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SECTION I
INTRODUCTION

The design of airborne electro-optical systems requires the knowledge
of angular vibration as well as linear vibration of aircraft structures,
Just as the linear vibration involves displacements in three coordinate
axes, the angular vibration addresses itself to the rotary mode of internal
bending about each of the three axes. In one dimension, for instance, if
linear vibration refers to the transverse deflection, the pitching motion
expressed by the local slope of linear (transverse) displacement would
represent the corresponding angular vibration. Theoretically, it is possible
to formulate the angular vibratory response of aircraft structures subject
to aerodynamic and acoustic random excitations., Although modern computer
structural analyses such as the NASTRAN may be implemented, they are at present
limited to the low frequency range of vibration of, particularly, a complex
structure. To cope with the high frequency range vibration, it is expedient
to relate the angular vibration directly to the linear vibration response.
This was the approach of Reference 1. Using the Bernoulli-Euler beam as a
theoretical model, a simple qualitative relationship was obtained between the
linear root-mean-squared (rms) amplitude Frina and angular rms amplitude nrms

(Equation (27) in Reference 1)

0 ms = 1:17 (n/L) Y i (1)

where L is the beam length. An alternate relation was also derived in terms

of the discrete angular deflection which is defined by the ratio of the

difference of transverse displacements y.(t) and yl(t) at x, and x,, respectively,

to the separation distance Ax = x, = Xy namely




0,(t) = [ye(t.) - yl(t)]/ AX. (2)

Here the y's are measured by using accelerameters, The use of the discrete
or differential angle OA(t) is dictated by the practical reguirement that at
present there is no inexpensive off-the-shelf type angular deflection
transducer with sufficiently high frequency response. By a parallel
derivation, the relationship involving (OA)ma and y which is counterpart

to (1) becomes
(OA)ms = ( vV2/ ax) Y rms * (3)

It must be pointed out that relations (1) and (3) are independent of the local
coordinates and end conditions. Note that relation (3) depends only on the
separation distance. This came about because orma and (GA)rms and Yems 2T€
the rms amplitudes averaged over the becam. The beam-averaging originally
introduced in Reference 1 is based on the assumption that response statistics
should not vary significantly from one point to another on a complex structure
under the temporally and spatially homogeneous random excitations. The
consequence of beam-averaging is the loss of detailed spatial information.
This then enables us to apply the linear-angular rms amplitude relations, (1)
and (3), to any structures as a qualitative relation, provided L or Ax can be

specified depending on the type of angular measurement technique employed.
Based on limited vibration data available at the writing of Reference 1,

it was concluded that by relations (1) and (3) the angular rms value can be

predicted within $20% of the measurement. Since then, some more linear




and angular vibration data have been obtained from the flight tests of RF-4C

and F-15 fighters, CH-3E helicopter, and B-52 bomber (References 2 - 5),

This therefore enables us to re-evaluate the prediction capability of
relations (1) and (3) in light of the additional vibration test data.
Moreover, it is noV possible to move a step further and predict the spectral j
shape of the angular power spectral density (psad) function, which is the
main objective of this report.

Following the same line of arguments as in Reference 1, a general
relationship has been derived between the linear and angular response psd's,
which states that the linear psd falls off faster than the angular by the
power exponent of one (Section II). This linear-angular psd relation was
first tested on a simply supported beam excited randomly at the midspan in

such a manner that the acceleration response psd was constant over L0 - 3200 Hz. i

Consequently, the linear displacement psd has the power-form of f-h. It
was then found that the angular psd obeys the power=form of f'3, as predicted,
over the same frequency range (Section III).

Encouraged by the success on test beam, an attempt was made to predict the
spectral shape and magnitude level of the angular psd of typical flirht tests
of RF=-UC and F-15 fighters, CH-3E helicopter, and B-52 bomber (Section IV),
After splitting the linear vibration psd into the low and high frequency
ranges, the angular vibration psd has beer predicted in two separate frequency
ranges. First, the spectral shape of angular psd's can be predicted accurately
in the high frequency range for all test cases, but not always so in the low
frequency range. Second, an accurate prediction of the magnitude level is

difficult to attain in that it requires the correct spectral shape and rms




L o
-~

s 8 g

Y iy A A b

!
i
|

amplitude of angular vibration. Nevertheless, as an overall performance

it wvas found that the predicted angular psd lies within a $10 db band about
the measurement for all test cases (Section V). Though crude, such a
prediction ia useful in the preliminary design stage of electro-optical
systems, whereby one can quickly estimate the angular vibration environment

based on the linear vibration psd and a length scale associated with the

angular measurement technique.
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SECTION II
THEORETICAL ANALYSIS
We shall derive in this section a simple relationship between the linear
and angular psd's which is counterpart to the rms amplitude relation (1).
Although, as in Reference 1, the Bernoulli-Euler beam will be used as a
theoretical model, it turns out that the psd relationship derived here is
applicable to actual flight test data (Section IV).

We begin with the Bernoulli-Fuler beam equation

32y Ay EI ahy
msumnseeman + 2 B 4 e B = f(x.t)' (h)
at® at oA ax®

where pA is the mass per unit length of the beam, B is the viscous damping
constant, EI is the flexural rigidity, and f(x,t) is the excitation force
per unit mass of the beam. To facilitate the analysis, split the forcing

function into the spatial part (q(x)) and temporal part (g(t));

f(x, t) = q(x) g(t). (5)

The stochastic dynamics of the beam can be formulated based on Equations (L)
and (5) (References 6 and T); the appropriate extension to angular vibration

has been carried out in Reference 1.

l. Linear and Angular Response PSD's
Theoretically, it is convenient to consider the simply supported beam

of length L because the undamped normal modes are sin(nmx/L). On the other
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hand, a simply supported beam is not as experimentally easy to simulate as ones
with fixed and free end conditions. In any event, the simply supported end
condition is inconsequential because it turns out that the predicted spectral
shape of angular psd is independent of a particular end condition within the
present formulation. The spatial behavior of y(x,t) and q(x) can be

expressed by the normal modes

vix,t) = ¢ yn(t) sin(nnx/L), q(x) = & Q sin(nnx/L). (6)
n=1 n=1

The solution of y (t) will be obtained in terms of the modal impulse-response
n

hn(t) = |(exp( -et)/-ﬁi - Be)nin(tv/ui - 52). where
w: = (nw/L)b EI/pA. (1)

The transverse deflection subject to the zero initial displacement and

velocity is
y(x,t) = £ sin(nmx/L) & hn(r) g(t= 1) ar. (8)
n=] 0

For a small amplitude vibration, the angular deflection may be approximated
by the local derivative; 6(x,t) = dy/dx,

8(x,t) = (v/L) I n cos(nmnx/L) q, / h, (1) glt = 1) dar . (9)
n=1 0




Under the assumption that g(t) and q(x) are statistically independent
and that g(t) is a stationary process, the variances of y and @ are

(EQuations (10) and (12) in Reference 1)

2
<y“(x)> = ! sin(nnx/L) sin(knx/L) Qe T,
ny k=1
(10)
2 -
<0(x)> = (n/L) I nk cos(nmx/L) cos(knx/L) <qq> I
nk °*
n, k=1
wvhere < > denotes statistical average. The Ink reflects both the
system characteristics and excitation force
o«
*
Ty ™ (1/4n) 1 lln(w) Hk(w) Ggg(w) dw , (11)

vhere Hn(w) = w; « v° * 1280 ™ i the modsl frequency response, and *
denotes the complex conjugate. Further, Ggg(“) is the forcing psd related

to the correlation Rgg(t) = <g(t + 1)g(t)> by the Fourier transform pair;

Rss(t) = (1/4n) .f-w Ggg(m) exp(iwt ) dw, i
12

Gss(w) = 2 Rgg(t) exp(=iwtr ) dr .

-t

The factor (Un)™> ensures that Rgg(®) = /g G (f) af with the substitution
of w = 2nf, That is, the variance is the sum of spectral energies of a
one-sided psd (Reference 8).

When the beam is assumed to be excited by the spatially random q(x)




with & Dirac-delta spatial correlation, Equation (10) becomes simplified

greatly because of

> =K 8 i (13)

vhere K is a constant, and cnk =1 ifn=kand =0 if n¥ k., It has been
shown in Reference 1 that Equation (13) is approximately valid under the
localized forcing of a slightly damped structure. As a consequence of

Equation (13), Equation (10) reduces to a single sum

<y2(x)> = I sin®(nw x/L) K S
n=]

(14)

<92(x)> s (ef1)° = »f cosa(nwx/L) KI -
n=1

Let us now express the variances in the spectral form
<y2(x)> = (1/bn) f:.Gw(x.u) dw, <32(x)> = (l/hn)f:-Gee(x.w) dw, (15)

which are defined analogous to Equation (12). Inserting Equation (15) and

L 2
(1/4m) 1 _ lﬂn(w)l Ggg(w) dw into Equation (14), one obtains by

equating the integrands

ny(x, w) = nil sina(nwx/L) lHn(w)I2 K Ggg(w)’

(16)

CgolXs @) = (1/1)% 5 n® cos’(nnx/L) |H_(w)]? K G-

n=1
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They are the linear and angular response psd's subject to the arbitrary

but stationary forcing psd.

2. Relationship Between the Linear and Angular Response PSD's
To obtain the overall form of psd which is independent of
the particular end condition (and hence the mode shape), Equation (16) will
be averaged over the beam (Reference 1). Denoting the beam-averaged psd's
by ny(w) = L-lfoL ny(x.w) dx and Gee(w) = L-lfoL Gee(x,w) dx, Equation (16)
gives rise to
®

2
(e = I I (0)[® (k/2) 6 (),

(17)
6. (w) = (n/L)° 1 n° |H (w)|2 (k/2) G (w),
060 n &8
n=1l
with the use of L'lfoLsinz(nwx/L)dx = L'lfoL cos*(nnx/L)dx = 1/2. %y
taking the ratio of Equation (17), we find that Gee(w)/ny(w) is independent

of the forcing psd

Ggplw) R ol WO T
—_— = )? . (18)
G, (w) Loy IR ()]°

The analytical behavior of Equation (18) can be determined as follows;
We have w, = n2wl from Equation (7). Therefore, inserting n2 = mn/wl into

Equation (18) and writing out the summations in detail result in
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Goalw) wllﬂl(w)|2 + w, |H2(w)|2 + w3|H3(w)|2 .

= (ﬂ/L)2 (1/w1)

6,y () i ()% + [Hy(w)]? + [H(0)]® + ...

Note that the dominant contribution of Iﬂn(m)l2 = [(wi - ) - ]'l
is in a resonance frequency band around w = wn. Therefore, when w = w

the curly bracket { } term of Equation (19) denoted by I is approximately

2 2
equal to wlIHl(w)l / lHl(u)| = w.

and in general I = w, for w = W

of L increase linearly as w passes through the successive resonance
frequencies. Since the density of resonance frequencies per octave frequency
decade increases very rapidly, I = w is a good approximation in the high
frequency range as substantiated by the numerical computation of Figure 1. ’

Using this approximation, Equation (19) in terms of the frequency becomes

Hence, the loci of local maxima ?

10

(19) ;

1

Similarly, for w = we have I = w_,

2 P




2,2 *
cae(r)/ny(r) = (n°/L rl) £, (20)

wvhich is the desired relationship between the linear and angular response psd's.
The ratio Gee(f)/ny(f) consists of two parts, the scaling factor (ﬂ2/L2f1)and
the spectral shape in the power-form of f. Note that the scaling factor re-
flects the particular end condition and beam properties through the primary
frequency f,. On the other hand, the spectral shape function is universal since
it is completely independent of the end condition. This is, perhaps, not
surprising because the frequency relation (7) is asymptotically valid for

large n under different end conditions (Reference 9). Due to similarity

in the modal formulations of beam and plate, one may expect the same shape
function to be valid on a plate regardless of the boundary conditions. As

a matter of fact, something more is possible, It will be shown in Section IV
that the spectral shape relation is applicable to the high frequency part

of the linear and angular psd's of typical aircraft flight test data.

Footnote *) A similar attempt has been made to predict the spectral shape
of Gee(f)/ny(f) in Reference 10, However, there is a noticeable difference

in the final results. Namely, Equation (7) of Reference 10 which is the
counterpart of Equation (18) can be put in the form

Ggglu) /Gy (w) = (n/L)ali-ln H_ (w) sin(nn/e)le/}islnn(w) sin(nn/2)|2. (%)

The derivation of Equation (t) is not justified. Apart from the factor
sin(nr/2) which picks out only the odd terms in the summations, Equation (+)
involves the sums of the complex Hn, vhereas Equation (18) sums up the

real ]Hnl. The overall difference shows up when one compares Figure 1

with Figure 3 of Reference 10, which increases steadily with a slope of
about 3/4 up to TOO Hz and then falls off abruptly thereafter.

11




§ 3. Power-Form Representation of the Angular PSD

Let us suppose that the linear psd has a simple power-form expression

ny(r) = Dr‘k, vhere D is a constant and k is the power exponent in the

frequency range (Fl, F2). In view of Equation (20), the angular psd would

then have the form

-k + 1
Gee(f) » gt -

(21)

where C = (n2/L2rl)D. For the aircraft application, it is difficult to

i‘ estimate the constant factor C. This is because we do not know a priori
R

the primary frequency of a locally dominant mode at the arbitrary aircraft

location. For this reason, we shall propose an indirect means of determining

the constant factor by way of the angular vibration amplitude predicted by

Equations (1) and (3). Deviating from the original context (Reference 1),
let us assume that relations (1) and (3) can be applied to the rms values

computed over a frequency band as well as the entire frequency range. Then,

by requiring the predicted eims over the frequency band of (Fl, Fe) be
identical to S F2 G,.(f)df, we obtain
Fl 06
(2 - k) eims ;
C = " (22)
F-k+2- F-k+2
h i 2

Equation (21) together with constant (22) represents a power=-form representation

in (Fl, F2), based on the power exponent k and the angular erms predicted

by the procedures of Reference 1.

12
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SECTION III
BEAM EXPERIMENT

To verify Equation (21) on the very beam model that it was originally
derived, a beam experiment was carried out to generate matching sets of
linear and angular response psd's (Appendix A). A simply supported
Aluminum I-beam of 72 in was randomly excited at the midspan in such a manner
that a constant acceleration response psd was maintained st the midspan
over 40 - 3200 Hz, Linear displacement psd's were obtained by BBN 501
accelerometers. The discrete angle eA(t) was obtained by differencing the
two accelerometer signals according to formula (2)

Having maintained a constant acceleration psd at the midspan, the linear
psd's at various locations on the beam obey the power-form of r‘h over the entire
frequency range. This is most evident in ny(f) taken almost at the midspan,
as shown in Figure AlOa in Appendix A, Away from the midspan, the linear
psd's become progressively more jagged, yet they can all be represented by the
pover-form of f-h‘ We shall examine here a set of the linear ny(f) and
differential angular GeAeA(f) measured at x, = 25 in and x, = 29 in on the
beam (and hence Ax = b4 in). They are given in Figures AB8a and A8b in
Appendix A, which have been reproduced here in Figures 2a and 2b, respectively.
A least-squares power=form fit to the linear psd of Figure 2a yields

3f_h. Hence, the angular psd predicted by Equation (21) is

g3,

G = 5.,0x10°
Yy

Gee On the other hand, by applying a least-

squares straight line fit to the angular psd of Figure 2b, we obtain

Ggg = 1.0x1077¢™3 as the measurement. Although the predicted constant factor

- (n2/L2fl)r 6 =1.4x10
vy

is 40% higher than the measurement, what is noteworthy is the overall spectral

- ks i



shape of the angular psd that has correctly been predicted by the power-form

3

of £ °~ over the entire frequency range.
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K SECTION IV
AIRCRAFT FLIGHT TEST DATA
It has been found in Section III that relation (21) can predict the
spectral shape of angular psd's of the test beam exactly over the entire
k frequency range, whereas the constant factor is predicted only approximately

within 40%Z of the measurement. It must be noted that the L40% difference |

in constant factors amounts to a difference of less than 20% in the predicted
E | and actual angular rms values, which is well within the prediction limit set
forth in Reference 1. For the aircraft application, the constant factor
will be determined by Equation (22) instead. It is then evident that an

accurate prediction of erms is prerequisite for determining the constant

factor correctly. With this in mind, we shall examine here the viability .
of relation (21) as it is applied to the aircraft flight test data recently
acquired by this laboratory. Recall that the linear psd (Figure 2a) of the
experimental beam was represented satisfactorily by a single straight line

in the log=log plot over the entire frequency range. In contrast, it has
been observed that some of the linear psd's of aircraft flight tests (e.g.,
Figures 5a and 6a) can better be represented by more than one straight line.
Although there is no theoretical guideline except that the frequency bvand
should not be too small to violate the high modal density assumption for
relation (20), it was decided to represent the linear psd by two straight
lines over all frequency ranges but the high frequency tail corresponding

to noise. Admittedly, the splitting of linear psd into two parts, namely,
the low and high frequency ranges, respectively, is quite arbitrary, hence
cannot be justified on theoretical grounds. In some cases (e.g., Figure 5a),

the choice of the demarcation frequency is self-evident, whereas it is not so

15 ‘




in other cases (e.g., Figure La). In any event, we have here decided to
represent all the linear psd's of aircraft flight tests by two straight lines
as a matter of uniformity,but not of necessity. In other words, the prediction
procedures to be outlined shortly does not depend on this particular
mode of representation. Perhaps, the complete structural analysis of aircraft
structures might suggest a demarcation frequency based on the modai density.
However, until such information is available, the choice of demarcation frequency
is more or less empirical; hence, no further attempt will be made to Justify it.
The prediction procedures for the angular psd are as follows;
(i) The linear psd is first divided into the low and high frequency parts,
as mentioned before.
(ii) The linear psd in each frequency range is then approximated by a straight
line in the log-log plot,ny(f) = Df‘k, using a least-squares fit. Of course,
the straight lines in the low and high frequency ranges do not necessarily meet
continuously at the demarcation frequency.
(iii) The linear s 18 novw computed by integrating ny(f) over the appropriate
frequency range. To predict the angular LI either relation (1) or (3)
is used depending on the type of angular measurement employed. In other
words, Ax or L must be specified.
(iv) Finally, in each frequency range the constant factor is determined by
Equation (22).

In this section, we shall examine the typical flight test data of RF-LC
and F-15 fighters, CH-3E helicopter, and B-52 bomber. For the RF-LC, F-15,
and CH=3E tests, the angular psd was obtained by the differential accelerometer

technique, hence the prediction scheme (3) is applicable. On the other hand,

16
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the angular differentiating accelerometer was used to acquire the angular
psd of B-52, so that the angular rms value will be predicted by Equation (1)

with a suitably defined L, as will be discussed later.

RF-UC Fighter

Figure 3a is the vertical displacement ny(f) taken at the left wing root

of a RF=UC during 0.9 M cruise; the corresponding pitch G (f) with ax =

o

24 in is shown in Figure 3b. (They are derived from Figures 23 and 150 of
Reference 2.) Using this set of psd's as a typical example, we shall
illustrate the procedures (i) - (iv). To begin with, (i) the linear ny(f)

is divided into the low frequency range of 10 - 50 Hz and the high frequency
range of 50 - 1200 Hz. As mentioned before, the spectral tail beyond 1200 Hz
will be ignored, since it contains very little spectral energy. (ii) In each

frequency range, the linear psd is represented by a straight line as shown in

Figure 3a. The analytical expressions are Gﬁy = 6.Ox10_3f'h and
Ggy = l.3x10'2f-3'5, where the superscripts £ and h refer to the low and high
frequency ranges, respectively. (iii) The linear rms values are

L . -2 T -3, .

0.14x107° in and I 0.54x107° in. Hence, using Equation (3) under
Ax = 24 in, the predicted angular rms values are (eA)fms = O.83x10'l4 rad and

h
A)r
Equation (22) are c‘ = 1.bkx10"

= 0.32x10-h rad. (iv) Finally, the computed constant factors by

6 and C* = 5.hx10'7.

(e
Therefore, the predicted angular psd is

(£) = 5.bx10"T£722, (23)

¢ () = 1.4x1070¢73, ¢,
8,0, 204
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For comparison, the angular psd in Figure 3b fitted by a least-squares

procedure yields

L

G
%8s

(£) = Lhx10™e™3 gb (4 . 7.0x107 1§72+, (24)
6,6
AA

All the relevant data are summarized in Table I, and the predicted psd

is compared with the actual in Figure 3b. It must be noted that both

the constant factor and power exponent have been predicted quite accurately

in the high frequency range. In the low frequency range, however, the

predicted power exponent is considerably smaller than the actual,

F-15 Fighter

Recently, this laboratory has received some preliminary flight test data
of the linear accelerometers mounted on a bulkhead (fuselage station No. 509)

near the forward upper pallet attachment points of a F-15 (Reference 3).

18
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Figure Lha is the lateral displacement psd during 0.9 M flight under light

{ buffeting; Figure Lb is the corresponding roll psd derived from the two

3 vertically displaced accelerometers under Ax = 28,9 in. Here, we divide
the linear ny(r) into the low frequency range of 4 - 20 Kz and the high
frequency range of 20 - 200Hz, as shown in Figure ka. The relevant results
are summarized in Table I, In the high freguency range, there is little
difference in the predicted and measured G: g 88 shown in Figure Ub.

% As in the case of RF=UC, prediction of the goaer exponent is again low

x

for the low frequency part of the angular psd.

CH-3E Helicopter

To extend the prediction scheme to yet another situation, we have presented
in Figure 5 the linear and discrete angular psd's of a CH-3E helicopter
during 40 knots flight with zero degree of roll. Figure 5a is the lateral
displacement psd taken at the rear ramp; the corresponding yaw psd measured
by linear accelerometers under Ax = 56,5 in is shown in Figure 5b. (They
are derived from Figures 18 and 25 of Reference L4L,) Unlike Figures 3 and U,
the linear and angular psd's of CH-3E have a series of spikes corresponding
to the discrete-frequency vibration induced by the main and tail rotor
blades. Overlooking such spikes, we shall formally apply the prediction
procedures by splitting the linear ny(f) into the low frequency range of
4 -~ 15 Hz and the high frequency range of 15 - 220 Hz. The predicted
angular psd is surmmarized in Table I and compared in Figure S5b with the
measurement. The power exponents have been predicted satisfactorily in

both the low and high frequency ranges. On the other hand, the predicted

20
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magnitude levels deviate from the measurement almost by plus and minus 6 db
(based on 10xlog(measured psd level/predicted psd level]) in the low and

high frequency ranges, respectively. This may be attributed to the uncertainty
in rms values when the psd's are infested by spikes representing discrete-

frequency rotor resonances.

B-52 Bomber
Lastly, we shall examine a typical set of linear and angular psd's of

the B-52 flight test during initial take-off. Figure 6a is the vertical

displacement psd taken at the forward end of an armor storage compartment near
the bulkhead, fuselage station No. 1853; Figure 6b is the corresponding

angular psd of pitch component fluctuations measured by an angular
differentiation accelerometer (ADA). (They are derived from Figures 68 and

T3 of Reference 5.) After splitting the linear psd into the low frequency
range of 10 - 70 Hz and the high frequency range of 70 - 500 Hz, the

prediction procedures have been repeated but with the angular rms value
predicted by Equation (1) under L =72 in. which is the linear dimension of the
test platform. From the results compiled in Table I and depicted in Figure 6b,
one finds that the spectral shape has been predicted accurately for both

4

Gee and Gge. In contrast, the predicted constant factors are off almost

by *10 db. Although this cannot be explained away in certainty, it is
suspected that the angular psd measurement by an ADA transducer is not
trustworthy. In particular, the angular psd (Figure 6b) shows much higher
spectral energy buildup in the high frequency range than any of the discrete
angular psd's of RF=4C, F-15, and CH=3E, Other angular psd's of the B=52
test exhibit a similar spectral energy buildup, as has already been observed

in another flight test which also employed the ADA transducer (Reference 11).
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Whether this peculiarity is simply a quirk of the ADA or a genuine structural
behavior is yet to be resolved.

In summary, the angular psd of the typical flight tests of RF-i(C, F-15,
CH-3E, and B=52 has been predicted with a varying degree of success.
First, the gpectral shape of angular psd can be predicted quite accurately
in the high frequency range, but not always so in the low frequency range.
This is in a way expected because the linear-angular psd relation (20) is
an asymptotic expression valid for the high frequency range. Second, it is
difficult to accurately predict the magnitude level of angular psd in that
the correct power exponent and rms amplitude of the angular vibration must be
available, Last but not least, it must be pointed out that the prediction
procedures are subject to the numerical variations of 0.1 in the power exponent
and 10% in the magnitude level. This is due to the uncertainty in estimating

the power exponent and constant factor of a straight line representation

of the psd data.
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SECTION V

OVERALL ASSESSMENT OF THE PREDICTION SCHEME
The angular psd prediction has been carried out in two steps. In the
first step, the exponent (l-k) of power-form expression (21) is estimated.
The power exponent has been predicted very accurately for the high frequency

range of angular psd's. On the other hand, the predicted exponent deviates

from the actual as much as 1.3 in the low frequency range. This is, however,

not unexpected because the linear-angular psd relationship derived here
is an asymptotic expression valid for the high frequency.

The second step involves estimating the constant factor by Equation (22)
based on the power exponent k and angular rms erms' Deviating from the
original derivation in Reference 1, it was assumed that relations (1) and
(3) can be applied to the rms values computed over a limited frequency
band as well as the entire frequency range. This assumption, however,
appears to be a weak link., In the B-52 case, for instance, the predicted

eh underestimates the actual value by threefold, whereas the predicted orms

rms

over the entire frequency range is within 50% of the measurement. llote,
however, that this prediction accuracy is worse than the $20% limit claimed
for the total erms in Reference 1.

Of course, the overall assessment of the prediction scheme must take
into account both the power exponent and constant factor. From Figures 2b,
3b, Ub, and 5b, it is concluded that in both the low and high frequency
ranges the predicted angular psd lies within %10 db of the measurement.
Though crude, the prediction scheme will be useful in the preliminary design

stage of electro-optical systems because it can provide a quick assessment of

the angular vibration environment prior to fabrication. To build up further

23
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confidence, we hope to test the prediction scheme on some new flight test
data as they soon become available to us, perhaps, with the purpose of
establishing certain confidence intervals.

In retrospect, the major thrust of this report was to propose a simple

formula to predict the angular vibration psd of aircraft structures using
the least amount of information, i.e., the linear psd and a length scale
(ax or L). Consequently, the prediction capability is limited. The
overall performance, however, is quite encouraging in that the present work
is just an exploratory attempt of first order. Clearly, the more information
is utilized, the closer one should be able to predict the angular psd.
Of course, the numerical structural analysis of an aircraft could yield the
detailed angular vibration characterizations at every point on the aircraft
structure, subject to arbitrary aerodynamic and acoustic random excitations.
Unfortunately, this does not seem feasible at the present state-of-the-art

of computer structural analysis.
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APPENDIX A

BEAM EXPERIMENT

This appendix describes the experiment of a simply supported Aluminum
[-beam to generate accurate linear and angular vibration data. The unique
feature of the experiment was to excite the beam so that a nearly constant
acceleration response psd was produced on the beam. This would facilitate
the verification of the linear-angular psd relationship developed in the
main text, since the linear displacement psd will have power-form f-4

over the entire frequency range. Although the initial irtent was to

:5 check the accuracy of discrete angular measurements by a prototype
magnetohydrodynamic (MHD) angular rate sensor, this has not been success-
ful due to the sensor failure. Therefore, to provide an independent check, A
the beam experiment was numerically simulated by the NASTRAN finite-element
program. We shall begin by establishing a noise floor pad to assess the

accuracy of angular spectral measurement by the differential accelerometer

I. Noise Floor PSD %

At present, there is no angular vibration transducer of the off-the-

3 i shelf type that is as versatile and inexpensively available as the linear
accelerometer, In practice, one therefore measures the angle by
differencing the signals of two accelerometers separated by a preassigned l

distance. In other words, approximate the true angle 8(x,t) by Equation (2)

repeated here for reader's convenience

8,(t) = [_vz(t) - yl(t)lle, (2
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where yl(t) and y_ (t) are the transverse displacements at X, and X

respectively, and Ax = x, - x, is the separation distance. Using the

1

center location x = (x, + x.,)/2, we have x, = x - Ax/2 and
¢ 1 2 1 c

X, = X, + Ax/2; hence, the discrete or differential angle G\(t) can be

-

expressed in terms of X, and Ax.

Formal manipulations of definition (2) will shed light on the
limitation of discrete angular measurements. First, obtain the variance

relationship

'\2 e l 2 N 2 N b | > 2
%900 = =g (\yl(t) 2 \yz(t) - -ayl(t)yz(t) Vs (23)

(Ax)

The right-hand side is poorly conditioned in that it will fall below the
noise floor for <yi> = <y§> = <y1y2> as Ax becomes small, This

therefore imposes a minimum Ax for the discrete angular measurement,

To analyze this, let us split yi(t) into the true signals §i(t) and
the noises ei(t) (for 1 = 1 and 2). Under the usual assumption that
ei(t) are statistically independent of yi(t) and of each other, one finds
that

1 D g ..
e 5 (\el(t)- + <92(t)')' (24)

<9§(:)\ - <8i(t)‘ %
: ; (Ax)

where <6§(t)‘ is given by Equation (23) in which the yi(t) are replaced
s

N b 4 .
by yi(t). Further assuming <e1(t)> = <e§(t)\ = <e2(t)‘, Equation (24)

reduces to

<6§(t)> = <§§(t)> + - 7 < ez(t)‘. (25)

(Ax)
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and its psd analog is

3,0 + —2 o), (26)

G (f) = G}
®a% e )t **

A
Because of the factor (Ax)-2 in Equations (25) and (26), the signal-to-
noise ratio would improve as Ax increases. Although this is desired,

Ax cannot be increased indefinitely without deteriorating resolution
(Reference Al). For better resolution, one must operate in the opposite
range of small Ax. However, as Ax decreases signal may be overshadowed
by the noise term which increases by the factor (Ax)-z. This therefore

sets a minimum Ax for the acceptable signal-to-noise.

Now, to establish a reference psd Ge 8 (f) corresponding to a prescribed
A™A
signal-to-noise ratio (S/N), let the ratio GG 8 (f)/(ZGee(f)/(Ax)z) be
A”A

(S/N)2 (and not (S/N) because the psd refers to the spectral energy).

Then, by rearrangement

2
— 2
Gy o (0 = XM 6 (5. 27)
AA (Ax)“
Typically, the noise floor of accelerometers has a flat psd in the noise
acceleration; hence the noise psd is Gee(f) "ty f-A, where €y is a constant

to be determined later. In view of this, Equation (27) becomes

For a given (S/N), Equation (28) therefore defines a reference psd; angular

spectral measurements falling below it should be rejected.
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II. Experimental Beam Test

1. The Test Set-Up

A simply supported Aluminum I-beam was randomly excited at the mid-

span in such a manner that a constant acceleration response psd over

40-3200 Hz was maintained at the midspan. For the simply supported end
condition, the beam was fastened to the supporting bases by a pin support
mechanism consisting of precision needle bearings and high-temperature
hardened steel shafts. The supporting bases consisting of a 12" high and
8" diameter solid Aluminum pedestal, were bolted to a massive vibration
test table as shown in Figure Al. Although the rotation centers of
bearings were not on the central bending axis of the beam, this would not
result in significant inplane stresses because the transverse displacement
was kept small during the experiment. The effective beam length between

the bearing centers was 72 in.

A 25 1b. electrodynamic shaker (Ling Model 6C) was attached to the
bottom flange at the midspan of the beam via a fusible link, thereby
transmitting only the vertical force and no moments to the beam. To
maintain 2o constant acceleration response psd at the midspan, the shaker
power amplifier was monitored and controlled by a Time/Data Vibration
Control and Analysis computer. This control computer compares the actual
acceleration psd at the midspan with a prescribed one and then minimizes
the difference. Figure A2 shows a typical acceleration psd that the control
computer has maintained constant over L0 - 3200 Hz. The dotted lines

represent a t6 db band about the control reference psd.
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2. Test Procedures

Linear displacements were measured by BBN 501 accelerometers. The
differential angle was obtained by electronically differencing the
signals of two accelerometers and then dividing by the separation
distance as indicated by Equation (2). Accelerometer signals were
amplified by Intech amplifiers and recorded on FM tapes (15 ips, 27K Hz
center frequency, and 5K Hz bandwidth). Only the even channels of =«
recorder (Honeywell 9600) were used to minimize the possible phase error
introduced by the tape heads. Both the individual accelerometer and
electronically differenced signals were recorded. Prior to data acquisition,
the two accelerometers used for discrete angular measurements were balanced
to ensure the phase and magnitude compatibility. This was doue by
applying lg excitation at 60 Hz to both accelerometers placed on the 1g
calibration table (B & K TY6106). After having amplified each accelerometer
signal, their difference was displayed on an oscilloscope. A balance pot
placed in line with one of the accelerometers before amplification was then
adjusted until a null difference was obtained. In addition, the signal
conditioning electronics was calibrated by recording a 1000 Hz sine wave
at 40 db amplification on each channel. This amplification level was the
one used in the experiment. Figure A3 is the schematic diagram of

fnstrumentation set-up.

The test procedures may be summarized:
(1) A prescribed acceleration psd over 40-3200 Hz was entered into the

control computer system.
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(2) For the discrete angular measurement, two accelerometers were placed
on the beam separated by a predetermined Ax at the location X, A MHD
angular rate sensor was mounted at xC = 27". Although it failed to
operate properly, it was kept in its place during the experiment.

(3) The shaker feedback control system was activated. After a steady-

state excitation had been attained, the accelerometer signals including the

differenced signal were simultaneously recorded.

3. Summary of Test Results

All data were recovered through the FM playback equipment, filtered
for anti-aliasing, and digitized onto digital magnetic tape via an ITI
Analog-to-Digital converter. Psd's were computed with a 9.8 Hz bandwidth
using the fast Fourier transform on a Raytheon 704 computer. The accelera-

tion psd's are multiplied by the factor (2n f)-a to yield the corresponding

displacement psd, which is permissible for a stationary random process.

For the first five tests, A4x was varied from 4 in to 12 in with a 2 in
increment at x, = 27 4in, Four additional tests were then performed with
Ax = 4 in but by varying L They are designated by the test numbers in

Table Al.

L3
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Test No X, Ax Linear Gylyl(f) Angular GeAeA(f)
(in) (in) at X =% - Ax/2
1 19 4 Figure A7a Figure A7b
2 27 4 Figure A8a Figure A8b
3 27 6 Figure A8c
4 27 8 Figure A8d
5 27 10 Figure A8e
6 27 12 Figure AS8f
7 32 4 Figure A9a Figure A9b
8 36 4 Figure AlOQa Figure AlQOb
9 50 4 Figure Alla Figure Allb

B ——

Table Al, Summary of Test Results

The accelerometer locations defined in terms of the center location xc

and separation distance Ax are shown in Figure A4.

Included in this report are only some of the linear Gv (f) at
171
X1 since they are representative of the others. For the same reason,
none of the linear Gy y (f) at x2(= X, + Ax/2) are explicitly shown here.
22

Note that xC of Test No. 1 is the farthest from the midspan. The xc's
of Test Nos. 2, 7, and 8 get closer to the midspan, until X, is the
midspan for Test No. 8. The test results are first compared with the
NASTRAN prediction in the next section and then discussed further in

Section IV of this appendix.
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III. Finite-Element Simulation of the Beam Experiment

As mentioned before, it was originally intended to check the
accuracy of discrete angular measurements by a MHD angular rate sensor.
However, this prototype sensor had failed during the experiment, hence
it could not be used for comparison. To provide an independent check,
it was therefore decided to simulate the beam experiment by a finite-

element numerical method.

1. The NASTRAN Model

The Level 15 NASTRAN finite-element code was used to numerically
simulate the experimental beam (References A2 and A3). The finite-element
model whichk includes the attached masses of shaker armature and MHD sensor,
consists of 15 NASTRAN CBAR elements, as shown in Figure A4. There are in
all 30 degrees of freedom; 14 for the vertical modes and 16 for the
rotational modes along the axes normal to the y- and x-coordinates. The
end nodes were vertically constrained to represent the simply supported
ends. The remaining node points correspond either to the accelerometer
locations or the center locations for discrete angle. The distance between
any adjacent nodes is less than 6", thus permitting excitation of at least
the first six bending modes, so as to correctly represent the frequency
range up to 3200 Hz. The shaker armature (0.79 1b.) and the MHD sensor
with supporting brackets (1.18 1b.) were incorporated as a point mass into
nodes No. 9 and No. 7, respectively. The appropriate material constants
such as £ = 10° 1b/4n°, 1 = 1.855 4n", p = 0,131 16/in>, and & = 1.24% 1n’,
and the structural damping constants (determined experimentally in
Appendix B) were introduced into the NASTRAN program, a brief outline of

which can be found in Appendix C.
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2. The Forcing PSD

To simulate the experiment, it is necessary to reconstruct an
equivalent forcing psd at the midspan that would have produced the
constant acceleration response psd. Reference A4 describes how this can
be done. First, the finite-element model is loaded at the midspan with a
constant 1lg force over 40-3200Hz, and then the response acceleration psd
is determined at the midspan. Clearly, the acceleration psd will not be
flat, nor will it be of the same magnitude as the experiment. Therefore,
the magnitude of the forcing psd in each frequency band must be adjusted so
that the computed response acceleration of the NASTRAN model will match
the experiment. Figure A5 is a typical forcing psd necessary to produce
a constant acceleration response psd shown in Figure A6, in which the
NASTRAN and experimental acceleration psd's are compared with good agree-

ment.

3. Comparison of the NASTRAN results with Experimental Data

[t is observed from Figures A7-All that NASTRAN can qualitatively
predict the beam experiment, although some quantitative differences exist
in the resonance frequency and its peak height. In general, the agree-
ment between the NASTRAN result and experiment is much better for Gylyl(f)
than for GBAGA(f). This is not at all unexpected because differential
angular measurements are vulnerable to the signal differencing error.
Clearly, the worst comparison is observed in Figure Al0 for the angular psd
at the midspan; the NASTRAN GGAOA(f) is much lower than the experimental
in the very low frequency range. This indicates that the experimental
beam deviates from the simply supported end condition and midspan local

excitation. According to the theoretical analysis (Equation 16), the

angular psd is zero at the midspan because only the odd modes can survive

L6
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under the local midspan forcing.

In reality, however, the spatial

L,
function is not exactly cos” (nnx/L) due to the added masses of shaker
armature and MHD sensor, which would certainly result in unsymmetric mode
shapes. Nevertheless, the low level of C0 0 (f) predicted by NASTRAN
A

appears to be consistent with the unsymmetric mode considerations.

u7




VI. Discussion of the Experimental Results

The discrete angular signal was generated by instantaneously
differencing the signals of two accelerometers separated by Ax.
To detect balancing errors, the two accelerometer signals, replayed from
4 FM tape, were digitally differenced to compute the differential angle.

| As anticipated, there is no difference in the two angular psd results.

1 This is seen by comparing the angular psd of Figure A8b with Figure Al2

i which is the angular psd obtained by digitally differencing the recorded

i accelerometer signals. In this section, we shall first assess the accuracy
) of discrete angular measurements in terms of the noise floor psd and then
i

|

examine the spatial variation of the linear and angular rms amplitudes.

1. Noise Floor PSD

The angular psd will be compared with the reference noise psd given

! by Equation (28). The constant €1 in that equation can be evaluated as
£

: follows: The noise acceleration psd of BBN 501 accelerometer is flat

over 5-25K Hz, with the total spectral energy of 2.25x10-6 g2. From the

ordinate of the noise acceleration psd, 2.25x10—6 32/25,000 Hz or

| | 1.3l¢x10-5 (in/secZ)Z/Hz, one finds that ¢, = 1.34x10—5/(2n)4 = 8.6)(10-9

inz/Hz. Inserting this into Equation (28) yields

-8 2
Eg—g-(f) _ 1.72x10 2LS/N) f-é. (29)
i AA (Ax)

For (S/N) = 10 and 102 corresponding respectively to

10 db and 20 db, the reference psd's are drawn in all figures for the
angular psd (Figures A7b, A8b-A8f, A9b, AlOb, and Allb). Since the

accelerometer noise is but one of many noise sources, we shall consider

48




the C0 N (f) for (S/N) = 10 db as a total noise floor. Note that all
ATA

angular psd's lie above the total noise floor in all frequency ranges;
hence, the angular spectral measurements are accepted with sufficient
confidence. An angular psd can, however, exceed the G

(f) for
5%

(S/N) = 20 db only in the high frequency range.

For the effect of variable Ax, let us examfne the angular psd's in
Figures A8b-A8f. It is seen that the angular psd moves up higher above
the reference (i:z:w(f\ as AX increases. This means that we are more
confident in the‘nugulur psd measurement as Ax becomes large. In
particular, the angular psd for Ax =12 {n(Figure A8f) lies well above the
65;;1(f) for (S/N) = 20 db. One cannot, however, increase Ax indefinitely.
Thls‘(s because tor some higher-order normal modes there will occur more
than one node between the two accelerometers, hence definition (2)

becomes meaningless for such normal modes. A way of relating a maximum

Ax with the upper frequency limit f* has been suggested in Reference Al,

i 2n , El
ftx = ———"——-2‘—- I\-‘:\- s
9 (\x)

As seen from Figures A8b-A8f the upper frequency limit decreases from

9146 Hz to 1016 Hz as Ax increases from 4 in to 12 in.

2. The Linear and Angular Vibration RMS Amplitudes

For the overall measure of vibration energy, the psd's are integrated
upwards trom the frequency of 40 Hz to compute the rms values which are
summarized in Table A2. The low frequency limit is well below the primary ’
trequency and high enough to block out the background noise. In Columns 1

and 11, the rms values of v(xl\ and v(x,) are given for Test Nos. 1-8. | ’
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8 The arithmetic means of Columns I and II are shown in Column III, and
i the linear vibration rms amplitudes predicted by NASTRAN are given in

Column IV. The values of Columns III and IV are plotted in Figure Al3

a% as a function of x. Just as sinz(n x/L) of the theoretical beam

(Equation 14), one finds that the NASTRAN model predicts monotonically

increasing linear rms values towards the midspan. Except the irratically

i
1
1
1
i
|
'f high value at x =27 in,the experimental rms values also seem to increase
i
|

towards the midspan.

? Next, the experimental angular rms values are given in Column V, and

the computed values by NASTRAN at the center location are shown in Column VI.

Figure Al3 compares the experimental (BA)rms for Ax = 4 in with the NASTRAN

results to show spatial distribution on the beam. Although (BA)rms falls

off towards the midspan, it does not become zero as theoretically predicted

by Equation 14 under the localized midspan excitation. It has been shown

that the beam-averaged (GA)rms is related to the beam-averaged . S by

(Equation 32 in Reference 1 of the main text)

(30)

k| ® " [ 2 sinéiAx/ZL)Jy

A)rms rms’

Using the average of Column ITI, 0.19x10_3, Equation (30) for Ax =

i 4 in gives (GA)rms = 0.83x10_S rad. which is larger than the local

measurements as shown in Figure Al3.
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V. Conclusions

To verify the relationship between the linear and angular response
psd's, a simply supported beam was excited at the midspan to generate
a constant psd of linear acceleration response on the beam. The overall
consistency of linear and angular spectral measurements was demonstrated
by numerically simulating the beam experiment with a NASTRAN finite-
element model which has reproduced the spectral details with sufficient

realism.

Some pertinent conclusions may be summarized as follows:
(1) Angular spectral measurements are not affected by whether the
accelerometer signals are instantaneously differenced at the time of data
acquisition or digitally differenced later from the recorded signals.
This, of course, presupposes the maintenance of amplitude and phase
calibrations of the accelerometers.
(2) The angular spectral measurements are well above a noise floor psd
which is defined as ten times the noise floor of a typical accelerometer.
Hence, the differential angular psd's are accepted with confidence.
(3) From the local rms values of linear and angular vibration, it is
inferred that the simply supported end condition and the localized midspan
excitation are not observed by the experimental beam. Certainly, the
added masses of shaker armature and MHD sensor further contribute to the
divergence of experiment from the theoretical beam analyzed in Section II

of the main text.
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APPENDIX B

THE DETERMINATION OF STRUCTURAL DAMPING CONSTANTS

As an input to the NASTRAN code, the structural damping constants
of the simply supported beam were determined by a Time/Data yipration
Control and Analysis computer via the Modal Analysis and Modeling Systems
(MODAMS) software package. The MODAMS program extracts viscous damping
information from the transfer function observed at a point on the structure
subject to the impact excitation at another point. The equivalent viscous
damping coefficients estimated by MODAMS for the first five resonance

frequencies are listed in Table Bl:

Mode No. Resonance Viscous damping
frequency coefficient
1 76.9 0.0374
2 265 0.014
3 615 -
4 1302 0.0215
5 1421 0.00055

Table Bl. Viscous damping coefficients

The MODAMS program failed to produce the damping value of the third mode
and predicted the fourth resonance frequency,which is too large. A typical
output of MODAMS is shown in Figure Bl,which depicts a peak of the transfer

function magnitude about the resonance frequency of 265 Hz.
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The algorithm of MODAMS generates several damping values from a least-
squares fit of the tranfer function magnitude as shown in the figure.
One then chooses the frequency (265 Hz) and damping (0.014) values
corresponding to the maximum amplitude (49.48). The remaining pairs of
frequency and damping in Table Bl were obtained in a similar manner.
Interested readers are referred to the user's manuals for Time/Data
computer (1050 Fast Meadow Circle, Palo Alto, California) and for
MODAMS software (Structural Dynamics Research Corp., Cincinnati, Ohio).
Further information may be found in '"Modal Survey Activity via Frequency
Response Functions,'" by A. Klosterman and R. Zimmerman, SAE National
Aerospace Engineering and Manufacturing Meeting, November 1975.

Twice the viscous damping values of Table Bl were introduced into
the NASTRAN program as the structural damping coefficients as a function
of resonance frequency. The input card TABDMP1l also calls for the
structural damping values of the lowest (40 Hz) and highest (3200 Hz)
frequency limits. In the‘absence of better information, we have simply
assigned 2 x 0.0374 and 2 x 0.00055 as the structural damping at 40 Hz

and 3200 Hz, respectively.
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APPENDIX C
THE NASTRAN FINITE-ELEMENT COMPUTER PROGRAM

The NASTRAN finite-element code was used because of its extensive
application in the dynamic response analyses of aircraft structures.
Of the many NASTRAN solution formats, we have used the NASTRAN solution
11,0 for the present stationary random dynamic analysis. The NASTRAN
computer listings of the test beam are shown in Tables Cl - C&.
Tables Cl and C2 are respectively the executive and input/output controls,
and Tables C3 and C4 are the finite-element model parameters and

prescribed forcing psd input at the midspan of the beam, respectively.
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To test the accuracy of a NASTRAN model for the experimental beam,

the first six resonance frequencies are compared with the experimental

values in Table C5,which shows good agreement between them.

Mode No. NASTRAN Experimental

1 55.52 58.54

2 243.36 253.90

3 536.95 449.21

4 939.50 1044.92

5 1478.70 1503.90

6 2207.60 2109.37
Table C5. Comparison of the NASTRAN and

experimental resonance frequencies.
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