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SECTION I

INTR ODU CTION

The design of airborne electro—optical systems requires the knowledge

of angular vibration as well as linear vibration of aircraft struc tures.

Just as the linear vibration involves displacements in three coordinate

axes, the angular vibration addresses itself to the rotary mode of internal

bending about each of the three axes. In one dimension, for instance, if

linear vibration refers to the transverse deflection, the pitching motion

expressed by the local slope of linear (transverse) displacement would

represent the corresponding angular vibration. Theoretical ly, it is possible

to formulate the angular vibra tory response of’ aircraft structures subject

to aerodynamic and acoustic random excitations. Although modern computer

structural analyses such as the NASTRAN may be implemented , they are at present

limited to the low frequency range of vi brat ion of , particularly, a complex

structure. To cope with the high frequency range vibration , it is expedient

to relate the angular vibration directly to the linear vibration response.

This was the approach of Reference 1. Using the Bernoulli—Eul er beam as a

theoretical model , a simple qualitative relationship was obtained between the

linear root—mean—squared ( nsa) amplitude 
~rns and angula r m s  amplitude 

~~~s
(Equation (27) in Reference 1)

0rms — ~~~ (~/r~ 
) 
~rms ’ 

(1)

where L is the beam length. An alternate relation was also derived in terms

of the discrete angular deflectIon which is defined by the ratio of’ the

difference of transverse displacemen ts y~(t) and yi,
(- t) at x.~ and x1, respectively,

to the separation distance Ax — x~ — x i,; namely1
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A
(t) — fy)( t )  — y i,(t)j/ Ax. (2)

Here the y a  are measured by using accelerometers. The use of the discrete

or ~titt’erential angIt~ O
A(t) is dictated by the practical requirement that at

present there is no inexpensive off—the—shelf type angular deflection

transducer w it h suff icient ly hi gh frequency response. By a parallel

derivation , the re lationship involving ( O A )
~~~ 

and y~~~ which Is counterpart

to ( 1)  becorie s

~°A~ rma — ( /2/ Ax ) 
~
‘rms 

(3)

It must be pointed out that relations ( 1) and (3) are independent of the local

coordinates and end conditions. Note that relation (3) depends only on the

separation distance. This came about because 0 and ( 0  ) and y aremiss A miss miss

the nsa amplitudes averaged over the b~~ m. The beam—averaging originally

introduced In Refe rence 1 is based on the ~issuinptiou that r~spons~ statistics

should not vary significantly from one point to another on a complex structure

under the temporally and spatially homogeneous random excitations. The

consequence of beam—averaging is the loss of detailed spatial information.

This then enables us to apply the linear—angular miss amplitude relations, ( 1 )

and (3) , to any structures as a qualitative relation, provided L or Ax ca’i he

specified depending on the type of angular measurement technique employed.

Based on limited vibration data availabli at the writing of Re ference 1,

it was concluded that by r.lations (1) and (3) the angular rise valu, can be

predicted within ‘20% of the measurement . Since then , cone mor e linear

4-
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Iand angular vibration data have been obtained from the flight tests of RF 4C

and F 15 fi ghters , CM 3E helicopter, and B 52 bomber (Refe rences 2 — 5) .

This therefore enables us to re—evaluate the prediction capability of

relations ( 1) and (3 )  in light of the additional vibration test data.

Moreover , it is ~~~~ possible to move a step further and predict the spectral

shape of the angular power spectral density (pad) function, which is the

main objective of this report.

Following the same line of arguments as in Reference 1, a general

relationship has been derived between the linear and angular response pad’s,

which states that the linear psd falls of f faster than the angular by the

power exponent of one (Section I I ) .  This linear—angular psd relation was

first tested on a simply supported bean excited randomly at the midspan in

such a manner that the acceleration response psd was constant over — 3200 Hz.

• Consequently, the linear displacement pad has the power—form of f~~ . It

was then found that the angular pad obeys the power—form of f 3, as predicted ,

4 over the same frequency range (Section III).

Encouraged by the success on test beam, an attempt was made to predict the

spectral shape and magnitude level of the angular psd of typical flight tests

of RF—h C and F—15 fighters, CH-.3E helicopter, and B—52 bomber (Section IV).

After splitting the linear vibration pad into the low and high frequency

ranges , the angular vibration pad has beer. predicted in two separate frequency

ranges. First , the spectral shape of angular psd’ s can be predicted accurately

in the high frequency range for all test cases , but not always so in the low

frequency range . Secon d, an accurate prediction of the magnitude level is

difficult to attain in that it requires the correct spectral shape and miss

-_ _ _ _ _ __ _ _
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amplitude of angular vibration . Nevertheless , as an overall performance

I it was found that the predicted angular pad lies within a ‘10 db band about

the measurement for all test cases (Section v). Though crude , such a

prediction Ia useful in the prelimina ry design stage of electro—optical

I sys tems, whereby one can quickly estimate the angular vibration environment

based on the linear vibration pad and a length scale associated with the —

angular measurement technique .

I
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SECTION II

ThEORETICAL AN ALYS IS

We ahall derive in this section a simple relationship between the linear

and angular pad’s which is counterpart to the miss amplitude relation ( 1) .

Although , as in Reference 1, the Be r n o u l l i - E u l e r  beam w i l l  be used ~is a

theoretical model , it turns out that the pad relationship derived here is

applicable to actual fl ight test data ( Section IV) .

We begin with the Bernoulli—Euler bean equation

a
2
y ay El 3

1
~y

- + 2 ~~ + -~~~~-— — • f(x,t), (se)
at2 at

where pA is the mass per un it length of the beam, ~3 is the viscous damping

constant, El is the flexural rigidity, and f(x,t) is the excitation force

per unit mass of the beam. To facilitate the analysis, split the forcin g

function into the spatial part ( q ( x ) )  and temporal part ( g ( t ) ) ;

f(x, t) q(x) g(t). (5)

The stochastic dynamics of the bean can be formulated based on Equation s (~
)

end (5) (References 6 and 7) ;  the appropriate extension to angular vibration

has been carried out in Reference 1.

1. Linear and Angular Response PSD’ s

Theoretically, it is convenient to consider the simply supported beam

of length L because the un damped norma l modes are sin(n lTx/L ) .  On the othor

5



baud , a s i m p l y suppor ted  b~am is no~ as experimentaUy easy to simulate as ones

wi th fixed and free end conditions. In any event , the simply supported end

4 condition is inc onsequential because it turns out that the predicted spectral

shape of angular pad is independent of a particular end condition within the

present formulation . The spa t ial behavior of y (x ,t )  and q(x )  can be

expressed by the normal modes

y ( x ,t )  — ~ y1~(t )  s i n ( n w x/ L ) , q (x )  E s i n ( nwx / L ) ,  (6)
n 1  nal

The solution of y (t) will be obtained in terms of the modal impulse—response

h (t) — 1(exp ( _Bt)/~~
2 

— 8235in(t/w2 
— B2

~, where

— (nw/ L ) ~ El/pA. ( 7 )

The transverse deflection subject to the zero initial displacement and

velocity is

y (x ,t )  - 

n l  
sin (n wx/L )  / hn (

~~
) g( t- t ) dt. (8)

For a small amplitude vibration, the angular deflection may be approximated

by the local derivative; O(x , t ) — dy /dx ,

O (x ,t )  - (w / L )  £ a co a (nwx/L )  I h~ ( t )  g(t  — t )  dT . (9)
n—i 0

6

_ _ _ _ _ _ _ _  
A



____________ - -  
~~~~~~~~~~ 

:-:-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --—

~~~~ 
- - - .-- 

~~~~~~~~~~~~~~~~~~~~~~ I

Under the assumption that g (t )  and q(x) are statistically independent

and that g( t )  is a stationa ry process , the variances of y and ~ are

( Equations 10)and ( 1 2 )  in Reference i)

a E s in ( n n x / L )  s i n ( k n x / L )  <o~ q > I
4 n ,k l  It nIt

( 10)
a ( n / L ) ’  E nIt cos(n i~x/L )  cos(k i ,x/L )  

~~~~~~~~~ 
1 kn,k.l

where > denotes statisti cal average . The ‘nIt reflects both the

system characteristic s and excitation force

‘nIt — (l/I~n) 
~~~~ 

H~(w) C (w)  du , (11)

where H (w )  — C — + 128w )~~ is the modal frequency response , and *

denotes the complex conjugate. Further, 0 (w) is the forc ing pad related

to the correlation R
gg(t) — cg( t + i)g(t)~” by the Fourier transform pair;

R
gg

( • T ) — (l/I~ ) I Ggg ( W ) exp( iwr  ) du ,
—

~~ ~7 (1.)

G gg
( W )  — 2 f~~. 

Rgg
( t )  exp( — iwr ) dr .

The fac tor (Ie ~~~
’1 ensures that B (0) a 

~ (F) df with the substitutiongg 0 gg
of w • 2if.  That is , the variance is the sum of spectral energies of a

3 ’ one—side d psd (Reference 8) .

When the beam is assumed ito be excited by the spatially random q (x)

7
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with a Dirac—delta spatial correlation, Equation (10) becomes simplified

greatly because of

— K o~~, (13)

where K is a constant , and — 1 if n — It and = 0 if a ~ It. It has been 
V
.

shown in Reference 1 that Equation (13) is approximately valid under the

localized forcing of a slightly damped structure . As a consequence of

Equation (13), Equation (10) reduces to a single sum

~~~~ x/L) K I ,
n.]. I

a (i~/L)~ ~2 cos2(nw x/L) K I ,

n l  nfl

Let us now express the variances in the spectral form

— (l/ Ie~ ) f ,G~~(x ,w ) dw , <02(x )> — (l/hw)f”,G00
(x,~) dw , (15)

which are defined analogous to Equation (12). Inserting Equation (is ) and

- (i/I~w) 1 , IH~(w ) I2 Ggg
( W ) dw into Equation (i1 ) , one obtains by

• equating the integrands

— E sin2(nwx/L ) I H~(w)I
2 K G

gg(W)i 1 (16)

Gee (x
~ w ) (w/ L ) 2 

~ ~2 cos2(nnx/L) 1E~(w ) I 2 K Ggg(W ) • 
)

n—i

8
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They are the linear and angular response pad’s subject to the arbitrary

but stationary forcing pad.

2. Relationship Between the Linear and Angular Response PSD’s

To obtain the overall form of pad which is independent of -

the particular end condition (and hence the mode shape), Equation (16) viii

be averaged over the beam (Referenc e i) .  Denoting the beam—averaged psd’s

by G~ ,(w )  — L~~f0
1
~ G~ ,(x ,w) dx and G00(w) — L~~f 0

L 
G

89
(X ,w ) dx, Equation (16)

gives rise to

G~~(w ) — 

n l  
IR~(w ) I2 (K /2 ) Ggg

( W ) ~

G
00

(w )  — ( i/L) 2 E ~2 lH ~ ( w ) I 2 (K/2) Ggg(w)i
n 1

with the use of L
_l
f0
Lain2(nl,x/L)dx = L

_1
I0

L cos2 ( n,rx /L)dx = 1/2 . By

taking the ratio of Equation (17), we fin d that G
60
(w)/%,~,(w) is independent

of the forc ing pad

2 2
Gee (w) n—i n IH (w)I

_ _ _ _ _ _  = (~~/I..) 2 __________________ (18)
— 2G (w )  lR (w ) Iyy n—i n

The analytical behavior of Equation (18) can be determined as follows ;
2 2W~ have w — from Equation (7 ) .  Therefore , inserting n = w~/w~ into

Equation (18) and writing out the summations in detail result in

9 
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000
(w ) ( w

1IH 1
(w)l~ 

+ w
2 1H2(w ) I + w

3IH 3
(w)~

2 
+ •1 I

_ _ _ _  = ( ‘n/L) 2 (i/  ) ‘~
I G (w) 

~ 
)H1(w ) I~ + lH2(

~ )I + 1H3(w ) I +

(19)

Note that the dominant contribution of IH~(w)I
2 

— [( 2 
— 

2 ) 2 
+ ~B

2
w
2 3~

is in a resonance frequency band around w = w~. Therefore, when w —

the curly bracket { } term of Equation (19) denoted by E is approximately

equal to w
11H1

(w)1
2
/ 1H1(w)1

2 
= w1. Similarly, for w = w

2 
we have Z

and in general Z = for w w!~
. Hence , the loci of local maxima

• of E increase linearly as w passes through the successive resonance

f requenc ies . Since the density of resonance frequencies per octave frequency
- decade increases very rapidly, E ~ w is a good approximati on in the high

frequency range as substantiated by the numerical computation of Figure 1.

Using this approximation, Equation (19) in terms of the frequency becomes

_  

10~~~~~~~~~~~~~~~~~



G00
( f ) /G ( f )  — (n 2 /L2 f~) f, (2 0) *

which is the desired relationship between the linear and angular response pad’s.

The ratio G
00
(f)/G (f) consists of’ two parts, the scaling factor (i~

2 IL 2 f
1) and

the spectra l shape in the power-form of f. Note that the scaling factor re-

flects the particular end condition and beam properties through the primary

frequency f1. On the other hand , the spectral shape function is universal since

it is completely independent of the end condition. This is, perhaps , not

surprising because the frequency relation (7) is asymptotically valid for

large n under different end conditions (Reference 9). Due to similarity

in the modal formulations of’ beam and plate, one may expect the same shape

function to be valid on a plate regardless of the boundary conditions . As

a matter of’ fact, something more is possible. It will be shown in Section IV

that the spectral shape relation is applicable to the high frequency part

of the linear and angular psd’s of’ typical aircraft flight test data.

Footnote *) A similar attempt has been made to predict the spectral shape •of G00(t)/G (f) in Reference 10. Rovever, there is a noticeable difference
in the final results. Namely, Equation (7) of’ Reference 10 which is the
counterpart of Equation (.18) can be put in the form

— a

G00(w)/G (w) — ( n / L ) 2
f E  n H (w) sin(nn/2fl2/1~ H(w) sin (nn/2))2. (1’)
n-i n l

The derivation of Equation ( t )  is not justified. Apart from the factor
sin(nw/2 ) which picks out only the odd terms in the summations, Equation (t)
involves the sums of the complex H~ , whereas Equation (18) sums up the
real IH~l. The overall difference shows up when one compares Figure 1
with Figure 3 of Referenc e 10, which inc reases steadily with a slope of
about 3/14 up to 700 Hz and then fails off abruptly thereafter.

ii
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3. Power—Fo rm Representation of the Angular PS!) 
~
‘

L.et us suppose that the linear pad has a simple power—form expression

G ( f )  = Df~~ , where D is a constant an d k is the power exponent in the

frequency range (F1, F2 ) .  In view of Equation (20), the angular pad would

then have the form
I

Gee ( f )  — c ~~ + 1, (21)

where C = (-s 2 /L2f1)D . For the aircraft application , it is diff icult  to

estimate the constant factor C. This is because we do not know a priori

the primary frequen cy of’ a locally dominant mode at the arbitrary aircraft

location. For this reason , we shall propose an indirect mean s of determining

the constant factor by way of the angular vibration amplitude predicted by

Equations (i) and (3). Deviating from the original context (Reference 1),

let us assume that relations (1) and (3) can be applied to the m s values
computed over a frequency band as well as the entire frequency range. Then ,
by requiring the predicted over the frequency band of (F1, F2) be
identical to f 1~Y2 G89 (f)d f , we obtain

(2 — k) e2
c =  - . (22 )

F
_
~*2_ ~,—k+2

1 ‘2

• Equation (21) together with constant (22) represents a power—form representation

in (F1, F2
), based on the power exponent k and the angular erms predicted

by the procedures of Re ference 1.

12



SECTION III

BEAM EXPERIMENT

To verify Equation (21) on the very beam model that it was originally

derived, a beam experiment was carried out to generate matching sets of’

1.inear and angular response psd’ s (Appendix A). A simply supported

Aluminum I—beam of 12 in was randomly excited at the znidspan in such a manner

that a constant acceleration response psd was maintained at the znidspan

over ‘O~~ 3200 Hz. Linear displacement pad’s were obtaine~i by BBN 501

accelerometers. The discrete angle e~(t) was obtained by differencing the

two accelerometer signals according to formula (2 )

Having maintained a constant acceleration psd at the midspan , the linear

pad’ s at various locations on the beam obey the power—form of over the entire

frequency range. This is most evident in G~~,( f )  taken almost at the midspan ,

as shown in Figure AlOa in Appendix A. Away from the inidapan , the linear

pad’ s become progressively more jagged , yet they can all be represented by the

power—form of t’
~~. We shall examine here a set of the linear G~~ ( f)  and

differential angular G ( f )  measured at x = 25 in and 3c) 29 in on the• e~e~ i.
beam (an d hence i~x 14 in) .  They are given in Figures A8a and A8b in

Appendix A , which have been reproduced here in Figures 2a and 2b , respectively.

A least—squares power—fo rm fit  to the linear psd of Figure 2a yields

0 a 5.0~ 10”
~ f ’

~
14 . Hence , the angular pad predicted by Equation (2 1) is

4 G
00 

= ( i r  /L f1)f G 1.4x10 f • On the other hand , by applying a least—

• squares straigh t line fit to the angular pad of Figure 2b , we obtain

= l.OxlO ’Tf 3 as the measurement. Although the predicted constant factor

is 140% higher than the measurement , what is noteworthy is the overall spectral

13 
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shape of the angular psd that has correctiy been predicted by the power—form

of over the entire frequency range.
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SECTION IV

AIRCRAFT FLIGHT TEST DATA

It has been found in Section III that relation (21) can predict the

spectral shape of angular pad ’s of the test beam exactly over the entire

frequency range , whereas the constant factor is predicted only approximately

within 140% of the measurement. It must be noted that the 140% difference

in constant factors amounts to a difference of less than 20% in the predicted

and actual angular ms values, which is well within the prediction limit set

forth in Re ference 1. For the aircra ft application, the constant factor

will be determined by Equation (22 ) instead. It is then evident that an

accurate prediction of 0 is prerequisite for determining the constant

4 factor correctly. With this in mind , we shall examine here the viability

of relation (21) as it is applied to th e aircra ft flight test data recently

acquired by this laboratory. Recall that the linear psd (Figure 2a) of the

experimental beam was represented satisfactorily by a single straight line

in the log—log plot over the entire frequency range . In contrast , it has

been observed that some of the linear pad’ s of airc ra ft flight tests (e .g . ,

Figures 5a and 6a) can better be represented by more than one straight line.

Although there is no theoretical guideline except that the frequency band

• should not be too small to violate the high modal density assumption for

relation (20), it was decided to represent the linear pad by two straight

lines over all frequency ranges but the high frequency tail corresponding

to noise. Admittedly, the splitting of linear pad into two parts, namely,

the low and high frequency ranges, respectively, is quite arbitrary, henc e

cannot be justified on theoretical grounds . In some cases (e.g., Figure 5a),

the choice of the demarcation frequency is self—evident , whereas it is not so

15
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in other cases (e.g. , Figure 4a) . In any event , we have here decided to

represent all the linear pad ’s of aircraft flight tests by two straight lines

as a matter of unitormity,but not of necessity. In other words, the prediction

procedures to be outlined shortly does not depend on this particular

mode of representation. Perhaps , the complete structural analysis of aircraft

structures might suggest a demarcation frequency based on the modal density.

However , until such information is available, the choice of demarcation frequency

is more or less empirical ; hence , no further attempt will be made to justi fy it.

The prediction procedures for the angular pad are as follows;

( 1) The linear psd is first divided into the low and high frequency parts,

as mentioned befo re .

( i i )  The linear pad in each frequency range is then approximated by a straight

line in the log—log plot ,G~~,( f )  = Df~~ , using a least—squares fit. Of course,

the straight lines in the low and high frequency ranges do not necessarily meet

continuously at the demarcation frequency.

(iii) The linear is now computed by integrating G
T
(f) over the appropriate

frequency range. To predict the angular 9 , either relation (i) or (3)

is used depending on the type of angular measurement employed. In other

words , t~x or L must be specified.

(iv)  Finally, in each frequency range the constant factor is determined by

- 
S 

Equation (22).

In this section , we shall examine the typical flight test data of RF— l~C

and F—15 fighters, CH—3E helicopter , and 3—52 bomber. For the ~F —14c , F—l5,

and CH—3E tests, the angular pad was obtained by the differential accelerometer

technique, hence the prediction scheme (3) is applicable. On the other hand,

i6
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the angular differentiating accelerometer was used to acquire the angular

pad of B—52, so that the angular rms value will be predicted by Equation (1)

with a suitably defined L, as will be discussed later.

RF—14C Fi~~ter

Figure 3a is the vertical displacement G~~ ( f )  taken at the left wing root

of a RF—14C during 0.9 M cruise; the corresponding pitch G0 ~ 
(f) with Ax =

214 in is shown in Figure 3b. (They are derived from Figures 23 and 150 of

Reference 2.) Using this set of psd’s as a typical example, we shall

illustrate the procedures Ci) — (iv). To begin with, Ci) the linear

is divided into the low frequency range of 10 — 50 Hz and the high frequency

range of 50 — 1200 Hz . As mentioned before, the spectral tail beyond 1200 Hz

will be ignored, since it contains very little spectral energy. ( i i)  In each

frequency range, the linear psd is represented by a straight line as shown in

Figure 3a. The analytical expressions are = 6.O~ lO~~f~~ and

1.3x10
2f 3 5

, where the superscripts C and h refer to the low and high

frequency ranges, respectively. (iii) The linear ntis values are

= 0.l14xlO 2 in and yh = O.514xl0 3 in. Hence, using Equation (3) under

Ax = 214 in, the predicted angular ntis values are (OA
)

1.n1S 
= O. 83xl0~~ rad and

(e A )
~~~ 

= 0.32xl0~
14 
rad. (iv) Finally, the computed constant factors by

Equation (22) are C~ = l.14xl0
6 and ~~ = 5.13x10

T.

Therefore, the predicted angular psd is

Gt (f ) 1.14x10
6f 3

, G~ 
~ 
(f) 5.14x10’1t 2’5. (23)

0A 0
A A A

17
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For comparison, the angular pad in Figure 3b fitted by a least—squares
procedure yields

( f )  l.14~lo
’4f

14 ’~ , G~ 
~ 
(f) T.0x10 7f 25

. (214)

All the relevant data are Summarized in Table I, and the predicted pad
is compared with the actual in Figure 3b. It must be noted that both

the constant factor and power exponen t have been predicted quite accurately
in the high frequency range. In the low frequency range, however, the
predicted power exponent is considerably smaller than the actual.

F—15 Fighter

Recently , this laboratory has received some preliminary flight test data
of the linear accelerometers mounted on a bulkhead ( fuselage station No. 509)
near the forward upper pallet atta~hinen-t points of a F—l5 (Reference 3) .

18
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Figure lea is the lateral displacement psd during 0.9 M flight under light

buffe t ing ; Figure leb is the corresponding rol l pad derived from the two

vertically displaced acceleromete rs under Ax — 28.9 in. Here , we divide

the linear G~1
( f )  into the low frequency range of 4 — 20 Hz and the high 

S

frequency range of 20 — 200Hz, as shown in Figure 4s. The relevant results

S are summarized in Table I. In the high frequency range , there is little

difference in the predicted and measured G~ ~ 
as shown in Figure 4b.

As in the case of RF—4C , prediction of the power expon ent is again low

for the low frequency part of the angular pad.

CH—3E Helicopter

To extend the prediction scheme to yet another situation , we have presented

in Figure 5 the linear and discrete angular pad’s of a CH—3E helicopter

during 140 knots flight with zero degree of roll . Figure 5a is the lateral

displacement psd taken at the rear ramp ; the corresponding yaw psd measured

by linear accelerometers under Ax = 56.5 in is shown in Figure Sb. (They

• - are derived from Figures 18 and. 25 ci’ Re ference 14 . )  Unlike Figures 3 and 14,
the linea r and angular pad’ s of CH—3E have a series of spikes corresponding

to the discrete—frequency vibration induced by the main and tail rotor

blades. Overlooking such spikes , we shall formally apply the prediction

procedures by splitting the linear G (f) into the low frequency range of

14 — 15 Hz and the high frequency range of’ 15 — 220 Hz. The predicted

angular pad is summarized in Table I and compared in Figure 5b with the

measurement. The power exponents have been predicted satisfactorily in

both the low and high frequency ranges. Ott the other hand, the predicted

20
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ma~~ itude levels deviate fr~~ the measurement almost by plus and minus 6 db

(based on lOx.1ogtm.asured p.d level/predicted pad ievelJ ) in the low and

high frequency ranges, respectively. This may be attributed to the uncertainty

in rae values when the pad’s are infested by spikes representing discrete—

frequency rotor resonances . S

3—52 Bomber

Lastly, we shall examine a typical set of linear and angular psd’s of

the B—52 flight test during initial take—off. Figure 6a is the vertical

displacement pad taken at the forward end of an armor storage compartment near

the bulkhead , fuselage station No. 1853 ; Figure 6b is the corresponding

angular pad of pitch component fluctuations measured by an angular

di ffe rentiation accelerometer ( ADA) . (They are derived from FIgures 68 and

73 of Reference 5.)  After splitting the linear pad into the low frequency

range of 10 — 70 Hz and the high frequency range of 70 — 500 Hz, the

prediction procedures have been repeated but with the angular ntis value

predicted by Equation (i) under L —12 in.. which is the linear dimension of’ the

test platform. From the results compiled in Table I and depicted in Figure 6b,

one finds that the spectral shape has been predicted accurately for both

and G~~ . In contrast, the predicted constant factors are of f  almost

by tLO db. Although this cannot be explained away in certainty , it is

suspected that the angular pad measurement by an ADA t ransducer is not

trustworthy. In particular, the angular pad (Figure 6b) shows muc h higher

spectral ener~ r buildup in the high frequency range than any of the discrete

angular pid’s of RF—14 C, F—l5, and CH—3E . Other angular pad ’ s of the B-52

teat exhibit a similar spectral energy buildup, as has already been observed

in another flight test which also employed the ADA transducer (Reference 11).

21
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Whether this peculiarity is simply a quirk of the ADA or a genuine structural

behavior is yet to be resolved.

In summary , the angular pad of the typical flight teats of  }
~F— 14C, F— l5,

CH—3E , and B— 52 has been predicted with a varying degree of success. 
S

Firs t , the ~pectral shape of angular pad can be predicted quite accurately

in the high frequency range , but not always so in the low frequency range.

Th is is in a way expected because the linear—angular psd relation (20)  is S

an asymptotic expression valid for the high frequency range . Second, it is 
S

difficult to accurately predict the magnitude level of anrular psd in that

the correct power exponent and rats amplitude of’ the angular vibration must be 
S

S available. Last but not least, it must be pointed out that the prediction

r procedures are subject to the numerical variations of 0.1 in the power exponent

and 10% in the magnitude level. This is due to the uncertainty in estimating

the power exponent and constant factor of’ a straight line representation

of the pad data.

22
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SECTION V S

OVERALL ASSESSMENT OF THE PREDICTI ON SCHEME

The angular pad prediction has been carried out in two steps. In the

first  step, the exponent ( 1—k ) of power—form expression (21) is estimated.

The power exponent has been predicted very accurately for the high frequency

range of’ angular pad’s. On the other hand, the predicted exponent deviates

from the actual as much as 1.3 in the low frequency range. This is, however,

not unexpected because the linear—angular pad relationship derived here

is an asymptotic txpression valid for the high frequency.

The second step involves estimating the constant factor by Equation (22)

based on the power exponen t k and angular i-ms 0rms • Deviat ing from the

original derivation in Reference 1, it was assumed that relations (1) and

(3) can be applied to the rats values computed over a limited frequency

band as well as the entire frequency range. Th is assumpt ion , however,

appears to be a weak link. In the B— 52 case , for instance, the predicted

6
~m5 

underest imates the actual value by threefold, whereas the predicted 0r~~
over the entire frequency range is within so% of the measurement. Note ,

however , that this predict ion accuracy is worse than the t20% limit cla ime d

for the total in Reference 1.

Of course, the overall assessment of the prediction scheme must take

into account both the power exponen t and constant factor. From Fi gures 2b ,

3b, leb, and 5b , it is concluded that in both the low and high frequency

ranges the predicted angular pad lies within *10 db of the measurement.

Though crude , the prediction scheme will be useful in the preliminary design

stage of electro—optical systems because it can provide a quick assessment of

the angular vibration environment prior to fabrication. To build up further

23
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conf idence, we hope to test the prediction scheme on some new flight test

data as they soon become available to us , perhaps , with the purpose of

establishing certain confidence intervals.

In retrospect , the major thrust of’ this report was to propose a simple

formula to predict the angular vibration pad of airc raft structures using

the least amount of information , i.e., the linear psd and a length scale 
S

or L). Consequently, the prediction capability is limited. The

overall performance , however , is quite encouraging in that the present work

is just an exploratory attempt of first order. Clearly, the more info rmation

is utilized, the closer one should be able to predict the angular pad.

Of course , the numerical structural analysis of an aircraft could yield the

detailed angular vibration characterizations at every point on the aircraft

S 
structure, subject to arbitrary aerodynamic and acoustic random excitations.

Unfortunately, this does not seem feasible at the present state—of—the—art

of computer structural analysis.

2I~
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Figure 1. Numerical Computation of E;

E = ~~ lb/in2, I = 1.855 in4, p = 0.131 lb/in 3

A = 1.244 in2, L = 72 in, 8 —
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Figure 2a. Linear Power Spectral Density of the Test Beam at = 25 in.

Least—Squares Approximation :5.0 X 1O
3f~~
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APPENDIX A

BEA M EXPERIMENT

This appendix describes the experiment of a simp ly supported Aluminum

1—beam to gener a te  accu ra t e’ l inear  and angular vibration data. The unique

f c . i  ture of the experiment was to excite the beam so that a nearly constant

acce le ra t ion  response psd was produced on the beam . This would facilitate

the’ verificati on of the linear—angular psd relationship developed in the

main text , since the linear displacement psd wi l l  have power—form f 4

over the entire frequency range. Although the initial intent was to

check the accuracy of d iscre te  angular  measurements b y a p rototype

magnetohvd r odv nam ic (~~ D) angular  ra te  sensor , t h is ha~ not been success-

ful due to the sensor fa i lu re .  Therefore , to provide an independent check ,

I ’ the beam experthent was numericall y simulated by the NASTRAN finite—element

program. We shall begin by establishing a noise floor pad to assess the

accur acy  -.‘f angular spectral measurement by the differential accelerometer

t C C t .~~i~~~~~~
S t~ .

I .  Noi se Floor PSD

S 
At p resent , there is no angular vibration transducer of the off—the—

shelf type that is as versatile and inexpensively available as the linear

accelerometer . In practice , one therefore measures the angle by

S 
;

5 
differencing the signals of two accelerometers separated by a preassigned I
distance. In other words, approximate the true angle e(x,t) by Equation (2)

repeated here for reader ’s convenience j ~
— [y , (t) — y

1( tf l/ .\ x , (2)
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where v
1

( t ) and v ,(t) ar e th e transverse displacements at x
1 
and x.,,

respectively, and Ax x , — x 1 is the separat ion distance. Using the

center location X — (x1 + x ,)/2, we have x1 
x — Ax/2 and

x2 — x + Ax/2; hence , the discrete or differential angle t~ \(t) can be

expressed In terms of X and .\x .

Forma l manipulations of definition (2) will shed light on the

limitation of discrete angular measurements. First , obtain the variance

relationship

- - (~ v~ (t)~ + ~v~~(t )~ - 2- -v 1 (t)v .,(t)~ ). (2 3)
( Ax) - -

The right-hand side is poorly conditioned In that it will fall below the

noise floor for ~ as tx becomes small, This

therefore imposes a minimum tx for the discrete angular measurement.

To analyze this , let us sp lit v
1

(t )  i n to  the true signals y
1

( t )  and

the noises e4
(t) (for i = 1 and 2). Under the usual assumption that

e
1
(t) are statistically independent of v i(t) and of each other , one finds

S that

1
‘-t ~~~( t ) ’  ~-t ~~~( tY’ + (..e~ (tY’ + <e (t)’), (24)

j - (Ax)

where <t ~~~(t ) ~~ is given by Equat ion (23) In which the v 1(t) are replaced

by y 1(t ) .  Further assuming .~e~~(t ) ~ ‘— e~~(t ) ” — ~-e (t)~~, Equation (24)

reduces to

- <~~~~~( t )~~ + 
2 

~ e
2(t)~~, (25)

(AxY
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and its pad analog is

C8 ~ ( f )  — C~~ 
•
~ ( f )  + 

2 
2 ~ ( f )  . (26)

A t  A t  (Ax) ee

Bec ause of the factor (Ax)~~ in Equations (25) and (26), the signal—to—

noise ratio would improve as Ax increases. Al though this is desired ,

Ax cannot be increased indefinitely without deteriorating rtiolutlon

(Reference Al). For better resolution , one must operate in the opposite

range of small Ax. However , as Ax decreases signal may be overshadowed

by the noise term which increases by the factor (Ax) . This therefore

sets a minimum Ax for the acceptable signal—to—noise.

Now , to establ ish a ref erence pad G0 ~ 
(f) corresponding to a prescribed

A
signal—to—noise ratio (S/N), let the ratio G

~~e
(f)/(2G (f)/(AxY) be

(S/N) (and not (S/N) because the psd refers to the spectral energy).

Then , by rearrangement

‘‘S/N’
2

C0 e ( f )  = ~ G ( f ) .  (27) 5

A A (Ax)~ 
ee

Typically , the noise floor of accelerometers has a flat psd in the noise

acceleration ; hence the noise psd is G (f) = c f 4 , where c is a consta nt

to be determined later. In view of thi:, Equation (27) becomes

_ _ _ _ _ _  
2 c

1
(S/N~~ 

~C, 
~ 

( f )  = 
, f . (28)

A (Ax)

For a given (S/N), Equation (2$) therefore defines a reference psd; angular

spect ral measurements f a l l i n g  below it  should he rejected .
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II. Experimental Beam Test

1. The Test Set—Up

A simply supported Aluminum I—beam was randomly excited at the mid—

span in such a manner that a constant acceleration response psd over

40—3200 Hz was maintained at the midspan. For the simply supported end

condition, the beam was fastened to the supporting bases by a pin support

mechanism consisting of precision needle bearings and high—temperature

hardened steel shafts. The supporting bases consisting of a 12” high and

8” diameter solid Aluminum pedestal, were bolted to a massive vibration

test table as shown in Figure Al. Although the rotation centers of 
S

bearings were not on the central bending axis of the beam , this would not

result in significant inplane stresses because the transverse displacement

was kept small during the experiment. The effective beam length between

the bearing centers was 72 in.

A 25 lb. electrodynamic shaker (Ling Model 6C) was attached to the

bottom flange at the midspan of the beam via a fusible link , thereby

transmitting only the vertical force and no moments to the beam . To

maintain -~ constant acceleration response psd at the midspan , the shaker

power ampl i f ie r  was monitored and controlled by a Time/Data Vibration

Control and Analysis computer. This control computer compares the actual

acceleration psd at the midspan with a prescribed one and then minimizes

the difference, Figure A2 shows a typical acceleration psd that the cor.trol

computer has maintained constant over 240 — 3200 Hz. The dotted lines

represent a t6 db band about the control reference pad.
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-‘. Test Procedures

Li near d i s p l a c e m en t s  were measured by BBN 501 accelerometers. The —

differential angle was obtained by electronical ly d~ fferencIng the

si gnals  of two accelerometers and then dividing by t h e separa t ion

d ist .iiice as m ica ted by Eq u a t i o n (2 )  . Accelerometer signals were S 
-~

amp i If fed by l u t ech  amp! ifiers and recorded on FM tapes  (iS ips , 27K Hz

cen t er  fr e q u en c y ,  and 5K Hz bandw idth) . Only the even c h a nn e l s  of :~

recorder (Honeywell 9600) were used to m i n i m i z e  the possible phase ~-cror

introduced by the tape heads. Both the individu a l accelerometer and

ele ’ctronlca llv differenced signals were recorded . Prior to data acquisition , S

t h e two accelerometers used for discrete angula r measurements were balanced

to ens ure the phase and m4lgn I tude compatibility. Tb is was done by

applying Ig excitation at 60 liz to both accelerometers placed on the ig

calibration table (B B K TY61O6). After having amp l i f i e d  each~ accelerometer

• s i g n a l  , the i r  d i f fer enc t’ was d i sp layed  on an osc i l loscope .  A ha lance pot

p laced in  line with one of the accelerometers before amplification was then

ad)usted until a n u l l  d i f f e re n c e  was obtained . In addition , the  signal

conditioning electronics was calibrated by recording a 1000 Hz sine wave

a t 40 db amplification on each channel. T h i s  amp lification level was the

one used in the experiment. Figure A3 is the schematic diagram of

S instrumentation set—up .

The te st procedures may be sununarized:

(1) A prescrIbed acceleration psd over 40— 3200 Hz was entered int o the

con t r o l  computer  sy stem.
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(2) For the discrete angular measurement , two accelerometers were placed

on the beam separated by a predetermined t\x at the location x .  A MMD

angular  ra te  sensor was mounted at  X — 27” . Although it failed to

operate p roper ly ,  i t  was kept  in its place during the experiment.

(3) The shaker feedback control system was activated. After a steady—

state excitation had been a t t a ined , the accelerometer signals including the 
S

differenced signal were simultaneously recorded .

3. Sununary of Test Results

All data were recovered through the FM playback equipment , filtered 
S

for anti—aliasing, and digitized onto digita l magnetic tape via an ITT

Analog—to—Digital converter. Psd’s were computed with a 9.8 Hz bandwidth

using the fast Fourier transform on a Raytheon 704 computer. The accelera-

tion pad ’s are multiplied by the factor (2,T f)~
4 

to yield the corresponding

disp lacement psd , which is permissible for a stationary random process.

For the first five tests, Ax was varied from 4 in to 12 in with a 2 in

increment at x~ — 27 in. Four additiona l tests were then performed with

Ax — 4 in but by varying x~. They are designated by the teat numbers in

Table Al.
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Test No x Ax Linear G ( f)  Angular 0e oC y
1Y1

(in) (in) at x1 x — Ax/2

___________________ ________________ __________________ ____________________________________________ — - S

1 19 4 Figure Ala Figure A7b

2 27 4 Figure A8a Figure A8b

3 27 6 Figure A8c

4 27 8 Figure A8d

5 27 tO Figure A8e

6 27 12 Figure A8f

7 32 4 Figure A9a Figure A9b

8 36 4 Figure AlOa Figure AlOb

9 50 4 Figure Alla Figure Allb

Table Al. Sumeary of Test Results

The accelerometer locations defined in terms of the center location x
C

and separation distance Ax are shown in Figure A4.

Included in this report are only some of the linear C (f) at- yl
y
l S

x1
, since they are representative of the others. For the same reason,

none of the linear G (f) at x
2

( x + Ax/2 )  are exp l ic i t ly  shown here .
C

Note that x of Test No. 1 is the farthest from the midspan. The x
C C

of Test Nos. 2, 7, and 8 get closer to the midspan , until x is the

midspan for Test No. 8. The test results are first compared with the

NASTRAN p red ic t ion  in the next section and then discussed further in

Section IV of this appendix.
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III. Finite—Element Simulation of the Beam Experiment

As mentioned before , it was originally intended to check the

accuracy of discrete angular measurements by a MMD angular rate sensor.

S However , this prototype sensor had failed during the experiment , hence I

it  cou ld not be used for comparison . To provide an independent check ,

it was therefore decided to simulate the beam experiment by a finite— 5

element numerical method.

1. The NASTRAN Model S

The Level 15 NASTRAN finite—element code was used to numerically

simulate the experimental beam (References A2 and A3). The finite—element

model which includes the attached masses of shaker armature and MMD sensor ,

consists of 15 NASTRAN CBAR elements , as shown in Figure A4. There are in

S 

all 30 degrees of freedom ; 14 for the vertica l modes and 16 for the

• rotational modes along the axes normal to the y— and x—coordinates. The

S end nodes were vertically constrained to represent the simply supported

ends. The remaining node points correspond either to the accelerometer

locations or the center locations for discrete angle. The distance between

any adjacent nodes is less than 6”, thus permitting excitation of at least

the first six bending modes, so as to correctly represent the frequency

range up to 3200 Hz. The shaker armature (0.79 lb.) and the MMD sensor

with supporting brackets (1.18 lb.) were incorporated as a point mass into

nodes No. 9 and No. 7, respectivel y. The appropriate material constants

such as E = l0~ i-b/in
2
, I — 1.855 In4, p = 0.131 lb/in

3
, and A — 1.244 in

2
,

and the structural damping constants (determined experimenta1l~ in S

Appendix B) were introduced into the NASTRAN program , a brief outline of S

which can be found in Appendix C.
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2. l’he Forcing PSD

To simulate the experiment , it is necessary to reconstruc t an

equivalent forcing psd at the midspan that would have produced the

1 constant acceleration response psd. Reference A4 describes how this can

be done. First , the finite—element model is loaded at the midspan with a

constant ig force over 40—3200Hz , and then the response acceleration psd

is determined at the midspan. Clearly, the acceleration psd will not be

flat , nor will it be of the same magnitude as the experiment. Therefore ,

the magnitude ot’ the fo rcing psd in each frequency band must be adj usted so

tha t the computed response acceleration of the NASTRAN model will match

the experiment. Figure A5 is a typical forcing psd necessary to produce

a -constant acceleration response psd shown In Figure A6, in which the
1

NASTRA N a nd experimental  accelerat ion psd’ s a r e compared with good agree-

ment.

3. Comparison of the NASTRAN results with Experimental Data

It is observed from Figures A7—All that NASTRAN can qualitatively

predict the beam experiment , although some quantitative differences exist

in the resonance frequency and its peak height. In general , the agree-

ment between the NASTRAN result and experimen t is much better for C (f)
y1

y
1

than for C
0 

(f). This is not at all unexpected because differential

angular measurements are vulnerable to the signal differencing error.

Clearly, the worst comparison is observed in Figure AlO for the angular psd

at the midspan ; the NASTRAN C (f) is much lower than the experimental
- t 0A A

in the very low frequency range. This indicates that the experimental

beam devia tes  from the simp ly suppor ted end condition and midspan local

excitation. According to the theoretical analysis (Equation 16), the

angular  pad is zero at the midapan because only the odd modes can survive
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under the local midspan forcing. In r e a l it y , however , t he s p a t i al

function is not exactly cos (nllx/1•) due to the added masses of shaker

a rmature and MIlD sensor , which would certainly result in unsymmetric mode

shapes . Never theless , the low level ~ t’ 
~ ~~ 

predicted by NASTRAN
A

appears to he consistent with t he  u n sy m m et r i c  modc cons iderat ions .
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VI. Discussion of the Experimental Results

The discrete angular signal was generated by Instantaneously

differencing the signals of two accelerometers separated by Ax.

S 
To detec t balancing errors , the two accelerometer signals, replayed from

FM tape, were digitally differenced to compute the d i f ferent ia l  angle.

S As ant ic ipated , there is no difference in the two angular psd results.

This is seen by comparing the angular psd of Figure A8b with Figure A12

which is the angular pad obtained by digitally differencing the recorded

accelerometer signals. In this section , we shall first assess the accuracy

of discrete angular measurements in terms of the noise floor psd and then

examine the spatial variation of the linear and angular rms amplitudes.

a
1. Noise Floor PSD

The angular psd will be compared with the reference noise psd given

by Equation (28). The constant c1 in that equation can be evaluated as

follows: The noise acceleration psd of BBN 501 accelerometer is flat

over 5—25K Hz, with the total spectral energy of 2.’5xl0 6 g2. From the

ordinate of the noise acceleration psd , 2.25x10 6 g2/25,000 Hz or

l .34xl0 5 (in/sec 2 ) 2 /Hz , one f inds  that c1 = l.34xl0 5/(2i1)
4 

= 8.6xl0 9

in 2/Hz. Inserting this into Equation (28) yields

C0 ( f )  — l.72xl0
8 (S/N) 2 

f 4. (29)
(Ax)

For (S/N) 10 and io2 corresponding respectively to

10 db and 20 db, the reference psd’s are drawn in all figures for the

angular psd (Figures A7b , A8b—A8f , A9b , AlOb , and Allb). Since the

accelerometer noise is but one of many noise sources, we shall consider
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the 
~ 
(f) for (S/N) — 10 db as a total noise floor. Note tha t  a l l

:•~ A
angular psd ’s lie above the total noise floor in all frequency ranges;

hence, the angular spectra l measurements are accepted with sufficient

c on f i d e n c e .  An angular  psd can , however , exceed the C1 (f) for
A

(S IN)  = 2(5) dl• ott  iv i n t i l L ’ It 1gb t requencv range’.

For t he’ e t t e c t  ot c a r t ah i e  Ax , let us examine the angular psd ’s In

Fi gures A8h—ASt . It is seen tha t the angular  psd moves up hi gher above

the reference’ t ‘1 as Ax Inc rt’ase’s. Tb is means t h a t  we are store
_ \ _ \ S

con 11 dent in the angular psd nicasuremen t as Ax becomes large . En
S 

~‘.tr t I c i i i a r • the a n g ul ar  psd for ~‘tx ~l2 jn (Figure 
A 8f )  lies well above the

I fo r  ( S / N )  — 20 dli. One canno t • however • increase Ax i n d e f i n i t e ly
_\  .\

l’h i a is  becau se I or some ’ hi gher—order normal modes there will occur more

l t . in  one node’ he twet ’n he two ~icce l er omet er s  • hence defini t ion ( 2 )

becomes mean t ug i e’55 f o r  such norma l modes. A way of relating a maximum

.\x w i  h t he upper I i~equene -v 1 t n t  t t * has been suggested in Reference  Al ,

— - 2L~ 1i!_
9i,Ax)~ \I ~

As se~’n from Ft  gur e s  ASb—A 8f t he upper I requencv l i m I t  dec teases f rom

9146 liz to 1016 H z as Ax increases (rout 4 in to 12 in.

2. l’ht’ I. m eat and Angular V ib r a t i o n  R M S Amp l i t udes

For the’ ~ v er . i  11 measure ’ of  vibration energy , the’ psd ‘ $ a l e ’ integrated

upwards I rots t he I req uene ’v o I ~O IL- t o  com p u t e  t he m s  v a l u e s  wit i cit are

summa i- i  .-ed l i t  l a b  Ic ~ . The low I requenc v l i n t  i t  is  we l l  below the pm m ary

t - eqe i en cv  and h i g h  enough t o  b lo ck  out  t he  back g round noise ’ . I n  ~o lumns I

etid 1 1  , he m a  ~-a I tee s of v (x1 ~iud v (x 2) art’ given  for  It’s t Nos . 1— $ .
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The arithmetic means of Columns I and II are shown in Column III , and

S the linear vibration rms amplitudes predicted by NASTRAN are given in

Column IV. The values of Columns I I I  and IV are plot ted in Figure A 13

as a f u n c t i o n  of x . Just as sin 2 (rt x /L) of the theoret ical  beats

(Equation 14), one finds that the NASTRAN model predicts monotonically

increasing linear m s  values towards the midspan . Except the i r ra tica l l y
S high value at  x —27 in ,the experimental  m s  values also seem to Inc rease

towards the mldspan.

Next , the experimental angular m s  values are given In Column V , and

the computed values by NASTRAN at the center location are shown in Column Vi.

Figure Al3 compares the experimental 
~
0A~ rms for  Ax = 4 in with the NASTR~~

results to show spatial distribution on the beam. Although (0 ) f a l l sA m s

off towards the midspan , it does not become zero as theoretically predicted

by Equation 14 under the localized midspan excitation . It has been shown

that the beam—averaged (0 ) is related to the beam—averaged v byA rms rms -

(Equation 32 in Reference 1 of the main text)

(0 ) = 2 s in OrA x/2L )
3 . (30)

A rms Ax m s

Using the average of Column 111 , 
~mms 

= 0.19xl0 3, Equation (30) for ~x —

4 in gives 
~
0A~ rms 0.83xl0 5 rad. which is larger than the local

• measurements as shown In Figure Al3.
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V. Conclusions

To verify the relationship between the linear and angular response

psd ’s, a simply supported beam was excited at the midspan to generate

a constant psd of linear acceleration response on the beam. The overall

consistency of linear and angular spectral measurements was demonstrated

by numerically simulating the beam experiment with a NASTRAN finite—

element model which has reproduced the spectral details with sufficient

realism.

Some pertinent conclusions may be summarized as follows~

(1) Angular spectral measurements are not affected by whether the

accelerometer signals are instantaneously differenced at the time of data

acquisition or digitally differenced later from the recorded signals.

This , of course, presupposes the maintenance of amplitude and phase

calibrations of the accelerometers.

(2) The angular spectral measurements are well above a noise floor psd

which is defined as ten times the noise floor of a typical accelerometer.

Hence, the differential angular psd’s are accepted with confidence.

• (3) From the local ruts values of linear and angular vibration , it is

inferred that the simply supported end condition and the localized midspan

excitation are not observed by the experimental beam. Certainly , the

added masses of shaker armature and MI-iD sensor further contribute to the

• divergence of experiment from the theoretical beam analyzed in Section II

of the main text.
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APPENDIX B

THE DETERIIINATION OF STRUCTURAL DAMPING CONSTANT S

As an input to the NASTRAN code, the structural damping constants

of the simply supported beam were determined by a Time/Data Vibration

Control and Analysis computer via the Modal Analysis and Modeling Systems

(MODAMS) software package. The MODANS program extracts viscous damping

information from the transfer function observed at a point on the structure 
-

S

subject to the impact excitation at another point. The equivalent viscous

damping coefficients estimated by MODANS for the first five resonance

frequencies are listed in Table Bl: S

Mode No. Resonance Viscous damping
______________ 

frequency coefficient

1 76.9 0.0374

2 265 0.014

3 615 ——

4 1302 0.0215

5 1421 0.00055

Table Bl. Viscous damping coefficients

The MODAMS program failed to produce the damping value of the third mode

and predicted the fourth resonance frequency, which is too large . A typical

output of MODAMS is shown in Figure Bl,which dep icts a peak of the transfer

function magnitude about the resonance frequency of 265 Hz.
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The algorithm of MODANS generates several damping values from a least—

squares f i t  of the tranfer function magnitude as shown in the figure .

One then chooses the frequency (265 Hz) and damping (0.014) values

corresponding to the maximum amplitude (49.48). The remaining pairs of

5 frequency and damping in Table Bi were obtained in a similar manner.

Interested readers are referred to the user ’ s manuals for  Time/Data

computer (1050 Fast Meadow Circle , Palo Alto , California) and for

MODANS software (Structural Dynamics Research Corp., Cincinnati , Ohio).

Further information may be found in “Modal Survey A c t i v i t y  via Frequency

Response Functions,” by A. Klostertuan and R. Zimmerman , SAE National

Aerospace Engineering and Manufacturing Meeting, November 1975.

Twice the viscous damping values of Table Bi were introduced into

the NASTRAN program as the structural damping coefficients as a function ‘

of resonance frequency. The input card TABDMPI also calls for the

structural damping values of the lowest (40 Hz) and highest (3200 Hz)

frequency limits. In the absence of better information , we have simply

assigned 2 x 0.0374 and 2 x 0.00055 as the structural damping at 40 Hz 5

and 3200 Hz, respectively .
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APPENDIX C

THE NASTRAN FINITE-ELEI€NT COMPUTER PROGRAM

S The NASTRAN finite—element code was used because of its extensive

application in the dynamic response analyses of aircraft structures.

Of the many NASTRAN solution formats , we have used the NASTRAN solution S

11,0 for the present stationary random dynamic analysis. The NASTRAN

computer listings of the test beam are shown in Tables Cl — C4.

S Tables Cl and C2 are respectively the executive and input/output controls, 
S

and Tables C3 and C4 are the finite—element model parameters and

prescribed forcing pad Input at the midspan of the beam, respectively.
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To test the accuracy of a NASTRAN model for the experimental beam ,

the first six resonance frequencies are compared with the experimental

values in Table C5,whlch shows good agreement between them.

Mode No. NASTRAN Experimental

1 55.52 58.54

2 243.36 253.90

3 536.95 449.21

4 939.50 1044.92

5 1478.70 1503.90

6 2207.60 2109.37

Table CS. (‘r’mparison of the NASTRAN and
experimental resonance frequencies.
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