
A D—AQ 6 b l’42 BOLT BERANEK AND NEWMAN INC CAMBR IDGE MASS

- - — - . -

F/S 9/2
INTERLISP—11.IU)
MAR 79 A K HARTLEY Nooo1ls~ 77~c~ okeo

UNCLASSIFIED BON—’4076 ML

ENJD
A I

~ 7g

I

p

1•0 r~~1~‘~L ~~I~~~3.5 =

111i2.o1•1 ~~ IIlI~~
gOlFS

!i~ ~~ Bolt Beranek and Newman Inc. S L~L~~

~~~ Report No. 4076

I~~ , b D C ~I ~ 1~31FflflPf2

I~~~~~~~
21

~~1• I InterUsp .11 U Lb

Final Technical Report
iJuly 1977 to 3OJune 1978

I
I

ubUc i~1~~~

I March1979

• 1
I Prepared for:

Defense Advanced Research Projects Agency

‘ 

~: : 
‘

~~~~~~~ -u-I
—J

_ _ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ :i~ ~

ILi
- _

ss~ aai~ ~_.,—~ c* floss Ø~~ ml. ‘mac ~~
a~. ~~ J_~4 ________________________________I I REPORT 000JMmITATION PAGE

• _

‘• — —- ~-- Mj W J3. SQV? ~~~CI~~~~~M~ N~ I. ssecs scssrs CAt A4.OS 1141MW

1 • (~j~ ~~~~~~~~~~~~~~~~~~~~ I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~ ISP:l~~
J •

_
-

___ S. COSSTII*C4 Jil SMANY MUN~~~~~a)

Alice K./ Hartley
] • • ~~ ~Ø ~~ 14- 77-~~~~~ 0

~ p(p~~~(5m$~~5 SftSAN5Z*YION NAN(miso mooacis
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Bolt Beranek and Newman Inc . - - /

50 Moulton Street / 6~ 30 7~/
t~.Ca1~~ridg. MA 02l38 A —

I I. ~Ø~~?~ Ol.~~NS O~PlC* NamS AlSO ~~~~~~~
4i. ucro*t DAtI fr.~Department of the Navy I). NUM EN ec PmGES

I-L~~~~~~~O2N ’A.II~~~ 11~~ NaL.555r41 ~gg~~~ - ~~~~~~~ ~~~~~~ II. SICIJNI I”V C*.A*L (~451

Unc].assifiad
• ii.. OOcLASM,ICAT OW OO~NSR~aW.

-

tL ~ $T~~SuTlON ITATENIN Y (.4os. 1

Distribution of this document is unlimited. It may beL. released to the Clearinghouse, Dept. of Commerce , for sale
to the general public.

~7. tJfl4114 STATEMENT (.4*. J5J14 ~ .,.d ~~ JISSE. 2.. II .IEN.~I1 ~~~ 5 S151

IS N~Pr%.IMENTA*V 11011$

11 ‘°~~~~ ~~~~~~~~~~~ ------- “ .~~~“ ‘
LISP , Interliap , LISP machine , microcoding

~~~ . aNS N*CT ~~~~~~ — ~~
‘ U  

~~~ ~~ ~~~~ 
1~~~

This report describes the implementation of an Int.rlisp
system on a PDP-l1./40 with writable contro l Store and an

• extended virtual addr ess space . The system provides on a
‘ssii~iconcut.r the capability and performanc, pr eviously
avai lable only on larg e time sharing aye t.ms .

:~~~~~~.

U -~~~~

• ~~ a
ss,, 1_~~3 ~~~~~~~~ I sy es is .uisi t?t

I ~.~SS1IVV U wiriua~~~~ Sr Sills .

_ _ _ _

• O~~o /O~~
_ _ _ _ _

_ _ _ _ _ _ _ _ .~~~~-• _ _ ~~~~:•:-T:_

Li
BBN Report No. 4076 March 1979

sect ion /
Bj t (~ect~on

E l
BY

DISTR!rJTfl~’P~ !3~TTY CUt~ES
tnter lisp—1l •

•

Final Technical Report
July 1, 1977 to June 30, 1978

Alice K. Hartley

t - —

(1

(1 Prepared for:

Advanced Research Projects Agency
• • ARPA Order No. 3415

[1
This research was supported by the Advanced Research Projects

1 Agency of the Depa rtmen t of Defense and was moni tored by ONR
under Contract No. N000].4—77—C—0480.

Ph. views and conclusions contained in this document an, those
of the authors and should not be interpreted as necessarily

• r.pr.senting the of f ic ia l polic ies, eith.r expressed or
impl ied , of the Advanced Research Projects Agency or the U.S.

~~ Ii Government .

[1

_________________________ — ________________ ______________ —~~~

—~~~~~•
—-

~
- - ,

~~~~~~~~~
S -

~~ 
.-• -

~~~~ 
-- • — -••--•-“,----•

~~~
• • - -

~~~~
-

~~~~~~~~
---

~~~~~ 
—

~~
•-

~~~~~~~ —-~~—

TABLE OF CONTENTS

H PAGE
[1 1. INTRODUCTION . . . . . . . . . . . . . . . 1

• 2. HARDWARE . . . . . . . . . . . . . . . . 2

- • 3. SOFTWARE . • • • • • . . . . . . • . • • 5

4. DIFFERENCES BETWEEN INTERLISP—ll AND INTERLISP—l0 . . . 35

5. MEASUREMENT AND EVALUATION . . . . . . . . . . 36

6. CONCLUSIONS . . . . . . . . . . . . . . . 37

BIBLIOGRAPHY . . . . . . . . . . . . . . . 38

1:

I U
II

II 9

~~~~~ L T J T~~~~~~~ i~~~
_. ~~~• t : ~~•~~~~~~~~~~~ : . • ••-~~•;••- • .. • T ~~.. . ::~~::: ~~T•~I:±I

•
~~~~~~~~~~~ •

1. INTRODUCTION

The work described in this report is a continuation of work
performed under Contract No. N000].4—76—0476 to develop an

U Intelligent On—Line Assistant and Tutor system. As part of that
contract we began the development of an Interlisp system for the

• PDP—l1/40 that we call Interlisp—11. At the end of that contract we
had an Interlisp—1l facility that could run LISP code compiled

• elsewhere, and a runn ing interpreter. The goals of this contract
were to incorpora te the rest of the In terliap programm ing
env ironment, provide the Interlisp spaghetti stack facility (3],
impl ement a gar bage collector , prov ide user data types, develop a
local file system, and provide display software for windowing ,
scrolling, etc. For the purpose of having a complete description of
the current Interlisp—ll system we have included here descriptions
of parts of the system already reported in (1].

The goals for the implementation of Interlisp— 1]. were:

single user system

• fully compatible with Interlisp—lO

performance approx imately one half that of the then current
KA1O processor

max imize machine independence for easy transfer to new

I t hardware

provide larger virtual address space than the 256K 36 bit
words of the PDP—10.

ii

Ii



2. HARDWARE

The har dware components of the system are:

• PDP—ll/40 processor

• microcode writable control store (WCS) designed by Fuller et
al (8] and built by Three Rivers Computer Corp.

• BBN memory map

• • 128K words of memory

• 56 MB disk

• r.al time clock J]
• alpha numeric terminal

• bit map display terminal

• 9600 baud interface to a TOPS—20 system for file transfer.

We also have an IMP—il interface for connection to the ARPANET and
an RSB4 fixed head disk that can be used for swapping. However,
neither of these components is required by the software. They are

• currently used only for bootstrapping .

Below we describe the characteristics of the two unusual hardware
components, the WCS and the BBN memory map.

The required or desirable features of the microcode for a LISP
~~~~ machine , or for any other language emulator , are:

• A large amount of microcode storage. It is difficult to
• give a precise estimate because the amount of space required

depends on the structure of the microcode , but on the order
of 4K words is probably sufficient if the microcode is at
all reasonable. Of course, more is always better.

• The ability to quickly and easily dispatch on arbitrary
contiguous bit fields is required for instruction and data
decoding .

• The ability to generate constants from the microcode for
masks , arithmetic , trap vecto r locations , etc . A l ess
appealing solution is to provide enough registers to contain
all the required constants.

• Data paths and ALU should be at least as wide as the virtual

address size.

_ 2 11
I

• -U
•

~S•
•~~~~~Jf

• • •— -• •- -- ---

~~
_ _ _ _ _ _ _ _ _ _

- -
~~

— - ~
—•

~
-
~~~~~

-- • - --
~•-~~~~~

--- --•-—- 
~_ ____ •___~•~

c___-•• - - ____ • __ •,• 

~~
—- -

~~ 

— —-—---- -• ------— - •‘- •
~

•

• La rge number of internal registers.

Stack for microcode subroutine calls.

P The other requirement for LISP is a large virtual address space,
with the ability to perform demand paging. Specifically the
requirements are:

• Virtual address space of 4—16 million 16 bit words.

• Page size small enough . The optimum pag e size for LISP is
un known , but we believe that pages 4K words or larger are
clearly too big . (Some manufacturers think 64K words is a

• page!)

• Enough status information to determine which page caused a
page fault and to allow resumption of execution after the
page fault has been serviced .

The ll/40E (11/40 with WCS) has 1024 80 bit words of writable
microprogram control storage in addition to the 256 56 bit words of
read—only storage in the basic PDP—i1/40 processor. The 11/40 has

- 16 16 bit internal registers, 16 bit data paths, and one 16 bit ALU.
The basic 11/40 microprocessor was designed specifically to
implement the PDP—ll instruction set and is not at all suited for
general emulation . The WCS was designed with general emulation in
mind and therefore augments the basic microprocessor capabilities
and incorporates most of the desirable features mentioned above.

• Specifically the WCS has a general purpose mask—shif t  uni t  to
- extract arbitrary fields for branch control in the microprogram and

to assist the basic ALU in the manipulation of data. There is a 16
bit literal field for the generation of masks and constants. There
is a microsubroutine facility that uses a 16 word by 16 bit stack

• for temporary values and microsubroutine return addresses. The WCS
El also has convenient carry control for multipla precision arithmetic.

While the 1]/40E processor meets most of the criteria for the
microcode, it has some limitations. The amount of control store is

- too small, there are too few registers , and the data paths are not
wide enough. Since we were aiming for modest performance, we
decided that the limitations would not be fatal especially because

J the native PDP—ll instruction set can be used for those operations
that will not fit in microcode; the fact that the microcode stack
can hold data as well as microsubroutine return addresses
compensates somewhat for the small number of registers; and the
need for double precision address arithmetic can be avoided by

• 

• 
• imposing s~me restrictions on data allocation.

The PDP—ll/40E does not meet the virtual address space requirements

U 
at all. It has a user address space of 32K words with 4K word
pages. To provide a large virtual address space we built a simple
memory map, a linear page table mapping a virtua l page to a rea l

11
3

II
_ _ _  ~~~~~~~~~~~~~~~~~~~~~~ 

- 
. i • ~~~~:



I-

memory page. The PDP—ll uses byte addressing which is not
particularly well suited to LISP since in most cases the smallest
unit we want to address is a 16 bit word and byt e addressing would
waste one bit in every pointer. For this reason , memory refer ences
in LISP mode use word addressing . The decisions to be made were the
size of the virtual address space and the page size. A 22 bit word
address with a page size of 1K words requires a 4K entry page table.
In spite of the fact that a larger address space would be desirable,
and a smaller page size m ight be better , the fact that a 4K page
table can be built compactly using 4K ram chips (the largest
available SOnsec chip), led to the above parameters for the first
version. The components of the map are:

A 6 bit register, EXT , that contains the high order 6 bits
of a 22 bit virtual address. EXT can be wri tten from the
microcode us ing a previously unused value in one of the
microcode fields. EXT is write only.

• The 4K by 10 bit page table. Each entry in the page table
has 8 bits for the real memory page (only 7 bits are used
currently) , 1 bit for page valid/invalid, and 1 bit for page
writable/not writable.

• 3 mode bits in the high order bits of the program status
register to control addressing modes as follows:

000 Kernel mode; PDP—ll mode addressing to the second
half of segment 0; all instructions are legal.

100 User mode; POP—Il mode addressing to the first
half of segment 0; the PDP—ll instructions HALT
and RESET will trap.

101 User mode; LISP mode addressing using 22 bit word
addresses; differs from mode ill below only in
that after a page fault , instruction execution
must resume in PDP—ll mode; used when executing
the PDP—ll mode extended operations.

111 User mode; LISP mode addressing using 22 bit word -‘
addresses; LISP mode exectuion.

~~~~~ We use 3 bits rather than 2 here for programm ing
conven ience.

• Various status registers.

• A 256 x 2 bit PROM, similar to the PROM in the DEC memory
• manag ement unit , to control the basic PDP—l1 microcode for

• traps and interrupts. It forces addressing in the new
-

• program status mode when storing the old program counter and
program status on the (new mode) stack. fl

4 11
I

- • •

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -a--

3. SOFTWARE

i - . The Interlisp—ll implementation has four components: the operating
environment , the LISP kernel, the L—code instruction set including
the microcode to interpret it and the compiler to generate it, and
the Interlisp system includ ing LISP functions and data.

The operating environment provides the facilities of a primitive
operating system. These include page management, interfaces to I/O
devices, handl ing of traps and inter rupts, and the basis for a file
system. The operating environment is wri t ten in nat ive PDP—l l code
with the addition of a few new instructions implemented in
m icrocode. In particular, instructions to save and restore the LISP
environment are required because some of the general registers used
by LISP are not accessible to PDP—ll code (only 8 of the 16 general
registers are visible to the native instruction set). Other
instructions allow reading and writing locations in the LISP virtual
address space. The operating environment is called from the LISP
kernel using POP—il EMTS. It passes some traps from the microcode
(e.g. stack overflow, non—numeric argument) to the LISP kernel using

•
a table of trap vectors at a fixed location in the LISP kernel .

The entire file directory and file lookup are implemented in LISP.
We describe here the file system primitives that are provided by the

• operating environment. There are a fixed number of permissible
files, currently 1024. At the lowest level files are referenced by

• number. The operating environment keeps an up to date directory on
the disk of the addresses of the index blocks of the files. When a
file is opened it is assigned an open file number OFN. One segment
of the virtual address space is dedicated to file page buffers and
the OFN essentially provides the address of a page in the file
segment (the address can be computed from the OFN). The index block
of each existing file contains, in addition to the disk addresses of
the pages of the file, space for other useful info rmation such as
the length of the file in bytes, the name of the file (to permit
reconstruction of the file directory), and potentially dates of
creation and last reference. The primitives are:

OPEN (N) — open file number N, value is an OFN.

CLOSE (OFN) — close the file specified by OFN.

• DELETE (N) — delete file number N. File must not be open.

PMAP(OFN N)— map the Nth page of the file specified by OFN to
the f ile segment , unmapping any page tha t migh t be
there .

• GETIB(N N) — value is the contents of the Mth word in the index
block of file number N. Also returns in a second

• register, informa tion as to whether or not N
references an existing file or is beyond the range

-)
• of possible file numbers.

U

• — - --•—- • - •—• .•~~~a• • _• •• •• . • - ••—_- ________ •

~~

- -

— - -

~~

SETIB(N M V)— set the Mth word in the index block of the file
number N to V.

GETNFX() — assign and return the next available file number.

SYSOUT (N) — save the contents of the Iriterl isp v i r tua l memory
on f i l e number N.

SYSIN (N) — run the Interiisp image on f i l e n umbe r N.
E l

The LISP kernel provides initialization, storage allocation , atom
hashing, garbage collection , stack searching pr imitives , parts of
the interpreter , integer multiply and divide , floating point
subrou tines, and in general a lot of primitives that should have -

~~

been implemented in microcode but wouldn ’t fit. It also contains
some hand written 1.—code for things that could have been wr itten in
LISP but are required in order to load compiled code. The Interlisp
READ and PRINT functions are not part of the LISP kernel , but some
rudimentary substitutes exist for bootstrapping purposes. The
kernel is implemented in a combination of PDP—11 code and L—code.
(We have defined a new POP—li instruction to enter LISP mode , and an
L—code instruction to leave LISP mode.) The LISP kernel calls the
operating environment using PDP—11 EMTs with the arguments in
registers. It calls LISP functions using the SCALL instruction
(described below) requiring that the names of the functions be in
the system constant table. The LISP kernel calls itself using the
m iscellaneous opcodes and is also called f r om In ter lisp by means of• miscellaneous opcodes which in effect do a PUSHJ. There are no
SUBRs.

Interlisp—ll provides a new data type, an 10 descriptor , which
contains information about open files or 10 devices. The most
important components of an 10 descriptor are a buffer pointer and
the name of a function to call when the buffer is full or empty. An
10 descriptor can be set up with an empty buffer, with the effect
that a function will be called for each character written or read .
This gives the user total control over Interlisp 10. This facility
was used to interface the bit map terminal to Interlisp—ll and
simplified the implementation of echoing , scrolling , and windowing .

• Instruction Set
-

• Th. 1.—code instructions are 16 bits wide with a 6, 7, or bit opcode
and a 10, 9 or 8 bit operand. The operand specification usually

• consists of a few bits for the operand type and an offset from a
base impl ied by the type .

The operand bases are:

vp — A register containing the location of the beginning of the
current basic frame in the stack segment .

6 II
• i i

- - __ -— - - _ • • -_ -~~~~• • - • ••~~~••—~-‘w- -•. •-~~~~
--•_-_•-_ —

•

-
~~~~ • 

. --
~~~~~~:~~ T


_ _ _ _ _ —_-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _

• pp 
— A register containing the location of the end of the current

frame extension in the stack segment.

LIT — The location of the literal area of the current running
function . LIT is a 22 bit  p oin ter  contained in 1 1/2 r egis ters.
The literal area includes t!.., function entry f rame (FEF) for the
function which carries information about which variables are
SPECVARs ; access informat ion  for  local variables bound in outer
frames; 16 bit pointers to value calls of SPECVARS referenced by the
function ; and pointers  to constants referenced by the function.

SYSTEM CONSTANT — The base address of a table containing frequently
used constants such as T and NIL is a fixed memory location.

IMMEDIATE — Immediate operands are the integers in the range — 64 to
+ 63. The operand is the sign extended offset.

For those instructions that have a 10 bit source operand , the source
type is 2 or 3 bits and the offset is 7 or 8 bits.

The source types are:

• STACK — Source type 000, 7 bit offset. References a temporary value
in the current frame extension. The offset is a positive quantity
giving the number of stack slots (a stack slot is 2 16 bit words)
back from the end of the frame extension (PP).

LOCAL — Source type 001, 7 bit offset. References a local variable ,
i.e. a non SPECVAR, in the current basic frame. The offset is a

• positive quantity specifying the number of stack slots from the
beginning of the basic frame (VP) .

SPEC — Source type 010, 7 bit offset. References a 16 bit pointer
to the value cell of a SPECVAR. If a function is compiled , the
value cell pointers are in the literal area of the function. The
offse t  is a postive quantity specifying the number of words from the
beginning of the literal area (LIT).

PVAR — Source type 011, 7 bit offset. Used by PROGs and open
LAMBDAs to reference local variables bound in outer frames. The

- base for the reference is the literal pointer (LIT) and the offset
is the number of words from the beginning of the literal area. A
PVAR literal is a 16 bit quantity containing the number of frames
back, and the desired argument number.

LIT — Source type lox, 8 bit offset. References a literal of the
- currently running function. Literals are 22 Or 32 bit quantities

• occupying 2 words. The offset is the number of 2 word quantities
from the beginning of the literal area.

• SYSTEM CONSTANT — Source type 110, 7 bit offset. Constants that are
- 

• 
referenced frequently, such a P and NIL , as well r.~ constan ts
required by the handwritten 1.—code, such as LAMBDA and NLAMBDA , are

7

I 
•— •--- - - -  —--- -:------•t~•~~ 

- -
~:•:i: -- -~~~~ _ _ _ _ _ _



~~~~~~~~~~~~~~

- -
_ _ _ _ ~~~~~TT

_ .__ . _ _ _ _ _ _ _ _ _

contained in the system constant table at a fixed location in
memory. Each constant occupies 2 words and the offset is the number
of 2 word entries from the beginning of the table.

IMMEDIATE — Source type 111, 7 bit offset. Immediate operands are
the integers —64 thru +63. The integer is the sign extended offset.

The 6 bit opcodes with 10 bit source operand as described above are:

O4OXXX PUSH Pushes the operand on the stack.

O42XXX RET Return from current function with
operand as value.

O44XXX unused

O46XXX unused

O5OXXX CAR Push CAR of the operand on the stack.

Ø52XXX RCAR Return from current function with CAR
of the operand as value.

O54XXX CDR Push CDR of the operand on the stack.

O56XXX RCDR Return from current funct ion wi th CDR
of the operand as value.

O6ØXXX CAAR Push CAAR of the operand on the stack.

062XXX RCAAR Return from the current function with
CAA R of the operand as value .

064XXX CADR Push CADR of the operand on the stack.

O66XXX RCADR Return from the current function with
CADR of the operand as value.

O7OXXX CDAR Push CDAR of the operand on the stack.

072XXX RCDAR Return from current function with CDAR

‘

of the operand as value.

074XXX CDDR Push CDDR of the operand on the stack.

O76XXX RCDDR Return from current function with CDDR
•

- of the operand as value.
~

• O2OXXX LISTP If the operand is a list, set the indicator -‘
-

TRUE; else set the indicator FALSE.

11
8

I
——a.- -~~~~~~ —-- -___________________

••-

~

•

O22XXX ATOM If the operand is a litatom , integer , or
floating number , set the indicator TRUE;

• else set the indicator false.

O24XXX LITATOM If the operand is a litatom , set the
indicator TRUE; else set the indicator
FALSE.

O26XXX NUMBERP If the operand is an integer or floating number
set the indicator TRUE ; else set the indicator
FALSE.

O3OXXX FIXP If the operand is an integer , set the indicator
TRUE; else set the indicator FALSE.

032XXX STRINGP If the operand is a string , set the indicator
TRUE; else set the indicator FALSE.

O34XXX ARRAYP If the operand is an array, set the indicator
TRUE; else set the indicator FALSE.

O36XXX STACKP If the operand is a stack pointer , set the
indicator TRUE ; else set the indicator FALSE.

100XXX IADD Integer sum of the operand and the top of
the stack is stored on the top of the stack.

• .-- 1O2XXX ISUB Integer d i f fe rence of the operand and the top
I h of the stack is stored on the top of the stack
• (E—TOS—>TOS) .

1O4XXX IMUL Integer product of the operand and the top of
the stack is stored on the top of the stack.

1O6XXX IDIV Integer quotient of the operand and the top

~• j of the stack is stored on the top of the
stack (E/TOS—>TOS).

11OXXX IREM Integer remainder of the operand and the
top of the stack is stored on the top of

•

- stack.

112XXX EQ Compare the operand with the pointer on the
top of the stack; set the indicator

• TRUE if the two are EQ; pop the stack.

114XXX IGT If the integer operand is greater than the
integer on the top of the stack, set the

~~
(indicator TRUE. Pop the stack. Error if

either argument is not an integer.

Li
116XXX ILS If the integer operand is less than the

integer on the top of the stack, set the

II 9

II
_ ~~~~~~~~~~~ T. ~~~~~~~~~~~~~~ T~~~~~~~~~~~~ ::. ~~~~- - .

~
- ---

~
-
-
• ~~~:~~~~~~=:~~~~

indicator TRUE. Pop the stack. Causes an
error if either argument is not an integer.

120XXX FADD Floating point sum of the operand and
the top of the stack is stored on the top
of the stack.

I92XXX PSUB Floating point difference of the operand and
the top of the stack is stored on the top
of the stack.

124XXX FMUL Floating point product of the operand and the
top of the stack is stored on the top of the
stack.

126XXX FDIV Floating point quotient of the op er ind and
the top of the stack is stored on the top of
stack.

13OXXX FREM Floating point remainder of the operand and
the top of the stack is stored on the top
of the stack.

132XXX EQP Compare the operand with the top of the stack
• and pop the top of the stack. Set the

indicator TRUE if the pointers are EQ, or both
are integers with the same value, or both are
floating point numbers with the same value,
or both are stack pointers referencing the same
stack frame.

134XXX FGTP Compare the floating point operand with the
floating point number on the top of the stack L
and pop the stack. Set the indicator TRUE
if the operand is greater. Causes an error
if either argument is not a floating point 1’number.

136XXX FLSP If the floating point operand is less than the
floating point number on the top of the stack,
set the indicator TRUE. Pop the top of
the stack. Causes an error if either argument
is not a floating point number.

[1
• 1

10 Ii
V

• • •

~~~
- •
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - • - • . - - _ - • • • .• —- . • -

r—•~—••--~---—— -••-•-• _~~~~~ - - •-•- • .
~~~~~~~

• • •- — —_-•--•• •-• - - - -• --••—-—•— • •—— ••,•- -—• 
~~~

The following instructions are the ones that store values. Since it
doesn ’t make any sense to store to a constant, there are fewer
possibilities for destinations than for sources. Thus the

• destination is 9 bits and the opcode is 7 bits. The destinations
are :

STACK — 00 7 bit offset
•. LOCAL — 01 7 bit offset

SPEC — 10 7 bit offset

PVAR — 11 7 bit offset

The opcodes with 9 bit operands are:

O1OXXX SCDR Stores CDR of the operand in itself.

0]1XXX POP Pops the stack to the destination . The
effective address is computed after the
pop.

012XXX SCDDR Stores CDDR of the operand in itself

013XXX TOS Stores the top of the stack (without popping)
in the destination .

O14XXX ADD1 Stores the operand plus 1 in itself.

B 15XXX PCAR Pops the stack, takes CAR of it , and stores the
result in the destination. The effective
address is computed a f t e r the pop.

O16XXX SUB1 Stores the operand minus 1 in itself.

B17XXX PCDR Pops the stack, takes CDR of it, and
stores the result in the destination.11 The effective address is computed after the pop.

• 11 The branches have a 6 bit opcode and a 10 bit offset . The sign
ex tended offset pl us the current location is the destination of the
branch . If the offset is 0, the follow ing word conta ins a 16 bit
offset . The branch instructions are:

140XXX BRT Branch if the indicator is true.

H 142XXX BR? Branch if the indicator is faJ~~e.

144XXX PBNIL If the top of the stack is NIL , pop the stack
and branch; otherwise don’t pop and don’t
bran ch.

11

I
_ _ _ _ _ _ _ -_-- —•- ----- ~~ - •~~~~~~~~• • •

— - - - •_ --- --- - - - --~~~~~—

146XXX BRA Unconditional branch.

150XXX BNIL Branch if the top of the stack contains NIL and
pop always .

152XXX BNN Branch if the top of the stack is not NIL and
pop always .

154XXX NBNIL If the top of the stack is NIL , branch but don’t
pop the stack; otherwise don ’t branch and
do pop.

156XXX NBNN If the top of the stack is not NIL, branch but
don’t pop the stack; otherwise don’t branch and
do pop.

The following opcodes have literal or immediate operands only. The
opcode is 8 bits and the offset is 8 bits.

0020XX CALL Call function by name or function call. The
literal has the number of arguments supplied in
the high 8 bits , and the function name in the
remaining 24 bits.

0024XX DCALL Like CALL but discards the value.

0030XX LCALL Linked call of function. (not implemented)

0034XX DLCALL Linked call that discards value. (not
implemented)

OO4OXX PBIND Bind operation for PROGs and open LAMBDAs that
make frames. The immediate operand is the
number of frames deep.

0044XX ECALL Call operation for ENVEVAL and ENVAPPLY. The
literal operand is like a CALL literal (presumably

• to EVAL or APPLY). ECALL also expects
the new CLINK and new ALINK on the stack in

• that order , Causes an illegal instruction
trap if the li tera l operand does not reference
a compiled func t ion .

~~~~~ 0050XX PCALL Call operation for PROGS and open LAMBDAS that
ma ke frames . The literal operand contains the
number of arguments supplied , and the offset for

• ~ • the FEF pointer (a small number that gets added
to the curren t LIT pointer) .

- 

•: 0054XX EQQ Compare the top of the stack with the li teral
operand and set the indicator TRUE if they

-• are EQ. (Used for SE1.ECTQ.)

12 El
Fl

~~~~~~~~~~~~~ • 

- • _ _ _

• - . • . • -- . • ~~~~~~~~~~~~~~~~~ ~~~-— -— .-a~ . ~~~~~~- • - - -~~~~ -- - .

_ - ___

_ _ _ _ _ _ _ _

I
BO6ØXX • TYPTOS The 6 bit immediate operand is a type number.

I If the type of the pointer on the top of the
stack is equal to the given type, set the
indicator TRUE.

0062XX DTYPTOS Like TYPTOS but also pops the stack.

• 0064XX Unused

OO7OXX FRMRUN Run the stack frame specified in register 2.
(no operand)

0074X0 FUNBIND Unbind the Frame referenced by the unboxed stack
pointer on the top of the stack. Pop the stack.
(no operand)

0074Xl FBIND Bind the frame referenced by the unboxed stack
pointer on the top of the stack. Pop the stack.
(no operand)

Opcodes 0—1777 take their operands (if any) on the stack and return
their value (if any) on the stack. A few have an immediate operand
in the low order 3 bits .

The opcodes described below are those in this group that are
implemented entirely in microcode.

- 000010 EXCH Exchange the top of the stack with second
from the top of the stack.

• 000020 IBOX (X) Integer box X.

000030 GCONS (X) Create an empty item of type X.

1. 000040 CONS (X Y) Create a list cell with X as the CAR and
Y as the CDR .

j 000050 BIND Bind the current frame.

000060 DPOP (N) N is a 3 bit immediate operand . Pops (and
discards) N items from the stack.

00007X IRET (N) Return from a miscellaneous op—code of N

11
arguments. N is a 3 bit immediate operand .

000100 BIN (X) Inputs 1 character from a string or 10
descriptor X. Skips if not empty, returning

• the character code . Does not skip if string
or buffer is empty.

~~~~~~

(.1 13

U
-• . --~~~- • , • -•~~-•--• ..-- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~J


000110 BOUT(X CHAR) Output the character code CHAR to the string
or 10 descriptor X. Skip if not empty,
returning CHAR. Does not skip if string or
buffer is full.

000120 RPLACA(L A) Replace CAR of 1. with A. Value is L.

000130 RPLACD (L D) Replace CDR of L with D. Value is L.

000140 DRPLACA(L A) Replace CAR of L with A. Discard value.

000150 DRPLACD (L D) Replace CDR of 1. with A. Discard value.

000160 IVAL() Indicator value; push T on the stack
if the indicator is True;
otherwise push NIL.

000170 LLM Leave Lisp mode (enter PDP—ll mode).

000200 R16I(P N) Return as an integer the 16 bit quanti ty t
-

that is N words from the beginning of P.
•

•~ 000201 R16S(P N) Return as an unboxed stack pointer the 16 bit
bit quantity that is N words from the
beginning of P.

000202 R16V(P N) Return as a value cell pointer the 16 bit
quantity that is N words from the beginning
of P.

000210 Wl6(P N VAL) Store the low order 16 bits of the pointer
VAL in the location that is N words from the -•

beginning of P.

000220 RPCAR(P N) Return the CAR format pointer that begins N
-

words from the beginning of P.

000230 WCAR(P N VAL) Store the pointer VAL in CAR format in the
locations that begin N words from the
beginning of P.

000240 RPCDR (P N) Return the CDR format pointer that begins N
words from the beginning of P.

000250 WCDR (P N VAL) Store the pointer VAL in CDR format in the
locations that begin N words from the
beginning of P.

000260 RNUM (P N) Return as an integer the 24 bi t quant i ty
that begins N words from the beginning of P.

• 000270 WNUM(P N VAL) Unbox the integer VAL and store in the H
• location beginning N words from the

14

El
-_______________ — • _ _ _ • • — • - —•.-- • •—•— •—- •—•—-- ———--•• -- • • — - • • • —•——— • — - •——•—- - •— • •—••— — • —- -;

_ — —•——--—

h - — _
~~~~•— - - -~~~~~~~~~~~~~~~~~~~~~~~~ - • .

~~~~~~~~~• •


- ---~~~~~~~ r - ~~~~~~~~ -
~~~~~~~~~~~~~ -• —‘-- 

- 
~~~~

- - -~~ • • • - •

•

I
~~~~~~~~~~~~~~~~~~~~~ 

- • • • 
• 

_ -_

beginning of P.

00030X SCALL (N) Call a function. The 3 bit immediate
- operand N is the number of arguments
- supplied on the stack. Expects on the

stack ARG1,...ARGN,FN, where FN may be
a literal atom or function cell. If
FN is not legal , eventually get to
FAULTAPPLY.

000310 SCALLN ( ARG 1,..ARGN ,FN ,N) — Same as SCALL except the number
of arguments suppl ied is also stored on
the stack.

000320 LOGOR (X Y) Returns the logical OR of X and Y. Error
if X or Y is not an integer.

000330 LOGAND(X Y) Returns the logical AND of X and Y. Error
if X or Y is not an integer.

000340 LOGXOR (X Y) Returns the logical XOR of X and Y. Error
if X or I is not an in teger .

• 000350 LSH (X N ) Ar i thmetic (sign extended) shift of X by N.
Shifts left if N is positive, right if N
is negative. Error if X or N is not an
integer.

000360 EXFRM Used by the interpreter to make a frame
for calling an EXPR. Expects on the stack
the callers PC and a number containing the
size of the FEF. (The FE? is also on the

• stack following the arguments.)

000370 DIVAL Indicator value. Puts T on the top of
the stack (destroying previous top of stack)
if the indicator is TRUE; otherwise replaces
the top of the stack with NIL.

The remainder of the zero operand opcodes are implemented in 1.—code
and/or PDP— ll code. There is a dispatch table at a f ixed location
in memory that contains the entry points for these opcodes (000400 —

001777). Opcodes 160000 — 177777 are unused .

Literal Atom Primitives

MKAT(STR) — Create a literal atom with pname equal to the string
STR, and with the remainder of the components set to NIL or
non— existent’. The value is the atom. Note: MEAT does not check

for possible integer or floating point numbers .

is

11

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _


____ ______ _______ - -

GETPROPLIST(ATM) — Return the property list of the literal atom ATM.
-

•

SETPROPLIST(ATh VAL) — Set the property list of the literal atom ATM
to be VAL. The value is VAL.

GETD (ATM) — Return the function definition of ATM. If the
de f in i t i on is an S—expression , the value is the S—expression (a
list) . If the function definition is compiled , the value is a
function cell containing the definition . If ATM is not a litatom
the value is NIL.

PUTD (ATM DEF) — Set the function definition of the literal atom ,
ATM, to be DEl’. DEF may be a function cell, a literal atom, or
anything else . If DEF is a literal atom , the definition of the atom
is put as the definition of ATM, allowing MOVD without crea tion of a
function cell. Anything else is put as an S—expression. If DEl is
not a legitimate S—expression , an err or w ill occur when the function
is called .

FGETD (X) — If X is a literal atom , function cell , or compiled code
pointer, FGETD returns the pointer portion of the function
definition . If X is anything else the value is NIL. The value of
FGETD can be used to test for existence of or equality (EQ) of
function definitions , but will not generally be a legal argument to
PUTD. p
GETDP (ATM) — Returns P if ATM has a non—NIL function definition;
NIL otherwise.

VCTOAT (VALUECELL) — Given a value cell pointer , returns the
corresponding literal atom. (No error checks)

SET(ATM VAL) — Set the contents of the value cell of the literal
• atom ATM to VAL. This sets the current value of ATM (because

Interlisp—ll uses shallow binding) . Error if ATM not a literal
atom .

AT2VC(ATM) — Return the value cell pointer of the literal atom ATM.
Error if ATM is not a literal atom. I
L.EVALV (ATM) — Returns the current va lue of the li teral atom ATM or
NOBIND if ATM has no value . Error if ATM is not a l i teral atom .

MAPATOM S(FN) — Applies FN to each l i teral atom that current ly exists
• in the atom hash table.

CHARACTER (CODE) — Return the one character literal atom whose pname
- is the character code CODE.

11
16

I
tist Primitives

I CONS (A D) — Returns a list cell whose CAR is A and CDR is D.
(implemented in micro-code)

RPLACA(L A) — Replace the CAR component of the list L by A. The
value is L. (implemented in micro—code)

LI LIST(A1...AN N) — Takes an indef in i te number of arguments, the last
of which is the total number of arguments exclud ing itself. Returns

-
a list of the f i r s t N arguments.

1. MEMB(X 1.) — If there is an element of the list 1. that is• EQ to X,
returns the tail of the list L beginning wi th X; otherwise returns
NIL.

ASSOC (X 1.) — The value of ASSOC is the first element of L whose CAR
is EQ to X. If no such element exists the value is NIL.

L LAST(L) — Returns the last node in the list L. i.e. (LAST (QUOTE (A
-

B C))) (C) and (LAST (QUOTE (A B . C))) — (B . C). Returns NIL if
L is not a list.

LENGTH (L) — Returns the number of nodes in the list 1.. Returns 0 if
1. is not a list.

NTH(L N) — Returns the tail of the list 1. beginning with the Nth
element of L. If L has fewe r than N elements , returns NIL.

Arr ay Primitives

Arrays in Interlisp—ll conform to the Interlisp Virtual Machine
Specification and therefore are different from arrays in

I
A.ARRAY (SIZE TIP) — Allocates an array of the proper length to
contain SIZE elements, where the number of words per element depends
on TIP. Legal values for TIP are :

0 — pointer; 1 — integer; 2 — floating point; 3 — hash array

I The value is the array containing unboxed zeros. A.ARRAY is used to
implement the more general VM function ARRAY (SIZE TIP INITVAL).

ELT (ARRAY N) — Returns the Nth element of ARRAY . If ARRAY is a hash
array, returns (CONS key val) . Error if ARRAY is not an array or if

- • N is less than 1 or greater than the size of the array.

SETA(ARRAY N VAt.) — Sets the Nth element of ARRAY to VAL. Error if
ARRAY is not an ARRAY or if N is less that 1 or grea ter than the
size of the array. (Note that SETA should not be used for hash

• Li arrays , but current ly there is no error check.)

II 17

11

______ •—••— —-- ••-•--—•_ . ••• — - —•-—•- • - - _-• • • - • •

—
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-•~~~~~~ •~~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _____

ARRAISIZE(ARRAY) — Returns the number of elements in the array
• ARRAY. Error if ARRAY is not an array.

• PUTHASH (KEY VAL ARRAY ) — If ARRAY is nil use the valu , of
SYSHASHARRAY; if ARRAY is a list, use (CAR ARRAY). If ultimate
array is not• a hash a r ray ,  an error  results. If VAt. is NIL r emove
existing hash link from KEY in the array if any. Otherwi se set the
hash link of KEY to VAt. in the array.

GETHASH (KEY ARRAY) — The array to use is computed as in PUTHASH.
Return the hash link of KEY in the array if any. Otherwise return
NIL.

CLRH ASH (ARR AY) — The array to use is computed as in PUTHASH. Remove
all hash links from ARRAY.

Compiled Code Primitives

In Interlis~—1l compiled code is a separate data type. (In
Interlisp—lO compiled code is stored as arrays.)

A.CODE(N) — Allocates N words of compiled code where N includes the
compiled code overhead . Return a pointer to the code block.

A.FNCELL (ARGTYPE NARGS DEF) — Create a function cell for a compiled
code definition. ARGTYPE is the argument type of the compiled
function (see ARGTYPE below), NARGS is the number of arguments the
function has, and DEl is a pointer to the compiled code block.

ARGTYPE(X) - If X is a literal atom , then return the argument type
• of the definition of X. If X is a function cell , return the

argument type of the contents of the function cell. Otherwise
regard X as an S—expression . Possible values are:

0 regular LAMBDA
1 LAMBDA NO—SPREAD
2 regular NLAMBDA
3 NLANBDA NO-SPREAD
NIL none of the above

NARGS1 (x) — Returns the number of arguments expected by the function
• 

• 

defini tion of X if X is a litatom , or by the contents of X if X is a
function cell. Only makes sense if the function is compiled . No
err or checks .

• CCODEP (X) — Returns T if x is a literal atom whose function
• defini tion is compiled or if x is a function cell ditto . Otherwise

returns NIL.

• 18

I
_ .  - —•-• •• ___________

- - . 1  



I
String Primit ives

£ A.STP T() — Return a new string pointer referencing an empty string.

A.DSTR (N) — Allocate a d ummy s tr ing ; that  is , create a string
pointer referencing a string of N characters whose contents are
unspecified .

L.CSP(OLD NEW) — Copy the contents of string pointer OLD to strong
oointer NEW. Thus NEW and OLD will be equal strings, referenc ing
the same string characters. Value is NEW. (No error checks!)

L.SBST(ST R]. N M STR2) — A pr imi t ive  fo rm of the Interlisp function
SUBSTRING (and used to implement SUBSTRING). Creates a substring of
the string STR1, consisting of the Nth thru Mth characters of STR1.
The result is smashed into the string (pointer) STR2. N must be
positive, and STR2 must be a string pointer. If N is negative it

• means the Mth character from the end of STR1. Returns NIL. if the
substring is ill defined . Unlike SUBSTRING, L.SBST returns the
empty string if N equalá N.

ATTOSTR(ATM STR) — Smashes the string pointer STR to reference the
pname of the literal atom ATM. Value is STR. Error if ATM not a

-
~ literal atom or STR not a string.

SAFSTRING (STR) — Assures that the string pointer STR is safe’.
String pointers can reference characters in pname space; however,
it would be unhealthy to smash pnames. So SAFSTRING is used by the

• function RPSTRING to copy the characters from pname storage to

I - string character storage if necessary.

REVOBIN (X) — Returns the character code of the last character of the
• string X. Removes the character from the string . Returns NIL if

the string is empty (i.e. the definition of GLC is (LAMBDA CX)
(CHARACTER (REVOBIN X)))).

i~
.

-
~~~ Interpreter Primit ives
-

L.EVAF(FORM) — Evaluates form in current context. Error if FORM
is not a list. Calls (FAULTEVAL FORM) if CAR of form is not a

II legally defined function.

L.APPLY(FN ARGS) — Applies function to arga in the current
context. Calls (PAULTAPPLY FN ARGS) if FN is not a legally defined

1 functIon.

• L.APPLY*() — Implements the function APPLY* using the variables
1 bound in the current frame . The definition of APPLY* is (LAMB DA A

(L.APPLY*)).

\L.PROG (X) — Implements the function PROC . The definition of PROC
is (NLAI~~DA A (L.PROG A)).

I~11! 19

I’
• -• - -~ -~ - .---- -- • •‘ ~~- _

__ _ __; -=~~~~~~~~~
--

_ _

L.GO(POS TAIL) — Used to implement the function GO. POS is an
unboxed stack pointer to the *PROC*LAM frame of the appropriate
PROG , and TAIL is the tail of the PROC including the label
referenced by GO. •

•

Basic I/O Primitives

OBIN (X) — X may be a string or 10 descriptor. If X is a string ,
returns the character code of the first character of X and removes x
from the string. If the string is empty, returns NIL. If X is an
10 descriptor , returns the character code of the next character in
the buffer of X. If the buffer is empty and the end function in the
10 Descriptor is not NIL, applies the END function to the 10
Descriptor (returning the value of the end function). If the end
function is NIL returns NIL.

OBOUT(X CHAR) — X may be a string or 10 descriptor. If X is a
string , stores CHAR in the first character of X and removes X from
the string. Returns CHAR/ if successful , or NIL. if the string is
empty. If X is an 10 descriptor , stores CHAR in the buffer of X.
Returns CHAR if successful. If the buffer is full, applies the end
funct ion of the tO descriptor (if it exists) to X and CHAR and
returns the value of the end function. If the buffer is full and
the end function is NIL, returns NIL.

TTYOUT(CHAR) — Output character code CHAR to the physical terminal. ‘

TTYIN() — Get a character from the physical terminal. If none has
been typed, waits till one has. Has a buffer of characters for
type ahead and checks for terminal interrupt charactirs. Does not
echo. Value is a character code.

L.TRATM () — Primitive RATOM used for bootstrapping purposes. Reads
• an atom from the physical terminal. The only delimiters recognized ‘Iare space, left and right parenthesis, and line feed. J

• L.STRAM (IOD) - Primi t ive RATOM used for bootstrapping — just l ike
• •

L.TRATM except takes a file argument. j
TTY 3IN () — Get character code from direct line to system—D. Return
NIL if no character available.

TTY3INWAIT() — Get character code from direct line to system—D.
wait till character is available.

TTY3INCONTROL() — Get character code from direct line to system—D.
Wait till a character is available or until a control—W is typed on
the terminal. Returns NIL if control—W typed.

TTY3OUT(CHAR) — Send character code on direct l ine to syetem—D.

L :
• 20

1
. •~~~~~~~~— --

I- -—

_ _ _ _ _ ~~~~~~~~~~ .••:i~. i•. • . .: •~~~~~-- .• • • . . • . • .:

_ -

TTY3CLR () — Clear the input buffer for the direct line to system—D.

I Value is NIL.

CLRBUF() — Clear the terminal input buffer.

I. SREADP() — Returns number of characters in the terminal input buffer
• if any; otherwise returns NIL.

SSYSBUF() — Sets the variable \SYSBUF to a (re—used) string
containing the current contents of the terminal input buffer if the

• I - buffer is not empty. If the buffer is empty, sets \SYSBUF to NIL.

STI (CHAR) — Simulate terminal input of the character code CHAR.
• Value is NIL.

TVELT (N) — Return the contents (an integer) of the Nth 16 bit word
in the bit map terminal memory.

TVSETA(N VAL) — Set the contents of the Nth 16 bit word in the bit
map terminal memory to VAL.

L.BMTOP (N) — Used to select a variety of options in the bit map
terminal.

t li 10 Descriptor Primitives

• GETIOD(X FN) — Create and return an 10 descriptor. X may be a
)- string , an integer which is assumed to be a file number , or T. If X

• is a string , the IODNAM field of the IOD is set to the string , and
• the IOD buffer is set to reference the string characters. Thus

reading from a string IOD will not destroy the original string
pointer. However , writing to a string IOD does clobber the string
characters (presumably intentionally) . If X is a file number the
IODNUM field of the IOD is set to X, and the IOD buffer is set to
empty. Thus the first use of the IOD will cause a call to the end
function of the IOD. If X is T, the IODNAM is set to P and the
buffer set to empty. The IODFN field of the IOD is set to FN.

I Error if X not a string , integer or T.

IODNEXTC(IOD) — Return the contents of the ‘next character’ field of
IOD. This is where READ, RATOM, etc. put the chracter that
terminated the last input operation using the IOD. Value is an
integer or NIL.

IODSNEXTC(IOD CHAR) — Set the ‘next character f ie ld’ of the IOD to
contain the character code CHAR. CHAR may be NIL or an integer.

• IODLASTC(IOD) — Return the contents of the ‘last character’ field of
IOD. This is where READ, RATOM , etc. put the last character

•
-

actually read . Value is an integer or NIL.

— I I 21

H
• -- •• ~~•-. t 4 a . - - -a i. a__ .~~~~~~~ _ — — - — • • —~~~—— —- -.• • -

_______________________ _______________
• __

~~
_-• • •~~~~~~~~

--_- —~~~~~~~~
.
~~~~~



r 
~~~~~ 

-•
- •

IODSLASTC(IOD CHAR) — Set the ‘last character’ field of. IOD to
contain CHAR . CHA R may be an integer or NIL. Value is CHAR.

- IODPOS(IOD) — Get the ‘position on line’ field from IOD. Used by
reading and printing functions to keep track of horizontal position.

IODSPOS(IOD N) — Set the ‘position on line’ field of IOD to N.

IODPTR (IOD) — Return the file pointer (i.e. the number of characters F
read or written so far) of IOD. Causes an error if the IOD
references a non—open file or if it is a purely functional IOD
(neither string nor file) .

L
IODSPT R (IOD N) — Set the file pointer of IOD to N. If N is —l sets
the file pointer to the end of the file. Causes an error if IOD is
not an 10 descriptor , or if N is not an integer, or if N is less
than —1.

IODNUM(IOD) — Get the file number field from IOD. Value is an
integer or NIL. Error if IOD is not an 10 descriptor.

IODNAM(IOD) — Get the name field from IOD. The name field is either
a file name, a string , T or NIL. Error if IOD not an 10 descriptor.

IODFN(IOD) — Get the end function field from IOD. Error if IOD not
an 10 descriptor.

File System Primit ives

L.OPEN (X FN FILENAME) — Opens the file specified by X. S may be a
fi le number or an IOD. If X is an rOD, the file number field is
retrieved from the IOD. If X is a file number , creates an 10
descriptor for the file. Causes an error if the file does not
exist. FN is stored in the function field , and FILENAME in the name
field of the old or new IOD. Returns the IOD.

L.CLOSE (IOD) — Close the file referenced by IOD. Value is IOD.
Error if IOD not an tO descriptor. I
L.DEL (FILENUM) — Delete file whose number is FILENUM from the disk.

L.BUFF(IOD) — Get another buffer full from the file specified by
j IOD . Error if IOD not an tO descriptor.

RFILNM(FILENUM) — Return the name (a literal atom) in the 1DB of the
file specified by FILENUM.

WFILNM(FILENUM NAN) — Write the (characters of) the literal atom NAN
•

• in the FDB of the file specified by FILENUM.

GETIB(FILENUM N) — Get the contents (an integer) of the Nth word of
the index block of the file specified by FILENUM. Returns NIL if

• 22 - II

I ~~~ I


~~~~
_‘•• ••

•- •t •- 
- - - - -  

~~~

— ,-•

~~

-• — -

~~
—---

~~~~~
- • - - • ---- • 

•-

~~~~

- • - - -

~~~

--
~

---- 

~~

•

~~~~~~

• • - •- ------
~~
•-—-

~

-- . .—- —- ,
~-- - .- —.~~~~~

-— - - - - - -—

FILENUM in legal range but file non—existent. Returns T if FILENUM
out of range.

SETIB(FILENUM N VAt.) — Set the contents of the Nth word of the index
block of the file specified by FILENUM to be VAL. Returns VAL if
FILENUM is an existing file , otherwise returns T or NIL as in GETIB.

GETNFX () — Get and assign next available file number. Returns NIL
if no more available.

l~~1

• H
Terminal Interrupt Primitives

GETINTCHN (CHAR) — Returns the interrupt channel number for character
code CHAR if CHAR has been assigned as an interrupt character.
Otherwise returns NIL.

GETINTCHAR(CHAN) — Returns the character code assigned to interrupt
channel number CRAM. Returns NIL if no character assigned. Returns

• P if CHAN out of range.

SETINT1(CHAR CHAN HARDFLG VAR) — Assigns character code CHAR to
interrupt channel CHAN . If CHAN out of range an error results. If
CHAN is in user interrupt range, then, if HARDF LG is T, set to be an
immediate user interrupt. If VAR is not NIL set CHAR to be a user

2: interrupt that sets the variable VAR.

- - HARDP(CHAN) — Returns P if CHAN is a user interrupt channel number
that is enabled for a hard interrupt. Otherwise returns NIL.

USERINT VAR (CHAN) — Returns the variable name to be set by user
interrupt channel number CHAN. Return NIL if no variable or CRAN is
not a user interrupt channel.

Stack Primitives

L.STKPOS (NAME N IPOS) — searches stack for the 14th occurrence of a
frame named NAME beginning at IPOS. If N is negative search along
C—links . If N is posit ive search along A—links . Error if N is not

- an integer. IPOS must be an unboxed stack pointer or NIL meaning
start at the current frame. Returns an unboxed stack pointer to the

- desired frame or NIL if no such frame is found .

L.STKNTH(N IPOS) — Returns an unboxed stack pointer to the Nth frame
back from IPOS. If N is negative counts back along C—links. If N
is positive counts back along A—links. IPOS must be an unboxed
stack pointer or NIL. Returns NIL if no such fram e exists . Error

- if N is not an integer or if N is 0 and IPOS is NIL.

• L .STACKGP(POS) — If POS is a (boxed) stack pointer , returns the
unboxed contents of POS. If POS is an unboxed stack pointer,

I returns POS. If POS is NIL returns NIL. If POS is T returns the

~T- U 23

— — -~--- •- ---- - - — -- — --p •• -~~ - -• . -~~~ ~~- -~~
_-4~~~~~ — ~~~~---— - — -~~~ —

-
~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 1 ~~~~~~~~~~~~~~~~~~~~~ - ~~~_ _ _,

topmost frame. If POS is a litatom other than NIL or T returns
L.STKPOS(POS —l NIL). If POS is an integer returns (L.STKNTH POS
NIL). If POS is anything else an error occurs. - L

L.STKNAME (POS) — Returns the frame name of the frame at POS. P05.
may be either an unboxed stack pointer or NIL (the current frame).

L.STKNARGS (POS) — Returns the number of arguments in the basic frame
at POS. POS may be either an unboxed stack pointer or NIL (the

• c u r ren t f r ame) . li
L.STKARG (N POS) — Returns the value of the Nth argument in the basic
frame at POS. POS may be an unboxed stack pointer or NIL.

L.STKARGNAME (N POS) — Returns the name of the Nth argument in the
basic fram e at POS. Returns NIL if the argument is local. POS may
be an unboxed stack pointer or NIL.

L.STKSCAN (ATOM POS) — Starting at frame POS search A links for a
frame in which a variable named ATOM is bound (as a SPECVAR) Returns
an unboxed stack pointer to the frame if found , NIL otherwise. POS
may be an unboxed stack pointer or NIL.

L.FRAMESCAN (ATOM POS) — If a variable named ATOM is bound in the
stack frame at POS, returns the position of the argument (an
integer) in the basic frame. Returns NIL if no such variable is
bound at POS. POS may be an unboxed stack pointer or NIL.

L.SETFRAMNAM (NAM) — Set the frame name of the current frame to NAN.
(U sed by ERRORSET)

L.MKSTKP(CONTENTS oPOS) — Create a stack pointer to the unboxed
stack pointer CONTENTS using OPOS. That is, if OPOS is a stack
pointer , the frame it references , if any, will be released , and
CONTENTS will be stored in OPOS. Otherwise a new stack pointer is
created . Error if CONTENTS not an unboxed stack pointer.

L.RETTO (POS VAt.) — Return to stack frame at POS with value VAL. POS
may be an unboxed stack p o in te r or T meaning the topmost frame. I
RELSTK (POS) — Release the stack f rame (i f any) referenced by the
stack pointer P05. The contents of POS is set to ‘non—existent’ .
If POS Is not a stack pointer, nothing is done. Value is POS.

L.FLED 1 (POS) — If POS is a stack pointer, decrement the USE field of
the referenced frame (if any) , and set the contents of POS to
‘non—exis tent’. Similar to RELSTK but does not actually flush the
frame . Used to implement the Interlisp functions RETTO, RETEVAL,
EN VEVAL and ENVAPPLY .

..ENVEVAL (FORM APOS CPOS AFLG CFLG) — Implements the Interlisp
function ENVEVAL. Evaluates form with ALINK equal to APOS and CLINK
equal to CPOS . APOS and CPOS may be stac k pointers , li teral atoms

24 • Ii
II

-
• -•- ~~~~~~~~~ - • ii _ _ _ _ _ _ _ _ _ _ _ ________

- -
.
--

_ _ _ _ _ _ _

r — —•—-
~-—-—~~~

-
~~ _I~

-,
~~~~~ ~~~~~~~~~~~~~~~~~~ •— — —-p —P — ____________p-pp -

• 

r 

-

-‘-—

~~-~ p 
—

meaning (STKPOS POS), integers meaning (STKNTH P05), T meaning top
level frame , or NIL meaning the current frame. If APOS is a stack
pointer and AFLG is T, APOS is released . Similarly if CPOS is a

-
~~ stack pointer and CFLG is T, CPOS is released .

• 
• L.ENVAPPLY (IN ARGS APOS CPOS AFLG CFLG ) — Implements the Interlisp
* function ENVAPPLY. Applies IN to ARCS with ALINK equal to APOS and

CLINK equal to CPOS. POS and PLC arguments same as for L.ENVEVAL.

GETTOPVAL (ATOM) — Returns the top most value of the literal atom.
ATOM. If ATOM is not bound , returns NOBIND. Note that in a shallow

• H bound environment this requires a stack search.

SETTOPVAL (ATOM VAL) — Set the top most value of the literal atom
ATOM to VAt.. If ATOM is not bound set the current value (—top level
value) to VAL.

CLRSTK (FLG) — If FLG is NIL, releases all existing stack pointers.
Otherwise returns a list of all existing stack pointers.

User Data Type Pr imit ives

DEFTYPE (NWORDS NPTRS) — define a user data type containing NWORDS 16
bit words and NPTRS pointers. Value is the type number. Error if
either argument is not an integer or is less than 0. Error if no
more data types are available.

NALLOC (NTYP OLDONE) — Allocate a data type item of numeric type
NTYP. If OLDONE is not NIL, its contents are copied into the newly
allocated item . Error if NTYP not a legal, ass igned user data type
number.

TYPESTATUS(NTYP PLC) — If PLC is NIL, returns current status of user
data type number NTYP. Status values are 0 — free type, 1 — in use,

f - 2 — deallocated . If FLG is 1, set NTYP to be in use. If PLC is 2,
- set NTYP to be deallocated . Other values of FLG are ignored. In

any case value is current status. Error if NTYP not a legal user
data type number.

- - 
GETNPTRS(NTYP ) — Returns the number of pointers in an item of user
data type NTYP. Error if NTYP not a legal assigned user data type
number.

- GETNWRDS (NTYP) — Returns the number of 16 bit words in an item of
•4 user data type NTYP. Error if NTYP not a legal assigned user data

type number.

• h
~~~~~

25

II
__________________ - p-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - _______

— - —- --4-- 
~

w — -  — 
. •~~~~~~~~~~~~~~~~~~~~ • - • - . •- -•~~~~~~~~~~ •— •~~~~.— . - - -. — - - -~~~~~~~~ - 

- — - —  -— • -  --• p __________



____ — -~~~-• - •~ ‘ • ~~r•-,te • -- -- --,.• - ~~Prrr-— P .

General Structure Access Primitives

The following primitives are used by system level , implementation
dependent, LISP functions to access -components of data structures.

R161 (HEAD OFFSET) — Return , as a sign extended integer , the 16 bit
• quantity that is OFFSET 16 bit words from the beg inning of the

structure pointed to by HEAD.

R16S(HEAD OFFSET) — Return as an unboxed stack pointer the 16 bit
quantity that is OFFSET 16 bit words from the beginning of the
structure READ.

R16V (READ OFFSET) — Return , as a value cell pointer, the 16 bit
quantity that is OFFSET 16 bit words from the beginning of the
structure HEAD. ç
RPCAR (READ OFFSET) — Return the 24 bit CAR format pointer that
begins OFFSET 16 bit words from the beginning of the structure HEAD.

RPCDR (HEAD OFFSET) — Return the 24 bit CDR format pointer that
begins OFFSET 16 bit words from the beginning of the structure READ.

RNUM(HEAD OFFSET) — Return as an integer the 24 bit quantity that
begins OFFSET 16 bit words from the beginning of the structure HEAD.

L.W 16 (HEAD OFFSET NEWVALUE ) — Store the low order 16 bits of the
pointer NEWVALUE in the location that is OFFSET 16 bit words from
the beginning of the structure HEAD.

L.WCAR(HEAD OFFSET NEWVALUE) — Store the pointer NEWVALUE in CAR
format in the locations beginning at OFFSET 16 bit words from the
beginning of the structure HEAD.

L.WCDR (HEAD OFFSET NEWVALUE) — Store the pointer NEWVALUE in CDR
fo rmat in the locations b eginning at OFFSET 16 bit words from the
beginn ing of the structure HEAD.

L.WNUM(HEAD OFFSET NUN ) — Store the unboxed value of the integer HUM
in the locations beginning at OFFSET 16 bit words from the beginning
of the structure HEAD. Error if NUN is not an integer.

______________________________________Miscellaneo us Primit ives

4 NTYP(PTR ) — Return the integer data type of PTR.

EQP (X Y) — Return P if X and Y are EQ, equal integers , equal
• floating point numbers , or .qual stack pointers. I

CT.OCK1() — Returns the value of a counter that is incremental once
every 100 microseconds. ii

26 - II :

• • —•- - - -  ~~~-• — • - — ••_
~• _•_. • 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — . - ._  —- ________ 

•-•- . • • . • • . • _ ~~~~~~~~~~~~~~ _
. —•—-----—--—---- --•-----

—— P--p—P-p

~~~~~~~~~~~ 
- P

L.NCHR (X) — If x is a literal atom for a string, returns the number
of characters in the pname or string . Returns NIL otherwi se.

L.CHCON1(X) — If X is a literal atom or a string , returns the
character code of the first character of X. Returns NIL if X is the
empty string . Error if X not a literal atom or string .

- L.SYSOUT(N) — Store the current virtual memory image on file number
N.

L.SYSIN (N ) — Run the vi r tual  memory image stored on f i l e  number N.

L.LAPRD(X IN) — Load a compiled function. x may be an 10 descriptor
or string pointer . FN is the function name.

‘S

11- U  27

11 
- 

_ _  _

h— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •:~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

=-
~~~~~~~

-::
~~
-= i



____  ~~~~~~~ - . - . - . - • . -•• —- - ____________________________

DATA FORMATS

Stack Format - - -

The stack is allocated in a fixed 64k word segment. This permits
pointers to the stack on the stack to be 16 bits, thus reducing the
size of stack frames and thereby increasing the speed of function -

- calling .

The format of the frame extension is: 1.
word 0 bit 150 extension is active f

1 extension is inactive

word 0 bit 14 0 normal return
1 hard return — i .e .  ALINK — CLINK ,
CXT > 0, or callers frame not contigL~ u5

word 0 bit 13 garbage collector mark bit

word 0 bits 7:0 USE field -

word 1 bits 15:0 the locat-ion of the last word —l of the
- frame extension .

word 2 bits 15:0 BLINK, basic frame pointer V

word 3 bits 15:0 ALINK

word 4 bits 15:0 CLINK

word 5 bits 13:8 High order 6 bits of LIT pointer (in inter-
preted functions LIT references the stack)

bit 7 0 push the value upon return
1 discard the value

bits 5:0 high order 6 bits of the return address

word 6 bits 15:0 low order 16 bits of return add ress

word 7 bits 15:0 low order 16 bits of literal pointer I
32 bit temporary values

bits 15:8 0 value is a pointer
~~~ 22 value is a 24 bit unboxed integer

bits 23:0 pointer or integer

11
28 fl

II
-- - . .•~ ~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _- Up— — ‘— —p Pp —p —p ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~

- ---
~~~

_

~~~~~~~~~~~
- - _i

~~
_ i

.p— — .-----•—--—-•- ~~ —- - -_ - ———--‘•-- - Pp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - The basic frame overhead is stored at the end of the basic frame so
that the values of variables may be stacked as they are evaluated.
The basic frame format is:

32 bit bind ing s

bit 0 0 slot contains the current value of a
-• variable

1 slot contains the previous value of a
variable (1)

i i bits 21:0 value

- word 0 bits 7:0 CXT field — the BLINK of the frame
extension points here.

word 1 bits 15:0 pointer to the first word — 2 of the basic
i i f r a m e

- - word 2 bits 15:8 number of arguments in basic frame (unnecessary
• but convenient)

I
*

bits 5:0 high order 6 bits of the frame (function) name

word 3 bits 15:0 low order 16 bits of the frame (function) name

Because it is possible to have a fragmented stack containing unused
chunks, there is also a fo rmat for stack holes. The hole format is:

word 0 bits 15:0 all ones — this is the hole flag

word 1 bits 15:0 pointer to last word of hole

word 2 bits 15:0 pointer to previous hole, 1 if none

word 3 bits 15:0 pointer to next hole, 1 if none

L When a frame is about to be run it is desirable to be able to detect
quickly whether a hole immediately follows so the frame can be run
without moving it. The unique hole flag permits this; neither a
frame extension nor a basic fram e can have all ones in the first
word . The unique hole mark also permits easy merging of ad j acent
holes. The 2 way chain permits removal of a hole fro. the chain ,
and the chain itself permits reasonably quick searches for holes of
adequate size. Note that we can end up with lonely 2 word holes
that cannot be in the hole chain. These will only get used when

U-)

- There is a bit for each binding to permit restart of the BIND
instruction after a page fault.

29

11
~~~~~~~~~~~ i~~~~:::~~~~~~~~~~~~~~~~~~ i ~~~~~~~ 

~~~~~~~~~~~~~~~ 
~~~~~ ~~~~~~~~~~~~~~~ 

- -- :- -=-:i ------~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T1•1T2I T~~~~ 1~~~~~

required by the frame above or when they merge with adjacent holes.

Compiled Code Fo rmat

Compiled code is stored as a distinct data type. (In Interlisp—lO Iicompiled code is stored in ar ray  space.) A compiled function is
limited to 64K words and cannot cross a segment boundary in order to
avoid the necessity for double precision addition to increment the
program counter or to compute branch destinations.

Compiled code overhead is at the beginning of the code block and
contains:

word 0 bits 15:0 total length of compiled code block

word 1 bits 15:0 location relative to word 0 of the beginning
of the literals (the first FEF) ~• -

word 2 bits 15:8 number of FEF wo rds in the li teral  area

word 2 bits 7:0 number of 16 bit value cell pointers in the
literal area

I

word 3 bits 15:0 location relative to word 0 of the beginning
of the 32 bit literals

In addition to the regular literals (constants) required by the
compiled function, the literal area contains a lot of other
information. The first thing in the literal area are the function
entry frames, FEF’ s, for the function and for any internal PROGs and
open LAMBDAs. An FEF contains the information required for binding
the SPECVARS in the fram e (and for unbind ing in a context switch).
The format of an PEP is: i
word 0 bit 15:8 argument number of first specvar

word 0 bits 7:0 argument number of second specvar I
word 1 bits 15:0 address of value cell for first specvar

word 2 bits 15:0 address of value cell for second specvar etc. • -

The first argument number is 1. The PEP is terminated by an H
argument number equal to 0.(l) Because of other constraints each
FE? must be an even number of words.

(1) A bit mask to specify which arguments are specvars would use
less space but would have made the microcode harder to write.

- 

30 [1

- ~~~~~~- . - -  - • .~~~~~~~~

_

_

- -

•

_

~~~~~

‘

p- - -- -~~~~~~~~ ~~~~~~~ --

- -

~~~~~~~~ 
—~p~ -• ~~~~~~~~~~~~~~~~~~ ~~~~~ —---- - - • - ----•-- ‘—p •~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - —-——- p ~~~~~~~~~~~~~ ~~~~~ — 

,—--- ---- - J



—P •~_p -p ~~~~~~~~ ~~~~• •__ _

~~: 

- -

The FEF’s are followed by some single word entries. First are 16
bit  val ue cell pointers for specvars that are referenced (but not
bound) in the function. Next are the constants required for
referencing PVARS. PVARS are local vars in outer PROGs or the main
function that are referenced from within a PROC that makes a frame.
The left  byte of the PVAR constant contains the relative location of
the desired frame pointer in the current  f rame extension. (The
PBIND operation gathers these frame pointers when a PROC is
entered.) The right byte is the of fse t  of the desired variable
within the basic frame or f rame extension .

Literal Atom Format

word 0 bits 15:14 function type
0 regular LAMBDA
1 LAMBDA no spread
2 regular N LAMB DA
3 N LAMB DA no spread

bits 13:7 number of arguments required
(if compiled)

bit 6 0 expr.
-- 1 compiled

bits 5:0 high order 6 bits of compiled code
or EXPR pointer

word 1 bits 15:0 low order 16 bits of code or EXPR pointer

word 2 bits 15:0 pointer to value cell — the high order
6 bits are constant; —l means value cell
does not exist .

word 3 bits 13:8 high order 6 bits of property list pointer

bits 5:0 high order 6 bits of pname pointer

wo rd 4 bits 15:0 low order 16 bits of pname p oin te r

word 5 bits 15:0 low order 16 bits of property list pointer

Value Cell Fo rmat

In order to save space in compiled functions , value cells are stored
in a f ixed 64K segment , so a value cell p ointer  can be 16 bits.

I ~ Functions such as STKARGNAME and BACKTRACE need to know the variable
names, so there must be a way to get from a value cell back to the
atom . Thus a value cell contains the current  value of the variable
and a pointer back to the atom.

_ p’.

31

ft
— -a ---i ~~~~~~~~~~~~~~~~~~~~~~~~~ - ~_•_ - p pp - -

- -—P- p •—~~-~~~~~~~ -- ‘-~~~~~ 
- •_

~~- 
-• -- p- -  •~~~~

P_-p p - - —- —- -- — — - -



.~ -~ --p _______________ -• — _____________

word 0 bits 13:8 high order 6 bits of litatom

bits 5:0 high order 6 bits of value

word 1 bits 15:0 low order 16 bits of value

word 2 bits 15:0 low order 16 bits of atom

Function Cell Format

Since the contents of the function cell of an atom is more than a
pointer, we have added a new data type, the function cell. A
function cell is the value of GETD of a compiled function; and a
function cell may be g iven as an argument to PUTD or may be used in
APPLY, EVAL, etc . in the same manner as a litatom (the name of a
function). The format of a function cell is the same as the format
of the first two words of a litatom .

Pname Forma t 
- —

Pname characters are stored 2 8 bit characters per word in PDP—ll
order , that is, the f i r s t  byte is the low order byte . A pname
beg ins on a word boundary and the first character is the length (in H
charac ters) .

Array Format

In Interlisp—ll , an ar ray  can contain only one type of entry.
(Interl isp—lO allows arrays that contain both pointers and integers
primarily so that compiled code can be stored in arrays.) The types

• of array are pointer, integer , floating point, and hash array. The
size of an array is limited to 64K words, and arrays may not cross
segment boundaries . The array overhead is:

word 0 bits 15:0 number of elements in array

word 1 bits 1:0 array type
I pointer array
1 int eger arra y
2 floating point arra y

~~~~~~~~ 3 hash arra y 
- -

The first three array types are 2 wo rds per entry. Rash arrays use
these words — each entry contains two 24 bit pointers.

Stack Pointer Format

Since the stack is limited to one fixed 64k segment, a stack pointer
could be stored in 16 bits . However , to preserv e the generality of

32 II
I

--~~~~~~~~
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

—~~~~--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the general cons instruction, which expects 22 bits free list
pointers, stack pointers are 32 bits long.

List Format

Lists are stored in a s t ra igh t forward mann er , two pointers per list
cell. We did not implement any CDR cod ing because of lack of
micro—code space.

word 0 bits 13:8 high order 6 bits of CDR

bits 5:0 high order 6 bits of CAR

word 1 bits 15:0 low order 16 bits of CAR

word 1 bits 15:0 low order 16 bits of CDR

- String Pointer Format

A string pointer contains the location of the first character of the
L string in string or pname character space and the length of the

-
~~ string. The format is:

word 0 bit 7 0 string begins at first (low order) byte of
addressed word in string space

1 string begins at second (high order) byte
of addressed word in string space

bits 5:0 high order 6 bits of pointer to characters

word 1 bits 15:0 low order 16 bits of pointer to characters

word 2 bits 15:0 length of string in characters

• 1 String Character Format

String characters are stored 2 8 bit characters per word , in PDP—l].
order , i.e., the first byte is the low order byte.

Atom Hash Table Format

The atom hash table consists of a table of page addresses, and the
pages referenced to allow expa nd ing the hash table easily (expansion
is not impl emented yet) . Each entry is 32 bits as follows :

word 0 bits 15:8 f i r s t character of the atom pname

33

LI
____ ~~~~ ~T~~•-~~~: ~~~~~~~

F—
_ _ _ _ _ ~~~_ _ ____

_
Pp

-— ~ ——— ——--- —U—- —~- — _ -
~ -~~

- , _ ~~_ _ Pp --

bits 5:0 high order 6 bits of the atom pointer

word 1 bits 15:0 low order 16 bits of the atom pointer

2 unique values (0 and 1, which are not legal pointers) are used to i
denote empty and reclaimed entries.

Integer Format -.
Integers are 24 bits wide stored in two words. The full 32 bits are
not used to permit tagged unboxed integers to be stored on the IL
stack.

Floating Point Format

Floating point numbers are 32 bits wide as follows:

word 0 bit 15 sign

bits 14:7 exponent in excess 128 notation

bits 6:0 high order 7 bits of fraction

word 1 bits 15:0 low order 16 bits of fraction IL

I
I
I
:i

11
34

- U
II

- --— - P p Pp - - ~~~~~ -pppp P - - - — — —Pp-


~~~‘~~~‘ W~~~
_ ’’~~ 

- - — - — —

-4

4. DIFFERENCES BETWEEN INTERLISP—il AND INTERLISP—i0

Atom hash table does not expand in Interlisp—ll; does in
Interlisp—ll .

11 Interlisp—ll compiled code blocks and arrays are limited to 64K
words each, no limit in Inter-lisp—il (or about 100K words in fact).

Inter-lisp—li strings are limited to 128K characters , Interlisp—ll
strings are limited to 32K characters.

The maximum number of arguments for a function is 128 in
Inter-lisp—il, 96 in Inter-lisp—il.

The max imum number of characters in an atom pname is 255 ir.
Inter-lisp—li, 127 in Interlisp.l0.

Arrays containing both unboxed integers and pointers are not allowed
in Inter-lisp—li, are allowed in Inter-lisp—b .

Arrays containing 2 pointers per element do not exist in
Inter li sp—ll .  EL.TD is impl emented by creating a second array with a
hash link from the first.

Control—H to interrupt at next function call does not exist in
Inter-lisp—li , but control—B to interrupt immediately is (in
principle) resumable without loss of any context.

In Inter-lisp—Il the garbage collector can be turned off , allowing
storage to be allocated as needed .

PUTD(ATON1 ATON2) is like MOVD (ATOM 2 ATOII1) in Interlisp— 1l. In
Interlisp—ll ATOM2 becomes the (illegal) definition of ATOM1.

r 10 descriptors in Interlisp—il allow much more flexible user control

• of I/B . 10 descriptors do not exist in Inter l isp— i0 .

In Interlisp—ll a function definition can be used anywhere a
function name can be used in EVAL, APPLY, APPLY* etc. Not so in
Inter-lisp—il.

The impl ementation of Inter -lisp—i l does not allow the function
SETSTKARGNAME.

The Interlisp programming environment , i .e.  break package , editor ,
history package , CWIM and CLX SP , etc., has been incorporated into
Inter-lisp—il . The only missing f ac i l i t i e s  are  HELPSYS , which
provides a user interface to the on—line manual , and BRK~~N, which
provides a means for timing programs. These components contain a
lot of machine dependent code and were not deemed essential at this
time.

35

II
- - . -— — — —  _•~~.‘-— -—-~~-•-~~~~~~~~ -— .t _ p~~~~_~~~~~~~~~ —~~~~~~~ — -— — —--- --—_--- - . -———- . - • -  

- — -~~~~~~ - - ~~~~~~~~~
.. -~~~~~~~~~~~ -~~~~~~

- • -- ~~~~~~~~~~~~~~~ . . . . ~~~~ - - -~~~~~~~~-



5. MEASUREMENT AND EVALUATION

The timing s below compare the performance of Inter-lisp—il with
Inter-l isp—il r unning on a light ly  loaded KA1O processor wi th 256K
words of memory. Time is in seconds.

KA1l PDP—bb/40E
cpu elapsed page faults elapsed page faults

dwim ify 6 9 175 44 1089
(r-e) dwimify .34 1 57 1 72 5%
compile 9 14 ? 12 217

Dwimify is an Inter-l isp funct ion that t ranslates from CLISP to
regular LISP and also corrects errors. The (Re)dwimify example is --
dwimifying a function that has already been dwimified . the compile
example is the Interlisp—ll compiler in both cases. From these
figures we can conclude that Inter-lisp—il is roughly comparable in -

CPU performance with Interiisp—10, but that it needs more than 128K
words of memory. A page fault on the PDP—l1 takes an average of 35 -

~~

milliseconds, accounting for 38 of the 44 seconds in the dwimify
example.

0

1
I
I

I’, 
-

~~~L
_ __

36 El

_ _ _ _ _

_ _ _

_

_________________________ -
~~~~ ~~~~~ ~~~~~~ 

_ _ _
~~~, _ _ j _

~~~
_ -. 

- - --— — -

6. CONCLUSIONS

L. We have learned that in spite of the limitations of the hardware;
i.e., the small number of general r egis ters, 16 bit data paths and
ALU , and the limited amount of microcode memory, a viable single

L user Inter-lisp machine can be and has been implemented . We believe
that with the addition of anotner 128K words of iuemor-y, and even at
current prices ($60K—S70K) , Inter-lisp—il provides a cost effect ive
alter-natIve to the large time sharing systems. A very small project
at BBN spends SilK per year for computer time for one Inter-lisp

- 
- 

programmer- working half time.

We have been waiting for year-s for the right machine to appear.
Since the requirements for LISP are not very different from say
Algol or Pascal, it seems to be a reasonable hope. The only
commercially prod uced mach ines we know of that have remotely
reasonable micr-oprogr-amming, 24 bit or wider data paths and large
vir tua l  address space with small page size are the Prime 400 et al
and the VAX 11/780. Both have some serious disadvantages.

The Prime 400 series was not .esigned for gefleral emulation; and
although a dispatch on any contiguous bit field is possible, it
isn’t always easy. An arbitrary shift requires as many as three
micro—instructions. The microcode is neither clean nor e1eg~nt nor
easy to use.

The VAX 11/780 is physically too large and too expensive ($160K for
I ~~

- a minimal system) to be attractive as a single user LISP machine,
but could make sense for a multiuser system. It has only 56 general
registers and no means for generating constants. In addition , the
user microcode is limited to either 1K of RAM or 3K of ROM, which
leads to some rather difficult development problems.

We are considering both these machines for future versions of
Inter-lisp. If we do transfer the system the most important issue to
deal with is that of garbage collection. We also expect to gather
more data about what should and should not be included in the
instruction set. In particular, the next system will have enough

I ~~ . microcode to allow the gathering of run time statistics. With more
microcode, the next system can also be more machine independent. In
addition , some of the internal structures, such as the atom hash
table, should be changed to LISP structures of some sort. However,

• - - when discussing machine independence and transportability , it should
be remembered that 16K of microcode is usually much harder to
transfer than 16K of BCPL or- machine language.

11 37

II
- - --- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~I ~-~~~~
-: -

- •

- - . — . -—f l . , , - ~~~~~~~~~~~~~~~ ______ •~~~- — — -- p—-~~-~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t_
BIBLIOGRAPHY

(1] Ash, W. et al. Intelligent On—Line Assistant and Tutor System, L
BBN Report No. 3607, Bolt, Beranek and Newman , Cambridge,
Mass., Jan. 1977. -

(2] Baker , H.C. List Processing in Real Time on a Serial Computer ,
M.I.T. Artificial Intelligence Laboratory Working Paper
139, M.I.T., Cambridge, Mass., Feb., 1977.

(3] Bobrow, D.G. and Wegbreit, B. A Model and Stack Implementation
for Multiple Environments, CACM, 16, 10, Oct. 1973.

(4] Bobrow, R. and Gr-ignetti, M. Inter-lisp Performance
Measurements , BBN Report No. 3331, Bolt Beranek and
Newman , Cambridge , Mass., June , 1976. 1

(5] Clark, D.W. List Structure: Measurements, Algorithms and . - ,

Encodings. Department of Computer Science,
Carneg ie—Mellon University , Pittsburgh , Pa., August, 1976. ~~~

-
-

• (6 1 Deut sch , L.P. A LISP Machine with Very Compact Programs. Third I
IJCAI, Stanford , California , 1973, pp. 697—703. LI

(7] Deutsch, L.P. and Bobrow, D.G. An Efficient, Incremental, - -

Automatic Garbage Collector , CACM, 19, 9, Sept. 1976, pp. j
522—526. S

(8] Fuller, S. et al. PDP— 11/40E Microprogramming Reference Manual, JDepartment of Computer Science , Carnegie—Mellon
University , Pittsburgh , Pa., Jan. 1976.

F (9] Creenblatt, R. Th~ LISP Machine. M.I.T. Artificial I
F Intelligence Laboratory Working Paper 79, M.I.T.,

Cambridge , Mass., Nov . 1974.

(10] Steele , G.L. Multiprocessing Compactifying Garbag e Collection ,
CACM, 19, 9, Sept. 1975, pp. 495—508.

(11] Teitelman , W. et al. Interlisp Reference Manual , Xerox Palo
Alto Research Center , Palo Alto , California , 3rd Revision ,
Oct. 1978.

[12] Ur-m i, J. A Machine Independent LISP Compiler and its
Implications for Ideal Hardware. Ph.D. Dissertation, - •

Department of Mathemat ics, Linkoping University,
Linkoping , Sweden , 1978.

(13] Wadler , P.L. Analysis of an Algorithm for Real—Time Garbag e
Collection, CACM, 19, 9, Sept . 1976 , pp. 49 1—500. H

38

II
-

-
- —

~~~~~~~

. - - a  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— -Pp-—-p. - - - ---—---- -

DISTRIBUTION

Director, Advanced Research Projects Agency 2
-

1400 Wilson Boulevard
Arlington, VA 22209
Attn: Program Management

I. Scientific Officer 3
Information Systems Program
Office of Naval Research

- 800 North Quincy Street
Arlington, VA 22217 -

Attn: Mr. Gordon D. Goldstein, Code 437

Administrative Contracting Officer
- Defense Contracts Administration Services

660 SumsIer Street
Boston, MA 02210

Director , Naval Research Laboratory 6
- Attn: Code 2627

Washington, D.C. 20375

I Office of Naval Research 6
Department of the Navy

-- Arlington, VA 222 17

Defense Documentation Center 12
- - Bldg. 5, Cameron Station
• Alexandria, VA 22314

Office of Naval Research Branch Office
495 Sumeer Street
Boston, MA 02210

Ii
j

II
• - • • - - - _p- —-

•
—— —---—------~

—,- - —----—- - .. J_~~~L
I— -

~~~~~~~~~ ~~~~~-- ------ -- —_---
~~
- 

~~~~
—p

P—
—--pp_——

