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GAS DYNAMIC CONTROL OF SPACE VEHICLE MOVEMENT EY BANK IN THE

ATHOSPHERE

R V. Studnev (USSR)

At present one of the urgent problems is that of control of a
space vehicle, possessirg aerodynasic quality, during reentry. In a
whole series of works there is being examined atmospheric entry with
vehicle balanced at constant angle of attack, trajectory control of
vhich is accomplished by change of the angle of bank [1, 2). In
connection with this appears the problem of evaluation of the dynamic
possibilities of movement of a space vehicle relative to the center
of mass vwith compensaticn of disturbances in terms of angles of
attack and slip (a, B), and also with contrcl of bank angle. There is
knovn a whole series of werks, dedicated to the analysis of optimum
control of orientation cf the space vehicle during movement in a void
[3-6). The majority of these problems was sclved with the use of the

principle of Pontryagin maximum [7, 8). Belcw, on the basis of the
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saximam principle, in simplified form is solved a similar problem of
optimum control of orientation of a space vehicle in the atmosphere,
vhich is somevhat complicated in ccmparison with the problems of
sotion in a void because of the necessity of considering the

aerodynamic moments of stability of the vehicle.

1. Control of motion of space vehicle relative to center of mass

during atmospheric entry.

We will examine movement of a space vehicle relative to the

center of mass in approxisate formulation, disregarding the
interference with movement of the center of mass. We wvill also
consider that during the execution of bank turns and compensation of
deviations with respect to e« and B the paraseters of motion of the
vehicle (V, gq) are not substantially changed and equations of motion
can be considered as egquations with ®frozen" coefficients. Pinally,
ve vill consider the moticn of the space vehicle relative to the
center of mass sufficiently slow, so that in equations of motion the
nonlinear terms °f type o0, po, etc., could be disreqardedjﬂéith
the noted assumptions the equatioas, recorded in the principal

central axes of imertia (0X,Y;2,) (Pig. 1), will have the form:




6‘ = Ma +u, a + @, ‘ (1.1)
‘;)m " 7‘73 + uy, ﬂ = CO8 dy* @y -+ SiD ay- @y, (1.2)
oy, =MBFuy, 7=cosa, 0, —sina,-w,

vhere as - balanced angle of attack of space vehicle (ag=const);
u,. u, ¥, = moments from the controls, pertaining to corresponding

soments of inertia.

In equations (1.1) and (1.2) are preserved only the moments of
aerodynamic stability of the vehicle, since at hypersonic speeds the
effect of aerodynamic damping can be disregarded. From ('.1) and
(1.2) it follows that tke equations of three-dimensional motion of
the space vehicle are divided into eguations of longitudinal (1.1) 1

and lateral (1.2) motions and they can be investigated separately.

Let us examine the equations cf lateral amction of a space
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vehicle (1.2). Let us ccnvert these equations sc as to separate the
motion of the vehicle ian terms of bank (rotation around velocity
vector V) and yav (angle p). Let us multiply the first and second
equations (1.2) respectively by cos ag and sin ao and having

summarized, wve obtain tte equation for 2, and after their

multiplication respectively by (-sin ag) and cos ap and summation -

the egquation for

QO=°'B+.‘0" ﬁ-nﬁ
Q,=e8+u, T=0. .

In equations (1.3) are accepted the following designations: b

Qy = cosay-@, + sin ay- 0,

Q, = cos ay- @, — i ay- @y, : 4
op = Mjcos a, + Misin 3, ) (4.5) A
6y = Micosa, — Misinay; o P ' :
Uy = Uy COS 0ty — U, 8in ay; 1.9
Uq = U, CO8 aly -} U, 8iD o, !

Fros equations (1.3) it follows that motion of the space vehicle with

respect to angle p does not depend on angle y and control u,.

Let us examine the selection cf coatrcls usm ¥y at which », ani

u, are independent. This can be achisved either by coordinated
deflection of aerodynamic controls (u,. u), or by special orientation

of coptrol jet engines with gas-dynasic control of the vehicle.

Let us explain how it is necessary to set the control jet

engines on the vehicle, so that one pair would create only moment
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w, and the other - only mcmeant u,.

The control jet engine with thrust », the vector of which is
arranged in a plane, parallel with plane 0Y,2,, installed on the
stern of the vehicle at angle ¢, to axis 0%,, creates adjusted

moments relative to axes 0X, and 0Y,, determined by formulas (Fig. 2)

U. = o Prsined = 9 Picosed : 1.7

vhere I.!, - distance of one controlled jet engine to axes 0X, and
0Y, respectively: I.., 1, -~ principal moments of inertia of the space

vehicle relative to axes CX, and 0Y,.

Let us select the setting angle of the control jet engine ¢,
from the condition that u, =0 at P, 40 By placing expressions (1.7)
in relations (1.6) and equating the first relation of (1.6) to zero,

ve obtain the condition for ¢, in the fora

g
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,,-Qntc(ﬁ%tu.)- ' ST 1.8)

With such selection of ¢, equation 4, is determined by formula

(1.9)

vV osa l/i-{- (H: I.:T ;

In a particular case, vhem /.1, =1, the expression for u, is

simplified.

2l :
Uy = —’;'- . X : ] (1.10)

Analogously from ccndition ue =0 is found orientation of the

control jet engines of the second pair (Pig. 2):

Q= —arclg(&..i-.). (1.11)

From (1.8) and (1.11) it fcllows that generally the control jet
engines are oriented not orthogonally to each cther, but make up

angle ¢, - #,, thas tangent cf wvhich is found by formula

189 — ) = ,ﬁ’u[;:.’,f‘ _(i';! )_] ,' : (1.12)

With 1., 1,-=1 the control jet engines, creating moments «, and

u,, are orthogomal [(¢, - ¢,) = 90°). In FPig. 3 as an example is

constructed the dependence cf (¢, - #;) on /1, for ao = 30°.
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Analogous coanversicns
aerodynasic comtrol. 1t is
moments », and », should

Ug|uy, = 1ga,,

in this case

|u.|=-2|u,|;:—.'.

Por control of bank we cbtain that u, and u, should be connected by

relationship

ugfu, = —1[tga,

in this case

i
o
luvl=2u,| o -

Por convenience of analysis and tha obtaining of more general

7

can be performad during the analysis of

easy to show that fcr control of yaw (uw)

be connected by relatiomship

- (1.43)

SRR o (1.14)

(1.15)

19

results lat us convert equations tc dimensicnless form. Let us
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introduce dimensionless time r with the «1id of relationship
dv =Y —dBds. ; KT/

Let us change the scales of independent variables, considering

limitations on control u, and Uy

lue|<I|Usl,  uy|<| Uyl : 1.48)

for vhich let us introduce the following designations:

2 —of VB ety
P=P1g,r: Bo= 240 el
S, fugl Q, V—-_a ) : b
FaTE s )

TN

Taking into account designations (1.19) the eguations of motion take

the fors: s
Qo=-B+a, :
) . : 1.20) -
=t i< pig o e
O, =ab+a, ' A
= ; 1.24;
¥ =015 <t . o
;
Let us turn nov to analysis of the optimum control of the space 4
vehicle vith the use of equations (1.20) and (1.21). ”

2. Investigation of the form of p-trajectories.

: < - 2 Rt = VO
P == Dk SRS
o s S Y e B N PO
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In accordance with the principal of Pontryagin maximum [7, 8] let us

compile function
= — pB + pyy — POy + P33B + Paity + PGy ; (219)°
lLet us write out the teras of functions H, containing control:
H, = pyily + piiy. S A

From the condition of maximum of H vith respect to u; it follows
that controls d: and &, are Rayleigh functions, determined from

condition

@y = sign p,, 3, = sign Ps, (litg] = liv' ={). . z (2’3)

For finding the optimum control it is necessary to find the

solution of system of ccnjugate equations p,' = — H/iX,.

Let us compile a system of corjugate equations and examine the

Fossible foras of solution of this system. Conjugate equat ions have

the following form:

Py= =D,  P,=p—pg; 4
Pi=~pPu p,=0. _ 2.5

Equations for p,’ and p’ are easily integrated:

H
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Ps= —¢F + ¢, Pa=¢,. : (2.6)

From solution of (2.6) for p,(r) and condition (2.3) it follows that

generally control i, can change sign not more than once.

Conjugate variables p,, ..., Py are determined taking into
account boundary conditions, imposed on the actual variables. In view
of the linearity of conjugate equations and the Rayleigh character of
control functions the ccnjugate variables are determined with
accuracy to an arbitrary constant multiplier. In connection with this

from (2.4) it follows tlikat the type of solution for p, and p, does

not depenl on coefficient o}, since change of this coefficient is
equivalent to change of the scale cf variable py. Only the solution

for actual variables depends on the coefficient o3 .

Let us examine in more detail the solution for conjugate
variables p,, p2. Considerirg the form of the sclution for py(7),

with the aid of conversion cf variables

Pr=p— e +eSiT, P Py— €O @n

ve obtain the equations for 3» and p, wvhich are easily integrated:

;; - —iﬂo K-;‘. h (2.8’
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The solution of this system of equations on phase plane p,p, is a

family of comcentric circusferences (Fig. 4, a).

rig. 4.

Por analysis of optimum control it is necessary to examine the
change in time only of function p, (r) (values of function p, are
unessential). From relations (2.7) and (2.8) it follows that change
of variables p, and p, cn the phase plane can be represented as the
result of two movements: sovement cf sysmbolic point along the

circumference and displacement of the circusference (Pig. 4, bj. The

possible t ypes of such curves are illustrated by Pig. S.

i
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~

rig. 5.

Let us note some properties of the obtained solutions for conjugate
variables (pl’ p2). It is possible to show that phase curves are

symmetric relative to axis p1=const, passing through the points, in

which 8p,10p. =0.

In order to prove this, let us examine the projections of the
velocity of symbolic point to vertical (0p) and horizontal (Opy)

axes. These projections are equal to (Pig. 6):

V,,s—Rcav+z7:. Vs = Rsing, L (2.9)

vhere R - radius of circuaference ¢f p-tra jectory; 2a/T - rate of

displacement of the center of circumference.

Sl NI il
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Pig. 6.

Using the expressicns for projections of velocity V, and Vo

ve obtain derivative apop,:

—Rcosgp + 2e
om_V T
Sk snddy A (2.40)

Prom (2.10) it follows that derivatives op,/dp, with values of »

equal in value, but different in sign, have different values and are |

different in sign. In particular, derivative op/op, 1is changed into

zero with value of ¢, determined froa relation

v-:t-rceocﬁ. (211)

and approaches infinity with ¢ = 0 and ¢ = 180°. Such character of
change of derivatives indicates the fact t hat the phase curve has

axis of syametry, corresponding to angle ¢ = 0.

The time of motion of symbolic point betveen the points of
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contact of phase curve with gemeratrix p, = const is equal to the
period of revolution of the point along the circumference (i.e. 2r),
and the distance between the points of contact is identical for both

generatrices (Fig. 5, b).

In the region, wvhere the direction of smotion along the
circumference and displacement of the center of circumference are
opposite, the phase curve pg(pz) can have a loop. In the case where
the speed of displacement of the center of the circumference is
greater than the speed cf mction of the syskclic point along the

circunference, the loop on the phase trajectory disappears.

Let us estimate the time of motion of symtclic point along the
loop (see Fig. 6). It can be found from the condition of equality of
time v, of motion of sysbolic point along the arc of circumference
and time r, of progressive motion of the pcint symmetrically located

on the circusference.

He have:

%, = 290 T g (2.12)

Prom the condition v, = v, we obtain the relationship for

finding the radius of circusference R = Ra with assigned values of ¢,

and T:




3. Analysis of control of space vehicle by bank, optimum with

respect to quick action.

Let us turn to the analysis of the optimum control of space
vehicle by bank. We will examine motion of the vehicle relative to
the center of mass on phase planes ffly and ¥Q, Prom equations of
sotion (1.20) it follows that with the appropriate selection of
centrols the yav motion of the space vehicle does not depend on its

bank motion and can be analyzed separately.

Let us examine yav motion of the vehicle:

Q= —-B+a, F=0, 3.4)

With 4, =0 motion of the vehicle on phase plane fQ, is representei
in the form of a circumference with center at pcint 0. The radius of
circunference depeands om the initial conditions ¢(0) and

f,0: R=VE0P+050). The symbolic peint is displaced along the
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circuaferance in the clcckvise direction of motion, completing a full
revolution during 7, =2x. Botion of the space vehicle with Rayleigh
control &,=+1 is represented on the phase plane of the

circuaferance, shifted along axis of by ¢1 and -1 respectively (Fig.

7. a)e.

!ig. 7.

Bank motion of the vehicle (7y) generally, when o,+40 depenrds on

its yav motion and on control i

O, =cp-d,7=0. (3.2)

In the case vhen f =0, bank motion of the space vehicle on
phase plane is described by parabola with i,+0 or by straight line

ﬁ: = const '1th ﬁy =0 (’19. 7‘ b) -

Let us examine the problem about contrcl of the space vehicle,

optisum vith respect to quick action, at zero initial conditions with

respect to entire variatle
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providing turn of the vehicle to angle 75 in sinimum time T and

reduction of it at the end cf the turm to zero conditions
M= =0, (N =0, 71 =70 X0)

Such a system of boundary conditions must be satisfied, by analyzing
the joint solution of equations of motion (3.1) and (3.2) with
Rayleigh control 4, and i, detersined taking into account the

solutions of the system of conjugate equaticns (2.4) and (2.5).

Prom conditions of optimality it follous that control 0O, - is
linear, daterminel by change of the signs of conjugate functions
Pys). Prom Pig. 5 it follows that function [, () can have either two
sections with different signs (Pig. 5, c) (two-pulse control), or
four sections with different signs (four-pulse control) (Pig. S, a,

b) . Three sections with different signs are also possible.

Let us examine symwsetric control of the space vehicle with
respect to bank and yaw. Prca analysis of the actual motion by the
vehicle alcng angle B it follows that for satisfaction of boundary
conditions (3.3) and (3.8), vhen T is not a multiple of 2#, the

application of more than twc pulses is necessary.
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Pig. 8 shows an example of motion of the space vehicle on phase
plane p0,, satisfying roundary conditions cf the problem. Let us
shovw that the corresponding construction of the solution for
conjugate variables p,(v) and p3(r) in this case is possible, and

consequently, control is actually optimuam.

) A - ]

—{
E ] ‘
)

14
- £
m‘

O Qg
' W
b d

sl ;FE‘,—'

|

W

¢ 5-0
‘71

The solution for ccnjugate variabls ps(v) is a linear function

of time. In this case it is possible to accept that p,0) =1/s,, then

A.(T)-—;"‘-. p.(t)a—’!:--—r—:'.;-. : @5

Punction py(r) changes sign vhen r = T/2, and at this moment of time

control &, changes sign (Pig. 8, b).
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By assigning function py(r) there is determined the position of
the center of the circusference p; (p2), in particular p, = -1 vwith »

= 0 and p;, = ¢1 with r = T,

Prom analysis of actual motion of the space vehicle there is
knovn also the time of acticn of the second and third pulses (Fig. 8,
d) , vhich confora to charge of variable p; (v) on loop bcd (Pig. 8,

a) « With the aid of relationship (2.13) by known time t,2=¢, is
found the radius of circuamference R for solution of conjugate
equations. Having added angle ¢,, froporticpal to the duration of
action of the first and fourth pulses, to angle ¢4, proportional to
the tinq of action of the second and third pulse, wve obtain the

initial position of syamkolic point on circuasference p; (p,) .

Using the results, obtained in section 2, it is easy to show
that change of p;(r) matches the required ckange of control 0, and,
consegquent 1y, optimum control, satisfying boundary conditions (3.3)

and (3.4), is found.

As angle of turn ¥ increases, the time of the transient
process T increases and accordingly the durations of the second and
third pulses increase. With a certain time cf transient process T the
durations of the second and third pulses are maximum and with further

grovth of T start to diminish (Figs. 9 and 10).
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e g e

rig. 9.

————

rig. 10. ' 1

With ¥%. corresponding to T = nds (vhere n - wvhole number), control ]

is boundary and is accomplished by two pulses (Pig. 11). :




DoC = 1814 PAGE 21

Pig. 11.

With further increase of 7 (growth of T) the control is again

accomplished by four pulses (Pig. 12).

S

rig. 12,

Analysis of three-gpulse control (Pig. 13), satisfying boundary
conditions (3.3) and (3.4), shows that although it is realizable, it

is not optimum with resgect to gquick action of control.

Ba a e L a . oo gl e o

sanila s
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r‘, [ ] j‘—
T : LTy
L7 g r
R
Fig. 13.

This is connected with the fact that besides the development of
additional increase of y, due to B, angular bank velocity is
developed, the compensation of vhich lLeads to loss of the obtained
gain and makes motion nct optimum. In all the cases examined above
(Pigs. 8-12) the motion of the space vehicle along angle f is

symmetric, i.e.,

Tfp« 0.5 S.M S e (3.9

As a result the additional angular bank velocity on tinme

interval [0, T/2), caused by slip, is compensated on time interval
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(T/2, T) by the further development of FL Tkanks to this the time
intervals of action of fositive and negative ccntrols @, are

identical.

For finding the comnection between the value of 7, and the
sinimun time of the transient process T let us convert equations
(3-2) . Let us represent Q, and y; in the fcrm cf the sum of two
terass:

0 =2,+0. 1=+ : 6.9

and variables 1,1, 0, and {, we will find from equations
Q. =oB 1 =0 (3.8
ﬁ;. i EYO f; - 67.' - ‘3.9)
Frca equations (3.8) it fcllows that

T v ek
8N =3, [Me. Ty (1) = o; [ [Bdvae. (3.40

T
Above, from analysis of f(r), it was shown that jﬁdtao. Due to this
[ ]
equation (3.9) can be sclved separataly, not comsidering the
equations (3.8). As a result the sclution for T(7) is written out

in the fora
i ¥ .3 -
TN =2(5) +3 [ [Ber Ndvae T+ 1, @.11)
L]

Relation (3.11) permits findiag the dependence of % on the time of

the transient process T.
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Punctiom p(r, T), e€ntering the relaticn, depends on time T,

since control i, depends on this value.

Prom relation (3.11) is easily determined the boundary value of

bank angle 7%, , correspcnding to two-pulse control (Fig. 11):

To =422 (2 4 o). d (312)

Generally, if time T is a multiple of 4s, the expression for 7, is

written out in the fora

Ta = (2n)n2(2 4 o)), : (3.13)

where n - number of periods of natural oscillations with respect to B

on half the time interval of the transient fprocess.

Despite the simple equatiorns cof motion, finding the dependence
ToT) is a rather cumberscme operation. Let us write out some
necessary relationships. Frca analysis of thke geometric picture of
sotion on phase plane (Fig. 14) it is possikle to obtain the

follovwing expressions fcr the main parameters:

R=V5=Tcosq,, 8.14)
r_tic':-'—-ﬂ-q-zw—mq.

@, = arctg T Tgp— (345)
= g VI~ ®

vhere ¢, - angle, proportional to the time cf action of the first
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(fourth) pulse; ¢, - angle, proportional to the time of action of the

second (third) pulse.

PRI P P

The time of transient process T is determined by formula
T =2(p + ) (3.16)
On Pig. 15 is constructed the dependence ¢,(%,), and on Pig. 16
- dependence of 7,20, or ¢,, with the aid of which for each value of

o, it is possible to find the value of Ty(7).

deg-
$2.508
' .

,/ N
N

Fig. 15. 7/ + gﬁ fl‘}l,u

. ey
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) — ' /;;1

‘—-‘511;////;r W gyt |

o cl e,.‘ ' I'
rig. 16. :

Let us estimate the value of "qain® in time (Av), caused by
( siaultaneous control of bank and Yav, io ccaparison with optimunm
control only by bank. Time (T, ¢+ A7), required for turning the space

vehicle to angle 7 + 7. with optimum isolated tank control, is

estimated by forsula

T+ 1= 2 (A | 3.47)

vhere y, - bank angle, caused by bank contrcl with time-optimum

maneuver, executed in time T4; y, - bank angle, providing slip with

time-optimum maneuver; To ~time of execution of maneuver with

time-optimum bank and yaw control.

Froma (3.17) ve obtain the nonlinear dependence of time "gain®™ on

the value of Ty and y,:

At=—T,+VTi+21, (3.18)
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4. Optimum quick-action compersation of initial deviations of

the space vehicle with respect to yav and angle of attack.

Let us examine the problem of optimum quick-action coapensation
of deviations of the space vehicle with respect to yaw. As earlier,
ve will analyze the equations of mction

Qo= —PF +u,, 7 =1, v ' (4.1)

3, m 6B+ 7 = By _ = (42)
vith boundary conditions

Q0)=0,30) =R & (O =7(®) =0, “d

Q(N) =N =Dy () =7(N=0. ' ;
From equations of motion (4.1) and (4.2) we see that motion along
angle P can be investigated independently from motion along angle 7.
Thus, the probleam of coxpensation of initial deviation by angle B is
broken down into the prchbles of optimum control of the vehicle with
respect to yav and problem cf compensation cf the accumulated error

vith respect to bank.

The solution of the first problem is known, it is examined in a

number of works, moreover, its solution leads to synthesis of the
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systea, realizing algoritha of optimum control [7).

The complete problem about optimum control with respect to P ani

Y. evidently, was not examined earlier.

It is necessary also to note that the groblem about optimum
quick-action compensaticn of deviation with respect to a coincides
with the problem about compensation >f deviation with respect to 8
[see equations (1.1) and (1.2)] and its solution, as was noted above,

is known.

It is easy to show that the problem of optimum compensation of B
and 7 deviation may not have a single solution. This is connected
vith the fact that optimum control with resfect to E'does not depend
cn motion of the space vehicle along anjle j and has its
"characteristic® time of transient process. At the same time, ¥
control depends on the moticn of the vehicle with respect to yavw.
When control by bank is ineffective and the transient process vwith
respect to 5 is slower than P, control is unambiquous. In the case
vhen effectiveness U, is great, angle 7 deviation can be compensatei
by different methods, if the process was terminated in time assigned

by motion P. Bxamples of the noted motions are illustrated in Fig.

17.

A i e e e —
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Pig. 17.

e PR

E | Let us examine in somevhat more detail the case wvhen the
| solution of the formulated problem is unambiguous, namely: when
control by 7 is ineffective and the process of compenmsation of |
% disturbances by 7 from the motion cf the space vehicle on yaw

occupies more time than the process of compensation of motion by B.

Analogously by relationship (3.7) we represent the change of ¥

é consisting of two comporents: “forced" (7,)., caused by B disturbance,
and "compensating” (y,), caused by bank control:
=0, O,=ob - (4.4)
=0, O,=u, (4.5)

The solution for ¥ is represeanted in the fcrm
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=N+ ; : : . - (4.6)

: Sincs in the examined case the traansient process vith respect to
E p is finished earlier tlan the process with respect to F(Ts<Ty, then

the solution of equations (4.4) can be taken as initial conditioms

b e et e e Pltin At s el o o

for egquations (4.5) and they can be written in the fora

T T

7@ = ([ § Bavde— 7, D)= sits - 1, 4 |

) .

Ty . ’:

%2(0) = o [ Bdr = &1, .8 |
. L) % g

T Ty
vhere I,= {ﬁdr. Iy= Sﬂdtdt.

In expression (4.7) interval I, considers the change of ¥ on tims

interval (0,75), caused by initial conditions on {0 (4.8). Thus,

P B PE N arrpr sy Ty .

the problea is reduced to knovn problem about control of isolated
motion of a space vehicle by bank. The example of phase trajectory is

illustrated by Fig. 18, a, on which is shown change of #,(r) and #(v.

Secatomes fo ot b

it ok i e nnssadfin
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Pig. 18.

As is known, optimum guick-action contrcl by bank is
accomplished by tvo pulses (Pig. 18, b), the duration of which
differs by value Ar, determined frcm the ccrdition of compensation of

initial angular velocity 7,'(0):

. 5l
24% = T; (0), At = . : (4.9) ,
The total time of transient process with respect to bank 7, is %

deterained from the conditicn of ccmpensation cf total deviation with

respect to bank, caused by developsent of P:

T =% s+ (Ty = TR ). (4.10)

The value of 7, is found from relationship

T,=2{av+V2A0p+1). ; it (4.11)

P

T pra————— i ———
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