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INTRODUCTION

When a step-function shock wave is introduced into a medium,
with the result that a multi-step function disturbance propagates with-
in the medium, shock wave physicists refer to that medium as unstable.

A medium can also be unstable with respect to fluctuations (e.g.,
volume fluctuations) in the absence of an externally induced dynamic
strain. This type of instability is called STATE INSTABILITY. In order
for a multi-step shock structure to be observed, each step state must
be state stable. This report will treat aspects of both sheck and state
stability and instability.

Shock wave stability studies usually involve transitions between
known stable states. This study is interested in the possibility of
shock transitions to new and relatively exotic media and is therefore
concerned with both types of stability. In the process of this dual
approach, it is shown that the requirements for shock instability and
state stability (i.e., the longtime existernice of a state achieved via a
hypothetical shock transition) can be mutually exclusive in terms »f
materials properties.

One of the most interesting aspects of shock instability theory
involves the possibility of shock amplitude amplification. Such
amplification can occur (ref. 1) when small amplitude acoustic
disturbances, originating behind a propagating shock front, catch
up to and reflect from the impedance discontinuity of that front. If
materials properties are correctly chosen (corresponding to shock
instability criteria), the acoustic reflection amplitude can be larger
than the amplitude of the prereflection acoustic signal. Such a
phenomenon represents amplification of the acoustic signal and results
in amplification of the amplitude of the shock front.

Acoustic signals originating behind the shock front can be obtained
via a member of mechanisms:

1. Local exothermic chemical reaction behind the shock front
can send out differential compressive disturbances via a thermal ex-
pansion coefficient.




2. Grading (i.e. varying) the impedance properties of an im~
pacting projectile will produce a ramp disturbance which can be approxi-
mated by an acoustic disturbance riding on a step shock.

3. A second order (isovolumetric without latent heat) phase
transition, which results in an elastically harder material, will lead to,
for a given strain, a higher stress. Thus, if such transitions occur
behind the shock front, the resulting higher stress regions will propagate
as acoustic disturbances.

I —

[ In order for the amplification to result in avalanching, for one incoming
acoustic disturbance, the signal which is reflected from the shock front
must lose less amplitude at the impacted surface than was gained upon re-
flection from the shock front. This is essentially a statement about the

relative impedance of the driver.

Regardless of whether one has single-pass amplification or amplification
with some avalanching, the amplification process represents the possibility
of using materials properties to pulse-shape a shock front. This is es-
pecially exciting when the shocked medium is inert.

If, in an inert material, a shock of amplitude P with pulse width t is
introduced and pulse shaped to amplitude 2P and pulse width t/2, then the . g
pulse-shaped shock disturbance would be more efficient than the original
shock in initiating detonation in explosives. A commonly used criteria
(ref. 2) for detonability is P?t = constant so that the pulse-shaped shock
would, in a sense, be more efficient by a factor of two. Other applications

exist.

SIMPLE SHOCK WAVE INSTABILITIES

Exceeding the Hugoniot elastic stress limit (ref. 3) or exceeding the
stress necessary for a polymorphic (structural) phase transition (ref. 3
and 4) (e.g., @ to€ iron at approximately 130 kbars) represent the two
most common experimental methods of generating the multi-step shock
structure characteristic of a medium exhibiting a shock instability. In
such simple cases the P-V and P-u curves appear as shown in figures 1

and 2.
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The important point of figures 1 and 2 is the sign ofg-\-F; | H and o H

du
(the subscript H denoting Hugoniot*) for each of the various segments. For
these simple shock instabilities it will be shown that

dP dP
dVl H <0 and dul H > 0 ALWAYS hold.

For a steady state shock state B propagating into the preshocked state A,
the conservation of mass and momentum can be expressed in the jump con-
ditions below:

U_UA::pA (U—UA) (VA—V)I (1)
= =P = o
P-P,=PA (U-u,) (U-uy), ()

where only the one-dimensional strain configuration (particle or flow
velocity parallel to the shock velocity), and all quantities are measured
with respect to a fixed laboratory coordinate system. Additionally, the
states A and B are assumed to be in thermodynamic equilibrium so that the
only forces present are those associated with the equation of state pressures
Pg (deonted by P) and Py . Viscosity and thermal conductivity, while
possibly contributing to the structure of the shock fronts, are assumed to
be unimportant at the positions where (P, u) are measured. This allows
the P values and their derivatives to be characterized as "Hugoniot" values.
U denotes shock velocity .

Substituting Eq. (1) into Eq. (2) gives

(u-u,)?
b el o
(Va - V)
e Pl g &8 5 i .ol Yy
dVv H VA—V dVv H VA-V dv 'H

*When the subscript H indicating Hugoniot appears it will indicate a quantity
characterizing a state in stable thermodynamic equilibrium, and that the state
is achieved via the shock jump conditions (ref. 1).




In the units of Eq. {1) specific volume is written as V = p?. Thus, upon
rewriting Eq. (1)
u-u,

U-uA=;_>:(VA—-\7) . (5)

u-u

F el

i V-Va b i @)
~ - du

" VA(dV'H)+uA (7

Equation (7) and the right hand side of Equation (4) assume that only
small excursions from the state A into the state B are being observed.
Thus, within the state B, for an elastic constant Mg,

dP = - Mg fTV—)
A

Substituting Eq. (8) into Eq. (7) yields

(8)

Mg
U'UA

(9)

AT
du 'H
, o dP
If the jump condition of Eq. (2) holds, then v | y<o for small
excursions from the state A. Further, from Eq. (2), ifu> up and

P> PA' then U > up so that ﬂE > 0.

du IH
If, however, large excursions from a known state A to a new state B
are of interest, then the ratio (u - up)/(V - V,) can not be replaced by

first-order derivatives, and more physics becomes necessary in order to
dP

determine the sign of =& | H

In addition to being able to make a similar statement for the sign of

at the new state.

g—:: | H it should be noted that even small excursions to a new state i

allow for a sign change if the new state is characterized by (u < uy ,

P>PA), or (u>uA, P<PA.




: P ke
Among other considerations, the sign of %; | s important, because

it bears directly upon the possibility of amplification.

AMPLIFICATION

A double wave structure with an infinitesimal amplitude acoustic dis-
turbance overtaking (and reflecting from) the second shock is illustrated

schematically in figure 3.
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Figure 3. Reflection from a shock front.

Shock A moving into previously undisturbed material (subscript zero)
is followed by shock B which places the medium into the Hugoniot state

(pBl' PB1)' A small amplitude (acoustic) compressive disturbance orig-
inating somewhere within (pB1, PB1) causes a state change to (sz, PBZ)

and then reflects from the shock front B. The reflected wave causes a
state change from (sz, PBZ) to (pB3, PB3)' The states B2 and B3 are

only infinitesimally removed from the state B1.

The following discussion of the amplification factor, (PB3 = PBZ)/

(PBZ > PB1) , is essentially due to the work of Fowles (ref. 1). For .;
the incoming and reflected disturbances, away from the region of re- %
flection, i
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B e

e AP et . e - et et

-{dP 2
Pe2 " PB1~ du|s+) (UBZ ”31)' {9

-(dP 5
Pe3 psz'(du's—H”Ba uBZ)' (1)

where the infinitesimal amplitude of the disturbances allows the assump-
tion that the propagation processes are isentropic (entropy changes are
third order with respect to first-order pressure changes (ref. 5)). The
subscript, s denotes isentropic, and the (+, -) denote "directionality"
(see below) .

The net change from the state B1 to the state B3 cannot be simply treated
as an isentropic process because of a possible energy transfer from the
shock front to the reflecting disturbance. It will be argued, however,
that the state B3 can be achieved via a Hugoniot process with respect to
the state B1.

Consider the infinitesimal amplitude acoustic disturbance to be in pulse
form. A short time after the leading edge of the pulse is reflected, the
situation is as shown in figure 4.
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Figure 4. Acoustic pulse reflected from the shock front B.
Cpg is the isentropic acoustic velocity with respect
to the state B.
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The argument is simply that the shaded boundaries represent acoustic
fronts, and, that if the state B3 is thermodynamically stable, it must be
achievable via a dynamic (P, V, T) process. Thus,

u (12)

duH) (83 B1

Pa3 " Pg1~

Using equations (10) through (12), with the subscript B understood,
forms

; (u3—u])— (u3-u2)-(u2-ul) =0 (13)

i which results in

\ Y
daw |p ot Jau o) (2 e e ] -
(dpl H)(P3 P, | 'dPI )(P3 P2) (dpl - (P2 p,) =0. (14)

For infinitesimal amplltude disturbances propagating with respect to the
preexisting B state, equation (2) becomes

dpP *=pg (Ut—uB ) du=ichB du, (15)
where U, is the velocity of the disturbance front in the laboratory refer-

ence frame. If cg is the disturbance (acoustic) velocity with respect to a - K
stationary state B, the U, = + cg +ug, with cg > 0 and the positive sign

denoting propagation in the direction and sense of ug. Thus, upon com-
f bining equations (14) and (15) with

B, =B (P3—P2) +(P2—P1) (16)
yields

S 1-poc, =2 |

< Wik B 8% Gplu : A%

& B 1“"Bce"cl—P'H

It is understood that the B1 state (B state for short) properties are to be ‘
used in evaluating the right hand side of equation (17). .




If, in equation (17), g—;l y> 0 as is almost universally the case,

then { (P3 - Pz)/(Pz » P’)} < 1 and amplification upon reflection does

not occur*. On the other hand, if = < 0, then the right hand side

dP ' H
of equation (17) is greater than unity, and amplification upon reflection
occurs.

There is a question of the full implication of the gain predicted by
equation (17) . Whether or not one reflected pulse continues to grow in
amplitude depends upon the details of a further reflection from an imagined
boundary far to the left of the shock B in figure 4. If, however, a great
number of pulses are generated within the bulk of the B1 state, then the
question may become not one of single -pass amplification but one of a
net increase in pressure behind the shock front B. The net increase in
pressure criteria would be the more interesting requirement if the sub-
ject were explosives modeled with pulse generation (via local energy
release) probability proportional to the pressure.

The net increase in the pressure requirement translates to
{(P3 - P,y)/ (P, - P{)} > -1, which from equation (17) is equivalent

tO**,

> -1. (18a)

)
PB°B | dP'H
clearly equation (18a) overlaps the single-pass amplification require-
ment

%-‘;|H<o. (18b)

*The reflected pulse, which eventually propagates into the state B1 with
relative velocity cg- (fig. 4), has an amplitude relative to the B1 state
given by (P3 - Pl)'

**From Eq. (17) we see that { (P3 - P2)/(P2 - P1)} > -1 can be written as
((1-X1/(1+X)} > -1 with x =pcy S8[,,. This last inequality is
satisfied by

(@) 1-X>-1-Xwhen1+X>0. . X>-1.
(b) 1-X<-1-Xwhen1+X<0. ..No solution.




It is of interest at this point to anticipate some of the following dis-
cussion in this report and briefly inquire into the material properties
consistent with equations (18 a and b). We write the shock velocity -
particle velocity relationship (ref. 6 and 7)

U=a+Bu
And, in a form consistent with figure 3

(UB—uA) =a+p (ug ~up). 19)

In equation (19), when u =up,, the shock velocity Ug corresponds to

an infinitesimal disturbance propagating into the precompressed state A.
Thus, a =cp (the local sound speed in state A) . Substituting Eq. (19)
into Eq. (2) yields

Py=ppcs (U- u,) +paB (u- uA)’ + Py - (20)
dP 1! 1
E|H<0->pAcA+2pAB(u u,) <0 (21)
c
A )
L c-dfu- 22
5 <-2(-u,). (22;

Thus, for u > Uys B must be less than 0 in order to satisfy Eq. (18 b).

Huang (ref. 8) shows, subject to the restrictions of the Slater (ref. 9)
model,

2 .y [2e ] O |
3p [ V(aVIT) }T-2Y+3. (23)
where the subscript T denotes the isothermal derivative, that*
B = —A— + l (2"')
2 3

Thus, negative B implies a negative Gruneisen parameter, VA, for the
state A.

*There are actually a number of different forms in the literature for the
relationship between p and YA (see references 6 and 7 for examples
which differ from Eq. (24)) . Each of those forms, however, leads to the
conclusion that negative B implies negative Y5 .

10
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The Gruneisen parameter, y, is defined by

G
where E is specific internal energy and has the equivalent thermo-
dynamic definition
Y = XV/cp - (26)

X is the thermal expansion coefficient, S the entropy, cp the specific heat at
constant pressure, and J the isentropic bulk modulus,

TR
J=-v Sl - (27)

J is related to the isothermal modulus by (ref. 8)

aP aP
avlg = O+ mxTM iy - (28)

Because & |

ovV'T
(with respect to volume fluctuations), we have J > 0. Thus, from Eq.
(26) , a negative ¥y is associated with a negative thermal expansion co-

efficient.

< 0 is required (ref. 11) for thermodynamic stability

Thermal expansion measurements have found very few materials
which exhibit negative y. The most common examples of this unusual
property are silicon (ref. 12 and 13) and indium antimonide (InSb)
(ref. 12) at approximately 20°K and atmospheric pressure and fused
(vitreous) silica (ref. 12, 14, and 15) (Si0,) at perhaps room temperature.

Silicon and InSb are not practical shock amplification candidates, as
their y values are only known to be negative at the inconvenient temp-
erature of 20°K (at atmospheric pressure). Similarly, fused Si0; has,
at best, a small negative x at room temperature. What is more important
than known candidates for practical shock amplification is the simple
existence of these materials, and the physics relating to that existence.

The physics picture (ref. 10) associated with a negative x involves
a transverse phonon (acoustic or optic) of relatively low frequency. By
analogy with a stretched violin string (ref. 10} compression further lowers
the frequency (by reducing the violin string tension). The single mode
Gruneisen parameter is defined by

1"
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am% N a“’i)
LT FWMYV - o (av ' (39

i
Clearly, decreasing w;j in compression (decreasing V) gives negative y.

; As a general rule (ref. 16), phase transitions are associated with

®; - 0 as the transition is approached. The thought then is to utilize

the material properties associated with an incipient phase transforma-
tion in order to achieve shock amplification. While the idea of so utilizing
the phase transformation processes was discussed previously (ref. 17
and 18), the approach as expressed in the combination of Eqs. (17) and
(29) represents a new approach to the physics of amplification.

A negative mode, y;, of Eq. (29) does not guaranty that the macro-
scopic y of Eq. (26) is negative. The relationship between y and v;
is complicated; it depends upon the detailed phonon (mode) spectrum
and the degree to which each mode is occupied (i.e. the degree to which
the various lattice vibrational states are filled) . Thus, the possibility
of a negative ¥y; associated with phase transitions is a hint on where to
look for candldate amplification materials, rather than a prescription
for choosing a specific material. It is possible for v; to be negative and
at the same time to have the macroscopic y positive. In a later section of
this report the question of candidate selection will be treated in more
detail .

SHOCK STABILITY LIMITS

Analytical studies (ref. 19) have indicated that a shock disturbance
which is outside the limits given by

-1 < f’—"’”H) <t1+2M , (30)

is subject to an exponential temporal growth* of behind the shock
perturbations of the hydrodynamic parameters.

*The analysis assumes an irrotational scalar fluid with the growth
restricted to the region immediately behind the shock front.

12
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In Eq. (30), M is the local Mach number defined by

U-u
c

, (31)

where c is the local infinitesimal disturbance sound speed and j is the
mass flux relative to a coordinate system attached to the shock front*.
It is also true, as shown by Fowles (ref. 1) that those same limits of
Eq. (30) correspond to the existence of a shock instability leading to
the possibility of a two wave structure. That dual occurrence of
exponential growth and shock instability represents an interesting
observation in that it begins to connect a double wave structure with
the individual mode physics** ultimately responsible for its existence.
Equation (18) shows that & |
dP'H
pass amplification or bulk pressure growth. Thus, a relationship be-
tween du | and cl\_/I is desired so that the limits of Eq. (30) can be
dP'H dP'H
connected with Eq. (18).

< 0 is sufficient for either single

From Equations (1) and (2)
e S & =
(u-uy)® = (P-Pg) Vv, -V, (32)
& 2 (u—uA)du=(VA—V) dP—(P—PA] dv. (33)

But, Equations (1) and (2) can also be combined to give

¥ ik 8 g 2 =
B P Ug uyl (VA V) (34)
so thathA becomes j’BA = g—-—f'% . (35)
A

*For the unperturbed state B of figure 3, M and j become

UB——._U_B_ i = -u )
cg A N T

**Swan and Fowles (ref. 19) treat a linearized system so that their results
may be thought of as pertaining to a single mode of Fourier analysis.

M (U

B=

13




where it is understood that (P, V, u) = (P,, V

B’ Vg’ uB). Upon substituting
Eq. (35) into Eq. (32)

I 218 - V1?2
(u-up)® =iga (V- V)7 (36)
Thus, Eq. (33) becomes
+2jg,(Vya -V du= (V, - V) dP - (P-P,) dV, (37)
or
‘ i du, \_ .1 |;_a dv ]]
b IBA dP‘H)‘ 23 [‘ iBa | ap!n : (38)
Eq. (38) gives the desired connection between %’, | y and
&l
dP'H

For a shock moving to the right, jBA > 0. Thus, the comparison

between Eqs. (38) and (30) leads to the matrix shown in table 1.

Table 1

Correspondence between limit violations* for

du dv
apl n and gy

Sign in .2 dV = .2 dv
Eq. (38). I gly >1+2m I op<-
du M du -1
g op L > o g <d a |l y> 3
5 du M du -1
; dP|H>:)r>0 'd—ﬁ'lH<J<o
i

*j and M again denote jBA and ﬁB.respectively,

14

oo o




The implications of the sign contained in Eq. (38) are easily seen
from Eq. (35) and the square root of Eq. (36) with jBA > 0. Those

implications are shown in table 2.

Table 2

Implications of + sign in Eq. (38).

+ Sign - Sign
usuy o vA - A
PP P<P
A A
normal compression abnormal rarefaction
V>V V<y
u< A A
P< PA P> PA
normal rarefaction abnormal compression
(expansion)

The "normal compression" and "normal rarefaction" labels in table 2
are obvious and correspond to the usually encountered shock wave ex-
periments. The states labeled "abnormal" (corresponding to the minus
sign in table 2) are easily seen to be associated with

Au _ B A

AP PB ~ PA
taking the limit of Eq. (39) as B approaches A shows that the abnormal
B states possess (at least) the one sided derivative

<0. (39)

du
( = | ) < 0. (40)
dP'H BA

15




Thus, the minus sign choice in Eq. (38) presupposes the physics
necessary for amplification as discussed in Eq. (18), specifically in
Eq. (18 b). Thus, the minus sign solutions in Eq. (38) will be neglected.*

The (P, u) and (P, V) plane possibilities corresponding to the plus
sign choice are illustrated in figures 5 and 6.

P
I

: + sign solutions
| B: Normal Compression \ Il

B~: Nor_‘mal Rarefaction \

J = jBA
{
- + e B
0
Vo

Figure 5. (P,V) plane possibilities corresponding to limit violations.
The chords (of slope -j) connecting the states A, B, and B'
are drawn with double solid lines. The solid lines through
B, B' states represent limit violating derivatives (slopes)
from Eq. (30). Lines | and Il correspond to lines | and II,
respectively, in figure 6.

*By concentrating on the plus sign solutions of Eq. (38) our investigation
will be restricted to positive chord B states (i.e., Au > 0) which con-

currently admit negative local du | derivatives (and thus result in
amplification) . dP'H '

16




o + sign solutions
: B: Normal Compression

i

!

! ,/‘ B~ B-: Normal Rarefaction

| 11 e A AT

[+ PR Rl Zu
Figure 6. (P, u) plane possibilities corresponding to limit violations.

The solid lines through the B, B' states represent limit
violating derivatives from Eqgs. (30) and (38). Lines | and
Il correspond to lines | and Il, respectively, in figure 5.

While the slope | states obviously satisfy the :—:l H < 0 requirement of
Eq. (18 b) for single-pass amplification, the situation with respect to the
gross pressure generation requirement of Eq. (18 a) necessitates analysis.

In order for line | of figure 6 to fit within the inequality of Eq. (18 a)
it is necessary that (jAB/chBMB) < 1. But®,

*While Eq. (39) predicts (jAB/chBMB) < 0 (and thus also < 1) for a

shock moving to the left, it is not obvious that such behavior is to be
expected. The change in sign for a wave moving to the left is a con-
sequence of the absolute value operator contained in the definition of
MB' That absolute value appears in the derivation of Eq. (30) when

(see Eq.(38) of reference 19 ) an equation of the form x < 1 is replaced
by = eiel <1 and consequently may be forcing a directionality re-

lated sign difficulty.

17




TR B R Ly W
- U, -u o U, -u
[ B B
BB B PuCal — | PrCe | !
B8 % BB =
‘AB
P e el = 1
PasV

Thus, violating the upper limit of Eq. (30) does not satisfy the inequality
of Eq. (18 a). Line Il of figure 6, corresponding to the lower limit of Eq.
(30), automatically satisfies Eq. (18 a), as line Il is characterized by
dP
du | H A

In summarizing this section, note that Eq. (17}, Hugoniot require-
ments for single-pass amplification, or for simple pressure increase, are
each separately satisfied by one of the limits of Eq. (30). Thus, there is
agreement between the detailed analytic derivation (ref. 19) leading to
Eq. (30) and the less detailed, but conceputally satifying picture associated
with Eq. (18 a and b) .

" THERMODYNAMIC STABILITY

The single-pass amplification requirement, dP , corresponds
du

is required (ref. 11) for thermodynamic

| H <0

to dP But, oP
avin> % av

stability with respect to volume fluctuations. It is, therefore, necessary

to investigate the relationship between 3P | and <1E‘l .

ov'T dV' H

hold simultaneously, the

fp<0

Should both aP and dP
3V | T <0 av ‘ H >0
implication would be the existence of a stable shock state B which is
capable of amplifying behind the shock signals WHICH COULD ORIGINATE
VIA VOLUME FLUCTUATIONS. Thus, we have a contradiction and, in
turn, the implication that such a state B (in figs. 1. 2, and 3) could not
exist (in the steady state sense), and that a new stable state C, character-
ized by 9P [.<0 and dP |.<0" would be the final result. Figure 7
V' T dV'H

illustrates the expected possibilities in the (P, V) plane.

18




Figure 7. Possible final stable states C, or C, achievable via
dP with respect to the unstable state B.
avin >0

If, as illustrated by state C, in the exaggerated figure 7, the cord
C,A is steeper than chord AV, then the resulting constant velocity
piston induced shock structure is as shown in figure 8. The shock
structure for the exaggerated C, state is illustrated in figure 9. Both
C states are characterized by dP I, <0

dV'H

PI

C2

B

distance

Figure 8. Constant velocity piston wave structure corresponding to
the exaggerated state C, .
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distance

Figure 9. Constant velocity piston wave structure corresponding to

the exaggerated state €y -

We will now investigate, in algebraic detail, the compatibility

between 9P and dP
oV ‘ T = dVv l H

LetP=P (V, T). Thus,

>0

dpP _ oP oP dT
dV‘H"av|T+aT'Vdv‘H' ini -
process within the state B

(41)

For a quasi-static

TdS = dE + PdV.

Rewriting Eq. (41) as

3S -
T =l (dT | p)—(dE| p)+P(dV| RE

where S, E, and V are specific (i.e., per unit mass) quantities,

immediately leads to
oT

¢, v P s

Now, letE =E (P, V). Then,

_ o
=avlp* P

g, _9E, (2 )¢
vln=avle +(ap| v) VAR .




Combining Eqs. (42), (43) and (25), yields

HELE: - T ) _] V(dP )
dVlH_[Cp e lpt P14l - (66)
LetT=T (P, V), then

G, an o1 )d_rf
avlw = av|P+(aP'v av!lw - e

Because dE is a known function of the shock structure (see

av! v dT
below), Egs. (44) and (45) can be utilized to eliminate a-\-ll H from

::;_\F/‘ [ H is then given in terms of g—f—; | T and other thermo-

dynamic derivatives and the observational parameters associated with
the shock state. Combining Eqs. (44) and (45) gives

e e e e
dv' H o dv' H oP'V CpY dv' H p
Upon substituting Eq. (46) into Eq. (40),

V P o,
(“Eﬁ a_T|v) FVARTI

Eq. (40).

| +L(3_P|)9'_E| e eE,)- (u7)
ov' T <p oT 'V dVvV ' H cp oT' V

The Hugoniot energy relation, for the state B propagating into the
state A, has the form (ref. 1, 7)

E-E P+P,) Vg - V). (48)

et
A‘2(

dE BELR YAtV | ap

“avle = 2 e ('d_v"H)' (49)




e —

Substituting Eq. (49) into Eq. (47) yields, after minor rearrangement,

-

s 1

2ey 1T LB ey |
oT'V 2 av'T
=1

gk _QE| :
av'H= av!iT | ©°p

AL TR R A . L
P\aT V} Y 2 .

Eq. (50) is the desired expression for the relationship between %\-lj

and g% | T - With the exception of (PA and VA) ., all guantities on
right hand side of Eq. (50) are to be evaluated at the state B.

(50)

"
the

A sign analysis of Eq. (50) is performed next, assuming g\—F; | T <0

for thermodynamic stability. From reference 20

L T ]
aT'v av'e = av'iT’
and Eqgs. (26), (27), and (28), it follows that

(51)

o B “
aP S AYA Bl .4 jeb
°p(aT'v) - Y 2P | Y ‘a ’T)‘ (52)
4 av'T
vop |l = A

Substituting Eq. (53) into Eq. (50) for AP and AV, each being small

and of arbitrary sign, yields

X I A E A )
"av'H T av!T  |2¥ T )

dpP e OP
Thus, for small AP and AV, oy, | <0 % | + <0and | vxT|

<1

REGARDLESS of the sign of y. Thus, thermodynamic stability requires

dpP

excursions from the stable state A.

22

av | H < 0 regardless of the sign of y for small pressure and volume




It is possible to take the sign analysis a step further. By imposing
J > 0 as a requirement*, and employing the extreme right hand side of
Eq. (52) in Eq. (50), the numerator within the square brackets of Eq.

(50) will be negative if y <0, P > Pp, and aP | Since the
T
denomenator within the square brackets of Eq. (50) can be written
-1
il [Vavaez)
% j ¢ 2 ‘

: dP : : 2 :
certainly dVI y < 0 will hold if {VA V(1+ ¥ ]] > 0. This last
inequality implies

1 VA -V
¥ < N (55)
But, we have already chosen y<0 so that Eq. (55) becomes
2V
I > g (56)

which requires y to be large and negative.

The above paragraph shows that even for a large negative v,

<0 if a—-P < 0 holds. Thus, the requirement of thermodynamic

stablhty (W|th respect to volume fluctuations) appears to restrict dP |
H

to values such that the upper inequality of Eq. (30) is not violated. The

discussion associated with Eq. (14) showed that dP |s associated

I
with y< 0. The implication is clear; dP | <0 ;‘s’“mc"(',nsistem with a

state of thermodynamic equilibrium. Consequently, a state characterized
by dP dP ' is expected to be metastable.
H

*In order that a real local adiabatic sound velocity given by ¢? = - V? aP|

exist.
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What does all of this mean? If the sign analyses were correct, it
would imply that y< 0 materials do not exist in equilibrium, and that a
medium capable of supporting single pass amplification must be formed
into a metastable state (with some finite lifetime) before that single-pass
pressure amplification could be expected to occur. Correspondingly, if
one were to identify the dP | >0 limit violation of Eq. (30) with a

detonation (as does Fowl%s reference 1), then the implication would be
that there is little utility in studying the physics of explosives which are
in an equilibrium state A. The physical properties of the y< 0 non-
equilibrium state B must be so radically removed from the state A that in
effect one would be dealing with two radically different (isomorphic)
materials.

However, it is known that states of macroscopic y< 0 (e.g., Si and
InSb at low temperatures) exist in apparent thermodynamic equilibrium®
This is a puzzling paradox.

MATERIAL SELECTION

g In this section, the possibility of finding non-energetic materials

with y< 0 in the vicinity of room temperature is investigated. The

association between an individual mode ['y < 0) and phase transitions

was already briefly discussed. Now the y-phase transition relationship

will be considered from a macroscopic point of view. .

Two classes of phase transitions can be identified as depending
upon V vs T on either side of the transition. The situations are illustrated
in figures 10 and 11, along with the corresponding thermal expansion co-
efficients x.
V I8 A

CLASS T &

. % T
Figure 10. Phase transition resulting in x > 0. T¢c denotes the transition

temperature. The thermal expansion coefficient is displayed
by the dashed curve.
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CLASS 11 ﬁ

{
A
L
)

Figure 11. Phase transition resulting in x < 0. T, denotes the transition
temperature. The thermal expansion coefficient is displayed
by the dashed curve.

TixNij_,., depending upon heat treatment and composition, is capable

of exhibiting either Class | or Class |l behavior in the process of under-
going the TiNi (Il <> [ll) phase transition (ref. 21). Class | behavior is
exhibited (ref. 22) by approximately stoichiometric TiNi and Class ||
behavior by (ref. 22) TiNi compounds containing approximately 55 percent
nickel .

The important observation about the possibly negative macroscopic ¥y
associated with the Class |l behavior illustrated in figure 11 is that y <0
is to be found only in a narrow temperature band surrounding T¢. That
observation supports the tentative conclusions (see the discussion asso-
ciated with the inequality of Eq. (56))in that a y < 0 state implies meta-
stability rather than a long-lived state in thermodynamic equilibrium.

Thus, a Class |l material could not be used for continuous single-
pass amplification (in the sense of dP [ < 0) , because volume fluctua-
du'H
tions behind the shock front B would tend to trigger the phase transition
to a y > 0 state on one side of T.
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CONCLUDING DISCUSSION

Figure 12 illustrates an exaggerated view of a desired result of
single-pass pressure amplification.

before interaction immediately after interaction
i =
* Sl ‘ i BtC

. S g i

}
( ek
L

Figure 12. A finite amplitude pulse C introduced into the state B and
overtakes the shock front B. Upon total reflection from the
front B its amplitude is increased, (C'). The width of c!
is shown as less than the width of C in order to conserve
strain energy.

Where it is possible to extract the pulse C' of figure 12 and introduce
it into an explosive, one would have a more efficient means of explosive
° initiation in the sense of the Pt criteria (ref. 2), as discussed earlier.

Unfortunately, previous arguments appear to require that an inert
amplifying state B (macroscopic y< 0) be metastable and possibly associated
with an occurring phase transition (microscopic, or mode, i< 0) . Because
the state B is metastable, it cannot be maintained while waiting for the
introduction of the pulse C. Thus, practical single-pass pressure amp-
lification does not seem to be possible.

The above argument on inert state inaccessibility due to metastability i
does not hold for an energetic (e.g. explosive) medium*. Indeed, itis
known (ref. 23) that an ongoing energetic chemical reaction can serve as
an amplifying medium for acoustic signals. Such an effect can be thought
of as being allowed basically because thermal energy (release) per unit

*Equation (48) must be modified to take energy release into account in
treating energetic materials.
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volume is dimensionally equivalent to pressure (increase). Thus, if
propagation conditions (e.g. Chapman - Jouguet conditions (ref. 24))

are fulfilled, an induced metastability leading to energy release (pres-
sure increase) finds itself in phase with an amplified propagating
disturbance.
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