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INTRODUCTION
a Whe n a step-function shock wave is introduced into a medium,

with the result that a multi-step function disturbance propagates with-
in the medium, shock wave physicists refer to that medium as unstable.

A medium can also be unstable with respec t to fluctuations (e.g. ,
volume fluctuations) in the absence of an externally induced dynamic
strain. This type of instability is called STATE INSTABILITY . In order
for a multi -step shock structure to be observed , each step state must
be state stable. This report will treat aspects of both shock and state
stability and instability .

Shock wave stability studies usually involve transitions between
known stable states . This study is interested in the possibility of
shock transit ions to new and relatively exotic media and is therefore
concerned with both types of stability. In the process of this dual
approach, it is shown that the requirements for shock instability and
sta te stability (i.e. , the longtime existence of a state achieved via a
hypothetical shock transition) can be mutually exclusive in terms ~f
materials properties .

One of the most interesting aspects of shock instability theory
involves the possibility of shock amplitude amplification. Such
amplification can occur (ref. 1) when small amp litude acoustic
disturbances, ori ginating behind a propagating shock front , catch
up to and reflect from the impedance discontinuity of that front. If
materials properties are correctly chosen (corresponding to shock
instability criteria) , the acoustic reflection amplitude can be larger
than the amplitude of the prereflection acoustic signal . Such a
phenomenon represents amplification of the acoustic signal and results
in amplification of the amplitude of the shock front .

Acoustic signals originating behind the shock front can be obtained
via a member of mechanisms:

1. Local exothermic chemical reaction behind the shock front
can send out differential compressive disturbances via a thermal ex-
pansion coefficient .
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2. Grading (i.e. vary ing) the impedance properties of an im-
pacting projectile will produce a ramp disturbance which can be approxi-
mated by an acoustic disturbance riding on a step shock .

3. A second order (isovolumetric without latent heat) phase
transition, which results in an elastically harder material , will lead to,
for a g iven strain , a hi gher stress. Thus , if such trans itions occur
behind the shock front , the resulting higher stress regions will propagate
as acoustic disturbances .

In order for the amplification to result in avalanching, for one incoming

acoustic disturbance, the signal which is reflected from the shock front
must lose less amplitude at the impacted surface than was gained upon re-
flection from the shoc k front. This is essentially a statement about the
relative impedance of the driver .

Regardless of whether one has single-pass amp lification or amplification
with some avalanching, the amplificat ion process represents the possibility
of using materials properties to pulse-shape a shock front . This is es-
pecially exciting when the shocked medium is inert.

If , in an inert material , a shock of amplitude P with pulse width t is
introduced and pulse shaped to amplitude 2P and pulse width t/2 , then the
pulse-shaped shock disturbance would be more efficient than the origi nal
shock in initiating detonation in exp losives . A commonly used criteria
(ref. 2) for detonability is P’Y = constant so that the pulse-shaped shock
would , in a sense, be more efficient by a factor of two . Other applications
exist.

SIMPLE SHOCK WAVE INSTABILITIES

Exceeding the Hugoniot elastic stress limit (ref. 3) or exceeding the
stress necessary for a polymorphic (structural) phase transition (ref. 3
and LI) (e.g., a toE iron at approximately 130 kbars) represent the two
most common experimental methods of generating the multi-step shock
structure characteristic of a medium exhibiting a shock Instability . In
such simple cases the P—V and P-u curves appear as shown in figures 1
and 

2 . 2
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The important point of figures 1 and 2 is the sign of H and 
~~ H

(the subscr i pt H denoting Hugoniot*) for each of the various segments . For
these simpl e shock instabilities it will be shown that

dv ’ H 
<0 ar)d~~~ I H > O ALWAYS hold.

For a steady state shock state B propagating into the preshocked state A,
the conservation of mass and momentum can be expressed in the jump con—
ditions below:

u _ u A p A (U - uA) (VA
_ V ) , (1)

- 

~A = ~A (U - uA) (u - UA), (2)

where only the one-dimensional strain configuration (particle or flow
velocity parallel to the shock velocity) , and all quantities are measured
with respect to a fixed laboratory coordinate system . Additionally , the

states A and B are assumed to be in thermodynamic equilibrium so that the
only forces present are those associated with the equation of state pressures

~B (deonted by P) and 
~~~ 

Viscosity and thermal conductivity, while

possibly contributing to the structure of the shock fronts, are assumed to
be unimportant at the positions where (P, u) are measured . This allows
the P values and their derivatives to be characterized as “Hugoniot” values .
U denotes shock velocity .

Substituting Eq. (1) into Eq. (2) gives

(u - uA)
=

(VA -V)

u- u  I u- u  1
• dP - 

A I 2 du + 
A I - 

du 2

“ dV H VA - V L  dV ’ H VA — V J  dV H

*When the subscript H indicating Hugoniot appears it will indicate a quantity

characterizing a state in stable thermodynamic equilibrium, and that the state
is achieved via the shock jump conditions (ref. 1).

4
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In the units of Eq. (1) specific volume is written as V = p4 . Thus, upon
rewriting Eq. (1)

u u AU - uA = 

~A (VA - V) ‘ 
(5)

u=Ui
~~~] 

VA +UA 
(6)

duU
~~~

- V A dV ‘ H +UA 
. (7)

Equation (7) and the right hand side of Equation (4) assume that only
small excursions from the state A into the state B are being observed.
Thus , within the state B, for an elastic constant MB,

dVdP_ - M B ~~~
— (8)

Substituting Eq. (8) into Eq. (7) yields

dP MB
- du ’ H U U A

If the jump condition of Eq. (2) holds, then 
~~ H < 0 for small

excursions from the state A. Further , from Eq. (2) , if u >UA and

P> PA, then U > uA so that 
~~ I H > 0.

If , however , large excursions from a known state A to a new state B
are of interest, then the ratio (U - uA) I (V - VA) can not be replaced by

first -order derivatives , and more physics becomes necessary in order to

determine the sign of 
~~ H at the new state .

In addition to being able to make a similar statement for the sign of

it should be noted that even small excursions to a new state
du H
allow for a sign change if the new state is characterized by (U < UA
P> PA), or (u>uA, P< P A .
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Among other considerations , the sign of 
~~ H is impor tant , because

it bears directly upon the possibility of amplification .

AMPLIFICATION

A double wave structure with an infinitesimal ampl itude acoustic dis-
turbance overtaking (and refl ecting from) the second shock is illustrated
schematically i n fi gure 3.

~B3’ ~
‘B3 UB

~B2’ ~B2
—~~~~~ ~A p0

7
- 

~B1’ ~B1 
I

Fi gure 3. Reflection from a shock front .

Shock A moving into previously undisturbed material (subscript zero)
is followed by shock B which places the medium into the Hugoniot state

~~B i ’ ~B1~~
- A small amplitude (acoustic) compressive disturbance orig-

inating somewhere within 
~~Bl’ ~B1~ 

causes a state change to 
~~B2’ ~B2~

and then reflects from the shock front B. The reflected wave causes a
state change from 

~~B2’ ~B2~ 
to (p83, 

~B3~ 
The states B2 and B3 are

only infinitesimally removed from the state B) .

The following discussion of the amplification factor, 
~~B3 

-

~~B2 
- 

~B I~ ’ is essentially due to the work of Fowles (ref . 1). For

the incoming and reflected disturbances, away from the region of re-
flection,

6 j
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~B2 
- 

~B1 = ( ~ I ~+) (u~~ 
- u

61) , 
(10)

--  
- 

~B3 
- 

~B2 ~ ~~ ~
_ ) (u~~ 

- u
B2) ‘ 

( 11)

where the infinitesimal ampl itude of the disturbances allows the assump-
tion that the propagation processes are isentropic (entropy changes are
third order with respect to first-order pressure changes (ref. 5) ) .  The
subscript, s denotes isentrop ic, and the (+, -) denote II~~ir~~~t iop~~ ity II

(see below) .

The net change from the state Bi to the state B3 cannot be simply treated
as an isentropic process because of a possible energy transfer from the
shock front to the reflecting disturbance. It w ill be argued, however ,
that the state B3 can be achieved via a Hugoniot process with respect to
the state Bi.

Consider the infinitesimal amplitude acoustic disturbance to be in pulse
form . A short time after the leading edge of the pulse is reflected , the

situation is as shown in figure 4.

B3 ‘ U8 ~~
- U~ 

4

Bi 

~~B2

~— ‘(C~ )~~

Figure 4. Acoustic pulse reflected from the shock front B.
CB is the isentropic acoustic velocity with respect
to the state B.
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The argument is simply that the shaded boundaries represent acoustic
• fronts , and, that if the state B3 is thermodynamically stable, it must be

achievable via a dynamic (P. V . T) process . Thus ,

dP
1’B3 

- 

~B1 
= 

du ’ H B uB3 
- u

Bl 
(12)

Using equations (10) through (12) , with the subscr ipt B understood,
forms

(u3 
— u1

) — (u3 
— u2) — (u2 

— U
1
) 0 (13)

which results in

(~~~‘ H)(P3 - P 1~ 
- (~~i~ ) (~3~ ~2) ~~~~~~~~~~ 0. (14)

For infinitesima l amplitude disturbances propagating with respect to the
preexisting B state, equation (2) becomes

d P + = p 8 (U
÷~~

uB ) du= +p 8c8 du, (15)

where Ut is the velocity of the disturbance front in the laboratory refer-
ence frame . If cB is the disturbance (acoust ic) velocity with respect to a
stationary state B, the U.~. = + cB + UB, with cB > 0 and the positive sign

denoting propagation in the direction and sense of UB. Thus, upon com-
bining equations (14) and (15) with

— = — P
2) 

+ (~2 — (16)

yields

duP - P 1 - p c  —

~~~3 2 
= 

B B dP H  (17)
du1 + p BcB~~f,~ I H

It is understood that the Bi state (B state for short) properties are to be
used in evaluating the right hand side of equation (17) .
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If , in equation (17) , 
~~ H > 0, as is almost universally the case,

then {(P3 - P2)/ (P 2 - P1)} < 1 and amplification upon reflection does

not occur* . On the other hand, if ~~~ H <0, then the right hand side
• of equation (17) is greater than unity , and amplification upon reflection

occurs.

There is a question of the full implication of the gain predicted by
equation (17) . Whether or not one reflected pulse continues to grow in
amplitude depends upon the details of a further reflection from an imagined
boundary far to the left of the shock B in figure 14• If , however, a great
number of pulses are generated within the bulk of the B1 state, then the
question may become not one of single -pass amplification but one of a
net increase in pressure behind the shock front B. The net increase in
pressure criteria would be the more interesting requirement if the sub-
ject were explosives modeled with pulse generation (via loca l energy
release) probability proportional to the pressure.

The net increase in the pressure requirement translates to

• ((P3 — P2)/ (P2 — P1)} > —1 , which from equation (17) is equivalent

PBCB ( ~~ I H) > — 1 .  (18a)

clearl y equation (iSa) overlaps the single-pass amplification require-
ment

dP ’ H < 0 .  (18b)

*The reflected pulse, which eventually propagates into the state Bi with
relative velocity cB.... (fig. 4) , has an amplitude relative to the Bi state
given by (P3 - P

1
) .

**From Eq . (17) we see tha t {(P 3 - P2)/ ( P
2 

- P1)} > -1 can be written as
{( 1 - X )/ (1  ÷ X ) ) > -1 with x 

~ PBCB ~~I W This last inequality is

satisfi ed by

(a) 1 - X > - 1  -Xwhen  I + X > 0 .  . . X>-  1.
(b) 1 - X <- 1  - X when I +X < 0 .  :.No solt.~tion .

9
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It is of interest at this point to anticipate some of the following dis-
cussion in this report and briefly inquire into the material properties
consistent with equations (18 a and b). We write the shock velocity -

particle veloc ity relationship (ref . 6 and 7)

U = a +

And , in a form consistent with figure 3

(U B _ u
A) = a +13 (uB _ U A). (19)

In equation (19) , when u = uA, the shock velocity UB corresponds to

an infinitesimal disturbance propagating into the precompressed state A.

Thus, a = CA (the local sound speed in state A ) .  Substituting Eq. (19)

- • 
into Eq. (2) y ields

1’H = PACA (U - uA) + 
~~~ 

(u - UA) + 
~A - (20)

du I H < 0 P AcA PA~~
3
~~~~~~~ 

(21)

< —  2 (u — UA
) (22~

Thus, for U > UAI ~3 must be less than 0 in order to satisfy Eq. (18 b).

Huang (ref . 8) shows , subject to the restrictions of the Slater (ref. 9)
model ,

{
~~- [_ v  

f~~~~T ) l  ~ T = 21 + , (23)

where the subscript T denotes the isothermal derivative, tha t*
‘VA (24)

2 3
Thus , nega tive ~ implies a negative Gruneisen parameter, 

‘VA , for the
state A.

*There are actually a number of different forms in the literature for the
relationship between ~3 and ‘VA (see references 6 and 7 for examples
which differ from Eq. (24)). Each of those forms, however , leads to the
conclusion that negative ~3 imp lies negative ‘1A •

10 
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The Grüneisen parameter , r~ is defined by

• y = V
~~~ I v , (25)

w here E is specific internal energy and has the equivalent thermo-
• dynamic definition

‘V = XvJIcp . (26)

X is the thermal expansion coefficient , S the entropy, Cp the specific hea t at

constant pressure , and J the isentropic bulk modulus,

(27)

J is related to the isothermal modulus by (ref. 8)

ap
8V 1 S = (1 + YX T) 

~v ’~~ 
(28)

Because ~~ <0  is required (ref. 11) for thermodynamic stability

(with respect to volume fluctuations) ., we have J > 0. Thus , from Eq.
(26) , a negative y is associated with a negative therma l expansion co-
efficient .

Therma l expansion measurements have found very few materials
which exhibit negative x . The most common examples of this unusual
property are silicon (ref. 12 and 13) and indium antimonide (InSb)
(ref. 12) at approximately 20°K and atmospheric pressure and fused
(vitreous) silica (ref. 12 , 111, and 15) (SiO,) at perhaps room temperature .

Silicon and lnSb are not practical shock ampl ification candidates , as
their x values are only known to be negative at the inconvenient temp-
erature of 20°K (at atmospheric pressure) . Similarly, fused Si02 has ,
at best, a small negative x at room temperature . What is more important
than known candidates for practical shock amplification is the simple
existence of these materials , and the physics relating to that existence .

The physics picture (ref. 10) associated with a negative x involves
a transverse phonon (acoustic or optic) of relat ively low frequency. By
analogy with a stretched violin string (ref. 10) compression further lowers
the frequency (by reducing the violin string tension) . The single mode

• GrLineisen parameter is defined by

11
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~i V a i  (29‘V~ a ln V 

- w. av

Clearl y, decreasing a,1 in compression (decreasing V) gives negative ‘r.
As a general rule (ref. 16) , phase transitions are associated with

-
~ 0 as the transition is approached . The thought then is to utilize

the mater ial properties associated with an incipient phase transforma-
tion in order to achieve shock amplification . While the idea of so utilizing
the phase transformation processes was discussed previously (ref. 17
and 18) , the approach as expressed in the combination of Eqs. (17) and
(29) represents a new approach to the physics of amplification .

A negative mode, ‘V, ’ of Eq. (29) does not guaranty tha t the macro-
scopic y of Eq. (26) is negative. The relationship between ‘V and ‘Vi
is complicated; it depends upon the detailed phonon (mode) spectrum
and the degree to which each mode is occupied (i .e. the degree to which
the various lattice vibrational states are filled). Thus, the poss ibili ty
of a negative ‘Vi associated with phase transitions is a hint on where to
look for candidate amplification materials , rather than a prescription
for choosing a specific material . It is possible for to be negative and
at the same time to have the macroscopic ‘V positive . In a later section of
this report the question of candidate selection wil l be treated in more
detai l .

SHOC K STABILITY LIMITS

Anal ytical studies (ref. 19) have indicated that a shock disturbance
which is outside the limits given by

- 1  <. j~ (~~~ I H) < 1 -i- 2M , (30)

is subject to an exponential temporal growth* of beh ind the shock
perturbations of the hydrodynam ic parame ters .

*The analysis assumes an irrotational scalar fluid with the growth
restricted to the region immediately behind the shock front .

12

- 
~~~~~~~~~~~~~~~ - -  

-



_______________________________________________________________  - 
- -

~~~~ 
— - - -  -

In Eq. (30) , M is the local Mach number defined by

~~= i U c
_ u 

I 
(31)

where c is the local infinitesima l disturbance sound speed and j is the
mass flux relative to a coordinate system attached to the shock front* .
It is also true, as show n by Fowles (ref. 1) that those same limits of
Eq. (30) correspond to the existence of a shock instability leading to
the possibility of a two wave str ucture . That dual occurrence of
exponential grow th and shock instability represents an interesting
observation in that it begins to connect a double wave structure with
the i ndiv i dual mode physics** ul timately responsible for its existence.

Equation (18) shows that 
~~ H < 0 is sufficient for either single

pass amplification or bulk pressure growth. Thus, a rela tionsh i p be-
tween du and dV 1 is desired so that the limits of Eq. (30) can be

dP’H dP’H
connected with Eq. (18) .

• From Equations (1) and (2)

(u - uA) - 

~
‘
A~ 

(VA 
- V ),  (32)

2 (u - uA)du = (VA 
- V) dP — (P - 

~~~~~ 
dv. (33)

But, Equations (1) and (2) can also be combined to give

I’ - 1’A 
= 

~A (U B 
- uA ) (VA 

- V) (34)

so that 1BA becomes 1BA = 

~~ 
- ‘ 

(35)

*For the unperturbed state B of figure 3, M and j become

— UB_ UBMB = cB 
‘ 1BA 

= 

~A (UB 
- uA).

**Swan and Fowles (ref. 19) treat a linearized system so that their results
• may be thought of as pertaining to a single mode of Fourier analysis.
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where it is understood that (P, V , u) 
~~B’ V B. uB) .  Upon substituting

Eq. (35) into Eq. (32)

(u - uA) = 1BA 
(VA 

- V)
2 . (36)

Thus , Eq. (33) becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(P_P

A
) dv, (37)

or 

~8A (~~~ ‘ H)=
~~ ~ [

~~
-
~~~ 

( ~~~
I H)} - 

du 

(38)

Eq. (38) gives the desired connection between 
H and

dV 1
dP 1 H

For a shock mov i ng to the r ight, ~~~~~ 0. Thus , the comparison

between Eqs . (38) and (30) leads to the matrix shown in table 1.

Table 1

Correspondence between limit violations* for

d dV
dP H an 

~~ H

Sfgn in •2 dV - 2 dvEq. (38). ‘~ 
~~~~ ‘ H > 1 + 2 M H < - 1

+ 
~-~- I  < F’l du
dP H - 1< 0  

~~~~~H > 
‘~

du M du- 

~V H > j. > 0  
dP ’ H <

~~ 
< 0

~j and M again denote and M81respectiyely,

14
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The impl ications of the sign contained in Eq. (38) are easily seen
from Eq. (35) and the square root of Eq. (36) with 

~BA > 0. Those

impl ications are show n in table 2.

Table 2

Implications of + sign in Eq. (38).

+ Sign - Sign

U > U A 
V < V

A V > V
A

normal compression abnorma l rarefactjon

v > v n v < v
U<LI A 

,
~ A

norma l rarefact ion abnormal compression
(expansion)

The “norma l compression” and “normal rarefaction” labels in table 2
are obvious and correspond to the usual ly encountered shock wave ex-
periments . The states labeled “abnormal” (corresponding to the minus
sign in table 2) are easily seen to be associated with

U - U
~ u _ B A

B A
taking the limit of Eq. (39) as B approaches A show s that the abnormal
B states possess (at least) the one sided derivative

(dP I H) < 0. (40)

15
S

-



_ _ _  
-__ _ _ _ _ _ _ _ _ _ _— 

—
~~~~

- -

Thus , the minus sign choice in Eq. (38) presupposes the physics
necessary for amplification as discussed in Eq. (18), specificall y in
Eq. (18 b). Thus , the minus sign solution-s in Eq. (38) will be neglected .*

The (P, u) and (P . V) plane possibilities corresponding to the plus
si gn choice are illustrated in figures 5 and 6.

1j 2

B~~~~~~~~, 

~~~j
2/ ( 1 + 2 M)

-~~ 

°
/

/

-~ 
- ~~~IL

\

\~\
•
\ I- 

-- -

- + sign solutions
I B: Normal Compress ion II

B :  Normal Rarefaction
~ 3BA

I-
V0

Fi gure 5. (P,V) plane possibilities corresponding to limit violations.
The chords (of slope -j) connecting the states A, B, and B’
are drawn with double solid lines . The sol id lines through
B, B’ states represent limit violating derivatives (slopes)
from Eq. (30) . Lines I and II correspond to lines I and II,
respectively, in fi gure 6.

*By concentrating on the plus sign solutions of Eq. (38) our investigation
will be restricted to positive chord B states (i.e., ~u 

> 
which con-

currently admit negative local du derivatives (A~ thus result  I n
amplification) . dP ’ H
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/ + sign solutions U B : Norma l Compress ionI / .B B : Normal Rare~actionI  
— - - -- --- - -— - -  >0 u

Fi gure 6. (P, U) plane possibilities corresponding to limit violations.
The sol id lines through the B, B’ states represent limit
v iola ting derivatives from Eqs. (30) and (38) . Lines I and
II correspond to lines I and II , respectively, in figure 5.

Wh i le the sl ope I states obv iously sa ti sfy the ~~I H <0 requirement of
Eq. (18 b) for single-pass amplification, the situation with respect to the
gross pressure generation requirement of Eq. (18 a) necessitates analysis.

In order for line I of figure 6 to fit within the inequality of Eq. (18 a)
it is necessary that (JAB /PBcBMB) < 1. But* ,

*While Eq. (39) predicts (iAB/PBcBMB) < 0 (and thus also < 1) for a
shock moving to the left, it is not obvious that such behavior Is to be
expected. The change in sign for a wave moving to the left Is a con-
sequence of the absolute value operator contained in the definition of
MB. That absolute value appears in the derivation of Eq. (30) when

(see Eq.(38) of reference 19) an equation of the form x < u s  replaced
by Ix e101 < and consequently may be forc ing a directionality re-
lated sign difficulty .
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1AB 
= ~A 

(U
B 

- uA) 
~B (U 8 

- U
B

)

UB~~
uB 

UB~~
UBB B B p8C8~ cB 

I P8c8 I C~~

:. ~AB
PBCB B

Thus , violating the upper limit of Eq. (30) does not satisfy the inequality
of Eq. (18 a). Line II of figure 6, corresponding to the lower limit of Eq.
(30) , automatically satisfies Eq. (18 a), as line Il is characterized by
dP~ > 0du ’ H

In summar iz i ng this section, note that Eq. (17), Hugoniot require-
ments for sing le-pass amplification, or for simpl e pressure increase , are
each separately satisfied by one of the limits of Eq. (30). Thus , there is
agreement between the detailed analytic derivation (ref . 19) leading to
Eq. (30) and the less detailed, but conceputally satifying picture associated
with Eq. ( l8aand b) .

THERMODYNAMIC STABILITY

The single-pass amplification requirement , 
~~ < 0 ’  corresponds
du H

to dP 
> 0 But, 

~~ < 0 is required (ref . Ii) for thermodynamic
d V ’ H  ‘ 8 V T

stability with respect to volume fluctuations . It is, therefore, necessary
to iniestigate the relationship between 3P and dP,

aV 1 T dV1 H

Should both ~P and dP 1 > ~ 
hold simultaneously, the

0 dV 1 H
implication would be the existence of a stable shock state B which is

capable of amplifying behind the shock signals W HICH COULD ORIGINATE
VIA VOLUME FLUCTUATIONS . Thus, we have a contradiction and, in

turn, the implication that such a state B (in figs. 1. 2, and 3) could not
exist (in the steady state sense) , and that a new stable state C, character-
ized by 3P. <0  

and dP <0 
would be the final result. Figure 7

aV I T dV ’ H
illustrates the expected possibilities in the (P, V) plane .
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f~~
-- .

~~- 

V 0 V

Figure 7. Possible final stable states C1 or C2 achievable via

> ~ 
with respect to the unstable state B.

d V ’ H
If , as illustrated by state C2 in the exaggerated figure 7, the cord

C2A is steeper than chord AV0, then the resulting constant velocity
piston i nduced shock struc ture is as shown in fi gure 8. The shock
structure for the exaggerated C1 state is illustrated in figure 9. Both
C states are characterized by 

~~ <0d V H

P

C2

- 
d is tance -

Figure 8. Constant velocity piston wave structure corresponding to
the exaggerated state C2 .
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P 1
~

distance

Figure 9. Constant velocity piston wave structure corresponding to

the exaggerated state C1.

We will now investigate , in algebraic detail , the compatibility

between ~P ~ and dP

aV 1 T ~~0 dV ’ H >0

Let P = P (V., T). Thus ,

dP , - 
aP 8P 1 dT

~~~‘ H aV 1 T 
+ aT I V d V I H~ 

(40)

For a quasi-static process within 
the state B

TdS dE+PdV . 
(141)

Rewriting Eq. (141) as

T (dT ) = (dE I ~,
) + P (dV I

where S. E, and V are specific (i.e., per 
unit mass) quantities~

immediately leads to

aT aE
c~ ~~~~~~~~~~~~~~~~~ 

(42)

Now, let E = E (P, V). Then,

H
_

aV I P +
~~~P I V ) d ’~~

1 H 
(43)
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Comb i n i ng Eqs. (42), (Z~3) and (25), yields

• 

- 

dV ‘ H ={ ~ ( 
~ ~

) -p1 + 
~ ~~ H) 

. (44)

Let T = T (P. V), then

= + ~II (45)
dV H av P 8P V  dV H

Because dE is a known func tion of the shock struc ture (see
dV H

below), Eqs. (411) and (45) can be utilized to eliminate 
~~ H 

from

Eq. (40) - 
~~ I H is then given in terms of ~çJ T and other thermo-

dynamic derivatives and the observational parameters associated with
the shock state . Combining Eqs. (44) and (45) gives

dT , - 
1 dE aT 

+ 
V dP 

+ 
P . (146)

• dv ’ H - 
c~ dV H a~ V c~y dv ’ H ~~

- Upon substituting Eq. (46) into Eq. (140) ,
V ~P dP -2 c~y aT 1 V dV 1 H

at’ 1 8!’ dE + z.-. at’ . (47)
8V ’ T + Cp 8T ‘V CIV ’ H Cp 8T ’ V

The Hugonio t energy relation , for the state B propagating into the
state A , has the form (ref . 1 , 7)

E - EA =-5 
~~~~~~ 

(VA -V) . (48)

• dE - - 
!‘

~~~~~~A ~~
V

A
+ V  dP

dV H — 
2 2 dV ’ H 

(149)

_ _ __ _ __ _ _  - 
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Substituting Eq. (49) into Eq. (47 ) yields, after minor rea rrangement,

r _
~ 4

dP OP OP P- 1’A OP
dV 1 H OV ’ T Cp OT ’ V + 

2 OV 1 T (50)

a~ v (VA V ~~cp~gj.I v) ~~~~ - \  2 1
Eq. (50) is the desired expression for the relationship between 

~~ H
and 

~~~ ‘ T 
- With the exception of (1’A and VA), all quantities on the

• right hand side of Eq. (50) are to be evaluated at the state B.

A si gn ana l ysis of Eq. (50) is performed next, assuming 
~~for thermodynamic stability . From reference 20

OP aT _ OP
aT 1 V OV ’ P - - 

OV T ’ (51)

and Eqs. (26) , (27) , and (28) , i t follows that

-1 OT -1

- - ~~~~~~~~ = - -
~~ -- 

~~~~‘ (52Cp aT’ V 
- 

OP y aV ‘ T
-.1 aV ’ T

OP 
— 

V (1 +yy~T). . C p 
~9~ ’ v -

Substituting Eq. (53) into Eq. (50) for AP and ~V , each being small
and of arbitrary sign, yields

I ~ ~~ I 
+ YZT 1 (54)dV H OV T t 2 - + ‘YXT J

Thus, for small AP and AV , dV 1 H <0  if BV ’ T < O and y~TI< 1
REGARDLESS of the sign of y. Thus , thermodynamic stability requires

<0 regardless of the sign of y for small pressure and volume
excursions from the stable state A.
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— It is possible to take the sign analysis a step further . By imposing
• J > 0 as a requirement* , and employing the extreme right hand side of

Eq. (52) in Eq. (50) , the numerator within the square brackets of Eq.
(50) will be negative if y <0 , P > ~A. and OP <0  - Since the

OV ’ T
denomenator within the square brackets of Eq. (50) can be written

-1 

- 
[V A V ( 1 +2y ) }

y O V T  1 2

certainly~~~~ H <0  w ill hold if [V A
_ V (1 + ~- ) ]  >0. This last

inequality implies

V A - V
— y < 2V 

(55)

But, we have already chosen y<0 so that Eq. (55) becomes

2V
‘~ ‘~ 

> VA-V 
(56)

• which requires y to be large and negative.

The above paragraph shows that even for a large negative y,

H < 0 if 
~~ T < 0 holds. Thus , the requirement of thermodynamic

stability (with respect to volume fluctuations) appears to restrict dP
dV 1 H

to values such that the upper inequality of Eq. (30) is not violated . The
discussion associated with Eq. (14) showed that dP <0 

is associated

with y< 0. The implication is clear; dP <0 i~1nc~ nsistent with a
d V H

state of thermodynamic equilibrium . Consequently, a state characterized
by dP <~ 

is expected to be metastable.
d V H

*ln order that a real local adiabatic sound velocity given by c2 - V2 
~~~~

exist .
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What does all of this mean? If the sign analyses were correc t, it
would imply that y< 0 materials do not exist in equilibrium, and that a
medium capable of su~,porting single pass amplification must be formed
into a metastable state (with some finite lifetime) before that single-pass
pressure amplification could be expected to occur . Correspondingly, if
one were to identify the dP , > 0 limit violation of Eq. (30) with a

r1V ’H
detonation (as does FowIes , reference 1) , then the implication would be
that there is little utility in studying the physics of explosives which are
in an equilibrium state A. The physical properties of the y< 0 non-
equilibrium state B must be so radically removed from the state A that in
effect one would be dealing with two radically different (isomorphic)
materials.

However , it is known that sta tes of macroscopic y< 0 (e.g. , Si and
InSb at low temperatures) exist in apparent thermodynamic equilibrium’~
This is a puzzling paradox .

MATERIAL SELECTION

In this section, the possibility of finding non-energetic materials
with y< 0 in the vicinity of room temperature is investigated . The
association between an individual mode (y

~< 0) and phase transitions
was already briefly discussed . Now the y-phase transition relationship
will be considered from a macroscop ic point of view .

Two classes of phase transitions can be identified as depending
upon V vs T on either side of the transition . The situations are illustrated
in figures 10 and 11, along with the correspondi ng thermal expansion co-
efficients x .

F,V 
I’ X

CLASS I

T~-
- T

Figure 10. Phase transit ion resulting in X >  0. Tc denotes the transition
temperature. The thermal expansion coefficient is displayed
by the dashed curve.
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V i~~~ - ~_~_ = - -
~~~~H

II ’

-

I

T~’ T

Figure 11. Phase transition resulting in 
~ 
< 0. T

~ denotes the trans ition
temperature. The thermal expansion coefficient is displayed
by the dashed curve.

Ti xNi i...~
, depend i ng upon heat treatment and composition, is capable

of exhibiting either Class I or Class II behavior in the process of under-
going the TiNi (II ~~~~ III) phase transition (ref . 21). Class I behavior is
exhibited (ref . 22) by approximately stoichiometric TiNi and Class II
behav ior by (ref. 22) TINi compounds containing approximately 55 percent
nickel .

The important observation about the possibly negative macroscopic y
associated with the Class II behavior illustrated in figure 11 is that y < 0
is to be found only in a narrow temperature band surrounding Tc. That
observation supports the tentative conclusions (see the discussion asso-
ciated with the inequality of Eq. (56)) in that a y < 0 state implies meta-
stability rather than a long-lived state in thermodynamic equilibrium.

Thus, a Class II material could not be used for continuous single-
pass amplif ica tion (in the sense of dP , <~~~~‘ 

because volume fluctua-
du t H

tions behind the shock front B would tend to trigger the phase transition
to a y > 0 state on one side of T~ .
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CONCLUDING DISCUSSION

Figure 12 illustrates an exaggerated view of a desired result of

single-pass pressure amplification .

before interaction imediately after interaction

~
._r L... B —  

- —---——---_—- .J____ - —---.- ------- - ——- , x

Figure 12. A finite amplitude pulse C introduced Into the state B and
overtakes the shock front B. Upon total reflection from the
front B its amplitude is increased, (C’) - The width of C’
is shown as less than the width of C in order to conserve
strain energy.

Where it is possible to extract the pulse C’ of fi gure 12 and i ntroduce

it into an explosive , one would have a more efficient means of explosive
initiation in the sense of the P2 t criteria (ref. 2), as discussed earlier .

Unfortunately, previous arguments appear to require that an Inert

ampl i f ying state B (macroscopic y< 0) be metastable and possibly associated

with an occurring phase transition (microscopic , or mode , y,< 0). Because

the state B is metastable , it cannot be mainta ined while waiting for the

introduction of the pulse C. Thus, practical single-pass pressure amp-

lification does not seem to be possible.

The above argument on inert state inaccessibility due to metastability

does not hold for an energetic (e.g. explosive) medium* . Indeed, it is

known (ref. 23) that an ongoing energetic chemical reaction can serve as

an amplify ing medium for acoustic signals. Such an effect can be thought

of as being allowed basically because thermal energy (release) per unit

*Equation (48) must be modified to take energy release into account in

treating energetic materials.

- 26 
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volume is dimensionally equivalent to pressure (increase). Thus, if
propagation conditions (e.g. Chapman - Jouguet conditions (ref. 24))
are fulfilled, an induced metastability leading to energy release (pres-
sure increase) finds itself in phase with an ampl ified propagating
disturbance.
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