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I. INTRODUCTION. 

With the advent of more accurate burst fire weapons such as the 
Antiarmor Automatic Cannon, the question of how to program a sequence 
of rounds against a target of finite extent is raised. Probably the 
most basic problem in this regard is solved here on a game-theoretic 
basis. The formulation of the game in Section II, originated with Dr. S. 
S. Wolff of BMD, who also correctly guessed at its value and the nature 
of an especially simple set of optimal strategies. This report is the 
first account of a continuing effort to reassess the applicability of 
game-theoretic principles to problems in fire control and survivability. 
It is only recently that positive expectations have been attached again 
to endeavors in that field. 

II. FORMULATION OF THE GAME. 

Consider the following two-person zero-sum game: Player X and Play- 
er Y independently and simultaneously, each according to his own rule 
(or "strategy"), choose a point on the closed unit interval [0,1]; if, 
when the two chosen points are revealed, they are no farther apart than 
a pre-selected distance a[0 < a < 1/2), Player Y pays Player X one unit, 
otherwise he pays (and X receives) nothing. For motivational purposes, 
we may think of the unit interval as a scaling of the possible locations 
of a maneuvering or evasive target [Player Y) during one time-of-flight 
of a projectile fired by Player X.  A "play of the game" consists in X 
choosing an aim point and Y choosing a location to maneuver to; the dis- 
tance ex is Y's (scaled) half-width (Figure 1). 
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(Figure 1) 

This simple model - termed "fire control" by one player and "survi- 
vability" by the other - has a natural formulation as a mathematical 
game of continuous type on the unit square.  Let X choose his aim point 
C according to the probability distribution x(*); let Y choose his loca- 
tion n by the distribution y(*); define the payoff function, or kernel, 
by (Figure 2) 



(1) K CS.TO 

1    |? - n| ^ a 

0     otherwise 

Then the expected payoff in one play is 

1 1 

(2)     V(x,y) = j  j K(5,n)dx(?)dy(n) 

o o 

Due to the discontinuity of the kernel along the lines 'J = ^ ^ a, the 
existence of optimal strategies for the game is not a consequence of a 
general existence theorem. Nevertheless, in Section III it is shown 
that the game has a value in the sense that 

sup inf V(x,y) 
x  y 

inf sup VCx,y) 
y  x 

Furthermore, the value depends in a transparent fashion on the parameter 
a. Thus a proper interpretation of the solution of the game and delimi- 
tation of a rational mode of behavior for each of the antagonists is 
assured. 



III.  PROOF FOR EXISTENCE OF A VALUE; OPTIMAL STRATEGIES. 

We begin by noting that the existence of a value for the game 
defined by (1) and (2) of Section II is equivalent to the existence of 

a pair of strategies x and y satisfying the inequalities 

V(x,y0)^ V(x0)y
0)^V(x0,y) 

for all strategies x and y, respectively. Thus x maximizes V(x,y ) 

while y minimizes V(x ,y).  The problem is, therefore, to find x and 

y such that 

11 11 

sup   lKCC,n)dx(Ody0(n) = inf \ \ K(5Jn)dx
0(Ody(n). 

0  0 0  0 

We derive first two expressions for V(x,y) and develop an inequal- 
ity that suggests what type of optimal strategies we search for.  In 
order to allow intuitive considerations to be fully reflected in the 
formalism with a minimum of technical interference, it is of advantage 
to set 

K(?,n) = 1 - k(C,Ti). 

The expected payoff (2) then becomes 

1 1 

V(x,y) = 1 - \ \ kC5,n)dx(C)dyCn), 

o o 

where (Figure 3) 

1 1 
kCS.rO  = 

5 - n    > a 

otherwise, 



Figure 3 

Carrying out one  integration, we obtain for V(x,y) the equivalent 
expressions 

j(l - x(n+a))dyCn) - j; (3)   V(x,y) = J   Ul   ■ x(n+a))dyCn) - IX[(TI-OO JdyCn) 

[0,1-a) (a,l] 

and 

(4)   V(x,y) = 1 - Ul - y(?+a))dxCC) - j; 
[0,1-a) 

dx(^) -  y[(5-a) ]dx(?), 

Co.l] 

in which x(5 ) denotes x(K ) 

From (4) we have 

lim x(t) 

V(x,y)^ 1 - inf   (l-y(5+a))x[(l-a)'] - inf y[ (^-a)'] (l-x(a)) 
[0,1-a) (a,l] 

Evaluating the infima on the right side, we obtain the inequality 

(5)  V(x,y)^l - (l-y(r))x[(l-a)"] - y(0)(l - x(a)) , 



which is valid for all x. Clearly, Y wants y(l~) j-  1 and y(0) ^ 0 be- 
cause he wants to minimize. Hence, if Y gives both considerations equal 
weight and adopts the mixed strategy 

* = i T   IT y  ' 2 0 + 2  1' 

it follows from (3) that for all x 

V (x,y*) = \ -  jix[(l-a)-] - x(a) j , 

which does not exceed 1/2 (for all a < 1/2) because of the monotonicity 
of x. Against y* player X can maximize by choosing x(C) = constant in 
the interval a ^5 < 1 - a, e.g., by adopting the mixed strategy 

*  IT   IT 
2    a      2     1-a. 

in which case his expected return becomes exactly 1/2. If on the other 
hand, X plays x*, we have from (4) 

V(x*,y) = y + y fy(2c0 - y[(l - 2^-]^ , 

which exceeds or equals 1/2 if a ^1/4, and becomes exactly 1/2 if Y 
chooses yCn) = constant in the interval (l-2a) < n ^k2a. In particular, 
he may choose y* to minimize V(x*,y). 

Summarizing, we have shown that for target half-widths a from the 
interval 1/4 ^.a < 1/2 the strategies x* and y* are optimal, and that 
the value v of the game in this case is v = 1/2. 

For smaller target half-widths we arrive at a generalization of 
the inequality (5) by appropriate subdivision of the integration inter- 
vals [0,1-cO and (a,l] in (4).  The essential result of this experi- 
mentation, the details of which are omitted, leads to the following 
assertion: 

If for a given target half-width a the positive integer n is such 
that 

l/2n^a < l/2(n-l) ,  n = 2, 3, ... 



the strategies 

(6) 

3=0 

and 

n-1 

x
0 = i V" i     y = 2i  - 1 

x
        nZ-^ Pj '   j    2n  ' 

^Z J 
j=0 

are optimal strategies for X and Y, respectively, and 

1 v = — n 

is the value of the game. 

To prove the assertion that y is optimal, we have from f4) and (6) 

n-1 n 

v(x0,y) = i - iY^ (i-yCyco) - ^y^yUy^n 

j-1 J-2 

n-1 

3-1 

iince    u   - P.   ,  + 2o^0,    the sum on the right is non-negative for all 
11+1 i 

y,  and therefore V(x  ,y) ^s - .     Since also 

v.   ,<ii.   ,-a<p.+a<v. 
J-1 J+l 3 3 

for n = 2,  5,    , and j = 1, 2,  , n-1, we have from (7) 

y0(y +a) = y0[ (V. ^a)'] • 

10 



Hence, 

inf V(x ,y) = V(x ,y ) = - 

Similarly, to show that x is optimal, we obtain from (3) and (7) 

n-2 n-1 

j=0 j=l 

n-2 

j=0 

Since v. 1 - v. - 2a ^ 0, the sum on the right is non-negative for all 

x, so that V(x,y ) ^1/n.  Since also 

u. , ^T V.   <v. n -a-^u. „ 
J + l~ 3+ot   3 + 1       1+2 

for n = 2, 3, ...., and j = 0, 1, ...., n - 2, it follows from (6) that 

x0[(v. T-CO'] = x0(v.+a). 
j + 1 1 

Hence, 

\r r        0-\   ire 0  0-.    1 sup V(x,y ) = V(x ,y J = - 
X 

This completes the proof of the assertion. Figure 4 illustrates the 
optimal strategies (6) and (7) for the cases n = 2, 3, 4, 5, and 6. 
Arrows (4-) indicate aim points of the gunner [Player X), and points (•) 
indicate the centers of the evasive target (Player Y], all to be chosen 
with equal probability 1/n. The half-width of the target was chosen as 
a= l/2n. 

U 



n=2      0 •- 

n=3      0 •- 

n=4      0 •- 

n=5       0 •- 

_•  1 

1 _•  1 
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Figure 4 
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