1970], the critic In this role suggests the bet that should have been made by the
performance element for a particular training Instance. The critic not only recognizes poor
play and isolates the production rules responsible for it, but suggests specific corrections so
the program will not play as pooriy In similar future sItuations.

The dividing line between critic and learning element Is not sharp, and It is certainly
possIble to view therapy as a function of either the learning element or the critic. However,
in mapping existing ISs into this model, we have adopted the convention that the critic ’s
recommendations to the learnIng element are at an abstract level removed from the
Implementation considerations such as data representation. This clearly separates the two
different functions of deciding what kind of change Is needed and deciding how to Implement
that change.

In some LS5 the functions of the critic have been left to humans. For example,
MYCIN/TE1RESIAS (DavIs, 1970] uses a human Critic, for evaluation, localization, and
recommendation. The performance program applies rules (to cases selected by humans) and
a human supplies criticism of results, localIzation of blame, and suggestions for altering the
rule base. Because the computer program assists the user In these tasks , the learning can
be said to be semi-automated.

___
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6.0 LearnIng Element -

The learning element is an interface between the critic and the performance element,
responsible for translatIng the abstract recommendations of the critic into specific changes
In the rules or parameters used by the performance element.

• - Representations for learned Information exhibit great variety. They include, for example
production rules (Waterman , 1970], parameterized polynomials (Samuel , 1903], executable
procedures (Sussman , 1973], sIgnature tables (Samuel , 1907], stored facts (PeIgenbaum ,
1903], and graphs or networks (WInston, 1976). The method of Incorporating new learned
Information Is dependent upon the representation, and even among systems that use similar
representations, competing methods are found (contrast, far example , (Buc hanan, 1978)
and (Waterman , 1970]).

The extent to which the learned information is altered in response to each training
Instance is an Important IS design consideration. In some systems, the learning element
incorporates exactly the Information supplied by the critic (WInston , 1975]. Were the sam e
training Instance to occur later, the response of the performance element wouid be exactly
as the critic advised for the first occurrence. ThIs type of learning Is well suited to
envIronments that provide perfect data and to systems with reHab~e critics, Under theseconditions the IS will converge rapidly to the desired behavior. If such a system were
provIded with an Incorrect classification by the environment or less than reliable advice by

• - the critic , however , It might commIt itself to incorrect assumptions from which it could not
recover. Systems that make less drastic changes to the learned knowledge on the basis of
a sIngle training Instance are less vulnerable to imperfect Information, but consequently

• require more training instances to converge to the desired behavior. Many statistical LSs fall
Into this category (Nilsson, 1965]. Other systems consider several training instances at a
time In order to minimize the effect of occasional noisy instances (Buchanan, 1978).

5,7 Blackboard

The blackboard of this model Is a global data base that also functions as a system
communications mechanism. It is similar to the concept Introduced In the HEARSAY system
(Lesser, 1975]. The blackboard holds two types of Information: the information usually
assocIated with the knowledg. base in Al programs, and the temporary Information used by
the IS components. The knowledge base often contains the set of rules, parameter values,
symbolIc structures, and so on, currently being used by the performance element. Such
information can be used as an aid to sophisticated Instance selection If it i~ readily available.
The temporary, system-orIented Information Includes, for example , the Intermediate decisions
made by the performance element In selecting a particular response. Detailed crItIcism by
the critic is dependent upon the availability of this Information.

In many existing systems this information Is not so clearly separated or defined. The
communication links between functional components, especially, are often programmed
directly . Because the same information is required by many of the individual functional
componints of any L8, however, a blackboard Is a more transparent communications
mechanism.

- 
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6.8 World Model

Whereas the blackboard contains Information that can be altered by the LS
components, the world model contains the fixed conceptual framework within which the
system operates (Churchman, 1970]. The contents of the world model include definitions of
objects and relations In the task domain, the syntax and semantics of the Information to be
learned, and the methods to be used by the IS. Among task domain definitions are, for
example, the rules of a game and the representation of Inputs and outputs for the
performance element. This part of the world model simply defines the task of the
performance element, and the standard of performance (the evaluation function) to be
applied by the critic. Domain specific heuristics are also commonly added to the world model
of Al systems to guide Inferences made by the IS (e.g., heuristics about the world of blocks
in Winston’s program (WInston, 1975)). Definitions of the syntax and semantics of
information to be learned define the mode of communication between the learning and
performance elements.

The assumptions and constraints from which the world model is composed are of critical
importance in the design and characterization of LSs. Although many of these assumptions
are often hidden in the various functional components, the IS designer and user must both be
aware of each of them. We believe that, where possible, world model constraints should be
made explicit In order to allow for their modIfication during the design process.

6.9 Multi-Layer Lsarn ing Systems

Although the world model cannot be altered by the IS that uses It, the designer can
alter its contents in order to Improve IS performance. He often changes parameters and
procedures of the basic LS after observing and criticizing its behavior for some carefully
chosen training set. These alterations result in a new version of the IS, which is then tested
on some training set, and so on. The designer views the whole IS as a system whose
performance needs Improvement, and he selects Instances, criticizes performance, and
makes changes accordingly. In other words, the designer’s activities can be modeled by a
system whose components are just those of Figure 2. ThIs leads us to the concept of
layered IS5, each higher layer able to change the worid model (vocabulary, assumptions,
etc.) of the next lower layer on the basis of criticizing its performance on a chosen set of
instances. Thus, adjustments can be made to the world model of some learning system IS1
by another learning system, 1S2, that has its own functional components (critic, world model,
etc.), as shown in FIgure 3. In turn, It I~ conceivable that a third system, IS3, could adjust
the world model of LS2, and so on. The designer constitutes the final critic, of course,
operating above the top-la.) LB. Each lower layer constitutes the performance element of
the next higher layer, and inter-layer communication is effected through the blackboards of
the various layers. The use of a blackboard in the single layer IS model was partly motivated
by its attractiveness in the multi-layer context.

_____________________ _ _ _  _ _ _ _ _   
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Figure 3. LayerIng of Learning Systems. (Components are labelled as In Figure 2).

This multi-layer architecture involves bidirectional InformatIon passing; that is, the
effects of adjustments made In a layer may propagate both to lower and higher level layers.
It Is a hierarchical architecture, in the general sense (SIm on, 1989] and Includes as a
specific case the bottom-to-top hierarchical architecture used, for example, by Soloway
(Saloway, 1977].

One existing IS which may be viewed as a layered system is the version of Samuel’s
program (Samuel, 1907] that learns a polynomial evaluation function for selectIng checkers
moves (see the Appendix for details). The lower layer (IS 1) In this system adjusts the
coefficients of a given set of game board features in order to Improve performance of the
move selection program. The second layer system (152) adjusts the set of board features
used In the evaluation function in order to improve the performance of IS1. Since LS I is
contained in IS2 as the performance element, all the assumptions necessary for Its operation
also belong to the 182 world model. In addition, the 152 world model contains assumptions

• about the set of allowable game board features and the standard for evaluating 181
performance.
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A single layer IS, then, can never move outside Its world model to make radical
revisions to its way of viewing the task to achIeve a paradigm shift, as discussed by Kuhn
(Kuhn , 1970]. However, a shift In the conceptual framework of IS1 could be made by a
properly programmed LS2 (Buchanan , 1974]. We believe that a layered approach such as
that described above provides a useful system organization for learning at various levels of
abstraction In complex domains. Although there are examples of this kind of layering In the
literature (Samuel, 1983], (Uhr, 1983] and (Soloway, 1977]. no one has carried it as far
as the model suggests. In fact, single layer learning systems are just now becoming well
enough understood to consider developing more sophisticated systems.

5.10 implicatIons of the Model

The IS model described here provides a common language for characterization and
comparison of different types of learning systems that operate In a variety of task domains.
The model is a useful conceptual guide for IS design, because It isolates the essential
functional components, and the Information that must be available to these components.

A number of desirable features for future learning system designs are brought out by
this model. First, the design should be modular, with Individual modules corresponding to the
functional components shown In the model. The knowledge used by the system should be
made explicit and collected, as much as efficiency considerations permIt, In a world model
component. Especially the parts of the IS that are to be adjustable must be explicitly
exposed. Intelligent criticism Is important, as Is active instance selection, although neither
has been isolated as a separate obIect of study. Finally, a multi-layer architecture for
learning at different levels of abstraction is suggested by the model as a way of Introducing
still more intelligence Into the whole learning system.

& 
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Appendix A

CharacterIzation of Existing Systems

In this appendix several existing ISs are characterized using the framework provided
by the model described In Section 5. The systems selected are representative of several
approaches to machine learning. Because the blackboard contains information In a state of
flux, its contents are not specifIed explicitly for the systems characterized below.

Mod•i Aefer.nce Adaptive Control, (Landau, 1974]

Purpose: Construct a controller that preprocesses inputs to an existing system (called
the plant). The behavior of the combined controller-plant system Is to mimic the behavior of a
third system (called the reference model) on the training data.

Environment: The plant to be controlled, and the set of possible inputs (including
disturbances).

Performance Element: The controller--a system whose output Is used as Input to the
plant. Its behavior Is a function of the Input signal, past I/O behavior of the plant, and a set
of adjustable parameters.

Instance Selector: Accepts data sequence (as input to the controller) from the
environment.

Critic: Evaluation--applies a measure of performance that Is some function of the
arithmetic difference between the plant and reference model outputs. In some cases the
reference model Is mathematically defined, and can therefore be considered part of the
critic. In other cases the reference model Is an actual system, and is considered part of the
environment.

- . Learning Element: Modifies the parameters of the performance element (controller),
depending on the performance measure supplied by the critIc.

World Model: Control theory assumptions (time Invariance, linearity, etc.) and
techniques, and the standard of performance embodied in the critic.

•
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Adaptive Pattern Classifier, (Koford, 1968]

Purpose: Learn the parameters of a classifier that can classify a set of patterns in such
a way as to minimize a specified cost tunctlonal.

Environment: Patte”ns drawn from a pre-speclfied set of classes. Each pattern is
represented as a feature vector.

Performance Element: A linear pattern classifier that forms the inner product of a
pattern feature vector (that constitutes the Input), and a weight vector (where the weights
constitute the adjustable parameters of the classifier). Based on the resultant scaiar value,
the classifier assigns the pattern to a class.

Instance Selector: Accepts instances from a human trainer. The classifier uses a set of
patterns of known class membership to tune the weights. Thereafter , the weights are held
constant.

CrItic: Evaluation--computes the difference between the output value of the classifier,
and the known acceptable output (the learning in this example Is supervised).

LearnIng Element: Modifies the weights used by the classifier according to the LMS
algorithm (Widrow, 19803, based on the information received from the critic. This algorithm
attempts to adjust the set of weIghts so as to minimize the mean-square error between the
output of the classifier, and the desired output.

World Model: Pattern recognition assumptions concerning the suitability of representing
the patterns as feature vectors, the suitability of a statIstIcal formulation of the
classification problem, the suitability of a linear pattern classifier, the suitability of the
selected performance measure, and the specific adaptation algorithm.

Checker Player, (Samuel, 1983], (Samuel , 1987]

Purpose: Learn to play good game of checkers (here we discuss only the version of the
program that learns a linear polynomial evaluation function by examination of moves
suggested by experts (book moves).

EnvIronment: Set of all legal game boards.

~~~~~~~~~~~~~~~~~~~~~~~
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LS 1 (lower layer):

- Purpose: Learn a good set of coefficients for combining board features In a linear
-

- 
polynomial evaluation function.

Performance Eiement: Uses the learned evaluation function to rank plausible moves for
a given board position.

Instance Selector: Reads Instances from a list of pre-deflned game-
board/recommended-move pairs.

Critic: Evaluation--examines the ranking given to the book move by the performance
element. LocalIzatIon--suggests that the book move should be ranked above all other moves.

LearnIng Element: Adjusts weights of linear polynomial to make move selection
correspond to the crItic’s recommendation.

World Model: Syntax of game board, form and features of linear polynomial evaluation
function, method for adjusting evaluation function, and ruies of checkers.

• L82:

I
Purpose: improve the performance of IS1 by selection of a good set of board features.

Performance Element: IS1.

Instance Selector: The entire set of possible training instances is simply passed to IS1
(via the blackboard). -

Critic: Evaluation--analyses the learning ability of LS1 (i.e., the LS2 performance
element) with the current set of evaluation function features. LocalizatIon--sIngles out
features that are not useful. Recommendation--selects new features from a predefined list
to replace useless features.

Learnin g Element: Redefines the curren t set of features as recommended by the critIc.

World Model: The ISI world model, plus the set of features that may be considered, and
the performance standard employed by the 1S2 critic.

_ _  I  
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Poker Player, (Waterman , 1970)

Purpose: learn a good strategy for making bets in draw poker.

envIronment: Sat of all legal poker game states.

Performance Element: Applies the learned production rules to generate actions in a
poker game, e.g., bets.

Instance Selector: Selects each game state derived by play against an opponent as a
training instance.

Critic: Two versions of the program use two different critics. in both cases the critic
performs the following functions: Evaluation--decides whether the poker bet made by the
Performance Element was acceptable. Loc~llzation--glves important state variables for
deciding the correct bet. Recommendation--provides the bet which the Performance Element
should have made. In explicit learning the critic Is an expert poker player , either human or
programmed. in Implicit learning, the evaluation and recommendation are deduced from the
next action of the opponent and a set of predeflned axioms, while iocalization is read from a
predefined decision matrix.

Learning Element: Modifies and adds production rules to the system. Mistakes are
corrected by adding a new rule In front of the rule responsible for the Incorrect response.

World Model: Rules of poker, features used to describe the game state, the language of
production rules, heuristics for updating the rule base, the modei of an opponent.

Meta-DENDRAL, (Buchanan, 1978)

Purpose: Learn to predict data points in the mass spectra of molecules.

Environment: Set of all known molecule/data-point pairs.

Performance Element: Predicts peaks (data points) in mass-spectra of molecules using
learned production rules. Employs a model of mass spectrometry for translating between
mass-spectral processes (predicted by the rules) and data points in the spectrum.

instance Selector: Accepts a set of known molecule/spectrum pairs from the user.

Critic: Evaluation--determines the suitability of the set of predictions generated by a
rule. Localization--states whether the rule Is acceptable, too specific, or too general.
Recommendation--recommends adding or deleting features to the left-hand sides of rules.

_ _ _ _ _
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Learning Element: Conducts a heuristIc search through the space of plausible rules
using a predefined rule generator. At each step In the search the potential rule’s
performance is reviewed by the critic.

- - World Model: RepresentatIon of molecules as graphs, production rule model of mass
epectrometry, vocabulary of rules used to represent learned Information; heuristics used by
the critic In directing the rule search.

Learning Structural DescriptIons from Examples, (Winsto n, 1970], (Winston , 1975)

Purpose: Learn to Identify blocks world structures (such as arches and towers).

Environment: Set of possible line drawinglstructuce-ciassifIcatlon pairs.

Performance Element: Decides class of structures to which the input structure belongs.
Uses a model of the structure class supplied by the learning element.

instance Selector: Accepts training Instances supplied Individually by the user.

Critic: EvaluatIon--compares the classification made by the Performance Element
against the correct classifIcation as supplied wIth each training Instance. Localization--
generates a comparison, description pointing out differences between the model and the
structure description.

Learning Element: Constructs a model of the class of structures under consIderation.
Examines the comparison description supplied by the critic, and modifies the model to
strengthen or weaken the correspondence between the model and the training instance.

World Model: Representation of scenes as line drawings, method of translating line
drawings to graphical descriptions, grammar for drawIngs to graphical descriptions, grammar
for representing the learned information, domain-specific heuristics for resolving among
possible changes to each structure class model.
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