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1. INTRODUCTION

High Altitude Nuclear Explosions (HANE) deposit large amounts of

ionization in the earth's ionosphere and above. At late times the ionization

density is low enough so that radio signals from satellites to ground or air

receivers are not absorbed. At these times much of the ionization is structured.

The ionization tends to form clumps (striations) which are nearly uniform along

the earth's magnetic field for large distances but break up in the direction per-

pendicular to the field into smaller striations. The structuring of the ioniza-

tion causes random refraction and diffraction of the radio signal producing

scintillation in the signal phase and amplitude at the receiver as the satellite-

receiver line-of-sight moves across the structure.

The understanding of the extent and character of the scintillation is

important for the planning of future satellite communication systems. The

Defense Nuclear Agency (DNA) has been studying this problem for many years.

There have been many studies of the effects of various models of the structure

on the statistics of the signal scintillation. 1-4

This report represents an extension of these studies. A primary goal

is to attack the problem of describing the scintillation effects to be expected

from HANE. Most previous studies of the development of striations have not

concentrated on specifying the shapes and profiles of striations that might be

expected following a nuclear burst. In this report models of the structure are

parameterized and an attempt is made to relate these models with the structure

to be expected in HANE. The resulting effects on scintillations are calculated.

Furthermore, the relation between the model values and the physical processes

that cause structuring is discussed. A new methodology for determining the

power-spectral-density (PSD) of the phase variations as a function of time is

also discussed and an explicit example is presented.
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In principle, the procedure to follow is straightforward. The output of

the hydrocodes determines the electron density, neutral density, and neutral winds

on a global scale (hundreds to thousands of kilometers). From these parameters a

complete understanding of the physical processes which cause structuring would

provide the capability of describing the development of striations in the microscale

as a function of time and space. Given the parameters that characterize the

irregularities of electron density, the power-spectral-density of the variations

in phase as a function of space and time would be determined. That information

is sufficient to calculate various important parameters which are a measure of

the effect on propagation, such as scintillation index or the bit-error-rate on

communications links.

We do not presently have sufficient knowledge to carry out the above

task with certainty. The weak link is in providing an accurate description of the

structure. In order to provide this description three basic things are needed:

1) a specification of the background conditions; 2) an understanding of the basic

mechanisms that lead to the generation of structure; and 3) detailed knowledge

regarding the method in which those basic mechanisms operating under the

specified background conditions lead to the generation of specific structures.

The various two-fluid hydrocodes and their electrostatic counterparts

can be considered state-of-the-art in regard to specifying the background large-

scale conditions. These various codes provide the specification of the distribution

of the neutral particles, ionization, and the velocity of neutral particles. V n on

the large scale. Various techniques are available for calculating the ion motion.

The ion velocity, Vi' must be consistent with the electric field pattern that results

from the application of the continuity of current flow in the magnetized plasma.

From these, the component of the slip velocity, Vs = V n- Vi, perpendicular to

the magnetic field can be estimated. The specification of these time-varying para-

meters by the output of the hydrocodes is necessary but not sufficient in order to

specify the structure.

In this report we will concentrate on the gradient-drift mechanism as

being the mechanism that leads to the generation of striations during the first

tens of minutes following a burst. Since this mechanism was first identified
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5
nine years ago , it has been the subject of intense analytical, experimental,

and numerical work. However, our understanding of the complex electro-

dynamics that governs development of irregularities is not yet sufficient to be

able to specify the structure precisely. The hydrocodes have been able to

specify the regions of space as a function of time in which significant growth

of structure can be expected. The microscale codes, operated principally

by NRL, have provided some of the characteristics of the development of struc-

ture for particular cases. Observations of some of the characteristics of

striations produced by the gradient-drift mechanism have been obtained from

barium release experiments conducted in the ionosphere. Basically the

results of current research have been to support the validity of the general

concepts regarding the development of striations. However, many specific

questions for which answers are required in order to accurately specify the

structure.have at the moment only speculative theoretical answers.

In order to estimate the effects of striations on propagation, we have

accomplished three things. First, we have modeled characteristics of striations

that have an impact on propagation. These characteristics are the shape of the

striation, the profile of the electron density within the striation, and, in some

cases, a distribution of scale sizes of striations. Second, we have identified

specific gaps in our current understanding of the physical processes that specify

these striation characteristics. We indicate that there are procedures that

could be followed that could verify or deny some of the theoretical speculations

regarding the specifications of these characteristics. Thirdly, we have developed

a methodology for determining the time-dependent power-spectral-density of

striations and have carried out a specific model calculation exemplifying the

results of applying that methodology. This methodology can be viewed as an

alternative to the methodology being developed by J. Workman of BRA for the

SCENARIO code.

Section 2 contains a description of the model structures used in order

to calculate the effects of striations on propagation. The parameterization of

the shapes and profiles are described along with the resultant power-spectral-

densities. The significance of the power-spectral-density (PSD) for estimating

7
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the signal scintillation statistics is emphasized. Section 3 contiins the results of

applying the various models in order to obtain the dependence of the signal scintil-

lation statistics on the assumed structures.

Section 4 discusses the physical processes that lead to a specification

of the structures. This discussion includes an application of our present under-

standing derived from both linear and nonlinear analyses to a description of the

time-development of striations in HANE. The gaps in our knowledge for making

precise statements are emphasized. A methodology based on the bifurcation of

striations for determining the time-dependent power-spectral-density is described

in Section 5. A specific example appropriate for HANE conditions is calcilated

in detail. It is emphasized that the inputs to this methodology are the phjsicai

processes that lead to the development of striations. As our understanding Cegarding

the development of striations is improved, those aspects that have a direct impact on

scintillation effects can be incorporated into the same methodology.
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2. STRIATION STRUCTIRE

2.1 INTRODUCTION

A radio signal passing through a medium will have spatial variation

in its amplitude (scintillation) over an area perpendicular to the line-of-sight

if the medium is structured, i.e., not homogeneous. A late-time high-altitude

nuclear burst's ionization is structured in the following ways on a descending

order of scale size:

1. The ionization is localized within a region hundreds of kilometers

in radius transverse to the magnetic field and thousands of kilo-

meters in extent along the magnetic field;

2. The ionization is in the form of distinct cylindrical shapes

(striations) imbedded in a region of much smaller (background)

ionization;

3. The boundaries of these striations (electron density contours) are

not smooth;

4. Sound-wave-like disturbances can exist within the striations.

The effects caused by the large-scale structure of the first type alone

are negligible for the late-time electron densities and radio frequencies of

interest in this study.

The dependence of the system degradation on the signal scintillation

caused by structure of the second type is the subject of concern. As in our pre-

vious studies 1 we model this structure as a given set of ionization profiles

randomly distributed within a given area. The amount of structure of t3pes

3 and 4 are unknown at this time. The statistics of the scintillating signal at

some distance beyond the striations are obtained using the thin-screen approi-

mation. The results are presented as a function of A, the signal wavelength,

9



d, distance away from the striations, no, peak electron density, and number, size,

and shape of the ionization profile.

For any given set of striation sizes and shapes, the signal and its statis-

tics are functions of only two dimensionless parameters:

X d

4yra

where a is the characteristic scale size of the striations; and

the root-mean-square of the phase variations in the signal at the exit plane of the

striations. In the thin-screen appromimation, this phase is obtained by a straight-

line integration of the electron density along the line-of-sight of the radio signal.

For the electron density defined in an area L by L in the x-y plane;

L

O(x) a rex f dy ne(xy)
0

where y is the direction of propagation of a plane wave of wavelength X and

r = 2. 818x 10- 13 cme

is the classical electron radius. We define the average of any

function f(x) as

f-E f d f (x).

We take the x-direction as the direction of motion of the line-of-sight (y-direction)

of the signal past the ionization due to the motion of the transmitter, receiver or

striations. The area A = L 2 , will be expanding in time as the ionization spreads

across magnetic field lines.

Consider the following typical example of the time-dependent ionization

structure in the plane of area A. Before the onset of striations, assume that

the ionization has a radial dependence only about some central position. Fig. 1(A)

illustrates the contours of constant electron density, ne , for this case. In the

general case, the magnetic field will not be perpendicular to the plane and the

contours will be ellipses elongated in the direction of the magnetic field's pro-

jection on the plane. This complication does not qualitatively change the result.
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Figure 1. Schematic of electron density contours (A) before significant
structuring has taken place and(B) at around 500 s after burst
after large-scale structuring has occurred.
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The contours illustrated are a representation of the output of an MHD

computer code minutes after a high altitude burst. These contours can be

approximately fit by a function of the form

2 2
ne(X,y)n noer /a 0 +nb

where r is the distance from the center and a 0 150 km for a typical case.

This large value of a characteristic size ao, does not lead to any ampli-

tude scintillation in a signal traversing the ionization for the range of parameters

of concern to this study:

X 10-3 km

n o 0 108 cm
-3

nb ' 10 cm- 3

We therefore ignore this structure of the first type.

When the ionization breaks up from instabilities generated by a radial

neutral wind into fingers that are convected radially, the total electron content

will be maintained except for the ongoing processes of chemistry and diffusion

along the magnetic field. The fact that the ionization is structured into smaller

parcels will bring about amplitude variations. This is the structure of the second

type to be investigated in this report.

Barring unforeseen surprises we expect the late-time nuclear structure

toresemble a radial version of the output of the electrostatic codes of NRL 6. By

radial we mean that the 2-D cartesian fingers of NRL which extend in the constant

neutral wind direction would appear in the nuclear case to extend radially out-

ward from a cylinder axis along the magnetic field through the center of the ioni-

zation [Fig. 1(B)]. In the course of time there will be bifurcations which increase

the number of fingers and decrease their size. The orientation of the major axes

of the fingers will be primarily along radials and at some point further bifurcation

will cease and there will be a limiting size distribution with the smallest being

depleted by diffusion. A model of this time-dependent process will be described

in more detail in Section 5.
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2.2 STRIATION PROFILES

The essential properties of the structured ionization of a single striation

important for producing amplitude scintillation appear to be:

1. Shapes which vary from circular to highly elongated ellipses;

2. Profiles with large density gradients in the narrow dimension;

3. Smaller gradients in the elongated direction down to some value

of ne , then abrupt gradients.

We choose to model these features with a two-parameter set of analy-

tic profiles:

ne =n o  - r ) rsa

= 0 r > a (2.2.1)

2 2 2where r = AX + y /P. Contours of electron density are ellipses with major to

minor axes ratio .

This is a new concept of profile which occurred to the authors after
6seeing the NRL contours of ne from their numerical codes . In contrast to earlier

7
work , this numerical study treated a case where the initial Pedersen conductivity

was much higher than the background. The profiles of ionization varied smoothly

down from the peak value to some smaller value where the fall-off became abrupt.

Physical motivations for this type of behavior will be discussed in Section 4.

We use the parameter o to characterize the value of density at which

the profile becomes steep. The parameter p describes the ellipticity of the

density contours. The parameter a is the characteristic size of the profile. If

the striations are distributed over a large range of sizes a, the form of the

distribution of sizes will be another parameter of the problem. We have been

unable to determine from the phenomenology of the bifurcation of striations any

particular form for the distribution. We have shown in previous work that the

scintillations are highly dependent on the profile shape. A possible expected

distribution of sizes will be discussed in Section 5. The comparison of the

13



distribution of sizes and the single size will be made by means of the power -

spectral-density of the electron density.

2.3 POWER-SPECTRAL-DENSITY

We have chosen the basic representation of the structured electron density

as a set of striations of given number, size and profile. An alternate representation

of the electron density is through its power-spectral-density (PSD).

From the Fourier transforms of the electron density in the area A = L 2

f( )= dx dy e-ii-Zn* X y
L L

we have

S* X-
ne (x,y) = j f(k) e

lm

where

The average electron density is

A fd;ne('Y) =f(O)

If we set f(O) a 0, then f(IC) is the Fourier transform of Ane a ne - ne. Define

the PSD of the electron density by

dx e - i " x An e  An e  + (2.3.1)
Afe e

= IJdi~fdi e A ~Cx Ae()An + X

.2 e e
= f (i)f(-k ) = If(k) 2

where f(-k) = f*(k) follows from the fact that Ane is real.

il l .... ... . . .. .. , . .. 4



Thus the PSD of ne, 00, defined by Eq. (2.3. 1), is given by

2
U k f M)

The propagation analysis requires

o(x)m re,, An(x, y) dy

which has the Fourier transform

Lf .ikx

F(k)= - 4,(x)e- dx=r XLf(k,O)
L f e

0

8
We will use the notation of Salpeter for the PSD of phase

p2(q)- a -f dr e-q I(x) ( + r

defined for an infinite interval and evaluate it for our defined phase on the

interval 0 5 x i L to obtain

02 (q) = L I F(q)I 2  L 22 f(q 0) (2.3.2)= 2- (re)'L)2fq 0(.32

In Salpeter's 8 description of the original analysis of Mercier 9, the

statistics of the intensity scintillations are described completely in terms of

o 2(q). This is because Mercier required the condition

ei Ea (xj) -i [Ea..(xj) 
2

for ai any set of constants. This condition is satisfied if gPx) is a Gaussian

distributed variable. Much of the recent literature has been devoted to the
2

question of the requirements for o (q) to be sufficient for the description of

signal scintillations. A sufficient requirement is that the phase be the sum of

many random contributions. Since this is the case in our analysis we will

consider that a specification of o 2(q) is sufficient.

15



2.4 POWE~rSPECTRAL -DENSITY OF STRIATIONS

The connection between p (q) and a random set of striations is as

follows.

The profile in expression (2.2. 1) has the Fourier transform

f( t9k , ; xi) = e -k . xi f.i (k X ? k ,)

kher 2n0 ,v a 2 r j (s) 2 2 __2(_

where

)/ -x + ky2

and il, 2 are Bessel functions.

The y'-direction is along the major axis of the ellipse and x. is the

position of the striation in the xy plane. The phase integral is along the y-axis

W*ich is taken to be at an angle e i to the y'-axis so that

x = x1 cos e. + Y' sin e.i

The Fourier transform of the phase produced by the striation is

F. (k) =r X Le -ikiff A e '~ n (X - x, Y- y

e jL L e

=re)Le 1I f .(k cos e., k sin e.)

The total phase produced by a set of striations has the Fourier

transform

F(k) = E F .(k)
i

16



and the PSD

2 (q) ='(rX fi (q cos 1i, q sin e (2.4.1)

+ iS e-iq(xi-xj) fi (q cos OF q sin 0i) fj(q cosej, q sin e

from Eq. (2.3.2).
.1

Some comments are in order here. In a previous analysis we showed

the contribution of the second term in brackets to be an A. C. jitter about the

contribution of the first term due to the positions of a given set of striations. If
2we average 0p (q) over an ensemble of random placements of the striations with

the fractional number of times striation i is at x. being Pi(x)cd. and consider

the positioning of striations to be uncorrelated, the average of the second term in

brackets is

fi(q cos Q, q sin 0j)fj(q cos 0j, q sin 0) IS 2

where
L

S = f Pi(xi) cd i e
- i

0 1
1 sin (qL/2)

If the distribution over the length L is uniform, P -r and S = (qL/2)

which is zero at q = 2w L t, = 1, 2,..., the only values of q used.

This means the PSD is given by the first term alone for determining

effects due to the striations' profiles.

There have been experimental determinations of the PSD which have

included large contributions from structure of the first type, the positioning of

the ionization in space. These contributions can be illustrated by distributing

the striations over the line L by a Gaussian probability P(xi) where

P(xi) = a <<L/2

L 

17L. vN .



Then IS I = e- q1 a2 / 4 • If there are M striations with the same form of profile,

the bracket in Eq. (2.4. 1) becomes

f2 [1+ (M-1) e - q a /2

and the second term dominates at low values of q until Me- q 2a2/2 becomes less

than unity. This is a real effect which must be included if one wants to include

the effects of structure of the first type on scintillation or if one wants to extract

properties of striations from experimentally obtained PSDs.

Another point to be made is that the portion of the PSD due to structure

of the first type does not satisfy the criterion for the PSD to be sufficient to

d&scribe scintillation effects. That is, the phase variations resulting from this

type of structure are not the resultant of many random inputs.

For our purposes, the connection between striation profiles and the

PSD will be through the first term alone. Then

2 02 20 (q) . f2( o i2(q)" -(re))2 i q c s iq s in ei )

1

18



3. SCINTILLATION DEPENDENCE ON THE PARAMETERS OF SHAPE

3.1 CIRCULAR CONTOUR (P = 1)

We first discuss the case of 0 = 1 (circular n contours). The profile ise

2 2ne = no (1 - a  r  r

=0 r>a

where a = 0 produces the rod profile studied previously and a = 1 produces a

parabolic profile. The PSD for this profile is
2 (eo2)2 __J1

(
_

a 2 J2 (qa)1
2(q) A (re>na) [(a) (1 - a 2) + 2a 2  ] (3.1.1)

L (q) 1 qa (qa) 2

Fig. 2 shows the PSD of three profiles corresponding to a = 0, 0. 9 and 1. After

the first zero of the Bessel function, the locus of peaks is plotted.
-3

The large q behavior of a = 0 and 0. 9 is q where the large q behavior
-5

ofa = 1 is q . The PSD's are normalized so that the profiles have the same no

and the same total electron content which requires

ffa (i -a /2)

to have the same value for any a or

a=a(0)(1-a /2)1.

They therefore have the same value as q -. 0. The a = 0.9 curve looks the same

as the a = 1. 0 curve until a region around the value of q a (0) = 2 a2 1 " a 2 / 2

(1 - a)
after which the q behavior takes over. The curves are all plotted vs.

q 6.6

v q for the case a(0) = 0. 282. so the break point is at v 2 6.68.) 3.7S= IF- = =j-TM

From the curve we see the transition to begin at the second peak of the Bessel
-4

function where the line has a v dependence. The transition ends around v = 7.4
-3

where the v dependence takes over.
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Our analysis of the scintillation effects is through the thin screen approxi-

mation and a Fast Fourier Transform propagation routine as described in our last

analysis In that analysis we obtained the required O(x) by summing contributions

from randomly placed striations. In the present analysis we have compared the

results of that procedure with the alternate method of using the PSD directly. The

alternate method stipulates the Fourier transform of o(x) to be

O(q) e ie(q)

where the amplitude is the square root of the PSD and the phase, 6(q), is chosen

randomly between 0 and 2! for each value of q. The two methods agree if there

are enough randomly placed striations so that the generated P(x) is due to about

ten or more striations contributing for each value of x. If there are fewer stri-

ations of larger electron density so that r is unchanged, the comparison shows

weaker scintillation effects using the random striations than using the PSD. This

follows from the fact that the PSD method assumes the phase to be distributed as

randomly as possible with the same rms and correlation lengths. The PSD

method is consistent with our expectation that signals will pass through many

random striations.

Since the PSD is an even function of q, its Fourier transform, the phase

autocorrelation, is

(x) (x+r) = 2 / dq 2 (q) cos (qr) -aco p(r)

0

where the variance 22 2 2

2 = f0 dqo 2 (q) = 2 L(1- 2) + 2+-2)
+P a 15 105

0

The dependence of the phase variance on the parameter a is slight. We

maintain the electron content constant as we vary a so

2 2 2 2 2
2 (q=0) =-- (reXnoa) (1-a /2)

is constant and

21

0.1 Us



2(1 2 lbX 2 (l-a 2  320 4
2 "15 + 2 (q 0)
Po/ra2)-e2 2)

Using a(a) = a(O)(1-y /2) , the dependence of (n on a alone varies from a
~32

factor of unity for a = 0 to a factor - - =0. 862 for a= 1. This dependence
105(f) 2

of (Prms = 0 2 on a will be ignored and we will present our results of the pro-

pagation study in the usual manner as a function of the two parameters. o ' rms

and C X d

4 f a2 (0)

One measure of the severity of signal intensity scintillation is the

scintillation index S4 defined by
~2= II~

4

where I is the signal intensity on a plane a distance d from the striation normalized

to intensity in the absence of striations. The average intensity I-= 1 by conserva-

tion of energy. This means no energy is backscattered by the striations using

our propagation methods which are strictly valid for small-angle forward scatter.

We have found in a previous study 1 that for S4 ! 0.3, the scintillation is too mild

to disturb communication systems and for S4 Z 0. 9 severe scintillation occurs

which can be approximated by Rayleigh statistics. These values of S4 are there-

fore useful for the discussion of system effects. Another useful parameter is

the intensity correlation length, L, defined where

I(x)I(x+ I) - e -4 (3.1.2)

We plot the contours of S4 = 0. 3 and 0. 9 on Figs. 3, 4 and 5 for the cases a=0,

0. 9 and 1 respectively as a function of E and o. We also plot contours of

L/a(ct) as a function of E and o in the figures as dashed lines. We are strictly

interested in t only in the regime of strong scintillation S4 2 0. 9. From the

figures it is obvious that in this case W/a(a) is well approximated as a function

of o alone. In fact t,= a(a)/p fits very well.
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Figure 4. Contours of S54 and t. /a for circular n econtours (~1) and
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9

Mercier's analysis of scintillation effects in the limit as E -. obtained

an expression for I(x)I(x+ t,)which depended on the PSD of phase alone. Again,

this is because he assumed the phase to be Gaussian distributed as we do. His

expression is

-2p02 2opr
I(x)I(x+r)- 1 = e-o [e2O p(r) - 1]

which results in

S4 2 1 -202

or S = 0.3 for o =0.217 and S4 =0.9 for .o =0.91. These values are in agreement
4-0

with the top of the contours in Fig. 3 for a = 0. For the other figures, the

S - 0.3 contour is in agreement but the S4 =0. 9 contour is at a larger value of

o but appears to be approaching Mercier's limiting value.

The curvature of the contour of S4 as they approach Mercier's E =

limit contrasts strongly with the contours of L/a which are straight lines down to

the S4 = 0. 9 contour even when e << 1. We therefore believe Mercier's

analysis to be valid for S4 -, J. 9 for any e. Since this regim$ always has

o > 1, we take the limit of Mercier's expression where e- 20o << 1 and obtain
0 2 2

I(x)I(x4-) - =e- 2 [ 0o - o ( )l. From our formula (3. 1.2) for 4,we have

2 2 1

2
Since we restrict ourselves to the case of o >> 1 we need to evaluate p(t) for

2 2small values of L/a where p w 1 -A-, /a where A is some factor depending on the

functional form of the auto correlation p(). Thus

a 1 a

and the dependence of h/a on (D is as seen in the figures.

We shall now discuss the S 4 0. 3 contour. All figures show the con-

tour to asymptote to a straight line = constant for E >> 1 and to asymptote to
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a straight line E = Bo' c for c << 1 which always is in the regime co 0>> 1. The

case a = 0. 9 shows a break at very small c from the straight line.

9
This behavior is in agreement with the analysis of Mercier who

showed that for o << 1,

S2 =8 f dq2P(q) sin' (Eq'a')

0

2 2 2
In the lim S4 = 4 dq 2(q) =20 or S4 * "2o"

0

It has since been shown by Jokipii 10 and others that Mercier's
2

formula is also valid when oo > 1 so long as the resultant value of S<< 1. TheoS4small c limit produces

2 2 4f 2

S4 = 8E a dq2(q) q

0

which diverges for the power spectra we are considering. If the power spectra

fell off faster than q-5 for some large value of q as they must from diffusion,

there would be some small E below which the curve would asymptote to the

straight line E= B/ o . We assume this value of E to correspond to a diffusion

cut off size aD 30 m. We shall assume our curves of the power spectrum are
-1accurate out to q = (30 m) - . It is interesting that the expansion ofs2 (2a2) 2

sin (Eq a ) as a means of obtaining the small E limit which leads to a rapid 2

fall off for S2 (as was foundfor an exponential power spectrum in a previous
1 4

study ) may be incorrect for power law spectra even if a reasonable diffusion

cut-off exists.

2
We shall obtain the small c behavior of S4 by assuming that the

2 2 24
sin (eq a2) term wipes out the contribution to the integral of the low qa

portion of 2(q). (valid when q 2a2 << 1) and that we can go directly to the
asymptotic limit of the Bessel functions, where for a = 0 we have
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242 (c q 2 a2 (reoa2)2 sin2 (qa - /4)

S248 J dq sin2 ( I q2 2  4 (qa)3
0

6aco2 /dq sin2 (Eq2 a2 ) sin2 (qa-I/4)
o (qa)3

22Let t= eq a . Then

oS =3 co2 f dt (sint )2 sin2 (,rtT - f/4)
0

where for small E,

sin2 -,_ /4)-1

through the important part of the integrand so

= 2-sn\3 - 2

2 2

Therefore S4 falls off as E rather than . If there were an abrupt diffusion cut-

off of o (q) at q = qD then the result is unchanged if q D2a 2 > 1 as mentioned above.
22 D2D

For Eq a < 1 we recover the f behavior.

The S4 = 0. 3 contour in Fig. 3 agrees very well with a combination of

the two limits like
2

2 (3. 1.3)
24 +

s -(1 E)

for example. The S4 = 0.9 contour in Fig. 3 has a high c limit which corresponds

to Mercier's S4 = 1 - e- 2 o formula. If we arbitrarily extend the formula of

Mercier to all Ewe obtain

2 21 2/ ( 1 +
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The S = 0. 9 contour from this formula corresponds to S2 = 1. 66 in Eq.
4 4

(3. 1.3). So if we would plot ,= 0.9 1 + -6- for the4 = 0.9 contour and3 otEu4

= 0. 2 J-1 + 5 for the S4 =0.3 contour they would lie along the plotted

contours in Fig. 3 well within the accuracy of the plots. Therefore we may say

for the case of a = 0, 6 = 1, that:

1. scintillation is negligible for o < 0.2 1 +

2. scintillation is Rayleigh for 0 > 0.9 1 + --

with a correlation length

t, = 0.6 a/p °

3. If desired, the amplitude distribution for intermediate values

of o could be approximated by a Ricean using

1+ 8
eff _= tOol 41 +

if no attempt is made to correlate amplitude and phase.

Our propagation output includes a calculation of the average bit error

probability, Pe' for noncoherent frequency shift key (FSK) modulation according

to the formula

f P (s) P (s) ds
0

where P(s) is the probability density that the signal-to-noise ratio is s and

Pe (s) = j e - s /2 is the bit-error probability for the value s. This is evaluated

by averaging Pe (Is ) for our output considerin the signal-to-noise ratio to be

s in the absence of scintillations. For so 0 (15 dB), a Rayleigh distribution

produces P = .03 whereas no scintillation means Pe = 7.10 (or no

error). Our results show P to vary with S4 . e. g.. a contour of P- = 10- 2

e 4O e
follows the S4 = 0. 8 contour very closely.
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We now skip to the case a = 1. Fig. 5 indicates that the small c behavior

of the S4 = 0.3 contour approaches

S2 = 02 (2$ 4 =C~o 22

4

whereas the S4 = 0. 9 contour shows a weaker E-dependence and indicates a tendency

to close on the S4 = 0. 3 contour as E decreases. This behavior is similar to the

case of the exponential power spectrum studied earlier wherein there was focusing

leading to values of S4 greater than unity.

For our purposes the important aspect of the a= 1 case is the fact that

the S4 = 0. 3 contour requires a larger Po than the a= 0 case, that is Peff is larger

when E < 1. For a = 1 our approximate formulas for the small c case diverge. We

need to evaluate

2 4 (r~nQ)J f J2 2(qa) .2 2

4 (r Xn a dq sin (cq 2a)

o (qa)

315y2 €a f dt sin2 (t) 2 (JT)

0 t
-1/
2

The integral can be split into two parts for small

J dt t 2  %160

0 t

and

J dt sin 2  Cos2 (/ - a/4)

$"7- j (1- cos(2t)) 4--(3-2ln )
~ ~ 1''" 3  TIF

30)
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producing

2 2 2 (315) ( 1n!) 3)S 4 0 E 16 I f)

To agree with the curves of Fig. 5 we must convert the c dependence

where E =- Xd to that of the figure where the curves are plotted fora (a=1)

Xd 24d
C a2(a0= = 2c so

a (ct a 0))

22
2 0oE r 2\ 31

S4 = 6- (315) In + 2

In contrast to the a = 0 case we will need

=0.2 1+ 2 128 +

to have S4 =0.3 which becomes larger than the o required for a= 0 by as much

as a factor 1  161r for small E which is 7.25 for c = 10-3.
15E In( 0

Since the 0. 9 contour appears to have an c I behavior from the figure,
the Mercier type extension used in the a=0 case will not work here. However,

the correspondence of systems-related parameters such as P with S breakse S4 bek
down also. This is because the focusing effects caused by shapes whose power-3
spectra decrease more rapidly than q lead to large values of S4 from focusing

rather than from deep nulls.

A check of the -10 - 2 contour shows it to follow the curvee

c 128 (3.1.4)
0 9 1+315 i o 2 [ln(_,o) +
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(a factor of 4. 5 higher than for the S4 = 0.3 curve) closely enough for our purposes.

This fit becomes very inaccurate for c ! 3.10 -3 as the T = 10-2 contour
3 e

begins to approach the S4 = 0.9 contour but this region ( c 3" 10 ) is also the region

where the greatest differences occur between the a= 1 and a/ 1 cases so modeling it

accurately for a= 1 is not necessary.

Figure 4 for a=0. 9 illustrates this point. The S4 contours are similar

for 1 102 and begin to differ for c Z 3" 10-3 . Note the S4 = 0.3 contour begins

to fall off slower with E approaching the c-dependence found for the a=O case. This
-3is because the high wavenumber portion of the PSD for a=0. 9 has the q behavior of

the a= 0 case. For a < 0. 9, the q- behavior appears earlier (lower q) and one never

has the q-5 behavior of a= 1 since this would occur at a value of q too low for the

Bessel functions to be replaceable by their asymptotic expansion limits.
-3

For 0.9 <a<1.0, the q behavior appears at larger values of q causing

the S4 = 0.3 contour to differ from the a= 1 behavior at values of C below the limit on

the figure. Since both the a= 0. 9 and a= 1 contours of P = 10-2 break from the
e

expression (3. 1. 4) for E < 3. 10- , we expect the same type of break to occur for

0.9 <, < 1.0. This low E break will not be modeled at this time for the 0. 9 <a < 1

case since we do not expect to be in this low c regime when 0 = 1. That is, values

of (this low occur at early times after burst when 0 1. We shall therefore approxi-

mate the results of this section with the following functional fit. Let

g() = (1-a 2 ) -- 2 /2) +02 -;n-4 +

and define

eff = Po/ + gE "

The limit of scintillation effects (S4 = 0. 3) occurs for o eff = 0.2. The amplitude

distribution effectively becomes Rayleigh at o eff = 1 with a correlation length

t,=0.6 a/ o .
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3.2 ELLIPTICAL CONTOUR

For a set of elliptical striations where the major axis of striation i is

at an angle 0i to the ray direction,

2 (r 2[ 1  2)2 J2(qaq)i)  2
o2(q) (r X- na 2) + 221J(-i)a

i qai (qai)2

where

.°2i _ a _1+( _2 1) sin20

1a2 a2a. -0a + psin0,=-41 f(02-_1) sin1T 11

The electron content of each striation is independent of .3 and 0. so as before

a(a) = a(O) (1 - ar2/2) 4 for the content to be independent of a. Each striation

then produces a phase variance

2 4w (re noa ) f J(qa) 2 2 J 2 (qa ) 2
=% r a ai dq [ a 1(-x 2 2c + q.,Di L- ai  f qaiai

i 0 B = 1

2 2
(DiW)1+(p 2_1) sin 2 "1 r (oo =1)

The factor r is the scale factor for the q-dependence of p2 (q) = 2 (q/r

That is, p (o) is independent of f and 0. but 2 (q) is stretched a factor r with

respect to the / = 1 case. For small values of 6i, F > 1 and the scintillation

effects will be worse than in the $ = 1 case.

We illustrate this by choosing a random set of striations for a situation

where the signal line-of-sight traverses the middle of a striated region. The

set of values of 0i is generated by choosing values of x. to be random on a line

0 < x < 64 km while values of yi are random on a line 0 < y -<500 km. The

value of 6i is chosen to be on the radial from the center of the striations to

the position of the ith striation;

x.
tan ei = _ .
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The resultant PSD for =3 is shown in Fig. 6 for the two cases a = 0, 1. In this

figure we do not need to plot the loci of peaks of the Bessel functions since the

range of values of 0 i smear out the far nulls much as a distribution over sizes

would. The first few nulls are not smeared out much because the range

of 0. is small. The dashed lines are fits to the curves used for the propaga-13

tion. The behavior at large v (v=q/2t) will be proportional to (v/v o)-3 for cx=O

and (v/v)-5 for a= 1. Since the PSD, P(v), is normalized to unity in the figure

atv=0, we have for a=0

%M 21 1 (2ffva/ri]

M
1 I r 3

2-r i- 1.

or 0
1

(2f,)3 f a

For a=1

M 82(2ffva/r) 2 

P (v) = 1
P Mv i=1 (2ywva/r.) I )2

M
2 1

Yv v5a 51

or

I/-

The curves are drawn for a(a =0) = 0. 282 km and a ((= 1) = 0.282'f" = 0.399 km

and show v° = 0. 976 km " and v = 1. 142 km - I so
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Figure 6. Power-Spectral-Density (PSD) of integrated phase shift for
elliptical ne contour striations (=3). 0yz, 1.
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,To

r = (2,): (.976) (. 282) = 1. 595
1

and

55/
=i (/2) (1. 142) i (. 399) = 1. 567

The closeness of these numbers show 6 -* 1 since

rin - n/2 (1 + (2-) si -n/2

~ n / 2 21- ( 2-)e ,I

2 2

n /n (- ( 2 -1) - (124.n (-- e =1. 732(14

which produces the values . . 0198 at =O and 6. --. 0238 at a =l where the

difference in these two terms are a result of higher-order terms in (l2 - 1) 2

1

which we dropped. Our procedure for aligning striations along a radial direc-

tion has led to the small value of erms ~ 8. 5 for the alignment of major

axes with the ray direction. We expect r= 1. 6 is sufficiently accurate for

our purposes.
(02 2

We thus expect p ( =3) P 1.6 (0 2 1). The contours of

S4 = 0. 3 and 0.9 and various values of t./a are shown in Fig. 7 for the a = 0,

0 =3 case, It is apparent that the behavior of the S4 contours is similar to

Fig. 3 for B = 1 and agreement is obtained by scaling the E parameter by
f2=2.56. So that

S 4 ( 0 0 E )= = S 4  0 .r - F )
B =3 _=

The contours of V/a are displaced from those in Fig. 3 and have the form

L/a = 0. 64r ,o)since L must scale as r -1 Comparison of the
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Figure 7. Contours of S 4 and C,/a for elliptical n econtours (~3) and
t =0.
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contours in Fig. 8 for the o= 1, .6=3 case with those shown in Fig. 5 indicates that

the simple scaling agrees sufficiently even though not as well as for the ax = 0

case.

The PSD for t =10 is shown in Fig. 9 for a= 0 and 1. From the curves we

have

u° = 1. 377 and v= 1. 773 which means

r. 2.251 and r =2.4325.1 1

So the particular choice of striations causes the PSD to scale as r= 2. 25 for

Oandr= 2.43 for c=1. We have1o, =rpoI _ and we expect the contoursaf ad = . 3 or~l W hve o =0 0 =1

of S4 and t,/a in Figs. 10 and 11 to scale as

S 4 (Po' 1) = S4 ((o 2 )

and

=/a 0.6
r o0

which they do.

Because the scale factors depend on which region of the fireball is

being scanned by the line-of-sight, we have chosen a stressing region where

r A . There will be off-center regions where row 1 but regions with r' < 1
1

1 nwhere for large 8 one has r cscn . will produce weaker scintillation

effects. Regions further out will also produce weaker effects since less structure

is propagated through due to the curvature of the region containing the striations.

Even without the curvature effect, r < 1 and scintillation effects are weaker than

for circular eross-sections for most of the path of the line-of-sight through the

striations.
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Figure 9. Power-Spectral-Density (PSD) of integrated phase shift for
elliptical n e contour striations (p=10) and a = 0, 1.
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3.3 EFFECTS FOR A SINGLE SIZE

The general conclusions for scintillation effects are presented in terms

of

'o (3.3.1)'Oeff = i /

where

2 16 a3 r (re 2 M

(ignoring the slight dependence of (o0 on a) where M is the total number of striations,
< or ', and

=(1-a ) 2 4 2 n 2 31

For (Peff 4 1, the signal distribution will be taken as effectively

Rayleigh although the scintillation index, S4 , need not be unity. In this case the

signal autocorrelation length

0.6a (3.3.2)

/_2r p 1-c/2

For (oeff 0. 2, S4 !0.3 and amplitude scintillation is negligible. The quantity

Xdefff 4

22The quantity a is defined by the electron content of a striation, C sn 0 ia2

As the original content C = n 0y a striates and bifurcates the numberM=a2/2 0 00
of striations M a /a so

o = 4reX noao (3.3.3)
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decreases as a decreases. But

9 - 3(1-12)2 r d+ )(1-o2/2)311 r4X 2d2 In ra (3.3.4)
O 4104w 2a 4  2

increases as a decreases.

What are the relationships between no, a, a, and r as the original

striations bifurcate? A discussion of a in Section 5 suggests the formula

a(t) =0.1+- [19.9--+ (19.9-')2 0.64] km

where F- = t- 50058 for t2: 500s. At t=500s, a =20kni sofor a =150km.

M m 56. The striations should be elliptical. P - 10 so 0. 4 < r < 2.5 depending on
the region. The profiles will be parabolic until n falls to a value where the inte-

e
grated conductivity is a few times the background. For a 3 mho background and a

830 mho central conductivity at no = 10 the profile wouldn't be steep until

nI ~2.107 which corresponds to

1n
n3. 0

For L =103 km

0(500 s) w103 3 (cm) = 140 r x (cm).

For a =. 9 andd= 103 km

g-851 r 2 (cm) +7. 6-10- - 2-12 r4 x2[In(- 106/3
X(cm ))+3

so

g (r2 )~8.10 -8 r 2x r2 X < 103

-10 42 2n( x 3-10 rX (1 - i )) r 2 x >10
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For= 10 cm,

'eff 1400 =r = 1.26 rl r < 102

and the scintillation depends critically on T' (being slight near the edge of the

region and Rayleigh in the rest of the region). If n0 were 10 7, o would drop

to 140 producing negligible scintillation for any r. However the drop to 107

means the profile should have steepened to a= 0 where

ri0a(km)

and

Oeff = 71r2

with little benefit.

The fireball region is thus a region of high scintillation even for large

striations of 20 km size for X = 10 cm. The equation set (3.3. 1-3.3.4) describes the

amplitude scintillation as a function of the parameters n, ), L, d, a. a, a,

and r (p). We expect a and f to depend on n 0 , background and time. We have

thus far treated a case where all striations have the same size. We will investi-

gate the effects of a size distribution on scintillation in a later report. The effects

of a size distribution on the PSD are discussed in Section 5. We have shown in this

section that amplitude scintillation effects can be approximated using analytic fits

to the PSD.
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4. TIME-DEPENDENT STRIATION DEVELOPMENT

4.1 DISCUSSION OF STRIATION DEVELOPMENT IN HANE

The gradient-drift instability mechanism has been combined with the

output of hydrocodes of HANE in order to determine those regions of space and

time after burst during which significant amplification of irregularities in the

electron density can be expected. Generally speaking, these various studies

have shown that the region of space 200 to 400 kilometers away from the center

of the electron density distribution tends to have striation amplifications in the

102 - 103 range by times of the order 300 to 600 s after burst. Consistent with

the often made assumption that the initial amplitude of fluctuations in electron
-3 -2density are of order 10 - 10 times the unperturbed electron density, the

nominal time at which the irregularities in electron density become nonlinear,

i.e., A ne/ne of order 1. can be taken to be 500 seconds after burst certainly

to within a factor of 2.

Unfortunately, our present understanding of the initial phase of striation

development is not sufficient for us to specify precisely the form and scale sizes
that are likely to be generated by the gradient-drift instability mechanism. We

know that these scale sizes are considerably smaller than the typical 50 - 100 km
sizes used in the hydrocode computations. The scintillation effects to be expected

from HANE depend critically on the characteristics of the striations. The pre-

vious section has indicated the dependence of propagation effects on some of

these currently unknown parameters. In the discussion below we will describe

those aspects of striation development for which we have an understanding as

well as identify gaps in our knowledge. The result of the discussion provides

the motivation for the parameterized models that were discussed in Section 2 and

formed the basis for the computations in Section 3.

Figure I(B) provides a schematic illustration of the electron density

contours at times around 500 seconds after burst after the initially fairly smooth

electron density contours become highly distorted. The striations are formed
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in part by motion of regions of high electron density to a greater radius than the

hydrocodes would have transported them, and in part, by motion of regions of

lower electron density in towards the center of the electron density distribution.

We do not know precisely the configurations to be expected at this time in the

cylindrical geometry with a radial neutral wind that is a function of radial distance.

However, we summarize below our current understanding regarding scale sizes,

shapes, and the time evolution of striations and place bounds on the range of

values to be expected.

4.1. 1 Initial Development
11 127

The analytical 1 1 and numerical ' studies of one-dimensional clouds

have some relevance for the cylindrically symmetrical problem. The unperturbed

equilibrium in both cases has the Pedersen current flow at right angles to the

density gradients which are colinear with the neutral wind velocity. There are,

of course, geometric factors which lead to significant differences on the global

scale for the two cases.
5

The gradient-drift instability results from disruptions in the equilibrium

current-flow-pattern due to irregularities in the field-line integrated Pedersen (FLIP)

conductivity, E(r). Thus, in order to determine the electric field pattern that

maintains divergence-free current flow, we need to know the distribution of the

FLIP conductivity. Consistent with the smooth electron density contours shown

in Figure 1(A) before striation formation, we may model the radial distribution

of the Pedersen conductivity as

(r) 0 [ 1 + x exp (-r /a 0  (4.1)

where E 0 represents the FLIP conductivity of the uniform background. E°

for the ambient ionosphere has typical values of 1 - 10 mho depending on time of

day. Values of x appropriate for HANE will be discussed below.

During the initial stages when the fluctuation amplitudes are small, the

development of the irregularities can be treated by linearized equations. The
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problem with attempting to apply these results to HANE is that the unperturbed

electron density (and conductivity) Is inhomogeneous and time-varying. Thus,

the changes in the electron density contours are due in part to the description

provided by the linearized-growth-analysis and in part tp changes occurring

in the evolving electron density distribution. The latter influences the validity

of the linearized-growth-analysis.

The linearized analysis of a one-dimensional cloud has most validity

when applied locally. Perkins et al. 11 analyzed the stability in the limit

kh >> 1 where k is the Fourier wave-number of the perturbed density in the

direction of the current flow and h = I v in E I is the gradient length associated

with the spatial dependence of E (r). The principal results obtained by Perkins

et al. of interest here relate to the location, shape, and growth time of the

perturbed density. They find that the eigenfunction maximizes at the position

r = rm for which h is a minimum, hm , (maximum in the logarithmic gradient).

The striation is elongated in the direction of the neutral wind, Vn' with a length

that is B = (2kh M) times the transverse width, 1/k. The time scale for r --nonen-

tial growth is

o (hm/Vs)[1 +(1/kh)] (4.2)

-4 -9 .4

where V s is the magnitude of the slip velocity of the neutrals, V. = V n-i

transverse to the magnetic field. Because diffusion coefficients are generally

small, diffusion is not likely to be a dominant process until late times when

large density gradients have formed.

Table 4. 1 shows some of the characteristic numbers that result when

the conclusions from the linearized analysis are applied to the cases of both

planar clouds, shown above the dashed line, and cylindrical clouds associated

with HANE, shown below the dashed line. The cases above the dashed line are

chosen to represent the parameters associated with the numerical simulations
6,7

of NRL ' when applied to clouds having a conductivity profile given by Eq. (4. 1).

The third column gives the position of the maximum in the eigenfunction pre-

dicted by linear theory. We see that for higher conductivity ratios this
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maximum relative deformation occurs further out from the region of peak density

toward the tail of the Gaussian. Column 4 gives the value of the cloud conductivity

in units of Z° at the position of the maximum. Even for clouds with very high peak

conductivity ratios, the density contours that deform most rapidly correspond to

a value of cloud conductivity of order the background conductivity.

Column 5 lists the minimum value of the logarithmic density gradient

length that occurs for each of the cases. Column 6 indicates the characteristic

full-width of the striations. In the planar cloud cases above the dashed line, the

values given are obtained from the observation that in the 12 kilometer dimension

shown, there were 5 and 3 striations growing initially, in the two cases respectively.

This dimension is also consistent with the full-width after the striations have

become nonlinear. In the HANE cylindrical cloud case shown below the dashed

line we have just given characteristic numbers associated with a striation of a

characteristic radius a = 20 kilometers. The seventh column shows that these

numbers imply that kh >> 1. The eighth column provides an estimate of them

number of such 20 kilometer size striations that might exist around the cylindri-

cal radius of r = r m . The characteristics growth time. g h /V s is shown in

column 9 where for the planar cloud case a velocity of 0. 1 km/s was used while

in the HANE case a typical velocity of 1 km/s was used.

We now compare the numbers relevant for the linearized analysis shown

in Table 4. 1 with numerical simulations of the planar cloud case. Figures 12

(from Ref. 7) and 13 (from Ref. 6) illustrate the x = 1 (at t =480 s) and x = 10

(at t = 240 s) cases, respectively. In each of these figures the maximum distor-

tions of the equal density contours are comparable to the size of the striations

which is a criterion that the distortions are ending the linear phase and entering

the nonlinear phase. Note that the positions of the maximum distortions are

located at a distance further from the maximum density in the case of the

higher conductivity ratio. At the times indicated in column 10 of Table 4. 1,

the initial fluctuation amplitudes of 5% and 3%, respectively, will have been

amplified by the factor A shown in column 11. This amplification is sufficient

that the linearized theory is no longer applicable and the striation development

has entered the nonlinear regime consistent with the distortions shown in the

respective figures.

51



Figure 12. Iso-Pedersen condiuctivity contours of a one-dimensional
F plasma cloud with x = 1 at t =480 s after initial perturbation

ampltuds of- 5 (taen rom ef.7).
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- I
At late time in the nonlinear regime, the above description is not appro-

priate. In that regime the striations do not increase in amplitude exponentially

with time but maintain a nearly constant electron density. The striations move with

a velocity that is dependent on the local slip velocity and the ratio of the FLIP

conductivity of the striation to the FLIP conductivity in the background region in the

vicinity of the striation. Furthermore, these isolated striations undergo additional

deformations that are sometimes simply described as bifurcations. We will discuss

the time-scale for these bifurcations in Section 4. 1.2 below.

We do not have an adequate understanding of the transition between the

linear regime and the nonlinear regime except in highly idealized cases. Crucial

questions regarding the scale size of the striations and the time scale for their

development require further study.

If an initially planar clcud is seeded with perturbaticns having a periodicity

equal to 2 1/k, then both linear 1 1 and nonlinear 12 analyses show that the resulting
striations maintain this periodicity. In the linearized regime, the perturbation

density grows exponentially in time with a time constant, r , close to that given

by Eq. (4. 2). However, linear theory so far has been unable to specify the eventual

scale size of striations in the nonlinear regime. A naive interpretation of the

linear theory would indicate that, according to Eq. (4.2), the smallest striation

scale size would grow the most rapidly. It would also indicate that for the case
of large conductivity clouds the striation growth would affect primarily the low

density regions of the cloud, near r = rm where rm is the location of the maxi-

mum in the eigenfunction.

However, as the striations approach the nonlinear regime neither of the
above conclusions is correct. The small scale perturbations which, according to

linear theory, grow the fastest also "saturate" the fastest. Larger scale striations

which continue growing then dominate the smaller scale structures. The influence

that the value of the cloud conductivity ratio, x, the density profile of the cloud,

connections to other layers of ionization on the same magnetic field line, and

possibly diffusion, have on the important problem of specifying the scale size of

nonlinear striations has not yet been determined.
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In regard to the striation scale sizes that we might expect from HANE

from the available examples, it would appear that it is reasonable that the initial

values would be in the range 3 < kh M 30. This result would give initial char-

acteristic striation half-widths, P = i,/2k, in the range from several kilometers

to several tens of kilometers. Furthermore, an examination of column 11 of

Table 4. 1 indicates that by times of around 500 s following burst, the amplification

factors are generally in the range consistent with code calculations. Both the

simplified model and the more extensive code calculations indicate that the initi-

ally linear striations have become nonlinear by approximately 500 s.

4.1. 2 Nonlinear Development

We now turn to a discussion of some of the expected characteristics of

striations when they are in the nonlinear phase. For the case of HANE we assume

that the striations have reached the nonlinear phase at tine s greater than 500 s

after burst. We will discuss some concepts related to the initial sizes of the

striations, the shapes of the striations, the density profiles within the striations,

and the time scale for their development. A discussion of the time development

of striations is given in the next section.

Once the ionization in HANE has reached the stage shown schematically

in Figure I(B), we can apply our understanding of the processes that affect

the evolution of these striations which we will characterize as having a

typical scale size a. In discussing these concepts we will not include the mutual

interactions between neighboring striations. This neglect will modify some of

the details but will not affect the general concepts. We have already indicated

that the probable size of these striations is determined by processes not fully

understood during their initial stages of development. Indications are that for

the case of HANE they are probably in the range of several kilometers to several

tens of kilometers in scale size.

The conductivity associated with a HANE cloud is an important para-

meter for describing its development. During the first tens of seconds following

a high altitude explosion the concept of conductivity is inappropriate because the

magnetic field lines are distorted and the electrostatic approximation is not valid.
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If the concept were applied unthinkingly, however, the evaluation of the FLIP con-

ductivity would probably produce values in the range of many of hundreds to thousands

of mho. However, this value would rapidly decrease with time because the neutral

density decreases as a result of being heaved to higher altitudes.

The contribution to the FLIP conductivity obtained by integrating over a

small height range A, is given by

env b (43)8 2] sine

where e, n, B, v, (), and 8 are, respectively, the electronic charge, ion number

density (equal to the electron concentration), magnetic field strength, ion-neutral

collision frequency, ion gyrofrequency, and magnetic field dip angle. By using

B = 0. 5 gauss, =300 s - appropriate for ions of mass 16, and v = 2 x 1013 P
3

where p is the neutral mass density expressed in g/cm3 , (consistent with an
25 2

approximate effective collision cross section of 5 x i015 cm ). and t3. 70°

we obtain

86 E 2.3x 105 nPAmho (4.4)
-3

where n and ,b are expressed in units of cm and km. respectively. As an

example, the FLIP conductivity of a plasma cloud produced by a 48 kg barium
7 -3release at 10 minutes after release when n ~ 10 cm - , A 25 km, and

p 4.5 x 1013 g/cm3 , is -26 mho when Eq. (4.4) is used. This value is in

excellent agreement with more detailed estimates given in Ref. 13.

Accurate values of the FLIP conductivity of a HANE cloud as a function

of time can be obtained from late-time electrostatic codes such as MELT, but

these values are not currently part of the output. It is difficult to make accurate

estimates by using Eq. (4. 4) because both n and p vary by many orders of

magnitude along a magnetic field line and this variation changes with time. How-

ever, we have attempted to use the expression given in Eq. (4. 4) to get crude

estimates of the range of expected FLIP conductivities. We have examined

typical outputs of the MELT code at times of 500, 1000, 1500, and 2000 seconds

after a burst. Because many neutrals have been heaved to high altitude, it

55



appears that at 500 s, the FLIP conductivity 100 mho. By 1000 s, it

appears that this value may have decreased by an order of magnitude or more.

For the time-scale 500 - 2000 s after burst the FLIP conductivity of the

large cloud of ionization created by a high altitude nuclear burst is of order

10 - 100 mho.

Forty-eight kilogram barium releases at altitudes of 180 to 190 km
13produce clouds of ionization that have a FLIP conductivity of order 30 mho

and a typical scale size a - 3 km. Thus, it is reasonable to expect that some

of the observed behavior of barium releases conducted in the ionosphere at dusk

may provide appropriate descriptions of the subsequent development of the large

scale striations shown in Figure I(B), particularly at later times. The scale

size of a 20 km striation in HANE is approximately a factor of 7 larger than a

3 km barium cloud. However, at late times in the 1000 s time range following

a burst, the neutral wind velocity at several hundred kilometers radius from the

burst field line is of order 500 m/s which is a factor of 7 larger than a typical

ionospheric neutral wind velocity of 70 m/s. Thus, the time scale for the sub-

sequent development of the large-scale nonlinear striations that can be assumed

to be present at 500 seconds after burst is in the same range as the time scale

for the development of smaller-scale ionospheric barium clouds. Each of the

clumps shown in Figure 1(B) is likely to develop in a manner very similar to

typical barium clouds such as Spruce or those released during the STRESS test

series.

Barium releases conducted in Florida during winter behaved as

though the ratio of cloud to background FLIP conductivity were in the range of

3 to 6, so we estimate the effective ionospheric conductivity to be 5 to 10 mho.

These values are significantly greater than is expected from a nighttime iono-

sphere which should be in the range of 1 mho. The larger value is explained

by the hypothesis that the polarization electric fields induced by the presence

of the barium cloud is projected along the magnetic field lines into the daytime

(in the case of Spruce) or late afternoon (in the case of the STRESS test series)
14ionosphere in the southern conjugate region . Thus, the appropriate background

ionospheric conductivity, Lot to use in Eq. (4. 1) may range from a low of the
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order of 1 mho up to a high in the 10-20 mho range corresponding to the presence

of nighttime or daytime ionospheres. The appropriate value of x in Eq. (4. 1) for

HANE may range from < 1 at late-time for a daytime burst to possibly as large as

> 100 at 500 s for a nighttime burst. The strong suggestion is made that rather than

providing just a simulation of gradient-drift physics, observations of barium clouds

may provide a direct visualization of the equivalent development of structure for

some cases in HANE.

We now discuss various characteristics of the striations in the nonlinear

regime. The first characteristic is the peak electron concentration in the striations.

Striations are formed by the tendency for the regions of large conductivity to become

more coupled to the neutral wind. Thus, the peak electron concentrations in stri-

ations are essentially comparable to the peak electron concentrations that are pro-

vided by the output of the large-scale codes. Many of the striations will have

electron concentrations of order 108 cm - 3 for thousands of seconds.

The shape and profile of the striations depend on the conductivity ratio

x. We have already discussed the uncertainty in our knowledge of the initial -ale

size of the striations, but as we discussed in the previous subsection, we expect

values of khm in the range of 1 - 100. During the first 500 s when we expect the

conductivity of the burst-produced ionization to be very large, an examination of

the tabulations given in Table 4. 1 suggests initial scale sizes of striations from

kilometers to several tens of kilometers. Associated with this range of striation

scale sizes, we expect an initial ratio of length to width, defined earlier as the

parameter P, in the range from 1 to 10. Two sets of arguments lead to this

conclusion. First, the linear theory provides an estimate B (2 kh m) when

kh >> 1 which is consistent with 1 0 4 10. So, from linear theory one expectsm
elongated initial striations. The second argument follows from an analysis of the

polarization electric field pattern associated with nonlinear striations. For

large conductivity ratios, the rate of steepening of the original high density con-

tours in the direction of the neutral wind is much lower than for moderate con-

ductivity ratios. Thus, after the nonlinear striations have been formed, the

typical length in the direction of the neutral wind may be a reflection of the

original scale size in that direction, i. e., a dimension of order 150 km. If. indeed.
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the dimension of the striations in the radial direction were this large, then it

is easy to imagine values of / 10.

Now we discuss the profile of the electron density within a striation.

A principal feature of plasma cloud dynamics is the steepening of the backside

of a plasma cloud. However, this steepening phenomenon is most prominent

for those parts of the cloud or striation that have values of conductivity less

than several times the background conductivity E . Conclusions drawn from
0

both linear and nonlinear theory support this claim. From linear theory we

pointed out when we discussed column 4 in Table 4. 1 that the values of the

conductivity at which the linearized perturbation amplitude is largest occurs

for those values of conductivity that are only a few times the background value

even when the peak conductivity is extremely large, i. e., relatively low-valued

density coatours undergo initial maximum deformation.

Arguments from nonlinear analyses rely on the realization

that steepening occurs as a result of shear flow. In the electrostatic approxi-

mation that is applicable for the description of striation development, the shear

in the flow exists because of gradients in the electric field. Gradients in the

electric field result from the presence of polarization charges whose magnitude

and location are determined by Poisson's equation. In the simplified one-layer

model, the requirement that

7 .J=0 where =E(E+Vn x B ) (4.5)

is the field-line-integrated current density across B can be written as

.-- (V, n x 7.In (E .(4.6)
n

This equation indicates that the extremes in the gradients of E are at the posi-

tions where h = 1v In E 11 is a minimum. An examination of column 4 of
Table 4. 1 shows that even for large x, this position occurs at relatively low

values of conductivity. Hence, we expect those portions of the striations that have

FLIP conductivities only a few times the background to develop large density

gradients. However, if the conductivity ratio associated with the peak electron

concentration is of order 10 or more, we expect the steepening rate of the high
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density portions of the striation to be considerably less than that of the low density
15

portions

Numerical solutions of the nonlinear equations 7, corresponding to

the cases x = 1 and 10, support these comments. For the low conductivity case

considered in Ref. 7, the density gradients developed at late times are signifi-

cantly larger than the original density gradients present initially. However,

the late-time density contours in Ref. 6 for R = indicate that large densitye

gradients are developed only on the outermost density contours. The density

gradients in the direction of the neutral wind in the vicinity of the peak conduc-

tivity are similar to those present initially, and have not steepened appreciably.

Hence, in the case of striations whose conductivity ratios exceed 5, it is appro-

priate to describe the density profile as having a small gradient until the conduc-

tivity falls to several times the background conductivity at which point the density

gradients become exceedingly large. These remarks refer primarily to gradients

in the direction of the neutral wind. In both high and low conductivity cases, however,

very large density gradients are developed in the direction transverse to the direction

of elongation because this is the region where the shear flow is the greatest.

One might suspect that diffusion would prohibit the development of very

large density gradients. However, a simple plasma model calculation shows that this

conclusion is not correct. In fact we shall show that very large gradients in the low

density region of a striation can still exist.

The continuity equation for incompressible flow with diffusion added can

be written
bn

+ v v n =.Dvn e(4.7)Bte e

where
K(Te + T) Ve

D= e +ei (4.8)
eB O5ce



is the classical ambipolar diffusion coefficient for diffusion perpendicular to the

magnetic field. w ce = 9x 106 s" 1 is the electron cyclotron frequency and

'e 'en + vei is the sum of the electron collision frequencies for collisions

with neutrals and ions, respectively. With

Ven 2x 10- 8 no  Vei lx 10- 3 ne (4.9)

appropriate for T ~ T. - 0. 1 ev, we find that ve. > v for n > 2 x 10 n
e 1 9ei en e 0

For neutral particle densities less than 4 x 10 cm- 3 corresponding to
p ~10" 13 g/cm 3 , electron-ion collisions dominate electron-neutral collisions

5 -3
whenever ne > 10 cm - . In this case the diffusion coefficient is proportional

to ne and it can be written approximately

D= - 4x 10 - 7 n m 2/s (4.10)

-3
with n in units of cm .e

We wish to examine the density profile at the tip of the striation and

consider density gradients in the x-direction alone. In the frame moving with the

tip of the striation, the flow in the low-density ionization exterior to a rod-like

striation has a stagnation point at which we take the origin of our coordinate

system. In this frame, the incompressible exterior flow field can be approximated

near the stagnation point by

v = -wxex + wyey (4.11)

in this planar model. The velocity shear w has a value of order w- Vs/a. By

combining Eqs. (4. 10) and (4. 11) with Eq. (4. 7), we look for a profile of the

electron density that satisfies the steady-state continuity equation (4.7),

bn an
D-- e  + x- . (4.12)

We have not found an analytic solution of this nonlinear inhomogeneous equation,

but we have found that there is a solution for which ne -% 0 as x -.x 0 that can
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be developed as a power series expansion;

n 0 [A( (4.13)
ne -0 .0

where A is an arbitrary constant. This solution shows that ne as

x - x 0 and ne - 0. The constant A and the value of x0 are determined by boundary

conditions whose application requires a knowledge of the full-solution and depends on

the value of n at x = 0 and the striation scale size a. The scale size for thee

variation in ne at low values of density is

Xo ~ A ) 3m (4.14)

for electron concentrations 107 cm 3 and striations with a ~ 1 km and V 500 m/s.

This small value for scale length compared to a justifies the use of an abrupt fall-off

in density as characterized by the parameter a in Section 2.

In summary, the discussions in this section have provided the physical

basis for the models of striation shapes and density profiles that were parameterized

in Section 2. It would appear that values of a and 0 in the ranges 0 < a ! 1 and

1 !g f ! 10 span the values that are appropriate for various bursts at certain times

during the evolution of the striations. The largest uncertainty, in addition to those

represented by these ranges of values, has to do with the scale size of striations to

be expected. In the next section, we will discuss a model for the time dependence

of the changes in the sizes and numbers of striations after the first 500 s following

a nuclear burst.

4.2 DISCUSSION OF TIME-DEPENDENT STRIATION DEVELOPMENT

It is well known that, when a plasma cloud is placed into the ionosphere,

it eventually develops structure that at late times has the appearance of isolated

rods, called striations, aligned with the earth's magnetic field. A one-dimensional

cloud that is elongated in the direction of the current flow, so that I. =V = 0, is

in equilibrium. If there were no fluctuations in the electron density it would not
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break up into smaller-scale striations. However, this equilibrium configuration

is unstable. If the cloud were seeded with small amplitude perturbations in

electron density, these perturbations would initially grow in amplitude on the

back side (the side out of which the neutral particles are flowing). If the initial

seed enhancements were periodic, the developing structure would have the

appearance of a periodic distribution of sheets (see Fig. 14 taken from Ref. 12).

If, on the other hand, the perturbations in electron density were randomly placed,

or contained a large range of scale sizes, then sheet-like protuberances of

different size and amplitude would begin to grow (see Fig. 12 from Ref. 7).

The striations form as a result of the tendency for the regions of maximum con-

ductivity to move with a velocity closer to that of the neutral wind.

As the striation continues to develop it continues to have a sheet-like

appearance. However, the maximum in the conductivity tends to approach the

tip region of the striation and the ionization that is left behind has considerably

lower values of conductivity. Since the ionization flow in the plane transverse to

the magnetic field is incompressible, the width of the lower conductivity region

of the sheet becomes quite thin. This fact explains the rod-like appearance of

the region of higher electron density concentrated near the tip when viewed across

magnetic field lines.

There is no equilibrium ccifiguration for a tuo -dimensional cloud with

finite conductivity gradients. The f~rst manifestation of the distortion of the

electron density contours is a steepening of the backside as the maximum in con-

ductivity moves with a velocity closer to that of the neutral particles compared

to the velocity of the lower conductivity regions. An example of these distortions

is shown in Fig. 15 from Ref. 12. If two perturbations in electron density are

placed on an otherwise cylindrically symmetrical two-dimensional cloud, each

maximum will tend to form its own sheet and the cloud initially breaks into two

pieces. This process is called bifurcation and the classical shapes that result

are shown in Fig. 16 taken from Ref. 12. This bifurcation, or budding, process

appears to be a common stage in the evolution of the tips of striations. These

classical shapes are often seen to develop in the photographs of barium clouds

taken up the field lines and in numerical simulations of late-time striations.
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ZABUSKY ET AL.: PLASMA CLOUDS 11N THE IONOSPHERE, 2
6.0-7
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Figure 15. Isodensity contours for an initially circular plasma cloud with no
initial perturbation showing backside steepening (taken from Ref.
12).
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ZABUSKY ET AL.: PLASMA CLOUDS IN THE IONOSPHERE, 2
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Figure 16. Isodensity contours for an initially circular plasma cloud with a 5%
initial perturbation (taken from Ref. 12).
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The process by which an initially cylindrically-symmetric plasma cloud

breaks up into smaller-scale striations is not certain. One viewpoint suggests that

after backside steepening has destroyed cylindrical symmetry, the cloud bifurcates,

producing smaller-scale-size structures which then continue to evolve by a series of

bifurcation processes. Another view tends to suggest that the backside steepening

process produces a more one-dimensional-like cloud on the backside which becomes

more unstable than an initially cylindrical cloud. This viewpoint would lead to the

conclusion that this more one-dimensional-like cloud would break up into a series

of sheets whose scale lengths are determined by processes that have not yet been

clearly identified. There is no doubt that these sheets continue to evolve by a

bifurcation (or budding or cleavage) process.

No numerical simulation of an initially cylindrically-symmetric cloud in

a one-layer ionospheric model has spontaneously generated smaller scale structures

by either developing a series of sheets or a bifurcation process. It is not known if

the one-layer model would cause a cylindrical cloud to eventually bifurcate
16

or striate. A recent study by Ossakow et al. leads to the suggestion that the back-

side steepening of a cloud is perhaps the first stage in the beginning of a bifurcation.

However, in the process of evolving,the steep backside becomes quasi-one-dimensional.

It would appear that a number of sheets could form in this region, and their develop-

ment could result in additional sheets being formed of smaller size. At late times,

each of these sheets will have elongated in the direction of the neutral wind and will

have the appearance of sheets with rod-like tips. This sheet-like appearance is

similar to that seen in photographs of barium clouds taken at late times up the

magnetic field line. Specific examples are the Spruce and Redwood ion clouds

released during test series SECEDE and the Carolyn ion cloud released during the

STRESS test series.
17

A numerical study by Doles et al. suggests that interactions with other

layers in the ionosphere can lead to the spontaneous formation of sheets without the

need for initial large seed amplitudes. At the moment it is difficult to say what the

dominant processes are that lead to the generation of nonlinear sheets in large

plasma clouds in the ionosphere. Each of the mechanisms mentioned above may

have some role to play. The identification of the role that each of those factors
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plays will be necessary before one can specify with certainty the mechanism that

determines the scale length of the nonlinear striations.

We have already alluded to the fact that the large scale striations,

likely to exist at around 500 s following HANE, may have an appearance somewhat

similar to those shown in the schematic diagram in Fig. I(B). We expect each

of these large-scale striations to continue to evolve in a manner very similar to

ionospheric plasma clouds for two reasons. First, the typical ratio of the FLIP

conductivity of the cloud to that of the background ionosphere is expected to be in

the range from < 1 to 100 which overlaps the range of values of x associated with

many ionospheric barium releases. Second, by 500 s the regions of maximum

conductivity are probably located in the range of from 200 to 400 kilometers away

from the center of the burst so that the radial neutral wind tends to be flowing

through each of the clumps of ionization in one direction similar to the wind flow

through an ionospheric barium plasma cloud.

The equations (without diffusion) that describe the behavior of iono-

spheric plasma clouds do not contain any fundamental scale lengths, but do have

the neutral slip velocity, V s  as a fundamental velocity. The only lengths that

enter the problem are those associated with the initial distribution of conductivity.

According to Table 4. 1, two such lengths associated with Gaussian distributions

are the Gaussian radius a and the maximum gradient length h m. It is not

known what effect the assumed initial density profile has on the future develop-

ment of such a cloud. However, all clouds with the same shape, density profile.

and peak conductivity should evolve on a time scale that is proportional to a

characteristic size, say, a o . Thus, after striations have become fully-developed

and the maximum in the conductivity has concentrated near the tip so it is some-

what rod-like, the tip of the striation should continue to evolve in a manner

precisely similar to the manner in which the original cloud evolved, except on

a time scale somewhat faster because of the smaller size. This concept leads

to a rapid cascade producing larger nun-bers of striations of smaller and smaller

size. Before continuing the discussion of the effect of size on the development

time of striations, we first indicate the dependence of the development time on

the shape of the cloud and the conductivity ratio x.
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Even though we cannot specify precisely the method by which a large

plasma cloud breaks up into smaller-scale striations, we can indicate the scaling

of the time dependence on the shape of the cloud and its conductivity. In a frame

moving with an appropriate field-line averaged neutral wind velocity, the zeroth-

order equation for current continuity has the simple form

v. E() E' = 0 (4. 15)

where E' is an effective electric field 13 . A plasma cloud represents an enhance-

ment of the conductivity in a region where the neutral wind is blowing through back-

ground ionization. The gradients in the conductivity generate polarization electric

fields that allow the cloud to move across the magnetic field lines with part of the

velocity of the neutral wind. In general, the velocity of the plasma cloud can be

written in the form

E a .
VCB2 (4.16)

where the coupling parameter, 77, is a function of x and $, the FLIP conductivity

ratio and length to width ratio, respectively, of the plasma cloud. The functional

dependence of n on x and 0 is most easily obtained by solving Eq. (4. 15) where

the electric field has the constant value + V X far from the cloud.
a a n

The functional form of n (x, $) depends on the density profile in the plasma

cloud. A simple solution of Eq. (4. 15) exists for plasma clouds having a uniform

density and a sharp edge corresponding to a = 0 for the shape defined in Section 2.

When the plasma cloud boundary has an elliptical shape with major axis a P in

the direction of the neutral wind and minor axis a #-, the electric field, E '
inside the plasma cloud has a constant value.

_ a (4. 17)c 1+ --

The cloud moves with the constant velocity V + E X B/B . By making use of
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the expression (4. 17) and subsituting into Eq. (4.16), we derive the

expression for the coupling constant

17 xx (4.18)

We invoke the principle that the tendency to striate depends on the

difference in velocity between a plasma cloud with a finite value of ft and a sheet-

like cloud which corresponds to a value of / = -. In particular, we claim that the

time for an elliptically-shaped cloud to bifurcate, striate, or develop smaller

scale striations is proportional to the time it takes a sheet-like configuration of

ionization to move a characteristic distance in the direction of elongation of the

cloud with respect to the cloud. We will call this time a bifurcation time, Tb, and

indicate that it is proportional to

T  
= a [P (I+ )(1+0+0X) (4.19)

b  c()vc() = s1P 1 •

Thus, the time to develop or bifurcate is proportional to the scale size of the stri-

ation and inversely proportional to the neutral wind velocity in the frame moving

with the velocity of the ambient ionization. Table 4.2 presents numerical values

of the term in brackets for representative values of x and 0. We see that large

values of x and R slow down the rate of development of plasma clouds or large

striations.

Table 4.2. Coefficient of bifurcation time.

x O = 1 3 10 10

1 6 24 133 4 O

3 7 30 173 -5.3

10 13 65 386 -12.1

X>>lO ..0 - 5.2 x -32x-
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The zeroth-order one-layer model equations indicate that the rod-like tip

of a striation should behave exactly as an original plasma cloud behaves, proceed-

ing through the same stages of development. Thus one would expect that the back-

side of the tip of the striation would steepen and then it should bifurcate and/or

generate a number of smaller scale sheets, each of which would undergo its own

similar development. The time scale for these subsequent developments, being

proportional to the scale size, a, of the cloud, would rapidly diminish and in a

finite time all striations would become infinitely thin. The scaling indicated by

Eq. (4. 19) has been supported by observations of the time it takes for large barium

plasma clouds to striate. The striation onset time for cylindrical clouds tended to

vary with scale size, a, neutral slip velocity V. and conductivity ratio. x,

according to Eq. (4. 19) with $. = 1 and C1 - 1. 5. For instance, in the case of the

Spruce ion cloud with a characteristic radius 3 km, Vs = 50 m/s, and an estimated

conductivity ratio x - 3-4, definite structure was seen in the ion cloud at around

11 minutes after release. In further support of the reduction in development time

with scale size, by 22 minutes following the release of the cloud (two striation on-

set times), the striations were well-developed with many tens of striations having

scale sizes in the hundreds of meters range. It is obvious that this subsequent

development of the cloud after the initial formation of the smaller sizes proceeded

much more rapidly than the development of the original cloud.

However, this simple description ceased to apply at later times for the

smaller-scale striations. Many striations with a scale size of order a - 200 m

were seen to maintain their identities for several hundreds of seconds. Further-

more, the STRESS test series has shown that many fine-scale striations with char-

acteristic dimensions of order hundreds of meters can exist for as long as two

hours following a release and thus were able to maintain their identities for many

thousands of seconds without undergoing further development. It is apparent that

at the small scale sizes, the zeroth-order equations are inadequate to describe the

behavior of the rod-like striations. They apparently become stable against the

formation of striations.

There are a number of factors that have not been included so far in the

zeroth-order model that could be important for affecting the development of small-
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scale striations. Prominent among these missing factors are connections to

other regions of the ionosphere along the same magnetic field line, the proper

treatment of diffusion coefficients, and possibly changes in the effective back-

ground ionospheric conductivity. The proper treatment of the mechanisms that

control the behavior of late-time striations may also lead to a proper treatment

of the factors that determines the initial scale size in larger plasma clouds.
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5. BIFURCATION MODEL AND TIME-DEPENDENT

POWER-SPECTRAL-DENSITIES

5.1 BIFURCATION MODEL APPLIED TO HANE

In Section 5. 2 below, we present the results of calculations that give

the phase power-spectral-density as a function of time based on parameters asso-

ciated with HANE and the concepts described in Section 4. In this section we

introduce a methodology for describing the time-dependence of the number and

scale size of striations that might be expected following a HANE. We emphasize

that it is the methodology that is of importance rather than the explicit results

produced. However, there are some features of the results shown in this and the

next section that are likely to occur following HANE.

In Section 4. 1 we presented a discussion that motivated us to postulate

that around 500 s following burst there exist some number, Mo, of well-developed

striations with scale sizes in the range of several kilometers to several tens of

kilometers. In this section, we describe a model for determining the time-

dependence of the number and scale size of these initial striations beyond the

first 500 s following burst. The concept is simple. For any striation of scale-

size a, there is a characteristic bifurcation time r b(a). After a time lapse of

r b(a), we envision that a large striation will have bifurcated and that there will
then be two striations having the same shape and peak electron density as their

original parent striation. In order to conserve the number of electrons, the size

of these daughter striations will be a/J'2.

We now define a time-dependent distribution function of striation scale
sizes, M(a, t), such that the number of striations of scale size a within the

range a to a + da is M(a, t)da. If we label the initial size of the striation a'

and the present size a, then the above description of the bifurcation process is

consistent with

M(a,t)da = 2M(a', t - T b (a')) da' .
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Substituting a' = -a, we find that the distribution function, M(a, t) would obey the

equation

M(a,t) 2aM(fa, t -b (/-2 a))" (5.1)

A specification of the function T b(a) is necessary in order to find a solution.

Equation (5. 1) is consistent with the following description. A newly
created striationof size a' exists for a time Tb(a') and then instantaneously breaks

into two striations each of size a'/J'2. This description of the bifurcation process

is obviously not physical. It is also difficult to treat analytically. Instead, we will

develop another equation that is consistent in concept with the above bifurcation

model but represents striations as changing continuously in size. We assume that

a striation of size a after a time lapse t was earlier part of a larger striation
of size a'. Then its present size is a function of the earlier size and the time

lapse t, i.e., a = a(a', t). A time constant 7-(a) for the rate of change of size of

striation of size a, can be defined by

1 _ 1 ba(a',t) (5.2)
a- a t a'

where we take T (a) as being proportional to Tb(a) . This description says that each
striation slowly shrinks continuously creating a fraction of a striation of the same
shrinking size. This description is not physical either but it roughly satisfies

Eq. (5. 1), it is analytically tractable, and, for a continuous distribution of a large

number of striations, should provide a good indication of the subsequent distribution

of scale sizes after a number of bifurcations.

If all striations have the same density profile, then the density within a
striation can be written n(r) = n0 f (r/a). In order that the bifurcation process con-

serves the number of electrons, we must have

(a,t [f 2vrf (r/a) dr da = n M(atO 2 i rf(r/a')dr da'
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This equation determines M(a, t) in terms of the initial distribution of scale

sizes M (a')= M(a',0) as
0

M(a, a'(a,t) a(a,t) M (a(a,t)
a t

(_'(a,t)3 r(a) M (a(a,t)) (5.3)
- a T (a' (a, t)) M

The function a'(a, t) is the inverse of the function a(a', t) and represents the

initial scale size of the striation that has a size a after a time lapse t.

Equation (5. 3) is a general result for the time-dependent striation scale -

size distribution function once the function a'(a, t) (or equivalently, a(alt)) is

determined. In order to provide an explicit example we need to specify an appro-

priate bifurcation time constant. We choose to illustrate a simple example by

considering only cylindrically-shaped rod-like striations which are characterized

by a = 0 and = 1. Motivated by the discussion following Eq. (4. 19), we

choose

[ C2

'rb(a) = 1+ -a (5.4)bV s (a - aS) 2

The second term in square brackets represents an ad hoc stabilizing term for

small scale sizes such that rTb(a) -. w as a -. a s . We shall arbitrarily choose

the minimum scale size as = 0. 1 km in the following calculations. For moderate

values of the constant C, we find that for a -3 km and Vs -50 m /s , the

bifurcation time given by Eq. (5. 4) is - 10 min which is about the time that it

took the Spruce ion cloud to develop its initial structure. At late time after

many striations had formed in the Spruce ion cloud, we found that no striation

with scale size <300 m was seen to bifurcate in times ~ 200 s. We choose

C = 16 in order to be consistent with that fact.
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A number of other functions for 'r b(a), ad hoc or physically motivated,

can be examined. For instance, the stabilizing term could have the form

()=10 a 1 + . (5.5)

Tbl~a - V I~i C(a -1

For comparison purposes, the two functions T b (a) and T bl (a) with C = 16 and

C2 = 5 are shown plotted in Fig. 17 with Vs = 500 m/s. Henceforth, we will adopt

the time constant T (a) associated with T b (a) solely because the striations do not

accumulate at the smallest scale size as as rapidly as for Tbl(a).

We take the time constant defined in Eq. (5. 2) to have the same form as

7" b(a), i.e.,

r (a) = T 0 * (5.6)
L (a- aS) J

If we integrate Eq. (5.2) for a bifurcation time rb(a) and neglect the time-dependence

of a on the left-hand side, we obtain by using Eqs. (5.4) and (5. 6),

'rb(a) 10 ~ la/./2 1r -(a) .V In a 1- In 2 (5.7)
OVs

from which

T - 20 (5.8)
0 V In 2

with V5 expressed in km/s. As a characteristic value of the neutral slip velocity

in the HANE late-time-frame, we take V = 0. 5 km/s. Equation (5. 8) then givess
To = 58 s as the value on which our numerical calculations below are based.

With r (a) of the form given by Eq. (5. 6), the time it takes for a stri-

ation of size a to be formed from a striation of size a' can be found by integrating

Eq. (5.2);
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a

t(a,a') = - r(a) da = [ -a (59)
a' a s ~a a-a al-a

at a( s s

For initial scale sizes a' > 10 kn, C = 16, and a = 0. 1, the last term inS

Eq. (5. 9) is less than one second in magnitude and we will neglect it. Henceforth

we will measure time t in seconds after burst and will assume that at t = t = 500 s0

there exist striations with some initial distribution in scale sizes. In terms of the

normalized time lapse -given by

- t - 500
t = t (a, al)/T o 500 (5.10)

we may use Eq. (5. 9) to explicitly approximate the functions a' (a, t) and a(a' t)

a' = a0+t a. 0 . ; (5. 11)

a = 0.05+ !- a' -t" +/a' -0.1-) 2 + 0.64]. (5. 12)

In order to specify the striation scale-size distribution as a function of

time, we need to specify the distribution of sizes at the initial time, to, and the

time dependence of the number of new striations that are being generated at each

scale size other than by the bifurcation process. The latter represents a time-

dependent source of striations each of which would then evolve in scale size. We

will illustrate the methodology by considering only the initial-value problem and

neglecting an additional source of newly-created striations. However, the second

initial distribution that %e discuss below is motivated by the distribution of sizes

that results from the specific choice of T (a). The first example of an initial size

distribution is a delta function, i. e., initially there are striations of only one size

present. Based on the discussion in Section 4. 1. 1, we shall assume that at 500 s

after burst there are M striations of scale size 20 km. Thus M0 1 (a') = M0 8(a' -20).

By applying the general formula given in Eq. (5.3), we find
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2
M (a,t) M0 oa' 2 a' 8 (a' - 20)

a 6a
t

400M0

2 8 (a-a -tt) ) (5. 13)

where a (t) is the solution of Eq. (5. 12) with a' = 20. The second form for

Mi(a, t) indicates that at any time only one scale size is present and the number

of striations varies as 1/a 2 . We note that the total number of electrons is con-

served (time-independent) and, according to the equation leading to the derivation

of Eq. (5. 3), is proportional to 800 w Mno x f (x) dx.
0

The above model is consistent with the presumed instantaneous creation

of a number of striations of a given size at 500 s. If, instead, striations were

created continuously throughout the initial 500 s time interval, the striations into

which they evolve would have a 1/a 2 distribution. An initial 1/a 2 distribution

of large scale sizes tends to maintain itself. The 1/a 2 behavior is a property

of the choice of the form of r (a). For intermediate values of a such that

a s <4 a << a', we find from Eq. (5. 11) that a'(a, t) -. By applying the

general formula Eq. (5. 3), we obtain

3 -2

M(a, t) 3 a' r(a) M (a') 0(5.14)
2 ... (5.14)

i.e., M(a, t) - 1/a independent of the form of the initial distribution M (a').

A different choice of the function T (a) gives a different distribution. For example,
3

if r (a) = ¥, a constant independent of a, then M(a, t) - 1/a 3 .

For the second example we shall take an initial 1/a 2 distribution.
At 500 s after release we assume that there are a total of M striations distributed0

in size between 10 and 40 kilometers with a 1/a 2 distribution. Thus

40M
Mo 2 (a') - 3a'o- H (a' - 10) H (40- a') (5. 15)3a , 7
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where H(x) is the Heaviside step-function. The numerical coefficient and end limits

are chosen so that initially there are the same number of striations present as for

M0 1 (a'), although they are now distributed in size, and they contain the same

number of electrons. We note that although half of the striations present have scale

sizes between 10 and 16 km, they contain only 20% of the electrons while half of

the electrons are contained in 20% of the striations with sizes between 25 and 40 km.

Thus applying the general formula (Eq. (5.3)) we obtain the second time-

dependent distribution of striation scale sizes,

40M° 0 .16 1
M2 (a, t) = 4 [1+ (-01)2  H(a-am(t)) H(aM( t)- a) (5.16)

2[a (a-0. 1) 2

where we have neglected 0. 16/(a' - 0. 1)2 compared to 1 for a' > 10 km. The func-

tions am(t ) and aM(t ) are the solutions of Eq. (5. 12) with a' = 10 and 40, respec-

tively. Note that M2 (a, t) has a time-independent (but scale.size dependent) ampli-

tude but has a nonzero value only in the finite time-dependent range amn (t) < a <aM(t).

Table 5. 1 lists the values of at (t), am (t) at), and the number of striations,

N.(t) = f M.(a, t) da, that are present according to the two model distributions at

500 s increments after burst.

Table 5. 1 Bifurcation model parameters

t at  am aM N1 N2

(s) (km) (km) (km) (Mo) (N0 )
00

500 20 10 40 1 1

1000 11.39 1.49 31.38 3 9

1500 2.82 0. 122 22.67 50 4,300

2000 0. 127 0. 110 14. 15 24,000 13,000

O 0. 100 0. 100 0. 100 40, 000 40, 000

Figure 18 contains a plot of the amplitude of the two distributions in

scale size defined by Eqs. (5. 13) and (5. 16) respectively. The solid curves give
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Figure 18. The two distributions in striation scale size resulting from the two
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M 1 (a). and to a 1/a 2 distribution, M 2 (a), as discussed in the text.
T1e values of am, aM, and at, as defin~d in the text are indicated at
t =500 s, 1000 s, 1500 s, and 2000 s after burst. respectively.
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the number of striations of a given size. For MI(a, t), there is only one scale size

at any time. The value of that scale size at times of 500, 1000, 1500 and 2000 s

after burst are indicated by small vertical bars labeled a 1 through a t 4 , respec-

tively. Likewise, at any given time in the evolution of the striations according to

M(a, t) there are always striations present between a minimum, am, and a

maximum, aM, scale size. The values of a and aM at 500, 1000, 1500 andm
2000 s after burst are also indicated by vertical bars. Figure 19 shows the total

number of striations present according to the two models as a function of time

after burst.

As the distribution M2 (a, t) evolves, the ratio aM/a m at first increases

and then decreases as can be seen fromTable 5. 1. At 2000 s after burst there are

still large-scale striations with sizes greater than one kilometer present as well

as many striations close to the minimum size a . After a few more hundred
s

seconds aM -. a s and the distribution approaches a delta function with all striations

being of order 100 meters in size.

5.2 TIME-DEPENDENT PHASE POWER-SPECTRAL-DENSITIES

In Section 3 of this report it was emphasized that a knowledge of the

phase power-spectral-density (PSD) is sufficient for determining the average pro-

perties of scintillation effects to be expected on propagating through striated media.

In Section 2, the effects of peak electron concentration, scale size of striations, and

shape and density profile of striations on the phase PSD produced by a single

striation was calculated. In Section 4, the striation characteristics to be expected

from HANE were discussed and in Section 5. 1 we introduced a simplified bifurca-

tion model that determined the number of striations of different scale sizes as a

function of time. In this section we compare the phase PSDs that result from the

two initial assumed distributions of scale sizes, Ml(a, t) and M2 (a.t). We will

also show and discuss the changes in the PSD as the size distribution of striations

changes as a function of time.

The results shown here should not be taken as a specific example of

what actually occurs in HANE, but rather as a model calculation of the methodology

that we have been describing. However, the physical characteristics that are

82



104 M 0

Zd
z

0
wU
C O~ri

-

0

101 MO

0 1000 2000 3000
TIME AFTER BURST (S)
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believed to operate on the striations during HANE will undoubtedly produce some of

the effects that will be shown here. As we learn more detailed and precise informa-

tion regarding the time development of striations in HANE, this same methodology

can be applied to provide more accurate estimates of the time-dependent PSD.

The contribution to the phase PSD, 2(q), due to a single rod (ft = 1)

of radius a is given by Eq. (3. 1. 1) with a = 0. The PSD resulting from a set of

rods, located randomly, having a distribution of scale sizes given by M.(a, t) is
]/

02t) = eJ 2 (qa) M(5.17)

where P.(q, t) are normalized PSD. By expanding the Bessel function for small

q as q -'0, we define the constant C to have the value

2 5.4 20
C" Le 2 (0, 500) = 1.4x 105 r(r e X n0) Mo/L

- 3.5x 108 L 0 rad2 km (5.18)

with (n 0 X) expressed in units of 1013 m- 2 and L given in km. With this choice,

we find P 2 (0, 500) = 1 and P 1 (0, 500) = 4/7. In Figures 20 and 21 we show the

time-development of P 1 (q, t) and P 2 (q, t), respectively, obtained by using the

two different scale-size distribution functions M 1 (a, t) and M2 (a, t) discussed in

the previous section, i.e., those developing from an initial delta function and

1/a 2 distribution, respectively. In Figures 22through 25, we compare PI(q, t)

with P 2 (q, t) at times corresponding to 500, 1000, 1500 and 2000 s after burst.

Figure 20 shows Pl(q, t) at 5 different times including the asymptotic

curve as t -*. Because PI(q, t) is the PSD that results from a collection

of 400 M /a 4 (t) striations of identical scale size a . each of the curves shown
0 t'

is the same curve just displaced vertically and horizontally by the appropriate

amount. The scales on the bottom show the appropriate wavenumber, q, and

the equivalent wavelength, 2 w/q. The PSD as given by Eq. (3. 1. 1) has zeros
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at the zeros of the Bessel function. The first five zeros are indicated only for the

initial, t = 500 s, and the final , t - -, curves. For the other three intermediate

times, only the first zero is indicated. The zeros are a manifestation of the exis-

tence of a single scale size. If there had been a slight range in scale sizes about

the value a, the zeros would have averaged out and the peaks would have been

reduced in amplitude. The higher wavenumber portions of the PSD have been

replaced by the straight line representing the q-3 asymptotic curve at the average

values of the function. This straight line is located a factor of 2 below the peaks

because the average value of sin2 is 0. 5.

The values of P 1 (q, t) have simple expressions in the limits as q -. o

and q -. . By taking the appropriate power series expansion for small q and

asymptotic expansion for large q of the Bessel function, we find that P 1(q, t) can

be represented fairly accurately by a function of the form

P(q,t) [a(t)/20] 2  (5.19)

[1 + 0.85 1 q2a 2 (t)]5

Because Pl(0, t) decreases as a 2(t), its value at t - is a factor of 4 x 104 less

than the initial value at t = 500 s. The phase PSD at very high wavenumber increases

monotonically as 1/a (t) amounting to a late-time increase of a factor of 200 over

the initial values of power at high wavenumber. From the expression in Eq. (5. 19)

one finds that the power at a given wavenumber, q, is a maximum at the time that

aIt(t) = 1.53/q.

Figure 21 shows a similar plot of the phase PSD, P 2 (q, t), evaluated at

the four times shown. This figure shows the time evolution of P 2 resulting from

a group of striations which evolve in time by the bifurcation model discussed in the

previous section, having an initial 1/a 2 distribution in scale shes ranging from a

minimum of 10 km to a maximum of 40 km. The subsequent figures show a

direct comparison between P 1 (q, t) and P 2 (q, tj at each of the respective times.

The first observation is that the distribution in sizes has averaged out the zeros of

the Bessel function and the slight ripple seen at the lower wavenumbers is a
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reflection of the shape of the size distribution. We note that the decrease in power

at low wavenumbers with time is slower for P2 (0, t) than for P1 (0, t) . This

might seem surprising at first since P 1 (0, t) is initially proportional to a I(t)
3 3while the initial value of P 2 (0, t) is proportional to aM (t) - a (t). However,

m 3this initial small decrease is easily explained by realizing first that a c a and
initially (t)(40 - t) so that by t = 2000 s, (f = 25.9) it has decreased by

only a factor of less than 25.

At times after 1000 s, P 2 (q, t) begins to take on an interesting character-

istic. The accumulation of a large number of striations around a 100 meter scale

size causes an enhancement in the PSD at the corresponding characteristic value

of q. In addition, there are still a large number of electrons contained in striations

that are bigger than many kilometers. Thus, it appears that the resultant spectrum

is easily explained by the superposition of the contributions from the large number

of electrons contained in the larger striations and the large number of striations

at the minimum scale size.

Another consequence of the fact that a large number of striations are

approaching the same size, approximately 100 m, is that the zeros of the Bessel

function are beginning to manifest themselves again. Indeed, in the limit t - -,

P 2 (q, t) approaches P 1 (q, t) which is shown as the fifth curve in Figure 20. The

most dramatic change that occurs in the phase PSD after 2000 s is the rapid

decrease in power in the low wavenumbers.

Figures 22 - 25 compare the two phase PSDs from the two distributions

at each of the four different times. Figure 22 is a comparison of the two phase

PSDs resulting from the assumed initial distributions. Other than the presence of

the zeros resulting from the choice of a single scale size only for M1, it is

apparent that these two PSD curves are comparable to each other to within a factor

of 2. At 1000 s shown in Figure 23, the differences in the PSD have increased in

some regions of q to approximately a factor of 4 but the differences betweem

them are not great yet.

Also shown in Figure 23 is a naive application of the effect of diffusion

shown by a dashed curve. If one introduces the effect of diffusion by adding a

diffusion term to the continuity equation in the form given by Eq. (4. 7), a
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linearized and nonlinear argument predict similar effects on the PSD. We take
2

as a representative constant value D = 4 m /s. If one linearizes the continuity

equation with diffusion included, one finds that the amplitude of the fluctuation in

density which initially may have a growth rate Yo now has an effective growth

rate given by

2 = YO - q  (5.20)

On the other hand, the time-dependent solution of the diffusion equation applied to
2 2an initial Gaussian rod of the form n(r) = n0 exp (-r /a 0) results in

n 2
n(r,t) 0 2 exp 2 r (5.21)1 + 4 Dt/a a +4Dt

The Fourier transform of this function is

n / a2

(q) = 2 exp 4 exp q2 Dt) (5.22)

Hence, both the linearized and nonlinear analysis applied to the diffusion equation

with a constant diffusion coefficient results in the fact that the aniplitude of the

Fourier component is time dependent and decreases intime as exp (-q2 Dt).

If this indeed were the effect on the amplitude of the Fourier components of the

density distribution, the phase PSD would be modified by a factor exp (-2 q2 Dt).

The dashed line shown in Figures 23-25 is nothing more than an application of this

factor to the undisturbed curves.

We emphasize that the purpose of including these dashed lines is to

show solely what a naive application of diffusion to the PSD would produce. We do

not feel that this is the correct method of showing the effect of diffusion on phase

PSDs. The proper method of including diffusion is complicated because it needs

to be applied to a time-evolving situation and the effect on the profile of striations

needs to be evaluated. Part of the reason why this task is complicated is because
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the value of diffusion at a particular altitude is affected by the electrodynamic

coupling to other regions of ionization on the same magnetic field line. The effects

shown by the dashed line grossly overestimate the effect that diffusion has on the

phase PSD at high wavenumbers. Due to the presence of steepening processes, the

effect of diffusion, properly applied, would be restricted to values of wavenumbers

higher than the value qD - 10 km indicated in these figures. For example, the

treatment of diffusion in Section 4. 1. 2 indicated lengths of the order 3 m (see Eq.

(4. 1.4)) which will affect only values of q > 500 km

Figure 24 shows that there are differences in the phase PSD produced by

the two different scale-size distribution functions at 1500 s after burst that approach

an order of magnitude difference in power for some values of q. The bifurcation pro-

cess described in the previous subsection is an incompressible process. As such,

the I r ne2 (r) dr is conserved as the striations bifurcate and change their number
2ten2and size. This fact implies that Ine2(k , k )dk dk is conserved where n (k , ky)

e x y x y e x yis the PSD of the fluctuations in electron density. For an isotropic, homogeneous

distribution of cylindrically-symmetric rods, the case that we have been considering,2(q 2(q ne 2 isafnto fk( 2 + 2)
the phase PSD is given by o ( ne ., a function of k =(k + k

~q e (o)ne x s
and the conserved quantity in k-space is I ke 2 (k)dk. Thus, the value of the

JqP j(q, t) dq for the two solid curves in Figure 24 is also conserved. While the

value of this integral over all q is the same for both P 1 and P2, the contribution

to the integral from the middle range of q values is greater for P1 than for P

P2 has relatively larger contributions to its total value from low and high values

of q. Note that I qP(q, t) dt is not, in general, conserved for asymmetric striations

with P > 1.

Figure 25 shows that the P 2 (q, t) is approaching that of P 1(q, t) as time

approaches infinity. The large power at low values of q for P 2 at this time is

just a reflection of the fact that almost half of the electrons still reside in striations

of greater than 1 kilometer radius.

5.3 SUMMARY

The time-dependent PSD associated with a given set of striations is suffi-

cient for determining propagation effects. The procedures for including the effects
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of the shape of striations and the density profile within striations in determining

the phase PSD have been incorporated and the results have been studied in terms

of the profile and shape parameters a and 0.

The weak link in the procedure for determining the propagation effects

that result from HANE is in being able to specify accurately the characteristics of

striations. Based on our currently available understanding of the processes which

operate to create the structured ionization, we have presented a discussion of

the range of expected striation scale sizes that can be expected to exist 500 s

after a high altitude nuclear burst. Furthermore, we have discussed our current

understanding of the time development of the striations.

A perhaps surprising result is that at late times, after 500 or 1000 s

following burst, the region of enhanced ionization has broken up into individual

large size striations whose field-line-integrated Pedersen (FLIP) conductivity is

of the same order of magnitude as the FLIP conductivity created by the deploy-

ment of 48 kg barium releases. This similarity strongly suggests that the con-

tinued development of the striations in HANE beyond 500 s after burst will be

similar to the development of striations in barium plasma clouds with appropriate

adjustments in the time scale due to the different initial size and neutral slip

velocity. As the striations break up into smaller scale sizes the time for them

to continue to evolve, or bifurcate, continually decreases. On a time scale

measured in several 500 s units, we reach the conclusion that most of the ioni-

zation will exist in striations of less than a kilometer in size. Observations of

barium clouds suggest that there is a minimum size striation that is produced that

does not subsequently striate. This size appears to be of order 100 meters but

may be somewhat less. We do not presently have adequate understanding for

determining this size.

Consistent with the above description, we have introduced a bifurcation

model that contains some of the physical features operating to change the scale

size of striations. We have accomplished this by introducing a model for the

bifurcation time as a function of striation scale size. The specific model that

we use is motivated by our physical understanding for large scale sizes but its

dependence near the smallest scale size is purely ad hoc. However. it reproduces
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the features of limiting the further bifurcation of the small size striations and

appears to give times that are consistent with the observations of barium clouds

for striations of around 300 m radius.

An effect of having an initial distribution in scale sizes is that the PSD

does not maintain a simple shape as the striations evolve. The methodology that

we have described allows us to introduce appropriate modifications as our under-

standing increases. Once we are more certain of the initial distribution in scale

sizes, the values of the parameters a and p as a function of time, and the

mechanism that limits the smaller scale sizes, this knowledge can be incorporated

into the procedures that we have discussed.

Based on an initial exploration of the appropriate value ranges of the

parameters, we summarize the propagation effects in HANE. The ellipticity of the

striations reduce the scintillation effects over most of a striated region and enhance

the effects in the central region. Striations with high central electron density com-

pared to background have predominantly parabolic profiles which reduces the scin-

tillation effects to that of abrupt profiles with lower electron densities closer to

the background in most cases. High frequencies, t. 3 cm, may have negligible

scintillation many minutes after burst. Lower frequencies may have Rayleigh

scintillation for hours after burst.

In conclusion, the areas in which additional work is needed are: an

understanding of the physics that determines the initial distribution of scale sizes

in a cylindrical geometry; a more accurate understanding of the time-development

of the striations in the nonlinear phase; the mechanisms that lead to the cessation

of the bifurcation process, and the influence that the steepening and diffusion pro-

cesses have on determining the density profile of the striations. This latter

investigation is important for determining the wavenumbers at which the PSD

decreases drastically.
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