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ABSTRACT

This report considers spectral estimation and extrapolation techniques
for discrete time, band 1imited signals, (i.e., signals whose bandwidth is
less than % cycles; if T sec. is the sampling interval) which are observable
only for a finite duration. The objective is to determine the spectrum
(or power spectrum) of these signals. It is shown that the estimated
spectrum can be improved considerably (over a periodogram or Maximum entropy
spectrum) by first extrapolating the given observations beyond the observation
interval. Also, we consider the problem of extrapolation of signal in the
presence of noise or other interfering signals.

Several new results and algorithms are presented. First, it is shown
that some of the existing extrapolation methods for continuous signals when
extended to sampled data do not converge to the exact original time-unlimited
signal. Rather, one only expects to get a minimum norm least squares estiﬁate.
And, we find that Papoulis'[8] iterative extrapolation algorithm is a special
case of a gradient algorithm with 1inear convergence. It is shown that an
infinite extrapolation matrix introduced in [10] does not exist and is 111-
conditioned at best when approximated to a finite matrix. The new extrapolation
algorithms include a discrete prolate spheroidal wave function (PSWF) expansion,
a conjugate gradient iterative algorithm, a mean square extrapolation filter
and a recursive Kalman filter type extrapolator. The latter two algorithms
also consider the noise statistics in extrapolation of the signal. Several

examples are given and comparisons are made.
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I. INTRODUCTION

Spectral estimation refers to the problem of estimating the spectral
density function of a stationary random signal which is observable only
over a finite duration. For a deterministic signal it implies estimation
h of its magnitude spectrum. In either case, if the signal were known over
: ﬁ the infinite interval, the Fourier transform of the signal or its auto- -
correlation would immediately yield the spectrum. Thus, any estimated spectrum

is equivalent to specifying the signal or its autocorrelation outside the |

observation interval--i.e., its extrapolation.

In this report we consider several algorithms for extrapolation and
spectral estimation of discrete time signals. First, we briefly review
the maximum entropy (ME) or the linear predictive autoregressive (AR)
method, and some iterative and matrix inverse based extrapolation

algorithms developed recently by Papoulis [8], Sabri and Steenaart [10],

O G T PN MR e

and Cadzow [11].

Po—

The new results presented here are as follows.
1) Papoulis' iterative algorithm applied in discrete time domatn converges
to an extrapolated signal which is a minimum norm least squares

type solution. It is seen to be a special case of a one step gradient

algorithm, and has 1inear convergence. The convergence of this can

be fmproved by suitably modifying it to a steepest descent algorithm.
2) Sabri and Steenaart [10] have reformulated Papoulis' iterative algorithm
in terms of an extrapolation matrix operator E_ which yields the
’ extrapolated signal when it operates on the given time truncated

signal. It is proven that the infinite operator, E_ does not exist,
but its finite truncation EN exists, but it is i1l-conditioned.
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It is known that a continuous (time) band 1imited signal given over

a finite observation interval can be extrapolated exactly outside this
interval by means of Prolate Spheroidal Wave Functions (PSWF). We
show that for the discrete time case a similar expansion arises when
we consider the minimum norm least squares extrapolation.

Then we present three other algorithms which are as follows:

4) Conjugate Gradient Iterative Extrapolation
5) Minimum Mean Square Extrapolation Filter

6) Recursive Least Squares Extrapolation Filter

The conjugate gradient method is an iterative algorithm which yields
a psuedo inverse extrapolation operator. Compared to the earlier iterative
methods [8-11], this algorithm converges quite rapidly. The minimum mean
square extrapolation algorithm is designed for applications where the
observed band 1imited signal is contaminated by wideband white noise. It
yields a simple, Wiener filter type, extrapolation operator which requires
inversion of a matrix whose size is equal to the number of samples in
iﬁ;A;Bsérved s;gnalj‘ N& iterations are required<here and‘fﬁe al§or1thﬁ.A B
is shown to reduce to the matrix inverse algorithm of Cadzow [11]
as the additive noise power goes to zero. Finally, the recursive
least squares algorithm is a Kalman filter based method where the
extrapolated signal estimate is updated recursively as a new observation
sample arrives. The latter two methods are applicable in the presence
of noise and yield stable results. Finally these algorithms are shown to

be applicable to problems where one needs to discriminate as well as

 extrapolate an interfering signal and a desired signal.

Several examples are considered to compare the various algorithms.

- A e
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II. THE MAXIMUM ENTROPY METHOD [2-7]
f Let {u1} denote a real, zero mean, stationary, Gaussian random

process whose covariance function is defined as

g 1 s E[u1u1+m]. (1)

We know - only on a finite window W defined as

E | W= {~pmep} . (2)
[ The maximum entropy method extrapolates v outside W by maximizing the
j entropy 1
| A 1/2
i ! 3 I nS(f)df (3) 3
j -1/2 ‘
E : under the constraint
I 5 1/2
o= f s(F)eI2™fdf . mew . (4)
: -1/2
The solution gives the maximum entropy spectrum as
] 1
1 .7 82
: 1 S(f) = [ f & e-j?wfﬁ] » 8 g (5)
Cum
me W
This could be written as
2
s(f) = —8 5 (6)
E o o-J2nfm
=0 m
where the a, and o, are related by
min(p~m,m)
An =% " I Okam®k (7)
k=max[0,-m] ’

The coefficients {am} are determined by solving (4) and (6) which is equivalent
to solving (9) below. Alternatively, the {uy} could be charecterized as an AR process

: g nz]“n“k-n i (8)

_....:.77 — :,‘t“"‘“t’_-”_‘ e e X B AL »AA '-_:.;.; vl"“ £ . i ———— ..._::.i
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where 82 = E[ekz]. By writing the Yule-Walker equations for (8) it is a
simple matter to show that {am} are obtained by solving a set of simultaneous

linear equations*

Ra= 821 . &= VR, (9)
] -y
N %
0 *H
'|_ = 0 a= ¢ ,ao é =]
0 Lap_
.

where a and 1 are (p+1) x 1 vectors and R is a (p+1) x (p+1) covariance

matrix with entries corresponding to covariances on the window W, i.e.,

g Py . ) : rpj H
" '
"2
R =
.\\\\\ "
Lrp il o e o r°~

*For a positive definite matrix R, {um} are guaranteed to be such that S(f)
is positive and (8) is asymptotically, a stationary random process.
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Strictly speaking, the covariance values {rm, m e W} should be known
exactly. In practice, one only knows data values on a finite window.

Then, the covariances could be estimated as*

] M'|m|
L 3 ukuk+|m|' meW (10)

where M is the size of the data window. For large M >> p, reasonable
estimates ofﬁ}}could be expected.

Note that this method does not require {“i} to be bandlimited (with
respect to the Nyquist rate). Also, the spectral density function is, in
view of (5) and (6), an all pole model. Thus, if the given observations
were of the form

Y = Uty (11)
where " is a white noise process or another signal (e.g. clutter noise

which could be modeled by an AR process), the spectrum of {yk} would not

be an all pole model and may have to be approximated by a very high

order all pole model.

Example 1(a): Although there are many examples where the maximum entropy
method could be applied successfully [3,;5,7] we consider a case where

it does not. We assume the observations to be given by
Ye = Skt oty (12)

where Sk represents a bandlimited signal whose spectrum 1ies in the
interval [fz.fsland [-fz.-f3] and ¢, is an interference signal band-
1imited in the interval ['fl’fll and n, is a white noise process.

“*Tn estimating ., the divisor of M, rather than M-|m| 1s recommended.
Although this results in a biased estimate of r, it ytelds a positive
definite sequence {rm} so that R is positive definite and the resulting
spectra is positive. See Parzen [15] for details.
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Figure 1(a) shows the spectra of the various signals. Figure 1(b) and 1(c)

show the interference signal Cy and the actual signal Sk* modeled as

S = 1.69 Sin(.397k).
Figure 1(d) shows the 17 samples of the available observations.

The signal to interference signal (to be called clutter) ratio, which
is defined as

Peak to Peak Value of Signal (13)

SCR* = 20 10915 —\m 5. value of clutter

is -4.1 dB and the signal to noise ratio, SNR, defined similarly is 19 @B.
Figure 1(e) shows the maximum entropy spectrum estimate. A peak is
expected at the position marked by the arrow. At this point the signal
estimate is 30 dB below the clutter peak and is indistinguishable from
the interfering signal. Figure 1(f) shows the spectrum estimated by

directly evaluating the Fourier spectrum (i.e. the periodogram) as

2

8
v -3ty (14)

S(f) = %7 kz 8ykexp(~j21rfk)

Equation (14) can be evaluated approximately by discretizing the variable

f and using a fast Fourier transform algorithm. The spectrum of Figure 1(f)
is the result of a 256 point FFT. We note that both of these estimates

are unsatisfactory.* We will see that the new algorithms introduced here

improve the estimated signal spectrum considerably.

*Note that for random signals, the periodogram is an inconsistent estimate.
Nindowing techniques may be used to improve the spectrum estimate in the
sense that it would be a consistent estimate of a smoothed version of the
orfginal spectrum. In this example, windowing did not improve the situation
in so far as the signal was concerned.

ot Rl s B g i b B e
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/c] utter spectrum

: /signal band limits
~

g
g L‘,\/ signal /noise power spectrum
o 6m Sz r
L 0w
————*

Fig. la: Spectra of Signal, Clutter and Noise
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III. EXTRAPOLATION OF BANDLIMITED SIGNALS
3.1 Continuous Time Signals

Suppose we have a continuous, bandlimited function f(t) so that its
Fourier transform satisfies . L

Flw) =0 for |w| >0. (15)

v 1AL WS

Let go(t) be a time 1imited segment of f(t) which is available as a

noise-free observation, viz., ’

go(t) = (‘6)
0 R ¢

T A v
9

The problem is to extrapolate go(t) outside the interval [-T,T]. This
is the classical problem of extrapolation of analytic functions. The
existence of a unique solution can be established by observing that

i bandlimitedness of f(t) implies it is analytic. This means all its

derivatives exist and are bounded so that from the Taylor series expansion

2
] ; f(T+a) = £(T) + AF(T) + 5 (1) + L. (17)

one can evaluate f(t) outside [-T,T]. In practice, (17) is not very
useful, because, not only does the series have to be truncated, but also,
the evaluation of various derivatives is a noise sensitive process. An

alternative algorithm suagested by Slepian, et al. [14], uses a series

expansion

f(6) = T agg(tiTo) (18)
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where {¢n(t.Tc)} is a special set of complete orthonormal bandlimited
functions, called the prolate-spheroidal wave functions (PSWF), which are
defined for all t. The coefficients {a } can be evaluated as projections
of the known function go(t) on the basis functions (¢n}. Once {a"} are
known, the right side of (18), considered valid for all t,gives the
extrapolated signal. In practice, this method also suffers from noise
limitations and errors due to truncation of the series. Moreover it
is extremely difficult to accurately generate the basis PSW functions
so that extrapolation in a practical situation is quite hopeless. For a
simple example, see Frieden [19].

Recently, Papoulis [8] has introduced an iterative scheme that appears
to do better than the PSWF expansion method. The algorithm has the
following steps. The first step is to compute the Fourier transform of

go(t) as Go(w) and define

Galw), |w| <o
Jw =q ° (19)
, o] >0
Compute f1(t), the Fourier inverse of F,(w) and let
f(t) , It} <7
g, (t) = (20)
Then compute Gy (w) = F[g,(t)].
This is the first step of the iteration. At the nth step form the
function
6 _y(w) lof <o
Flw)={ ™ (21)
" 0 ’ lwl >0

ol




Find F"[Fn(w)] and fors

ft) ., [t] < T
g, (t) = ‘ (22)
f(t), jt] > T. :

Papoulis has theoretically shown that fn(t) converges to f(t) as
n+o ., If we define a band-1imiting operator as

Bf(t) = f(t)® ((sinot)/mt) (23)

where (sinot)/mt) represents the impulse response of a low pass filter, and

we define a time-1imiting operator as

f(t) . |t] <7
Df(t) = (24)
0 & itj>7
D=1-D
where I = identity operator (25)

then the foregoing algorithm can be written as [10]
g,(t) = g (t) + Hg__.(t)
fn(t) = fl(t) + an-l(t) (26)

H=D8, G=B8D

or

n=1
ACES I ENCIN- S
k=0 4

- . (27)

$ uk | gg(t)
t)=| I u|%
g,(t) kZO :
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Either gn(t) or fn(t) may be considered as the extrapolated signal.

3.2 Extension to Discrete Time Signals

Sabri and Steenaart [10] have suggested a discrete version of this
algorithm, as follows.
Let y(k) be a discrete, band1imited signal so that its Fourier trans-

form (i.e., Z transform evaluated on the unit circle) defined as

V() = I y(Kexp(-jenfk) , -3 <f <3 (28)
k=~co
satisfies the relation*
W =0,3>Ifl>0 (29)

We are given a set of time limited, noise free observations

y(k) , M <k <M
go(k) =
0 , otherwise .

Given {go(k)}. the problem is to find an estimate of y(k) outside the
interval [-M,M]. Following section 3.1, we define infinite vectors

Y = Loeey(=K)e e y(=1),3(0) y(1) e oy(k). T
Lot
gy = [---9,(-k)...90(-1),9,(0) 49, (1) .49, (K) ... ]

where g, & [0,0.,,,0 90(-M).g0(-W1).....180(-1),85(0)s8(1)s- .9y (M),0,0s...

We also define a band-limiting operator L, and a time-1imiting operator W,

as infinite matrices

*This Tmpiies y(k) has been oversampled with respect to its Nyquist rate.

This occurs quite often when a system observes signals over a wide bandwidth.

skl e

|
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L= {2 3} . singm(i-j)o = j,j = 0,41,%2,...

‘“’ -
(31)
1, 455 , -M <, <M
e " A
0 » otherwise
Also, let
W=1-W (32)
Then, one obtains from (27)
7 Al (33)
n+l kS0 !
G =LW
Defining
n
g8 1 & (34)
k=0
in the limit as n > » , we get
f, = Ef ’ (35)
where
£ = J&¥e(16)7. (36)
k=0

The matrix E_ has been called the extrapolation matrix and it exists
if and only if no roots of G equal unity. In iterative form, the algorithm

becomes

faq = Ty + 6F (37)
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In practice, the infinite matrix operator G is replaced by a finite
matrix, of size, say, NxN where N >> (2M+1). Later in this section we will
show that (I-G) is singular for N = «, but its finite approximation (N<=)

is non singular.

Existence and Convergence

Following Papoulis, it can be shown that the above iterative algorithm
satisfies the inequality

%
rlv(f) - 6 _,(f)|%af > J I¥(F) - & (f)|%af (38)
% 1

which says that the mean square error is reduced at each step. However, the
extrapolated signal need not converge to the original signal y(k) because

the time limited discrete sianal does not have the analyticity property that
the continuous signal has. Indeed, as we show in the next section, the above
(discrete extrapolation) algorithm converges to a least squares, minimum

norm solution associated with the solution of the equation
WLy = g,

In terms of computational complexity, the iterative algorithm requires
about 4nN1092N real operations (one operation = one multiplication and one
addition), where N is the size of the extrapolated vector (and is much larger
than M) and n is the number of iterations.

If the extrapolation matrix E_,is used, then once it has been computed,
it requires %(2M+l)(N-2M—1) operations to evaluate the extrapolated signal.
However a large (NxN) matrix which is {11 conditioned.has'to be inverted.

(see next section)

——

et e e bt g0t s e e s Al s B g Y




-22-
IV. EXTRAPOLATION OF DISCRETE TIME, BANDLIMITED SIGNALS E
] Before proceeding to prove several results related to extrapolation E
% of discrete signals we first consider several definitions. Let A be an §
g arbitrary mxn matrix and consider the system of equations :
Ay = z (39)
where y and z are nx1 and mx1 vectors respectively. :
4.1 Definitions
Definition 1: Least Squares Solution
A least squares solution of (39), denoted by y, is such that
' 2 . A T A
|z - AF||© = (z-AY)" (z-Ay) (40)
? is minimum. This solution must therefore satisfy the equation
ATAG = ATz (a1)
1f ATA is nonsingular (i.e. n < m and rank of A is n) then
A MR
y=(A'A) Az (42)
is the least squares solution and is unique. If m = n and A is nonsingular,
. then
] :
§=2y=A2 (43) ,
. &
%
A < L L NGS5 e e——

S e T Y ¥ I
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If m < n, then ATA is necessarily singular and has rank at mest m. Then
(41) does not have a unique solution.

Definition 2: Minimum Norm Least Squares Solution

Let y* denote this solution. Then y+ must be that solution of (41)

which has the minimum norm l|9||2. Thus
y* = mint]19112; ATAS = AT2) (44)
37

Clearly, if rank ATA is n then y+ = y. The minimum norm is simply

a constraint that makes the least squares solution unique for an arbitrary A.

Definition 3: Pseudo Inverse

We call A the pseudo inverse of A[18], if for every equation (39),

the associated minimum norm least squares solution is given by
y = A"z (45)

This pseudo inverse, also called the generalized inverse, satisfies

the relations

AA+ ® (AA+)T
afa = ('t
MA = A

Atant

(46)

-A+

When rank A = n,




-24-

At = (ATA) AT

If rank A = m, then

-1
A* = AT(aT) (48)

Definition 4: Singular Value Expansion [21]

In general an explicit expression for A*, of the type of (47) or (48)
is not available. However, At can be expressed as an expansion. Consider

the eigenvalue problems

ATA¢k Ak
(49)
]
MY = Ay

where k = 1,2,...,p and p is the rank of A. The vectors ¢, and wk are of
sizes nx1 and mx1 respectively. Since ATA and AAT are non-negative matrices,

these eigen-vectors exist and can be orthonormalized so that

R ——

12 e
Oy = S0
(50)
.
YeVe = Skoe

From this, one can express the rectangular matrix A by the expansion, called

the singular value expansion, as

o S . I ] PSS at 4 o s

USSR I NS SURSIREN RS




14
AT T TN S ]

o —

N Y O PR

F
§
;
.
i
H
8
2
b

o s e

-

X T
A= ] N
kglkkk

where Ak > 0, are called the singular values of A.

The pseudo inverse A+ can now be written as

¥ 8y T
A = (W)
kz‘lwk K7k

4.2 Properties of L

Now we consider some useful properties of the low pass filter operator
defined in (31).

Property I: L is a symmetric operator, i.e., L = LT. This follows
from its definition.

Property II: The Fourier spectrum of L is given by

1. Oxith<o
L(f) = (53)
0, otherwise,
where - %-5 f< %: This is obvious since L is the Toeplitz matrix
formed by the Fourier inverse of 2(f), the lowpass filter transfer function.

Property III: Let S be a (2M+1)x> matrix operator whose elements

are

1, i=j=0%1,%2,...,iM

Si,4" (54)
- 0, otherwise

Basically S selects (2M+1) elements from an infinite vector. Consider
the (2M+1)x(2M+1) matrix

L = sLst : (55)

e A s S R S 5 S men s
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where W is defined in (31).

Property IV: The operator L is idempotent, i.e.,

2.y (58)

This is obvious because ideal low pass filtering a signal once is the

§ same as doing it twice, i.e.,

Ly = L(Ly)

Note this implies the spectrum (or eigenvalues) of L must be composed

of zeros and ones only [see (53)].

Property V: For every M < =, E is positive definite. This follows
by noting

Tixx = P e J2n(m-n)f ey, oo
xlxt = 11 Xl Xy ggd} of Yy

| —————— S —— A
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m=-M M

2
df

-[

J
-0

M
- Io'xn(f)lzdf, Xy(f) & m)lnxmeJZ“mf (59)
-0

>0, 1ifM<w

If M = =, then x_ = g~J2mmE gives Xy(f) = 8(f-£) so that

A T 1’ IEI <0
X'Lx* = x'Lx* = (60)
0; &l > e

and is not positive definite. Thus, all the eigenvalues of L are positive
A(L) >0, M<w (61)
Property VI: Let xmax(f) denote the largest eigenvalue of L. Then

A (f) <1, M<o
max (62)

=]’ = ®

Thus, for any finite M, the eigenvalues of C are bounded in the interval

(0,1) i.e.,

0<AL) <1, M<o (63)

To prove (62) we note

~

* T
Amax(t) asn(\ax !‘_.#.’L"_

} x'x*




o et art

WA T

-28-

From (59) we can write

(64)

[ el
% -g
Amax (L) = mx 72 3
"m[ |XM(f)| df
-1/2
Since, for M < =, XM(f) is the Fourier spectrum of a time 1imited signal,

it cannot be zero on any finite interval. Hence

1/2
r ’X"(f)lzdf<[ lxm(f)|2df, YM<o, o <‘§
-0 -1/2

or % E X e nXn mgznlxml y YM<w

When M = =, one could maximize (64) by choosing a bandlimited signal so that
the above inequality will become an equality. This proves (62).
4.3 Iterative Extrapolation

With the above definitions and properties we are now ready to prove
the following results. Let y(k), k=0,11,... be a discrete time bandlimited
signal as defined in (28) and (29).

Furthermore, let this signal be observed without any noise over a
finite interval and define
z(k) = y(k), ~-M<k<M (65)

If z denotes a (2M+1)x1 vector and y 1s the infinite vector of {y(k)}, then

298y
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-

Since y is bandlimited, it must satisfy

A L

Ly = ¥

so that we can write

z = Sly (66)

Theorem 1: Minimum Norm Least Squares Extrapolation Theorem

The iterative solution [see (32) to (37) and (57)]

SN S e e e

= f. + Gf_, G % FaRyive

fqﬂ 1 q
G = L(I-STS) = L(I-W) (67)

% - LoV
f] = Lg0 LS z

s

converges to the minimum norm least squares solution y+ of (66). Moreover,

(67) 1s a special case of a gradient algorithm associated with the minimum

norm least squares optimization problem.
Proof: An iterative gradient algorithm associated with the minimum norm

least squares solution of the general equation (39) is

Yon = Yq * 5 A (2-Ay) (68)
=147 o
- Az + (I - A A)yq (69)

It is known that Yq converges to y+ as q + =, under the following conditions [12]:
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a) 0<l<

2
& xmx(AiA)

(70)

b) The initial guess Yo must lie in the range space of ATA e.9.uy, = 0.
From (66), letting

A=SL (1)
we get
aTa = LTsTsL = L (72)
Az =1TsTz = 18Tz = 1 (73)
Hence (69) becomes
Yo+ =];f1 +yq--1°-LHL Yq (74)
Now letting
Yo =0

and noting that f1 is bandlimited i.e.,

Lf, = (75)

it is easily verified by induction that {yq} is a bandlimited sequence 1.e.,

———




DUm——————

"
Lyq = Yqr q=1,2,3... (76)
Using this in (74) we get
“le sy -1y
yq+l o1 yq (o] yq
=le v -liwy (77)
o 1 o q

For 0 = 1, (77) becomes the same as (67). Now it remains to show that this

algorithm converges for ¢ = 1. From (70) and (72) this requires us to find

the largest eigenvalue of LWL. Now

. P T
A (L) = Ay ATA) = Ay M)
= 4
kmx\fLs )
9 Amax(L) ,
<1, VYMia,

where we have used Property VI. Therefore, convergence of (77) 1svach1eved
whenever
—52<——-;—2 (78)

1
0 <
g
xmx(L)

Hence for o = 1, (77) converges. This completes the proof of Theorem 1.

An interesting question raised by the foregoing result is "What is the
optimal value of o?" In other words, we want to find the "steepest descent”
for the gradient algorithm. Defining the error vector at iteration step q as

L e T B Ve RS PRV
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¢ R S (79)

and noting that f1 can also be written as

f, = Lgp = LWy = LWLy (80)
we obtain from (74)
1
eqe1 * (I = 5 Lil)eg (81)
1 q+1
i =(1-ZR) e.a =y (82)

This shows the convergence rate of this extrapolation algorithm is linear.
Slow convergence of this algorithm has also been noted experimentally
by us and by Papoulis [8] and Sabri et al [10]. Since this is a gradient
algorithm, convergence can be improved by adjusting o at every iteration.
The optimal value is given by
h_Th
0,V e gl A =SL, (83)

q T,T
hq A Ahq

where hq is the gradient at step q, defined as

s K ik
hq A'(z qu)
- f) - Ly,

(84)

This requires additional computations at every iteration step. If a constant

value of o is desired, it is given by [24]

S SUUSPARIY DU WSS Wy 7 P ¥ 3P e
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= 2/ D (LW + A (L))

Since L

B s

).mn(LHL) =0
Amx(LHL) <1

we can take

-1
g =2 ean. (85)

opt
From our foregoing analysis we conclude the following about Papoulis'
iterative algorithm.

1. The solution converges to a minimum norm least squares solution. Note
that continuous version of the algorithm converges to the original band
limited signal y(t), as proven by Papoulis [8]. This reinforces the fact
that time limited discrete observations of a band limited signal need not

give its exact extrapolation.

2. The algorithm is a gradient algorithm. Hence its convergence is
linear and slow. It could be improved by going to the steepest descent
algorithm,

4.4 The Extrapolation Matrix

Now we consider the extrapolation matrix suggested by Sabri and Steenaart
[10]. This is the doubly infinite matrix defined as [see eqns. (32) to (36)]

E_ = (1-6) (86)




e e

R P A AT

3=

G =L(I-W)

In a practical situation the matrix G is truncated to a finite, but large,
NxN matrix, say GN defined as

Gy = Ly(Iy-Wy) (87)
and the corresponding extrapolation matrix is

By = (Bl

N NN

Ne intend to show that for every finite N, Ey exists. However, E, does
not exist. Thus as N goes to infinity the sequence {EN} becomes an il11-

conditioned set of matrices.

Letma 1: For every finite N, the matrix PN defined as

is nonsingular, At N = =, PN is singular.
Proof: From Property V, the finite NxN matrix LN is positive definite.
Now consider the symmetric matrix

Cy @ Pyly

=1 - LNZ + by (89)

Since a1l the eigenvalues of Ly 1ie in the interval (0,1) we have

RS ——
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L) =« 2,51 < 4 lty) (90)
Therefore, for any Nx1 vector x,
T
X Lx* > XTLy 2w

Also

xTLNNNLNx* = 'f 'f xmzlff')‘xn* >0
m=-M n=-M 5

where (1{2)} are the (2M+1)x(2#+1) elements of L%, which is positive
]
definite. Clearly, then Cy is positive definite. Hence PN = CNLN-] exists
and is nonsingular.
At N = o, H‘is singular. Consider the eigenvectors of the equation
LWLx = Ax (91a)
Since LWL is symmetric and is of rank (2M+1), there exists an x such that
LWx =0, x#0 (91b)
Moreover, for every such vector there exists a band-1imited x.

Lx = X

which is also a solution of (91a). Thus, for all such x we have
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xTPx = xTPLx = xTLx - xTLZx + xTLHLx
= xTLx - xTLx % xTLHLx
= x'LWLx
=0)

Thus P is singular.

4.5 The Generalized Inverse

Having noted that the foregoing approaches give a minimum norm least
squares solution, one may attempt to find it directly. We recall that the

given system of equations is

Sy = 2z (92)
Defining A = SL to give
mT = stLTsT
= sts’ (93)
= L

We note that L is positive definite (Property V). Hence from Definition 3 and
Eqn. (48) we can write directly At = I\T(AI\T)"1 which gives the extrapolation

matrix
E, = LTsT(sLs™) ! (94)

and
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y* = LTsT(sLs™) 2 (95)

This form of solution was obtained for the extrapolation problem by Cadzow
[11] by a different route. This method, we believe, is easier and more
direct. We note that while the extrapolation matrix E_ did not exist, the
extrapolation matrix E. exists. Moreover, E is only a (2M+1)x(2M+1)
Toeplitz matrix so that its dimensionality is much smaller. However, as M
becomes large or for certain combinations of M and o, L could be i11
conditioned. Experimentally, the 111 conditioning can be reduced by adding
a small diagonal term to L. This, however, will degrade the extrapolated
estimate.

4.6 Discrete Prolate Spheroidal Wave Functions and Singular Value Expansion

In an earlier section we had mentioned that a continuous band-1imited
signal could be extrapolated outside its observation interval, exactly, via
the PSWF expansion. For the case of discrete signals,a similar expansion
is possible for the minimum norm least squares extrapolated estimate. This
js achieved viz the singular value expansion described in Definition 4.
Papoulis and Bertram [20] have introduced the discrete PSWF earlier for
realization of digital filters whose impulse response is an all-zero model.
However, they have not shown any extrapolation properties of these PSWFs.
Here we introduce the discrete PSWFs which also extrapolate a discrete
band Timited signal (known over a finite duration) to an infinite, minimum
norm least squares signal.

Following Definition 4 for A = SL, we consider the eigenvalue problems




W

<38

Tae = _ry - a
ATAG, = LWLo, = LS'SLo, = A dys - Mk <M (96)
T S L
AA wk = ka = SLS Yy = Akwk’ -M<k<M (97)
where A, > 0, and {¢k} are » x 1 and {wk} are (2M+1)x1 orthogonal vectors i.e.,

5
S % = Sk.,0

: (98)
Ve ¥ = Sk
From (96), ¢y Must be a band-1imited signal satisfying the condition
L¢k * ¢k (99)
because 9 = (1/Ak)L(wL¢k), and Lz is band limited,¥z. Now define
£ = SLoy = S¢, (100)
Then (96) gives
Ls'g, = A\
or
SLSTE, = 2,86, = AE (101)
k k™Tk k~k

This shows Ek satisfies the same equation as wk. Hence Ek and ¥ must

be proportional 1.e.
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Ek’Cka 1
: Using the orthogonality condition (98) and the egns. (99), (100) and (97)
we find
2=
| % =X
or gy = «T& (102)
giving
1
v, = So, |l , A, >0, -M<k<M (103)
k k k - -
A
Also from (96), this yields
¢ =_1_|_3Tw -M<k<M (104)
N M R
k
Eugation (103) states that the (2M+1)x1 vector Y is simply obtained by selecting

the (2M+1) elements {¢k(m), - M <m< M} of ¢, and scaling them by A;1/2.

Eqn. (104) is remarkable in that the =x1 vector ¢k is obtained by simply low

pass filtering the sequence {wk(m)} and scaling the result by 1;1/2. This

means °k is the extrapolation of Yy obtained by simple low pass filtering and
scaling. Also noteworthy is the fact that the sequence {¢,(m), - = < m < =}

is orthogonal over the interval - M < m < M as well as over the infinite interval.

This property is similar to that of the continuous PSWFs. The (2M+1)x1 vectors

¥, are easily obtained by solving the eigenvalue problem of (97) i.e. :
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M
m,zn sinﬁwg!;—ml ¥ (m) = Ay (n), -M<n, k<M (105)

Once {wk} are obtained, {¢k} are given by (104) i.e.,

¢k(") & I Ig sin2ng(n-m

= W(m)o I (]“)
i il m(n-m k -
combining (105) and (106) we find
/kak(n), -M<n<M,
,(n) = (107)
M
1 sin2nmg(n-m
x: m=z-M ——"-G-S-"—‘)—)- P (m), otherwise
where - M < k < M. The extrapolated signal is obtained by applying (52)
as
y+ R
or
& M ay
y'm - T X:qbk(m). ¥m (108)
where
Toe §owlmz s 1 4 (dyin) (109)
a, =Y, 2= v, (m)z_ = ¥, (m)y(m
k "k 0 s ST




The functions {wk(n)} and {¢k(n)} have been obtained by Papoulis [20] and are

called the discrete PSWF, However, their usefulness in obtaining minimum norm
least squares extrapolation has not been noted earlier. Our extrapolation
algorithm requires the following steps. First calculate (2M+1) orthonormalfzed
vectors (each of size (2M+1)) by solving (105). Next obtain the (2M+1)

infinite size vectors O according to (104) by low pass filtering and scaling

of Y. Then (108) and (109) give the extrapolated estimate from the observations
{y(m), -M<mc<Mh

Properties of Discrete PSWFs: We now summarize properties of these functions.

1. Let L be a low pass filter operator and [ be a (2M+1)x(2M+1) principal

minor of it, i.e.
By 5% 8,5 = Mg 1130011, 2 (2M)

Then the orthonormalized eigenvectors of f. denoted by "’k form a complete

orthonormal set of basis functions in (2M+1) dimensional vector space. Let

Ewk =AY -MckcM (110)

2. The discrete PSWF are formed from {y } as =x1 vectors {¢,} and are defindd as

¢k.x1:|.s¢.k -M<k<M (1)

3. The PSWFs are orthonormal over the infinite interval, i.e.
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L o (Mg, (m) = &, o (112)

4. The PSWFs are orthogonal over the finite interval [-M,M], i.e.,
? )¢, (
¢, (m)o, (m) = A, 6 (113)
me-M K L k'k,2

5. The Fourier transform °k(f) of {¢k(m)} satisfies the eigenvalue integral

equation

g

[ B o (rar = 2000, If] <a (1)

-0

The proof is obtained by Fourier transforming (111) and using (103).

6. The eigenvalues of  1ie in the interval (0,1) i.e., 0 < Ak(f) < 1.

7. Let y(m) be a band 1imited signal whose spectrum 1ies in the interval
(-0,0). If y(k) is known over the interval [-M,M], then its minimum norm least

squares extrapolation estimate is given by

+ M a,
y (m) = k.Z_M 5 ¢, (m), ¥m
(1s)
M
a = m.Z_M y(m)é, (m)
Note that this gives y+(m) = y(m) for m e [-M,M].

So far we have considered only the case when there is no noise in the
observed signal. In the next few sections, we consider other algorithms where
additive noise or interfering signals are allowed in the observations. The
algorithms reduce to minimum norm least squares solutions in the absence of any

noise.

A e i g e .
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E V. A CONJUGATE GRADIENT ALGORITHM FOR SIGNAL EXTRAPOLATION

§ In this section we consider a slightly different but more general
| - problem than that considered in the previous section. We are interested in
extrapolation and discrimination of two interfering signals (see Example 1).
Let us assume that we are given m observations which may consist of

signal, clutter and noise, where the signal and clutter are bandlimited in

mutually exclusive bands (see Fig. 1(a)). The problem then is to obtain

estimates of extrapolated signal and clutter outside their observation
i interval.
Let the Bandpass operator B operate on the signal in the signal band

t[fz,f3] and the low pass operator L operate on the clutter in the clutter
band t[O,f1].

s f We introduce operator notation:

| s: original signal (infinite vector)

c:  clutter (infinite vector)

n: noise (mx1 vector)

observed samples (mx1 vector)

bandpass operator (infinite matrix)

Low pass operator (infinite matrix)

W rmr o <

Selection operator (mx«)

The matrices B and L are Toeplitz matrices determined from the

sequences {bk}' {zk} respectively, as the Fourier inverses [see Fig. 11],

f
3 sin(2nf,k) - sin(2nf,k
by = 2[ cos (2nfk)df = e ! (116)
f
2
B= by )

SRS S I SSSSE S TR BRSPRRRY S R B
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f

1 sin(Zﬂflk)
e ZI cos(2nfk)df = ————
0

mk

L= {“1-1}

The selection matrix S, (introduced earlier also) is defined as
s= [0 1, }0] (n8)

where I“I is an m x m identity matrix. The matrix selects the observed m
samples from an infinite size vector. The observation vector can be

written as
y=S8Ss+Sc+n. (119)

Since s and ¢ are bandlimited signals they satisfy Bs = s and Lc = c.

Thus, we can write

y = SBs + SLc + n (120)

c

y = S[B L] [s]+n
éHx+n (121)

when H = S[B L] and x = ﬂ :
c

Now the problem is to find an estimate of x, given y. In the
absence of clutter (c=0), the problem reduces to the extrapolation problem
considered earlier. The solution R obtained by minimizing the least

squares norm

J = || y-Hx|| 2

is given by




Bl

A2 Pamear b i

S,

AT

Tt

-45-
x = (HTH) Ty

hhere (HTH)']HT is the pseudo inverse operator of H provided (HTH)'] exists.
However, this is not the case as explained below.
The infinite matrices B and L are Toeplitz and are diagonalized by the

Fourier transform operator. Therefore,

FIB LIF' = A (f)

where F is the Fourier transform operator and FT is its conjugate transpose

and A (f) is as shown in figure 11.

This also implies that the operators B and L are idempotent i.e.,

B2 = B and L2 = L. From Fig. 11 the operator [B L] is singular which in

turn implies
T
1. 1®1a
HH=| 4 s's(s L] (123)
L
js singular, and has a rank of atmost m,
A number of approaches are once again possible to find the pseudo

inverse of H, as discussed in the previous section. Here we consider a two

step gradient method.
An example of a two step gradient method where initial convergence is

extremely rapid is the Conjugate Gradient Method [12,13] which is based
on the following ideas. Let Q denote the matrix HTH (which has dimension
2Nx2N to extrapolate the signal and clutter each to N points).

Let £ = 2N. A set of 2 vectors {d;} are conjugate if

T
d,'0d; =0, 1 #.

e At e i
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Since Q is symmetric a set of such vectors exist and forms a basis. The
solution vector can, therefore, be written as
L
X = izlaidi s

The scalers {a,}-and vectors {d;} must be found in a computationally
feasible way. One way is via the algorithm [13]

~k+1 _ ok
X x + akdk
'Cdek (124)
a = _T—
K 409

where the {dk} are generated by

dear = “Cpar * B9y
(125)
C...'qd
_ Sy O
k
d, 0d,

The vectors {Ck} are the gradients of J at each iteration
c, = Qi - Hly=¢,, +a 0d (126)
k k-1 k=-1""k=-1 °
and the initial conditions are
X'=y and 4 =C,. (127)

The minimum is achieved in at most % steps, and the method is step for

step better than a gradient method. A very attractive feature of this
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algorithm is that large reductions in error are achieved in the

first few steps [13].

Looking at the computations involved, we see that except for the single
matrix vector product Qdk. all vector operations involve only £ multiplica-
tions. Hence, the order of computations for each iteration is 4mN.

(Note that Q is composed from Toeplitz matrices, so that advantage of FFT
method could be taken to evaluate Qdk.) When Q is highly ill1-conditioned,
or singular, the iterations must be stopped at an optimum point. Alter-
natively, we may add a small value € of the order of 'IO'6 to each diagonal
term of Q. This minimizes convergence ambiguity due to il1-conditioning

and stabilizes the iterations greatly.
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VI. A MEAN SQUARE EXTRAPOLATING FILTER

With the formulation and notation of the problem of Section V, we
have "

y=Hx +n. (128)

Now we assume that x is a random Gaussian vector whose autocorrelation
matrix is denoted by Rx. The minimum mean square estimate of x is given

by the Wiener filter as*

x = [E(xy") JEly yD17ly ey . (129)
Assuming noise to be independent of x, it is easy to obtain
T T -1
G = RXH (HRXH +Rn)

(130)
Rn = E(n nT)

which is equivalent to the equations
1] =
(HRXH +Rn)z =y

X = RxHTz
Rk, = EDxx"] = EL(E)(sTcT))

E(ssT) E(scT).
E(csT) E(ccT)

(140)

+ We note here the similarity between the extrapolation problem and the
restoration problem in image processing [17]. For example, an image
blurred by a low pass type operator H and contaminated by additive noise
would give rise to an equation similar to (128).

* Here E is the expectation operator.
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If signal and clutter are uncorrelated (non overlapping power spectra)

E(ss’) o

g e i 0 - (141)

In the special case when the noise and clutter are absent, we have

H=B
R, = 0.
Thus, we have z = (sBRxBTsT)"y. Since s(k) is a bandlimited

random process, we must have

Fa
BR,B' = R,

which gives

A T Ty\-1
x = R S'(SR,S | e
In the worst case, when we do not know Rx. we can simply assume the

power spectrum of x(k) to be flat in its bandwidth so that

Rx =B

and R = BST(SBST)+y where (SBST)+ is the pseudo inverse of (SBST). This is
the same result as obtained by Cadzow [See Eqn. (95)]. Thus Cadzow's one
shot ‘method i3 a special case of this extrapolation filter. In the
presence of noise, the extrapolation filter estimate is

% = BsT(sas™+ )Ty

where (SBST+Rn)'] exists and is unique.
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VII. A RECURSIVE EXTRAPOLATION ALGORITHM

In this section we present a recursive least squares algorithm based
on Kalman filtering techniques where the extrapolated signal estimate
is updated recursively as a new observation sample arrives.

Based on the formulation of the problem as in section V we rewrite

equation (121):

y=Hx +n

h

The kt observation Yy can be written as

y, * hIx o and  k=0,2,....m-1 (142)

-
k
The state equation for the unknown extrapolated vector x can be written

h

where h 1is the kt row of H and M is zero mean white Gaussian noise.

as
X1 = X (143)

with initial condition Xy = Xs where x is a random vector whose covariance

is given by
P, = cov(x,) = cov(x) = H e (o o} (144)

Since H is idempotent i.e. HH = H, it is easy to verify that
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] e
hehe = g
and
it T

(145a)

(145b)

(145¢)

The Kalman filter associated with equations (142)-(144) is the recursive

least squares filter (e.g. see Nahi [16])

o T i
Ree1 = Bt 9 &), Ry =0

where 2k is the kth estimate of x and 9% is the Kalman filter gain.

The associated Riccati equation is

> b SN e 0.1y
Prap® UL - H P )P (1 H hehPi) + 90, (Klgy

and

c = hIthk + onz(k), onz(k) = E[nkZ]

1
g =—Ph
k S kk

Equation (147) then reduces to

(146)

(147)

(148)

(149)
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g R
Pk+1 = Pk ¢ thkhkpk (150)

Letting Pk =H + aPk, and using equations (145),

L 1 T
9Ppyq = Py - oy (1+3P, )h h, (I+3P,) (151)
Defining
and
T ] (152b)

Be,e = Bk kM

it follows from (151) that

b 3

Lot T L L R T e R e e g WU

Eot = 0
From (149) it follows that
9 * g‘;(h,gsk) (154)
From (145), (148) and (152), we get
¢, =%+ cnz(k) * By ok (155)
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Assuming that we are basing our extrapolation on m observed sample values and
that we are extrapolating to N points, the maximum storage required is mN.
The major computation is in the calculation of the zm (153) and it is
easily seen that the order of computations involved is ~0(m2N).
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VIII. EXAMPLES, RESULTS AND COMPARISONS

We will now consider several examples to study the performance of
the foregoing algorithms. In Example 1 below, we consider the observations

to be of the form
y(k) = s(k) + c(k) + n(k) , -M<k <M

where c(k) is the bandlimited clutter sequence, and s(k) is a band1imited

signal whose band limits are known, i.e.,

S(w) =0,w ¢[w],m2].
n(k) is a zero mean white noise process with variance °n2‘
In examples 2-9 the observations are of the form
y(k) = s(k) +n(k) ; -M<k <M.
The following examples have been considered.
la. y(k) = s(k) + c(k) + n(k) ; -8 <k <8
s(k) = 1.69sin(.397k)
0, = 0.382n
w, = 0.397n
clutterband: w, [0,0.167]
°n2 = 0.13
SCR = -4.1dB, SNR = 19dB

1b.  y(k) = s(k) + c(k); -8<kg8

w = 3
wy = A

e et 4 S




! i .875uw,y
s(k) = 1.6951n(wsk)

28
% 0

2. s(k) = sin(.99u2k) + sin(.asubk)
OnSO

W, = 0.8w2

w, = 2rn/50
3. s(k) = sin(.99w2k) + sin(.85m2k)

g =0

w = 0

= 0.1n

The above two cases have the same signal, but the knowledge of band-
limits is different. In the following cases we have other signals with

different bandlimits. In examples 8 and 9 we have additive noise also.

4. s(k) = sin(.365mk) + sin(.3857k)

5. s(k) = sin(.365n7k) + sin(.3857k)

w = .35




9) s(k) = s1n(.99w2k) » sin(.85w2k)

the given data yields the spectrum shown in Fig 1(e). The estimate seems

s(k) = sin(.985w,k) + sin(.975w,k)

H)] = 0. 9&02

wy = 0.4m

- =0
sinwzk

s(k) = 0. l—w—zr

w1=0

»
—
=~
e

"
o
—
€
ro

w, = 0.1n
E(n(k)) = 0, onz = 0.01

SNR = 7.4d8B

wy = -8uw,
w, = 21/50
E(n(k)) = 0

onz = 0.1, SNR = 21.6dB

In example la, application of an eighth order autoregressive model to




to be completely dominated by the clutter. A 256-point DFT-spectrum

estimate of the data is shown in Fig. 1(f), and clearly, this also is

most unsatisfactory. Figures 1(g) and 1(h) show the signal extrapolated

to 199 points by the Conjugate Gradient Algorithm (using only 10 itera-
tions) and the Mean Square Extrapolation Filter. Figures 1(i) and 1(j)

show the corresponding results for the extrapolated clutter. The Maximum
Entropy method is applied to the extrapolated signal and extrapolated

clutter separately using a fifteenth order model. Fig. 1(k) and 1(2) show the
extrapolated signal spectra using the Conjugate Gradient Algorithm and the
M.S. Extrapolation filter. They yield the signal peak at the correct

location. Figures 1(m) and 1(n) show the corresponding clutter spectra.

In example 1b, the signal bandwidth is increased from the previous case.

The actual spectra of signal and clutter are shown in fig. 2(a). The FFT
spectrum using 256 points is shown in fig. 2(b), and the Maximum Entropy
Spectrum using an eight order model in fig. 2(<). After extrapolating signal
and clutter to 125 points each, using the conjugate gradient algorithm their
respective spectra are calculated by the Maximum Entropy Method using a lsth
order model. This is shown in figures 2(d) and 2(e) respectively. Figure 2(d)
shows a peak at the signal frequency along with two subsidiary peaks which are
seen to occur exactly at the filter cut-off frequencies.

In examples 2-9 we consider either signal only or signal with additive,

white, Gaussian noise.
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clutter spectrum

signal band

| signal

T&/

6T .31 3574

Fia. 2a:

Spectra of Signal and Clutter
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The observed data consists of 17 samples and it is extrapolated to
199 points using
1. Papoulis' iterative algorithm
the matrix E

c
the matrix Ec after it has been stabilized

5

the conjugate gradient algorithm

5. the M.S. extrapolation filter for Examples 8 and 9 when the signal
contains noise.

Extrapolation using Papoulis' algorithm was done with 30 iterations and with

10 iterations using the conjugate gradient algorithm.

Since all the algorithms ultimately yield a minimum norm Teast-squares
solution, we expect equivalent results from all the algorithms. Figure 3(c)
shows the extrapolation using Papoulis! algorithm, and is seen to give a
reasonable result. Figure 3(d) shows the extrapolation via the matrix E..

6 is added to the matrix

After a stabilizing diagonal term of the order of 10~
(SLST), the extrapolation obtained is as shown in figure 3(e). A close
examination of figures 3(a), 3(d) and 3(e) shows a slight phase shift
of the signal 3(d). This may be attributable to the i11-conditioning
of (SLST). Figure 3(f) shows the extrapolation by the Conjugate Gradient
method after 10 iterations. This algorithm gives a slightly inferior
extrapolation compared to the others in this case, and perhaps needs a few
more iterations. In later examples, however, it is seen that 10 iterations
are sufficient.

In the set of figures 4, we have the same signal and observations, but
the uncertainty in bandwidth is increased over the previous case. The

relatively degraded extrapolations achieved now show that there is a

trade-off between bandwidth uncertainty and extrapolation length, which is

to be expected. The set of figures 5, 6, 7 lead to similar conclusions for
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signals with differing frequencies and different bandwidths.

In the set of figures 8, we consider a sin x/x type of signal. The
phase distortions of the extrapolated estimate in figure 8(d) dramatically
illustrate the il11-conditioned nature of (SLST). In the above examples
there was no noise in the observations. Now, we consider (examples 9 and
10) signals in additive zero mean, white Gaussian noise at the SNR 7.4dB,
21.6dB respectively. The results show that the Mean Square Extrapolation
filter, which takes noise statistics into account produces the best
extrapolation (Figs. 9(g) and 10(g)) among the algorithms considered
experimentally. Similar results are to be expected form the recursive
extrapolation algorithm of section VII. Further simulations are required

to study the numerical behavior of this algorithm.

B e e
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A(-F) = A(F)

clutter band
signal band

A(F)

1.0

7

i

Fig. 11: MM¥)wvs. 7
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IX. CONCLUSIONS

The problem considered here was to effectively discriminate the
signal from the interfering clutter, based on a small number of observation
samples. Conventional techniques 1ike the DFT and Maximum Entropy Methods
are seen to yield poor results.

Given that the signal and clutter are band 1imited in mutually exclusive
bands, a good method of improving resolution is to extrapolate the signal
outside the observation interval and then estimate the spectrum. Though
continuous time band limited signals can be extrapolated exactly outside the
observation interval, this is not possible in the discrete time case. In
fact, in this report we have proved that the discrete extension of the
continuous algorithms leads to an extrapolated signal which is optimum
in a2 minimum norm least squares sense.

We have introduced some new algorithms for signal extrapolation, viz.;
a) Conjugate Gradient Algorithm
b) Mean Square Extrapolation Filter
c) Recursive Extrapolation Filter
d) An Extrapolation Algorithm via Discrete PSWFs.

The Conjugate Gradient method is an iterative technique which has
a rapid initial rate of convergence and hence has an obvious advantage
over Papoulis' algorithm which has a 1inear rate of convergence. The Mean
Square extrapolation filter is a non-iterative method that takes noise
statistics into account and simultaneously filters the clutter from the

signal. Cadzow's one shot method is seen to be a special case of this

filter.




Further experiments have to be performed for the Recursive Extrapolation
filter (which also considers noise statistics) and for extrapolation via
Discrete PSWFs. In practice, extrapolation is achieved only to a limited
extent beyond the observation interval and depends on the signal bandwidth
uncertainty. The larger this bandwidth uncertainty, the smaller the length
to which the signal can be extrapolated. Although, in the absense of noise,
all algorithms yield a minimum norm least squares solution, their implementations
are different and lead to different truncation errors. Such error analysis
and other numerical features for the extrapolation problem need further
work. Our experiments show that whatever the uncertainty of the signal
bandwidth might be, extrapolation of the signal followed by a spectral estimation

improves the spectral estimate.
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Table 1
COMPUTATIONAL GENERAL
METHOD COMPLEXITY COMMENTS

MAX. ENTROPY or
Autoregressive (Burg,

pxp Toeplitz Egns.
+ FFT operation

Simple 1inear Eqns., easy to
implement.

Parzen & others) = 3p2 + 0(NlogN); 2. Good results for all-pole spectra.
p<<N 3. Fails in the presence of noise and
clutter-unless a large number of
observation samples are available.
4. Order of the model difficult to
select.
5. Performance improved by applying it
on extrapolated signal.

Continuous PSWF Very large. Func- | 1. For extrapolation of bandlimited,

(Stepian et al.) tions extremely continuous signals; existence guaran-
difficult to cal- teed.
culate 2. Extremely difficult to implement.

3. Noise sensitive
4. Useful in establishing existence,
uniqueness & other properties.

Iterative 0(4N1ogpN) real 1. Easy to implement

Extrapolation operations per 2. Is a gradient algorithm with

(Papoulis) iteration linear convergence. Requires a large

number of iterations and FFT
operations at each iteration.

3. Does not take into account noise
statistics.

Extrapolation If observed data = | 1. Ex does not exist. E, exists.

Matrix, Ew 2 M+1 and extrapo- | 2. A large (NxN) 111-con51t10ned

(Sabri and lated length = N matrix has to be inverted.

Steenaart) then ~ 0(N3) to in-| 3. Noise sensitive. Can be stabilized by
vert NxN Matrix adding a diagonal term to G.
+1/2(2M+1)(N-2M-1) | 4. Noise statistics not considered.
operations to find
extrapolated signal

E. (Cadzow) 1f observed data = | 1. Easy to implement, if E. is stable.

m pts extrapolated | 2. An i11-conditioned matrix (mxm ‘

to N E;Z;mn Toeplitz) has to be inverted.

0(3m2 ) 3. Noise sensitive. Can be stabilized.
4., Noise statistics not considered.

Conjugate ~ 0(2mN) operations| 1. Easy to implement

Gradient (Jain & per iteration 2. Extremely rapid initial rate of

Ranganath) convergence

3. Small number of iteration required

in practice '
4. Noise sensitive, but can be stabilized
5. Nofise statistics not considered ,
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Table 1, continued

COMPUTATIONAL GENERAL
METHOO COMPLEXITY COMMENTS
Mean Square ~ (Bm2+me+mN ) 1. Easy to implement
Extrapolation operations. mN 2. An mxm Toeplitz matrix has to be
Filter (Jain & operation once inverted.
Ranganath) Filter gain has 3. Takes Noise statistics into account
been computed. 4. Reduces to E; in the noise free case.
Recursive Extra- N operations 1. Easily implemented, updates extra-
polation (Jain & per data point, polated estimate as new data arrives.
Ranganath) if gains are pre- |2. Takes noise statistics into account.
computed.
Discrete PSWF Requires solving |1. More difficult to implement than
Singular Value for eigenvalues (7) or (8). Easy to implement once
Expansion and eigenvectors the efgenvectors have been computed
(Papoulis, Jain & of a (2M+1)x(2M+1)|2. Noise statistics not considered.
Ranganath) Toeplitz matrix, al3. Accuracy depends on the accuracy of

low pass filtering
operation and a
finite series
expansion.

eigenvalues and eigenvectors.
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