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A CLASS OF SOLUTIC~S TO THE.. GOSSIP PROBLEM

Douglas B. West

CQlrputer Science Department
Stanford university

Stanford, California 911305

Abstract

We characterize and count optimal solutions to the gossip prob-
lem in which no one hears his o~n~ infor.~ation . Tl~at is , we
consider graphs with n vertices where the edges have a l inear
ordering such that an increasing path exists fro~n each vertex
to every other, but there Is ~o Increasing path from any ver-tex to itself. Such graphs exist only when n is even , in which
case the fewest number of edges is 2n-1~, as in the original gos-sip problem. ~ie characterize optimal solutions of this sort
(NOHO-graphe) using a correspondence with a set of permutations
and binary sequences. This correspondence enables us to count
these solutions and several subclasses of solutions. The ru~ —
bers of solutions in each class are simple powers of 2 and 3,
with exponents determined by n. We also show constructively
that NOHO-graphs are planar and Hamiltonian, and we mention
applications to related problems.
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A CLASS OF SOLUTIONS TO THE GOSSIP PROBLEM

There are two kinds of people who
blow through life like a breezes

And one kind is gossipers, and the
other kind is goseipees.

—-Ogden Nash

Gossip is miech~3vcus, light and easy
to raise, but grievoue to bear and
hard to get rid of. No gossip ever r-
dies away entirely, if many people
voice iti it too is a kind of divinity,

——Hesiod
It

_ _ _ _ _ _ _  
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1. Introduction

The “gossip problem” has the unusual distinction of being

solved four times within a year. Proposed by Boyd and popular-

ized by Erdös, it considers a group of n people, each posses-

sing a distinct item of information. Telephone calls are ar-

ranged between two people at a time, in which they exchange all

the information they know. (It is also called the “telephone

problem.”) We seek the minimum number of calls required to

transmit all the information to everyone. For n~~, it is 2n—L
~.

This was proved by Bumby and Spencer(unpublished), Baker and

Shostak (l], Tijdeman(12], and Hajnal, Mim er, and Szem.r~diE7J.

These proofs were all different and fairly short.

Ways were quickly found to generalize the problem. The

calling sch.me can b. repr’.s.nt.d by a graph whose edges are

linearly ordered to repre sent the order of calls. We require

an “increasing path” from each vsrtex to every other. Edges
may be reputed in the orderi ng, in which case they are counted
twic., representing r•putsd calls.

Moving from graphs to hyp.rgrapha, we can ask the same

qu.stion when the medium of transmission is “conference calls”

of a fixed sia. k. The aini a number her. was discovered by

L.b.n.ol(lO]. It is on the order of 2(n-l)/(k-.l), with a num-
ber a! t.c?cnioal M$iis~~snti. 1.ruon (2) r.o.ntly rsderivs d

the resul t with a shert.r pr.of .
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Thus far we have considered complete graphs. Suppose the

“allowable” calls are restricted to some subgraph . For example,

we don’t wish to assign sworn enemies to talk to each other.

This problem was considered by Harary and Schwenkt8], and also
by Golumbic[6]. As long as the graph is connected, we can trans-
mit the information in 2n-3 calls using a spanning tree, with

the calls ordered to and then from some root. If the graph con-

tains a k—cycle, we can still achieve 2n.-4. Here we use the

k-cycle and edges which grow tree—like to the remaining vertices.

It is easy to find a suitable ordering. It is conjectured that

if the graph does not contain a k-cycle, then 2n—3 edges are - frequired. H
Instead of ordinary graphs, we could consider dkected

graphs, representing one-directional transfers of information,

This is the “telegraph problem.” Harary and Schwenk(8] and

Golumbic[6] have shown that if the digraph of allowed edges is

strongly connected, then the minimum number of messages for corn—

plete transmission is 2n—2. Qolumbic also examines how many H,
messages are required to tranm.tt whatever can be transmitted

when the digraph is not strongly connected.

Another variation asks for the minimum time of transmission,
where each vertex can participate in at most one call per time

unit. Xnodel[9] solved this for complete graphs, and Sohmitttll]

for complete hypergraphs. Coekayne, Hedetniemi, and Slater[3)
conside r this in terms of individual vertices, Entringer and

Slate r(5] consider time of transmission in compu te digraph.,
q

I ___ 
_ _ _ _ _ _ _ _
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The behavior of all, these minima is logarithmic in the number

of vertices, adjusted by constant terms depending on residue

classes of n.

Cot[k] discusses ways to vary the problem. We consider

here not a generalization of the situation, but a restriction

of the allowable calling schemes. We consider calling schemes

that transmit all information, with the additional requirement

that no one ever hears his own information. That is, no one
speaks to anyone who knows his original tidbit. - In the graph-

ical. formulation, with an ordering on the edges, this means we

can find no path which leaves a vertex, cont inually “increases” ,

and returns to it. We determine when such solutions exist and

how many edges they require, and we characterize and count the

optima]. ones.

We show that calling schemes completing all transmissions

and satisfying NOHO (“ no one hears his own information”) exist
only when n is even. We call such such a solution with fewest

edges (on n vertices) a NOHO-graph. NOHO-graphs have 2n—Zf

edges, the usual. gossip result. Particular examples include
C~ (the k—cycle) and any regular graph of degree 3 on 8 ver-
tices having no triangles. The latter set we call. Q~, since
it includes the cube. We characterize other NOHO-graphe by two

• permutations and two binary sequences. Each of the four describes

the placement of approximately n/2..l edges in the graph. We

show that any two of the four suffice to determine the other
two and hence the ent ir. gra ph . We use this to count the num-

_____  

__________F Vi I ~~
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ber of realizable quadruples determining NOHO-graphs on n ver-

tices. (Realizable quadruples, or simply ‘~solutions,” are

those sets of sequences which correspond to NOHO—graphs.) Let-

ting p=(n—k)/2, this number is for n~6, n even, NOHO-

graphs which are not symmetric are counted twice in this; that

is, they correspond to two realizable quadruples. We later

count the number of symmetric solutions, so the number of NOHO - H
graphs is retrievable,

We also define sri operation of “concatenation,” which puts

two solutions together two form a larger solution. This yields

a concept of an “irreducible” solution as one which admits no

concatenation from smaller solutions. We show the number of

solutions on n vertices concatenated from k irreducible parts

~~ ( P 1 )2 P k  We also determine the number of symmetric solu-

tions concatenated from k irreducible parts. In particular,

the number of irreducible solutions is 2p-1, the number of sym-

metric solutions is ,Lp,’zj, and the number of symmetric irre—

ducible solutions is 2Lp~”2J, Ignoring the special graphs C4

and Q~ and eliminating the double-counting, the number of NOHO-

graphs is (3~~l+3LP/2J)/2 -

Additional results include constructive proofs that NOHO-

graphs are planar and Hamiltonian and applications to related :1

gossip questions. In the next section , we outline the steps of
the proofs toward these goals.
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‘ 1
2, Summary of Proofs and Risults

The original argument used by Baker and Shostak[l] begins

by showing that the smallest graph which could transmit all

information in fewer than 2n-11 edges would have to satisfy

NOHO. They use NOHO to discuss the “first edges” arid “last

edges” of the graph and consider the components of the sub-

graph obtained by deleting those edges. They obtain a contra-

diction by showing that not all transmissions can be completed.

In our preliminary details, we parallel this argument. In a

graph satisfying NOMO, the set of edges which correspond to

first calls made by some vertex and the set of edges which

correspond to last calls made by some vertex each forms a corn-

plete matching in the graph. As a corollary, we see that NOHO-

graphs must have an even number of vertices.

We consider, for each vertex x, a tree 0(x )  of edges used

to pass its information elsewhere and a tree 1(x) carrying in-

formation to it. Characterizing the edges which appear in the

intersection of the tree., we determine the number c(x )  which

appear in neither. c(x) turns out to be two less than the de-

gree of the vertex. Now we consider the graph M(G) obtained

by deleting the first edges and last edges. Conaidering where

edges of 0(x) and 1(x) can appear in it and bounding the “use-

less” edges by o(x) ,  we obtain the major result of section 3,

For a NOHO-graph G, M ( G) consists of exactly four components

which are all trees. Along the way we izhibit such solutions

with 2n—k edges , The contradiction obtained by Baker and Shoe-

~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ ~- . - 

~~~~
- - ;.~~~r
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tak does not arise because these graphs have enough edges.

In section ~1. we consider the case where G has no vertex of

degree 2. The trees of 14(G) must each contain an edge, and ex-

amination of cases shows they must all consist of single edges.

This requires G to be a 3-regular graph on ~ vertices , and NOHO

prehibita triangles. All such graphs admit an edge-ordering

which transmits all information, so they are NOMO-graphs.

Returning in section 5 to graphs with vertices of degree 2,

we find C4, which works. If n)k, then M(G) consists of two i-

solated vertices and two caterpillars on n/2-l vertices each.

(A caterpillar is a tree with a path hitting every edge.) This

enables us tO label the vertices of the graph{x~J, where isfl,23,

jc~0,l,,..,n/2—l}, according to the order in which information

from the isolated vertices 4 travels along the caterpillars.
The placement of edges in the caterpillars can be described by

binary sequeces, where the ~th element describes how x~~1 ~~
joined to the earlier vertices.

To completely characterize the graph, we must describe how

the first edges arid last edges may be added. To satisfy NOHO a

first edge or last edge must always join x1
1 and x~ , with iii’.

So, the placement of these edges can be described by permuta-

tions, where the jth element of the permutation is k if x~ is

the first ( respectively, last) neighbor of x1~.
In section 6 we derive necessary conditions for

pairs of these integer sequences to be realizable by ?40H0-

graphs. On. condition imposel ineq~zalities relating elements

________________ - - 
— ‘1
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of the two permutations. Another restricts where l’s occur in

the binary sequence. in terms of where reversions occu r in the

first-edge permutation. The reversions of that permutation are

explicitly characterized, (A reversion is a maximal con-

tiguous subsequence of a permutation where the first element i~

the least.) The characterization is equivalent to forbidding

subsequences of length three (in a permutatior~ who.se last ele-

merit is the largest. All these conditions follow from requir-

ing NOHO, transmission of all information, and the characteri-

zation of the graph in terms of the caterpillars. Other condi-

tions follow from the same basic reasons when the graph is re-

flected, which consists of relabeling the vertices of the graph

so the two caterpillars are switched. The sequences for the

reflected graph are easily obtained from the original sequences.

Ma~in~ derived enough necessary conditions , we can show (secth~ 7)

that any pair of sequences satisfying the appropriate ones u-

niquely determines the remaining pair, Furthermore , the result-

ing quadruple is realizable, so the conditions are sufficient.
Therefore, we need only count realizable pairs (P S) , where P

is the first—edge permutation and S is the sequence determining

the first caterpillar . There are (~~
‘
~) such permutations whth

r reversions (where p’z(n-4)/2 ), and 21’~
]. realizable binary se-

quences for each of those, so a simple application of the bi-

nomial theorem gives 3~~ realizable quadruples.

In section 8 we consider symmetric NOHO-graphs, When the

operation of reflection yields the same sequences as before ,

- —r - - - 
~ ~

~.
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the graph is symmetric. Otherwise, two quadruples determine

the same graph. To count the number of symmetric NOHO-graphe,

we first count the number of symmetric realizable first-edge

permutationa. A simple fact about the number of entries in a

permutation enables us to construct such permutations step by

step, where at each step we have two options and determine two

elements with our choice. Then we count the number of symmetric

NOHO-grapha associated with it by counting the number of last-

edge permutations which can be paired with it. For the choice

made at each step in constructing the first permutation, making

it one way results in two options at a corresponding stage of

the second construction, while making it the other way leaves

only one. Boiling all this down, we have another simple appli-

cation of the binomial theorem to obtain altogether 31~
,,’2J sym-

metric NOHO-grapha.

Section 9 treats concatenation, Concat—

enation creates a NOHO-graph from two smaller ones by identify-

ing two vertices and merging the edge-orderings in a natural

way. Also, one vertex of degree two is deleted from each. So,

the resulting graph has four fewer vertices than the union of

the original two graphs. This is one reason to define p”(n-k)/Z;

that quantity adds directly under concatenation. With adjust-

ments for the deleted and identified vertices, the “ton” cat-

erpillars, “bottom” caterpillars, first edges, and last edges

of the two small graphs are united to form those respective

sets in the new graph . The orderings are merged to make infor-

- & I
I~

T
~~~~~

4
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mation flow properly along the caterpillars.

In section 10 we examine irreducible NOHO-graphs.—-those

which cannot be formed by concatenation. We show there is a

unique decomposition of any NOHO-graph as a concatenation of

irreducible ones. This follows because the “least refinement”

(in terms of compositions of integers) of two such decomposi-

tions is also a decomposition, and would lead to a decornposi—

tion of one of the original irreducible pieces. Now, using

concatenation arid the number of compositions of p into k parts,

an induction shows there are (~~~ )2T~~ real~zable quadruples

formed from k irreducible parts. This holds for k=l also,

since pracisely that many remain when the others are subtracted

from the total. When we require symmetry also, the number with

k parts remains an ugly summation, but the proof is similar, J
In the special case of symmetric irreducible solutions, the

summation can be computed , and the number of these Is 2Lp~”2J, 
J 

-

In section U we show that NOHO-graphe (except Q*) have two

properties that are frequently investigated ; they are Hamilton-

Ian and planar. Uniting the first edges and last edges of the

graph forms a Hamiltonian circuit. This is proved by dividing

it into two paths which are shown to meet at titeir endpoints

and be simple, disjoint , and exhaustive. For planarity, we take

those two paths and draw one m eld, and one outside of the “Ham-

iltonian caterpillar” formed by M ( G ) .  This accounts for all the

edges. Showing the no crossings exist completes the proof.

Finally, section 12 presents applications to a few related

~~~~~~~~

-

~~~

- ‘
~ 

“- _ _ _ _ _ _ _



L 12

‘I

gossip questions. We note that every NOHO-graph contains a ~1-

cycle and that NOHO—graphe other than C~ and Q~ contain dupli-

cated transmissions. A generalization of the gossip problem is

proposed, and some trivial special cases of it are solved.

3. Preliminary Results

To facilitate comprehension~ we attempt certain rules of

notation. In general, the following apply. Upper case letters

Indicate graphs or graph-valued functions, except that P through

T usually denote integer sequences. Where upper 
~
caee letters

refer to sets of some sort, lower case letters refer to elements,

except for the elements of a sequence, which are simply sub-

scripted, a through e denote integer—valued functions. f,g,h

are vertex—valued functions. i,j,k,l are indices or utility

integers. n,m,p are fixed integers with a particular relation-

ship. q,r,s,t are utility integers, and finally, u through z

denote vertices of a graph .

We deal with undirected graphs G which have n vertices and

e(G) edges. Let V(G) be the vertex set, E(G) the edge set.

~S1 denotes the cardinality of a set S. The ~~~~ of a graph

are unordered pairs chosen, with possible repetition, from the

Cartesian product V(G) *V(G) . (x ,y)  denotes the edge with x arid
y as endpoints. d(x ) denotes the ~~~~ of vertex x, which is

the number of edges to which it belongs . A ~~~~~~~ graph of

degree k , or a k-regular graph, is one where each vertex has

d.gr.e k.

____ 4 ~~~~~~~~~ ~~~~~~~~
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A path of length k from v0 to is an ordered sequence of

vertices (vO, vl,...,vk ), where (v j ,vj +1) a E ( G )  and Vj  are dis—
tinet, except possibly VOaVk. If vO vk the path is a ~icle,

A graph is connected if it has a path from each vertex to every
other. A tree is a connected graph for which e(G)—n-l; equiv-

alently, a connected graph with no c~rcles. A e~pannirig tree of

a graph is a subgraph which is a tree on all n vertices , A.
caterDiliar is a tree with a path that covers (contains one ver-

tex of) every edge. [Alternatively, it is a tree not containing

Y as a subgraph, where Y is obtained from the complete bipar-

tite K1,3 by subdividing each edge with a new vertex.] Cater-

pillars have also been called “hairy paths.”

For a graph G whose edges are linearly ordered , we adopt the
following notation. We put (x,y) c(u,v) if (x y) is less than
(u v) in that ordering . Similarly for other ~notations of order,

F(G) denotes the set of first edges of G, A first edge is the

least edge incident to some vertex. Similarly L( G) denotes the
set of ~~~~~~~~~ of G, any ot which is the greatest edge inci-
dent to some vertex. Let M(G) be the graph obtained from G by

deleting the edges of P(G) and L(G), and let C(x ) be the con-
nected component of M (G) containing x.

- . - For any vertex x, let f(x)  be it. first neighbor , namely
the vertex adjacent to it via the least incident edge. Simi—

Larly , h (x ) denotes it. last neighbor , adj acent via the great-
est incident edge. We use x—.y to replace the words “an trio-
reasing path from x to y, ” meaning a path from x to y where

4 -

- 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



- —
~~~~

- w -

1~ 

-

~~~ 

_ ____

each successiv, edge is greater than the previous one .

Henceforth , whenever we refer to a graph , we assume its

edges are associated with a linear ordering. If for every x,

there is not x—. x, we say “no one hears his own information , ”
or the graph satisfies NOHO.

REMARK (1). A graph satisfying NOHO has no loops , repeated

edges , or triangles.

Proofs The first two are immediate. If there is a triangle,

the edges obey some order , and the vertex at the Intersection

of the least and greatest edges violates N01L0. U

Expanding on this argument , we obtain

LEI.ThtA, (2 ) ,  In a graph satisfying NOHO the first edges and the

last edges each form a disjoint matching.

Proofs Suppose F(G) is not a matching, 80 there exists y’f (x ) ,

z—f(y), with ~~~ Then (y, z ) c (x ,y).  Since y— f(x ) ,  (x ,y) is

no greater than the least edge in x-+z. If *.y are equal, re-

placing (x ,y) by (s ,y )  at the beginning of the path creates

z—,z. If they are not equal ,- adding (z ,y) and (y,x) at tbe
beginning of x—~z again produces z-ez. So, NOHO requires
x .f(y), and F(G) is a matching. - 

- - 
-

Similarly for L(G) .  If y— h (x ) ,  z—h (y) ,  and z~x, we re-

r quire (y,z)~’(x,y) and (x ,y) no less than the greatest edge in

s~~x. This time the end of z x  can be adjusted to produce z4a. U
___ 

‘~~ 
- 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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CO!OLLARY (3), Graphs satisfying IWHO exist only .on even

numbers of vertices.

Proofs Complete matchings exist. ~

- If x — y  exists for all x~y, then we say the graph ‘solves
the gossip problem.” From previous results [1,10,12], we know
such a graph on n vertices has at least 2n-l~ edges . If a graph
on n vertices solves the gossip problem, satisfies NOHO, and
has the fewest edges among all such graphs, we call it a NOHO-

graph. 
-

LEM?&& (ii). NOHO—graphe have 2n-11 edges, for n&1., n even.

Proofs A NOHO-graph solves the gossip problem, so requires at

least 2n—k edges. We exhibit such a graph with that many edges,

Let be a graph on vertices {x~ s i*1,2; j0,l,...,rz/2—1).

We write x~ ,2mx~, x~~,2”x~. Let F(D~) {(x~,x~j2+1_j) $ i 1, 2 , ,.. ,n/2)
and L(D~)={(x~~x~j2_1_j)s i 0 ,l,...,n/2—l}. The intermediate

edges of are {(x~,x~+1) s  11, 2s j ”l,..., n/2_2}, ordered by
Any linear ordering compatible with this

partial ordering is acceptable. Easy inspection shows that
solves the gossip problem and satities NOHO , and it has 2n-1~
edges. fi

Figure 2. illustrates D1~1. Whenever we draw a NOHO-graph, first

I j edges will be dott ed and last edges dashed . 
-

F 
_ _ _ _ _ _ _ _

_ _
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~~~~~~ K .:~ >K~X~X~X~~ ~
“~ ~~ 4

Figure 1. Dlk, a NOHO-graph

COROLLARY (5 ). For a NOHO-graph G, M(G ) has at least four

components.

Proofs Recall M(G)*G_ (F(G)UL(G)), By (2), e(F(G))=e(L(G))=n/2,

and they share no edges ( 1) . So , ( Li. ) Implies e(M(G) ) an_ k ,

With n vertices, this means it must have at leaet Li. components. 0

A graph solving the gossip problem is connected , so the

following concep~ are meaningful. For any vertex x, let 0(x )

be the “spanning tree of useful edges transmitting information

from x ,” or simply the out-tree from x. It can be defined u-

niquely arid recursively as followa . Begin with x. At each

step add the least edge incident to but not contained in the

tree that I) does not create a cycle arid ii) becomes the great—

est edge of an increasing path from x along the tree, After
n—i steps the result is 0(x) .  Thr tree must exist , since x-4y

exists for all yj~x. Similarly, 1(x) denotes the in—tree to x .
It is defined recursively and uniquely like 0(x) by adding at I ~
each step the greatest non-cyclic edge which is the least edge

of an increasing path to x along the tree. Again, I~(x) exists,
since y x  exists for all yp~x. Let c(x) be the number of edges

~~~~~~ 
to x. Deleting them leaves increasing paths for x to

_ _  _ _ _ _ _ _  

j
- , - . -
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-
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- 
and from every other vertex. We have c(x)— e(G)-e(O(x)UI(x)).

Now we can characterize the edges lying both in 0(x) and in 1(x).

LEMMA ( 6) . If G solves the gossip problem and staisfies NOHO,
then (y , z ) e ( O (x )v i l (x ) )  if and only if (y,z) is incident to x,

Proofs Suppose (y,z)a (0(x)AI(x)). Then (y z) is the greatest —

edge of some increasing path starting from x and the least edge

of some increasing path ending at x Joining the two paths and

dropping (y, z) if they connect to it at the same endpoint , we

have x.-~x, unless (y ,z )  was the only edge in both paths, in

which case it is incident to x .

Conversely, suppose (x,y)~0(x). Then there exists x—.y

in 0(x) disjoint from (x,y). To avoid having x~Ix, (x,y) must

be less than the greatest edge in that path. But then, accord-

ing to the construction for 0(x), at the time when that edge

was added (x y) was also available, and we would have chosen it

instead . Similarly, we cannot have (x,y)~I(x) unless we have

- L
COROLLARY (7). In a NOHO-graph, c (x )— d (x ) -2  for any vertex x.

Proofs c(x )  — 2n— 4— e(0 (x )u I (x ))  — 2n— l 1— (n—l )-(n .-l)+e (0(x) f~I( x ) )

— d(x)—2, since by (6) e(O(x)n(I(x))d(x), fl

Vertices in a NOHO-graph always have degree at least 2, so

c(x)”d(x)—2 makes sense. -

The next lemma investigates how the edges of 0(x) and 1(x)

_ _ _ _ _ _  

. 1
-;

~~~~~~~ ~Iz-r- ~~~~~~~~~~~~~~ ‘- 
- -
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are distributed. Recall that C(x) is the component of M(G)

containing x. We claim that edges of M(G) not in CCX) or C(f(x))

are useless for carrying information out of x, and those not in

C CX ) or C ( h ( x ) )  are useless for bringing it in. In other words,

LEMMA (8) .  If C solves the gossip problem and satisfies NOHO ,

then for any vertex x, (M(G)vsO(x))C(C(x)uC(f(x)) and

(M(G)nI(x)) c(C(x)UC(h(x)) , so

e (M ( G) )  — e(C(x)UC(f(x))VC(h(x)))Sc(x) .

Proofs First consider 0(x). No edge of M(G) not ia 0(x) or

C( f (x ) )  can belong to an increasing path beginning at x. The

path would have to enter that component via a first edge or a

last edge . No first edge otha~than (x f (x ) )  exists on any in-

creasing path from x, and any path which uses a last edge cannot

continue increasing thereafter. Applying similar reasoning to

1( x ) ,  no edge of M ( G ) not in C(x )  or C(h(x)) can belong to an

increasing path leading to x. Therefore, the number of edges

of M(G) not in C(x)UC(f(x))UC(h(x)), all of which are useless

to x, is at most c(x), fi

The “excess edges” counted in (8) can be fewer than c(x)

if one of the components of M (G) is not a tree or if some edge

in F(G) or L(G) is useless to x, As we see next, the former

cannot occur in a NOHO-graph.

LEMMA (9). !or a NOHO-graph G, M(G) consists of exactly four

components, all of which are trees.

~~~~~~~~~~~~~~~
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• Proofs By (6), M ( G) has at least four components . In showing

it has at most four and they are trees , we consider two cases .

Case I. Every vertex of G has degree at least 3, This

means M ( G) has no isolated vertices, and each component has at

least one edge . C must have at least 8 vertices if degree ex-

actly 3, else the sum of all degrees will exceed Lin— 8, which is

twice the number of edges . By (7) ,  a vertex x of degree 3 has

c(x ) 1. By (8) ,  M ( G) has at most one edge not in C(x)UC(f(x))

so there can be at most one other component , If any

component were not a tree it would have at least as many edges

as vertices. Then the remaining three components would have

together at least four mole vertices than edges . As-before such

a situation requires at least four components. -

Case II. G has some vertex x of degree 2. C(x )  is an iso—

lated vertex in )1(G). By (7), c (x) — O . Since M ( G)n C(x )  and

M (G)n I (x )  can have no cycles , (8) then implies C ( f ( x ) )  and

C (h ( x ) )  are trees and all other components are isolated vertices

Two trees have two more vertices than edges . Since M ( G ) has n-Li.

edges, the two components have n—2 vertices, leaving x and one

other isolat ed vertex for a total of four components . U

REMARK (10). For any x in a N0HO-gr~ph C, M (G) contains at

least n/2—2 edges of 0(x) and of 1(x).

Proofs At most one edge of 0(x) lies in F(G) and at most n/2 -*

in L(G), while 1(x) has at most one edge in L(G) arid nfl in F(G) .  U

1
1,

~~~~i;ii~ ~1 —--- -,

~~~~~~ 

~~~~~
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The remaining lemma in this section becOmes useful when we show

later that for a NOHO-graph every tree in M ( G ) is of the type

in its hypothesis. This lemma applies to all graphs, because

if G does not solve the gossip problem we can still define 0(x)

and 1(x) with the same construction, and simply grow the trees

as far as possible. They may not span .

LEMMA (11). A tree lyilgin both 0(x) and 1(y) for some x arid

y is a caterpillar with an increasing path touching every edge.

Proofs Let (v0, v1) be the least edge in the tree , arid let

be the longest increasing path in the tree.

Suppose the assertion is false, and the tree contains an edge

(w ,z) with neither w nor z in vi . Since the tree is connect-

ed , -there must be some path that joins V to this edge , say

U
~

(vj.ui~u2.....ur.w~z) .  Each edge is in 0(x)  and must lie

on an increasing path from x. Consider (v j .u1). If the in-

creasing path containing it does not include (v j_1.Vj). there

would be two increasing paths to impossible in 0(x). If

it does , then (v j1 .vj ) (v j .u1).

Applying this argument to each successive edge of U , we

find that ~~~~~~~~~~~~~~~~~~~~~~~~~~~ is an increasing path.

Similarly, each edge is in 1(y), and must lie on an increasing

path to y . V is part of such a path. Since 1(y) is a tree, an

argument like that above yields (u1 Vj) (v j•vj~1). Applying

the argument to each successive edge of U, we find that

is also an increasing path. This can

~~~~~~~~~~~~ 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
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happen only if (w ,z) is the only edge in U. So, every edge

of the tree is incident to a single increasing path. If it

is not on the path , it occurs between the neighboring edges

of the path in the edge ordering. U

Lj~ Q* the “Generalized Cube”

The remainder of the characterization of NOHO-graphe var-

ies greatly depending on whether the graph has a vertex of de-

gree 2. In this section we consider the case where It does not.

Let Q* be the set of B-vertex 3—regular graphs with no tn-

angles. Q~ contains the cube. We have

T}~~0REM (12) . A NOHO-graph with no vertex of degree two may be

any graph in Q~’, but no other.

Proof s By (9) ,  M(G) consists of four non-trivial trees. Thus

n~8. If n*8, then M(G) consits of four single edges.’ So G ad-

mite a factorization into disjoint matchings F(G), M ( G) , and

L ( G) ,  and by (1) it must lie in Q*, We claim any graph in Q~
can be suitably edge-ordered.

Suppose GQ*. We will assign first neigbors, last neigh-

bore , and “middle neighbors” (denoted g(x ) )  to satisfy all, the

required conditions. Consider the passage of information out

from x, It can reach f(x ) ,g(x ) , h( x ) ,g ( f (x ) ) , h ( f( x) ) , h (g( x ) ) ,

and h(g(f(x))). To reach all vertices, these must all be dis-

tinct. ( This implies there is no duplication of transmission

in these solutions. See (kO) . )  So, we find a spanning tree with

- - 
-  

~~~~~~~~~~~~~~~~~~~~~~~ 
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two neighboring vertices of degree 3, each of whose other neigh—

bore have degrees 2 and 1. For a graph in Q ,  this is always

possible , since it has no triangles. Place the central edge in

F ( G) ,  the end edges in L ( G) ,  and the remainder in M ( G ) .  Infor-

mation can come to x from h ( x ) ,  g (x ) ,  f(x ), g ( h ( x ) ) ,  f (h ( x ) ) ,

f(g( x ) ) ,  and f ( g ( h (x ) ) )  along a similar tree. Five edges re-

main unassigned in C. This tree will use four of them, adding

three edges to F(G) and one to M(G). Again, for a graph in Q*

it is possible to find the additional tree. The remaining edge

is assigned to M(G).

In choosing and labeling this second tree we must take

care to preserve the matching property of F, •L, and M and to

avoid completing a circuit with two edges of M and one each of

F and L. Such a circuit would result in duplicated transmission

between two other vertices. Having labeled these trees to sat-

isfy vertex x and these latter conditions, detailed checking

shows that all other information is also transmitted and NOHO

Is eatisfed.

Suppose n’8 and C is a NOHO-graph. We will produce a con-

tr&.iction, Let x be an end—vertex of one of the trees in M ( G ) .

d(x)=3, so c(x) 1 (7) .  (8) shows that at least one of the re—

maining components Is entirely useless to x and must be a single

edge. Apply~ng the same argument to an endpoint of that edge,

we obtain a second isolated edge in M(G).

Let (4,4) and (z~,x~) be such single edges. By (10),

C(f(x~)) contains increasing paths from f(x~) to at least n/2-3

ft Ii
(1

~ 

— 
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other vertices, and C(h(x~)) contains increasing paths to h(x~
) )

from at least n/2—3 other vertices. Since c(x~)=l, f (x~ ) and

h(x~) must lie in different components, each of which contains

half the remaining vertices. When n>8 these components con-

tain more than two vertices, and all their edges must be use-

ful to x~. In particular, C(f(x~))C0(x~ ) and C( h (x~))CI(x~).

Suppose f(x~ ) and f (x ~ ,) lie in the same component of M ( G ) .

That component is a tree of increasing paths out of each of

those vertices, so they must be joined by the least edge in

that component. Therefore, it is not possible for three such

vertices to lie in the same component. Similarly, no three of

lie in the same component. Each of the “large” compo—

nents contains two each from {r(x~)3 and (h(x~ )}, so by (U)

they must both be caterpillars .

Let (v ,w) be the least edge In one of the caterpillars,

so viuf(x~1). 
wI ~ f ( x~~ , ) .  Let y—h(x~ ), z”h(x~~). y and z lie in

the other caterpillar. For v and w both to be “roots” of the

caterpillar, one of them must be an endpoint , say v Now

d(v)=3, c(v)—l. f(v)ax~ lies in a single—edge component; the

other such component must be the edge useless to v. Therefore,

the other caterpillar must be a tree of increasing paths into

h(v). Howevér,. It .already does that for y arid z, also. y, z,

and h(v) are distinct, since their last neighbors are distinct,

but we saw in the last paragraph that three distinct vertices

could not all play this role. This gives us the final contra-

diction that eliminates the possibility n~8. Q
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Figure 2 gIves several examples of N01-(0-graphs in Q~ , th-

cluding the cube. The usual conventions are observed for draw-

ing edges in F, M, and L.

Figure 2 . Some graphs in Q~

5, NOHO—graphs as Quadruples of Sequences

We now embark on a journey to narrow down and finally

characterize NOHO-graphs having a vertex of degree 2. Hence-

forth when We refer to NOHO-graphs we generally ignore Q*• We

already know by (9) that the “middle edges” of such a graph

form four coniponenents, at least two of which are isolated ver-

tices. Proceeding from there, this section describes the edges

of a NOHO-graph with four integer sequences. The first edges

and last edges are described by perinut~Lons , and the middle edges

by two binary sequences.

We begin by taking a closer look at the components of M(G).

LEMMA (13). If a NOHO-graph with a vertex of degree two has

adjacent vertices of degree two, then it is a Li~cycle. If

n4, then it has exactly two non-adjacent vertices of degree

two, and the remaining components of M(G) are caterpillars

on n/2—l vertices.

‘I

4 IS
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Proof i Suppose C has adjacent vertices (x,y} of degree 2.

(x ,y) may lie in F(G) or in L(G). Suppose (x,y)eF(G) and con-

sider 0(x). 0(x) contains (x,h(x)), (x, y ) ,  and (y,h(y)), but

after hitting these edges in L(G) there can be no further in-

creasing paths in 0(x). h(x)~h(y) by (1) or (2), so C con-

tains exactly Li vertices and must have an edge In F(G) joining

h( x ) and h ( y ) .  If (x ,y ) *L (G) ,  then considering 1(x) leads to

the same conclusion.

Now suppose ~~~ ‘ By (9) there are two vertices of degree

two, and the remaining two components may be two trees or a

tree and isolated vertex . Suppose the latter , so we have

{x11 x21 x3} 
isolated in M(G). By the above they must be non-

adjacent in C. Consider the increasing paths by which infor-

mation is exchanged among them. Let z1 be the last vertex be-

fore xj_+x j  and xj~*xk permanently diverge edgewise. That is ,

we have increasing paths (x1, . . . y1. Zj .Uj j~ ... .X j
) and

(x j,...,yi, zj,ujk,...,xk ) ,  where Ujj)~Ujk~ Z j  is different from

since al). increasing paths from x~ to non—adjacent vertices

must pass through f(x1). So, the edge (y 1,z 1)e0(x 1) is well—
defined. Siminilarly, let V1 be the first vertex where xj~~xj

and Xk.X i share an edge. We have increasing paths

v11 w1, . . ., x1) and (xk,...,tkj,vi,wi,...,xj). Again, Vj 15 dif—

ferent from since all paths from non-adjacent vertices pass

through h (x1) when d(~ j )a2 , so the edge (v~,w1)iI(x1) is well—

defined ,

- 

1 
In fact, the paths from Xj  to are all unique , so that

_ _ _ _  
- ~~~~~~ ~~~ 
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and v~ lie on a single increasing path from x1 to Vj. Sup-

pose there are two increasing paths from vertex r to vertex s,
where d(r)=2. Since 0(r) is a tree containing the edges inci-

dent to r (6), some other edge in the paths is useless or lies

in 1(r), The former is forbidden by (7) since c(x) 0, while

the latter creates r-.r. The same conclusion follows from

considering I(s) if d(s) 2.

Now, consider the ordering of z~, arid Vj on xj_ x j. We

have three cases, Case I. v~ strictly precedes z1 on the

path, i.e. ~~~~~~~~~~~~~~ Then for the remaining vertex Vk
there exists Vk~~~

Vk via

Case II. Z1 strietly precedes V
3 

on the path, i.e. (z~.u1~)

If (zj.ujj)sI(xk). then (z 1~u1~ ) lies on X
i~~

+X
k

and z1 was not the furthest shared vertex from x1, or I (xk) is

not a tree. - If (z i.ujj)s0(xk). then (z 1 ,uj~ ) lies on Xk~~PXj

- 
and v,~ was not the first shared vertex on the way to x

3
, or

0(xk) is not a tree, But (zj.uj~) cannot be useless to Xk
since c(x k)~0. 

-

Case III. Neither of these possibilities can occur for

any pair (i , j) ,  so we must have v1~ z1=v2—a 2—v,~ z3~ To avoid

we must have (v1,w1)c( y1, z1) for all 1, but to maintain
the other paths we need (Y j .zj )C(v j .wj ) for 1’i . But (v1,w1)

c(Yj.zj)~ (vj.wj)c(Y j.zj)m(vj,wj) is impossible .

So, there must be exactly two isolated vertices x1 and x2
in M(G), and the two remaining components are non-trivial trees.

f(z1) and h(x1) appear in different components , since c(x1)— 0 .
.

~~~

. 
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By (10) each of these components contains exactly n/2—2 or half

of the edges in M ( G) ,  and C ( f (x 1))cO(x1), C(h(x1))cI(x1), In

order to have xi~+xj, 
1(x 1) and h(xj) must appear in the same

component. Now we can apply (11) and conclude that the two

non-trivial components of M (G) are caterpillars on n/2-l ver-

tices each. 
~

To facilitate the subsequent discussion, we introduce some

additional notation. Henceforth fix m’~n/2-1. Label the ver-

tices of C {x~ s i~l,2; j=0,1,...,m~. Let x~ be the vertices

of degree 2, and 4u.if(x~). Let C
1 be the caterpillars of M(G).

The vertices of C1 get the labels x~, where j 1,2,...,m and x~
is the jth to receive the information originating from x~. We

may refer to x~ ~~
Since C~’is a caterpillar of increasing paths from x~ to

the following properties are obvious.

REMARK (lie). Let C1 be defined as above. Then 
- 

-

I) C1 contains x~.44 whenever jck.

ii) 4 neighbors exactly one x~ with j~k.
iii) If 4 neighbors any 4 with r~’k, it neighbors every

with kcj ar .

iv) 4a..x~ within C~ with j~ k requires (4,x~ )eE(G) .

Suppose we have a caterpillar C with a fixed initial and

final vertex , and an ordering of edges to make it a tree of

increasing paths both out of the former and into the latter.

- “ “~~ 
- 
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We claim C can be uniquely described by a forward sequence R(C)

or a backward sequence R ’ ( C )  of zeroes and ones. The length of

these sequences is one less than the number of edges In C. We

will not use the backward sequence. We merely note it exists,

arises from considering the edges in reverse order, and refers

to a different ordering of the vertices.

To obtain R(C), proceed as follows, Begin with the least

edge and a null sequence for R(C). Call the initial vertex the

“active” vertex (4 in the caterpillar C’) and it~ neighbor the
“current ” vertex . When the next smallest edge is added to the

caterpillar, adding also a vertex, the new vertex becomes the

current vertex. The label ~active
w stays where it is if the

new edge is incident to it. If the new edge is incident to the

former current vertex, then that vertex becomes the active ver-

tex. In the former case , append a 0 to R(C) as generated so
-
~ far . In the latter case append a 1. -

As each edge is added to the tree in order , it can only be

incident to the active vertex or the current vertex. This fol—

lows because the cater pillar must remain a tree of increasing

paths toward the final vertex. At any stage the tree is one Of

increasing paths toward both the active and current vertices.

All 2’ binary sequences of leng th r describe caterpillars

in this way and correspond one—to-one with caterpilars on r+l

edges and r+2 vertices where the initial vertex and order of

edges is specified. The initial vertex must be specified to

distinguish between sequences that differ only in the firs t

_ _ _ _ _ _ _ _ _ _  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~ . 
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place.

If we add the edge (h(xg) , xg) to C1, we still have a cat-

erpillar, since this is a last edge. It has paths from 4 and
to xg. This is the caterpillar of interest. Note that h(xg)

need not be x~ . Let S(G) be the associated sequence

R ( C’U(h(x~),x~)), and let T(G) be the associated sequence

R ( C2V(h(x~),x~)), but written backwards. When we discuss Ir—

reduci:bility and concatenation in section 8 it will become

clear why T(G) is written backwards.

From S and T we can reconstruct M(G) and know the first

and last neighbors of x~. To complete the characterization of

C we need to know which pairs of sequences (S,T) can be assoc-

iated with a NOHO—graph arid how the edges of F(G) and L(G) can

be placed to complete the graph.

No vertex in C1 can have a first or last neighbor in C’.
By (lk ,i ) ,  having such an edge in F(G) or L(G) would violate I 

-

NOHO. So, the edges in F(G) and L(G) can be described by per-

mutations P(G) and Q(G), where P~~j means f(4)u.X~ 1 and

means h(4)a.x~. (Whenever R is a sequence of integers, we de-

note its 1th element by R1.)

S and P have m-l elements ; P and Q as described have m

elements. P is a permutation of {2,3,,.,,m+l) which begins

with in+1, since x x !_~,1— f(4) .  Q is a permutation of (0,l,.,.,m)

with some element deleted. The deleted element is j, where

Note that 0 is never deleted , W. will see that 0

appears in Q at the same position as 2 in P. so that P and QH: 
_____ 

- J
~•r~’~ ~~~~~~~~~~ ~~~~~~~~ “~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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could be compressed to rn—i pieces of information, However,

bookkeeping arid proofs will be easier if we leave them as is,

To align the useful information properly, we say that the ale-

meñts of S and P as generated above appear in positions 2

through m, S1 indicates what happens when C1 reaches

and P1 indicates what happens when C2 grows to reach x
~_1+3.

We can summarize the construction of these sequences and

the properties required of them in the last few pages by the

following remark .

REMARK ( 15) .  The quadruple (P,Q, S,T) defined above completely

specifies a graph. Such a graph has the properties ascribed

to NOHO—graphe in (2 )  through (lie) .

If (P ,Q, S,T ) ( P ( G ) , Q ( G ) , S(G) , T ( G ) )  for some NOHO—graph G,

we call the quadruple realizable. We have not yet determined

what is required of (P Q, S,T) to transmit all information and

to satisfy NOHO. For example, although any S or P except the

zero sequence can appear In realizable quadruples, it Is not

true that every permutation P or Q defined above appears in a

realizable quadruple, nor is it true that. every pair (S,T) is

realizable. In the next section we determine necessary

conditions for realizability.

I
t
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6, Neceeear~ Conditions for Realizability

We will derive a number of necessary conditions for pairs

from (P,Q, S,P) to be realizable.

LEMMA (16). For a NOHO—graph C, the pair (P(G),Q(G)) satisfies

1) P~>Q1 for a].]. 11 ,2, .. . , rn.

ii) If P1 Qj. then i)’j.

iii) 
~
‘2 is the element missing from Q, and Q~~0 iff P~~2.

Equivalently, f(4)=h(x~).

Proof $ Consider ( 1) . P1 m+l, which is greater than any e:e-

ment of Q. For some k from J. to m, 
~k

0’ which is less than

any element of P. For i~l, iMc, f(4) arid h(4) lie in c2.
If P1CQ1, (lie.i) guarantees 4 _

~x~ in C2. Now we can add

(Xj,Xp ) to the beginning and - (X
Q , x1) to the end to ob-

ta m - x1.-ex1.
For (i i) ,  we argue similarly. If Pj*k~Q~ with icj, then

we can add (x~,4) at the beginning of 4—.x~ and (x~,x~) at

its end to obtain x~— x ~.

Finally, consider P2. By (ii), if it appears in Q it must
1 1 ibe Q1. Then f(x2)—h(x1). The caterpillar C always contains

the edge (4,4). so we have a triangle. Similarly, ~~ P~~2

but QQI~0, (i) says ~ k 1’ Now f (x~~) l.h(4), and again we have

a triangle. U

H If P or .Q is not strictly decreasing, certain edges must

appear in the graph.

_ _ _ _ _  

1:
~rh~~~ ~~~~4
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LEMMA ( 17) . For a N01-IO_ t~raph G, F(G) and Q(G) satisfy

I )  If P,’P. with icj, then E(G) contains {(x~,x
1),(4 ,4 ),; .3 3 1 j

ii) If Q1cQ3 
with i<3, then E(G) contains at least one of

f, 1 l~ , 2 2 ~ -
v Xj .X j / .~~X

Q P X
Q

/J .
i j

Proof s Consider any increasing pair in P. Suppose P1=r and

where icj  arid r~s. If (x~ , x~ ) is not an edge, then (i1~.iv)

impli es Information from x~ could reach 4 only via the other
caterpillar. So, we use (x~,x~)iF(G), continue to x~ in C 2

where t~s or (x~,x~ ) is an edge, and finish with (x~,x~)CL(;).

t>r would imply Q1)P1, violating (j.6.i). therefore (x~,x~)

must be an edge, with ticrics, By (].ie.iii), (x~,x~ ) is also an

edge, but this creates a triangle with 4.
Now suppose (x~,x~) is not an edge. By a similar chain of

reasoning that switches the roles of C~ arid C
2, completing

will contradict (16.11) or (1).

Finally, suppose with idj, but (x~,x~) is not an j 
-

edge . We use (lk .iv) again to require 4 —.x~ in C2 for
j ‘1

x~j_i xf. By (].6.i) Q,~cQ~cP~. so (lk .lv) reci~aires (4,x~~) as

an edge to complete that path. Now (lie.iii) says

(x~ .4 ) must also be an edge. Q
j- .1

We define a reversion in a permutation to be a maximal

consecutiv. subsequence of the permutation where the first

element is the least. The reversions of a permutation parti-

tion it into segments. In a NOHO-graph, the reversions of P(G)
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have a very special form.

LEMMA (18). If C is a NOHO-graph, then P(G) has the following
form.

i) Every reversion of P is a single element or has the

form (r ,s, s—l , ..., r+1) with s—r+l elements .

ii) Equivalently, P has no subsequence of length 3 whose

last element is largest.

Proofs First we show equivalence. By definition, the first

elements of reversions form a decreasing subsequence, else the

reversions would not be maximal. If reversions are as in ( 1),

any increasing subsequence must lie entirely within a single

reversion, The form described in (i) prohibits two increasing

pairs with the same second element.

Conversely, assume (i i) .  Suppose a reversion has more

than one element and we drop the first element r, This must

leave a decreasing subsequence beginning with s, since any in-

creasing pair would violate (i i )  with r . Suppose there is some

element t, r~t~e, that does not appear in this reversion. Its

appearance before r violates (ii ) with r and s, and its ap—

p•arance in a later reversion violates (ii) with r and the

first element of that reversion.

That (i i)  holds for realizable P follows immediately from

(17.1), (3)4,111), arid (1). They provide a contradiction if

some such subsequence is assumed to exist.

_  
_ _  

_  
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REMARK (lfl). A permutation P satisfying (18) Is uniquely 4.-

termined by choosing a subset of indices from {3,..., in)

at which reversions will begin in P, in addition to the

reversions beginning at P1 arid P2. Hence, there are 2m 2

such ~permutations .

Note the equivalence of (l8.i) and (18.11) is independ-

ent of realizability. We will see that the necessary coridi—

tions (16) and (18) together are sufficient. Also, it is easy

to see that for any P satisfying (18) there is at least one Q

satisfying (16).

Next, we derive a condition for the pair (P,S).

LEMMA (20). If C is a NOHO-graph, then P(G) and S(G) satisfy

the following.

1) Suppose P~ begins - -a reversion in P ( G) ,  
~k begins the

- next reversion, and kzj+2 . Then Sa l. and if k)j+2

then Sj +1 ... 5k . 2 0.

I i)  If Pt 2, beginning the last reversion in P ( G) .  then

St l and any succeeding elements of S(G) are 0.

Proofs If Pj  begins a reversion of length at least two, every

succeeding element of the reversion forms an increasing pair

with Pj .  By ( l7 .i ) .  {(x~j.x~ ) s  i.”i+l ,..., k—l)CE ( G) .  S1 m d i—

cates what happens when C1 grows to meet 4+~ 
Considering

the edges we have just shown to exist , x~~1 is joined to the

then— current vertex , and succeedin g xf are joined to the active

—r-
~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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vertex. So S~~1 arid succeeding S~ are 0, if k>j+2, 5k].
tells what happens when the vertex beginning the next rever-

sion is added to the tree, so it is unrestricted.

Now consider the last reversion in P(G), which begins

with Pt~2. By (16.iii) 
~t

0 and (x~,x~~1) is an edge. Apply-

ing (].~i- .iii) to the caterpillar C1V{( x?~,x~ )}, we deduce that

t(4,xf )t i=t+l,...,m+lJ are all edges, since tsm. As above

we conclude and any succeeding S~ are 0. Q

~EMARX (2 1) . For each P satisfying (18), the number of Be-

quences S satisfyIng (20) is 2r—1, where r is the number

of reversions after P1.

Proof i An element of S is unrestricted if and only if its po-

sition (Sk.1 in (20)) corresponds to the last element of a re-

- - version in P other than the last reversion, U

Define (P’(G).Q’(G),S’(G),T’(G)) as follows. Set P ’1=j

if Pj =i. Extend Q so that Q0 k where x~~h(x~ ) ,  then set

if Q~=i. Set 
~i~~ m+2—i ’ and set S’i~~~m+2~~i h  We call (P,1~,S’,~1’)

the reflection of (P,Q,S,T). A little “reflection” shows

REMARK (22). The reflection of a realisable quadruple is also I ~
realizable, in fact by the same graph.

Proof ‘ Considering (P,~~,S’,i’) instead of (P ,Q, S,T) is equiva-

lent to interchanging the roles of C1 arid C2 and looks at the

gra ph upside down. 0

- 
- 

- 
- - - - 
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If G is a NOHO—graph, we define the reverse ~raph K(G) as

the graph with the sam• vertices and edges as 0, but with

(x ,y) (u,v) in K(G) if and only if (x,y) (u,v) in C, All in-

creasing paths of C are increasing in the opposite direction

in K ( G) and vice versa, so X (G) is clearly a NOHO-graph. Note

that the vertices need to be relabeled with C1 and C2 to o

tam the defining sequences for K(G). The “hairs” of the cat-

erpillar swing around as the wind blows from the other direc—

t ion,

By reflecting and reversing, we obtain additional neces-

sary conditions.

REMARK (23). If C is a NOHO—graph, then

i) ( P ( G ) , T ( G ) )  is such that (P ’( G) , S ’( G ) )  satisfies (2 0) ,~~,

i i)  (Q( G ) , S ( G ) )  is such that (P (K( G ) ) ,S(K(G)) satisfies (20),~*.
lii) (Q(G),T(G)) is such that (P’Oc(G)),S’OC(G)) satisfies (2o),~~.

(16), (20), and (23) are necessary conditions for any pair

from {P,Q, S, T) except (S,T) to be realizable. There are appro-

priate conditions for (S ,T) , but we have no simple expression

for them. We will soon see that when paired with (18) each of

- 
these conditiona is sufficient. 0

p.

7, The Number of Realizable QuadruDles

Besides showing the sufficiency of the previous conditions,

we will show that any pair from {P,Q,S,T} satisfying them

_ _ _  T_~I:I~ ~1TIT ’ ” ~~~~~ ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



is realized by a uniQue NOHO-graph. To prov e this , we need a

lemma that will enable us to gPnerate one sequence in ~P(G),

Q(G),S(G)} when we know the other two. By reflection we can

apply it to (p,~~,ss} to obtain similar results for CP,Q,T}.

S(G) is a binary sequence Indexed from 2 through m. On

its index set we can define a function b that points to the

previous 1 in the sequence. Let b(i) be the greatest positive

integer such that jci and Sj ’l , if such exists. If there is

no such integer, set b(i)=l. Then we have

LEMMA (2ii). For a NOHO-graph 0, P ( G ) ,  Q ( G ) ,  and S(G) are re-

lated by

1) S~~l if and only if

ii) S1 0 if and only if

Proofs In one direction the lemma Is trivial. Recall the

construction of S from active and current vertices, S~~0 if

and only if (x~ (j ) . x~~1) is an edge, and S~~l if and only if

(4.4+1) is an edge . So , if P1~ 1—Q1, then choosing S1 1 cre—

atee a triangle, while if 
~j+1~~b (m) 

then S~
.’O creates a tri-

angle.

We prove the other direction by induction. For the basis

step, b(2)sl, and by (16.11,111) we always have P,Q2 or P,Q1,
If S2.O, then choosing P,—Q1 creates a triangle, while if

52 1 then P3 Q2 creates a triangle,

Now we prove the lemma for k , assuming it holds for all

2~i~k. By (l6.ii ,iii) we know that Pk+l~
Qj r for some j with

1 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
- 
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I

j f k . Suppose jak. Then ~~ 5k ° we are finished , while ~f

Sk~
l we have a triangle. Suppose jsb(k), Now if we are

finished, and if Sk O we have a triangle. So, if the lemma

fails we may assume j~k, j~b(k). If Sf0, then by induction

we have P1+1=Q1 r, which contradicts P being a permuation.

So assume S3=1, in which case j~ b (k)  by the definition of b.

‘ae assumed j~ b ( k ) ,  so let t be the least integer greater than

j such that ~~~~~ j =b( t ) ,  and tck since Sb ( k) l. so we have

jct~b(k).ck. Applying induction, 
~t+1~~b(t)=~j~~” 

which again

contradicts P being a permutation. U

Now we proceed to the main results. Henceforth, fix

p=(n- 14 )/2”ni—l .

THEOREM (25). Any pair from (P ,Q , S,T) which satisfies the cor-

responding necessary conditions for realizibility in (16),

(18), (20), (23) is realized by a unique NOHO—graph.

Proof s First we show how to uniquely generate the remaining - ~

• 
sequences from any pair satisfying the necessary conditions.

Then Wb show the resulting quadruple is realizable.

Suppose the two known sequences lie in (P,Q,.S}. We gen-

crate S from (P ,Q) satisfying ( i6 ),( i8 )  so as to satisfy (2~e).

Initialize k ]., Then for i—2,3,,,,,m in order , if 
~i+1~~k’

set S1 1 and reset ki. If P1 3 Q1, set S~~0 and leave k Un—

changed , This is well—defined for (P ,Q) satisfying (16). P2
disappearing leaves ore index “free. ” Ae we prooóed in P, the

- -
~~~~~~

:-
~~~~ 
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enly previous elements of Q which have not been encountered in

P are and Q1.

We claim the resulting (P ,S) satisfies (20) .  It is easy

to show the requirement for when S1 must be 1 holds , Other-

wise, we have Pj+i~Qj when P1 starts a reversion and is less

than 
~i+1. violating (16.i) . For the other requirement, con-

sider the first time S~ is set to 1 by 
~I+1~~ k with 1+1 in the

midst of a reversion, k is the previous 1, so it is the start-

ing position of the reversion. Thus 
~i+1’~k ’ and we violate

(16 .1) again.

Next we generate Q from (P,S) satisfying (18),(20) so as -

to satisfy (2Li.). Set Q~”0 if P1 2. If k is the least integer

such that 5k”1’ set 
~2~~k+l ’ (If S has no ones , x~—h ( f(x ~ ) ) .

With (i6~iii), this contradicts ruZ~..) For all other I , if

S1—0 set Q1—P1~1, while if S~—1 set %(1)~Pj~1. Again, this

is well—defined , The 
~i 

skipped by the first eption are those

with s~=l. so that subsequence is just shifted within itself

from P to ~ ~2 
disappearing makes room for the shift , and

0 under P1—2 fills the hole left at the end, since that’s where

the last 1 occurs in S.

We claim the resulting (P,Q) satisfies (16). (16.ii,Iii)

• are obvious by construction, so assume some PjCQj. The algo-

rithm se~~Qj Pj for some i>j, so by (18) P~ must begin a re-

version containing P1. By (20) ~~~~ so ii set the next

time a 1 is encountered in S, i.e. at S1_1 with i- b”j . (20 )

then implies P1 must be in a later reversion than

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~ 
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For the remaining cases, we give less detail. To gener-

ate P from (Q S), set P1 xn+l, and let P2 be the element in

{l,,..,ni} missing from Q. For all other-i, if S11z 0 set

while if S~~1 1 set P
~=Qb (I_l). This Is well—defined

for (Q,S) satisfying (23), since the only •lements of Q not

placed in P at the 1th stage are Q11 and 
~b(1 1)’ 

The re-

sulting (P ,Q) clearly satisfies (16.11,11)) and can be shown

to satisfy (16.1) and (18). By the construction, they also

satisfy (2k) .

To generate T from (P ,Q,S), form (P ’ ,Q’) and use the first

algorithm above to get S’. Then T.(S’)’.

To generate the unknown sequences knowing T and one of

{P IQ) , reflect theR and apply the above algorithms for S and

one of {P,Qj. This generates T’ and the unknown element of

{p’ ,a’}, and reflecting again gives the desired quadruple. —

This leaves the case of generating (P,Q) knowing (S,p).

Set P1 m+l , P2 j where is the first 1 in T, and P~=2

where S
i 
is the last 1 in S. These requirements follow from

(i6,iii), since those elements of S and I determine h(4).

The remaining elements of P and Q can be uni quely generated

by refusing to violate (17), (2~I), or (1). We omi t the details

of this algorithm.

By (2k), etc., the unknown sequences can only be as gen—

erated above, We have shown uniqueness, now we show suffi-

ciency. No matter what pair we started out with, we have shown

that for the generated quadruple all, the necessary conditions

~~~~~~~~~~ 
.- 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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are satisfied. We must show that increasing paths exist be-

tween all ordere& pairs of vertices and NOHO is satisfied,

As noted in (lk.i), x~— x ~ with j (k exists. Next we show

x~j.Ix~ exists. If P
1
s with ask or ~~~ with r~ j, we are done

by (ik,i) again. Suppose both of these possibilities fail and

Pt~
k. T f t’cj, th

~~
(Pt.P~) form an increasing subsequence of P.

The condition (20) on (P ,S) was determined so that G would

satisfy (17.1). So, (x~ , x~ ) is an edge of G, and (e~,x~,x~)
is the desired path, Suppose instead t~j, and apply (2k).

Since rdj4t, we have tk+]. but 
~t~~r’ 

so we must have r b(t-1)

and S~_1=1, So, (x~,x~_1)eE(G). By (lk.iii), (x~,x~ ) is
also an edge , making (x~ ,x~ ,x~ ) the desired path.

We must also have 44x~, even if r~j. Let s~P~ and

If (x~3,x~) or (x~,x~) is an edge or if s5k , then we are done.

In considering x~j-.x~ above , we showed that if risj  and ask we
- 

must have (x~j~x~) or (x~,x~) as an edge.
That paths x~ .u~~4 and x~uuI x~ also exist follows from

reflection and the preceding two paragraphs.

As constructed , 0 trivially satisfies NOHO. v-. v cannot

occur using the edges in a single tree, so it must cross to

f(v) and return from h(v). Suppose f(v)..x~ and h(v) .i4 . Corn-.

pleting the path requires (x~.4) to be an edge or jek. The
former never occurs because we ’ve constructed a graph with no
triangles, and the latter never occurs because (P,Q) satisfies
(16). So, the graph determined by the generated quadruple is
a NOHO-.graph. U

—‘ -
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THEOREM (26). The number of realizable quadruples is 9’l,

where p ( n ~L1. )/2, n even , n~6.

Proofs By (2 5) ,  pairs (P , s) determine the rest of’ the quad-

ruple, so we count those, As noted in (21), a realizable P

has 21’~~ realizable S associated with it satisfying (20),

where r is the number of reversions atter P1. By (19), there

are (~~
‘
~ ) such realizable P. Using the binomial theorem , the

total number of realizable quadruples is ~~~ )2Z ’ ]~ 3p-1 o

Figure 3 exhibits the quadruples and associated graphs

for n 6  and n=8.
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Figure 3. Small NOHO-graphs

G has 180° rotational symmetry when drawn as in Figure 3

if and only if (P’,Q’,S’,T ’)~ (P ,Q,S,T). This occurs for all

the graphs in Figure 3. If (P’,Q’,S’,T’)j’(P,Q,S,T), then G is
counted twice when the quadruples are enumerated. In the next

section we enumerate the symmetric solutions, so we will know

- 

the extent to which NOHO-graphs are overcounted here.
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8. Symmetric NOHO-graphs

In this section we count the symmetric NOHO-grapha. We

define a a~mmetric Quadruple as a realizable quadruple for

which (P ’ ,Q ’ ,S’,T ’)= (P ,Q, S, T l . A symmetric NOHO-graph is one

where the vertex permutation interchanging 4 and xj~ for all k
leaves the graph unchanged. As noted earlier,

REMARK (27). G is a symmetric NOHO-graph if and only if’

(P(G),Q(G),S(G),T(G)) is a symmetric quadruple.

The following remark applies to all P(G),  and is useful

in determining the number of *ymmetric ones.

REMARK (28). In a realizable P, P1 j Implies i+j ~ m+3.

Proof s By (l8.i), the number of positioi~a after i in P must

be at least as big as one lees than the number of elements less
than P1, so zn-i -~~j-3. U

LEMMA (29), The number of symmetric realizable P 18 2L(Th’~~ ,’2J,

Proof. P symmetric requires P1=i if P~=j , so P corresponds to
a matching of the positions (2,.,.,m). Some positions maybe

matched to themselves, if P1—i. (In fact, this can only happen

D~,ice. ) Note we always have P1a’m+l and Pm+lal. We construct

P match by match from m down to 1(m+3)/21, matching Pj on step
m-j,

At each step there are two choices , By (l8,i) ,  Pm*j2 ø3}

__ 
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and at step j Pm_i1{2•3~~i••fl1•
~i+3}• 

However , j of these have

already been matched with higher positions on previous steps.

This leaves two choics for 
~m.’j ’ one of which is m— j+3, since

it was not available before. Upon reaching 
~f(m +3 ) / 2J ’  the

choices are L(m+3)/2J and one lower value, If m is odd , we

choose between matching them to each other or to themselves.

If m is even, set 
~1(m+3)/21 

equal to one of them and match

the remaining one to itself. Now we have made m—1(m+3)/2 1+1

= L(m—l)/2J choices and completed the matching. Every P so

coustructed satisfies (18), and these are all the symmetric P

which do so, By (2l),(25), they are all realizable. 
Q

Examining the construction in the proof above, we can de-

fine a binary sequence B(P), indexed from ~(m+3)/21 to m,

where B
3
.0 if P

1
s’m— j+3 and BjSl if Pjcm_i+3. Now we can count

the gr&phs associated with each P.

LEMMA (30), Suppose P is realizable by a symmetric NOHO-graph.

Then the number of symmetric MONO-graphs realizing P is 2q,

where q ie the number of ones in 3(P).

Proof s We consider how many ways symmetric Q can be construct—

•d so that (P,Q) satisfies (16). W. claim that each way deter—

mines a unique symmetric quadruple. By (25) it determines a

unique realisabl, quadruple. Using the algorithms in (25 ) we

generate S and I, Reflecting and apply ing the algorithms again,

we find S’.S and T’—T, since P and Q are symmetric. So by (2 7) ,

_ _
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the NOHO-graph realizing the quadrupl e 1. symmetric.
First suppose B (P) ’c ( O ,,..,O) .  Then P*(m4 1,2,m ,m_ l , ..., k ,3 ),

There is one reversion after P1, so (21) and (25) imply there

is one realizable quadruple with this P. The corresponding Q

is (m ,0,m—1,.,.,k,3, l) ,  which is symmetric as desired .

Now suppose B(P)~ (0,.,..0). By the way B(P) is construct-

ed, Bkal implies . 
~k 

begins a reversion in P. The uppermost

1 occurs when 
~k

2’ beginning the last reversion. That post-

pones picking m—k+3 until the next lower 1 in B, at which point

it must begin a reversion, and so on,

Recalling (20), the elements of S are unrestricted if and

only if they correspond to the last element of a reversion

other than the last one. So, covering the index range 1(m+l)/21

to m, there are 2q ways to write down this portion of a realiz-

able (P .S) . Using the algorithm in (25), we can write down

what the correspond ing segment of Q must be.

- Determine the rest-of Q by setting Q~~k if Q
~~j, where

k~(m+1)/2, That this is well—defined is ensured by (28) .  Q

is now symmetric and c~~letely defined. We need only verify

that (P ,Q) satisfies (16),

For (16.111), we have guaranteed 
~k 0 placed where 

~k 2’
since B(P),40,,.,,O) and the last reversion begins in the ~good~’ [.
segment . By symmetry P2~k and k is the element missing from Q.
(16.1,11) hold for all elements of Q at (m+l)/2 or later. Sup—

pose Qj.P~~k with jici4(m+l)/2. Then by symmetry and (28),

~k~~k 
with k>(m+l)/2, violating (16.1). Finally, suppose

•1-1~ ;.-1;;ji• ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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with jic(m+l)/2, Applying symmetry and (28) again, we violate

(16.11) in the good s~~ment.

To summarize, we have shown that there are 2q symmetric Q

that mi ght be paired with P, and that all such pairs are real-

i zabl e and determine symmetric quadruples, ~

THEOREM (31). The number of symmetric NOHO—graphs i~ 3
LP/~i,

Proofs If B(P) has q ones, they may occur at any of the Lp/2J

steps in c~onstructing P. So (29), (30), and the binomial

theorem yield r(L~~
2J)2

~
1 31P/2J as the number of symmetric

solutions, fi

Symmetric quadruples are one-to—one with symmetric NOHO-

graphs. Other realizable quadruples are two-to—one with other

NOH0—graphs , So we have from (26),  (2 7) ,  (31)

COROLLARY (32) .  The number of NOHO-graphs on ni6 vertices, n

even (other than Q* when n.8) is (3P”1+31J)’2J)/2,

9. Concatenation of NOHO—g;a~hs 
- 

-

Before defining the concept of an irreducible NOHO—graph,

we need to define a way of combining NOHO-grapha . Suppose we

have two NOHO-graphs G1 and G2 on n1 and n2 vertices (x~} and - ‘
with associated quadruples (P~’,Q

1,&,T3’) and (P2,Q2,a2,T2).

We define the concatenation of and G2, denoted G1+G2I as a

new graph 0, comstzuat d as foil Owe,

~~~~~~~~ .‘_ ~~~

‘

~~~~~~~ ~i
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To obtain the edge set of G
3~ 

unite those of and

deleting the edges incident to x~ and y~. The vertex set of

is the union of the vertex sets of and G2, with x~ and

y~ deleted. Furthermore, identify h(x~) with y~ and h(y~)

with x~ , Now 0
3 is a graph on n3~ n1+n2-4 vertices, with

2n1—Li’+2n2-4-Li = 2n
3~

Z1. edges.

For the ordering of edges, any edge that was a first edge

or last edge in G1 or remains a first edge or last edge,

The order between two edges from the same is preserved. In

addition, every edge from C1(01) is set lees than every edge

from C1(G2), and every edge from C2 (G z ) is set less than every

edge from C2(01).

Figure 4 gives an example of concatenation.
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Figure La., Concatenation

Note that concatenation is not a commutative operator,

Also, if we label the ‘Pertices of the 4—cycle ~~~~~~~~~~~~~ it

becomes an identity element under concatenation. In fact,

NOHO-graphs not in Q* form a non-commutative semi-group under

concatenation. Associativity is clear from the construction.

The next lemma verifies closure.
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LEMMA (33). If and are NOHO-grapha, then the concatena-

tion G1+G2 is also a NOHO-graph.

Proof i We need only show that contains paths between
all pairs of vertices and satisfies NOliO. We may consider the
identified vertices as elements of either of the original

graphs. Any path wholly within one of the component graphs is
still present in unless it used one of the deleted ver-

tices. The only paths which used them as non-endpoints are

(x~ , x~ , h (x~ ) )  and (y~,y~,h(y~). In the concatenation these
paths can be replaced as follows. Since we have identified

x~ with h (y~ ) and h (x~ ) with y
~, 

we can consider the endpoints

as ~ -1~inating from the other summand graph. The transmission

pa~~. b~tween these vertices in that graph uses nor~ of the de—

leted edges.

Obtaining an increasing path from a vertex of 0i to a ver-
tex in is quite simple. If v lies in and w in G2, v—sw
can be formed by attaching y~.-gw from 02 to - the end of v.u.ph(x~ )

from G~ . Similarly, w—~v can be formed by attaching x~~’av
from G1 to the end of w..h(y~) from These constructions k,j
work because every edge incident to y

~ in 01+02 that comes from
02 is greater than every such edge from G~, and every edge in—
cider-it to x~ in G1+G2 from is greater than every such edge
from G2. The edges that could have violated that were the

edges deleted from the union.

Finally, to prove NOHO we note that no increasing path

which starts at a vertex from can leave those vertio.s and

_ _ _ _ _ _ _ _ _ _  
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later return. This would require traveling along C’(01+G2),
crossing to C~ (G1+G2), and returning, The crossover could

only use a first e~1ge or last edge, which would prohibit in-

cludirtg the earlier or later portion of the path. On the other

nand. i c ’  path violating NOI!O can lie entirely within -the edges

coming fr om one of the summands , since they are NO 1{O-graphs.

To determine (P ,Q,ST) for Gl+G2 G
3~ 

we obtain 5(0
3

) and
T(G

3
) by concatenating in the usual sense S(G1) and T(01) with

5(02) and T(02). That is, with mj_—nj/2_1, S(G3) contains S(G1)

in positions 2 through ri5,and it contains S(G2) in positions

m1+l through m3
m1+m2-l. S~~ (G

3
) describes what happens

when C1(G
3
) reaches y~ , which is the same as what happened

when C1(G ,)  reached x~ ~~ 
The remainder of’ C’(01) is as before.rn1 .1.

The same argument applies to P. P and Q can be determined as

in (25), or they cart be determined directly by adjusting and

combining P(G1) and Q(G1) as was done with S and P. This re— 
- 

-

quires dropping an element, -adding p.1 or p2 to the elements in —
one portion, and concatenating. - -

If is natural to cal]. a realizable quadruple or a NOHO-

graph irreducible if it cannot be expressed as a concatenation

of two smaller ones. In the next section we will count the

number of realizable quadruples in subclasses involving

irreducibility. -

-
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10. Trreducibility and NOHO-~ra~hs

Before discussing irreducibility , we introduce sone stan-

dard terminology about compositions of integers. A composition
SE —~ 

HøI
~~~of an integer p is an order ed sequence~whose parts sum to p.

Again, we are using p here because (n_Li.)/2 adds simply in con-

catenation. The 1th partial sum of a composition is the

sum of the first i parts. A refinement of a composition of p

is a composition of p with as least as many parts whose par-

tial sums contain the partial sums of the original composition,

The least refinement of two compositions is the composition

whose partial sums are the union of the partial sums of the

original compositions. For example, the leas t refinement of

(2 ,3,5) and (l ,3, l, Ll. ,l) is (1,1, 2 ,1,4,1).

This terminology will be useful for the following lemma , - :

which states a very convenient fact about concatenation.

Namely , -NOHO-graphs are “uniquely factorable” into irreducible

pieces. In algebraic terms , this means the irreducible solu-

t3.one are the generators of the semigroup of NOHO-graphe under

concatenation.

LEMMA (34). Any realizable quadruple can be uniquely expressed

as a concatenation of irreducibl. quadruples.

Proof i Any such decomposition of a quadruple breaks up (S,T)

into segments which each determine NOKO-graphe. For example, 
- 

-

describing graphs as G(S,T) , we have G(lO1OlO,1’.U.Ol) 0(1,1)

-~~~~ — 

- I —~~~~~~~ I ’~~~~~~~~
-
~~~~~~~~~~~~! ~~~~~~~~~~~~~~~~~~~
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+ 0(010,111) + o(io,ol) . We can describe the decomposition

by a composition of the integer p (n-4)/2.

We claim the least refinement of two compositions of p

which correspond to decompositions of 0 also corresponds to

a decomposition of G. If one composition is a refinement of

the other, we are finished. If not then the least refinement

has two consecutive partial sums qj=r and q1~1=s, where r is

a partial sum for exactly one of the compositions, and s is

a partial sum only for the other. Performing the decomposi-

tion, we have indices j and k such that the segments (S~.T~)

through (S8+1,T5+1) and (Sr+2ITr+2) through (Sk,Tk
) determine

NOHO-graphs G~ and G2~ 
(We have assumed r<s.)

Define another graph 031 whose vertices and edges include

the vertices and edges that lie both in G~ and in 021 plus two

vertices y and z of degree two. (By “both in G
~ 
and in 02” we

mean when the vertices are labeled as the fit  into G.~ The

neighbors of y and z are defined by f0 (y ) ’x’+1, h0 (y)=

h0 (f0 (x~~1)) , f0 ( z )~x~_5 , and h0 ( z )~h0 (f 0 (x~~3)).

• 03 
is a NOHO-graph, and the proof of this rests on the

fact that increasing paths which leave 0
3 

can never return to

it. When such a path leaves it simultaneously leaves G~ or

Q~. By the same argument used to verify IWHO in (33), it can-
not return. So, the increasing paths in 0 between vertices of

must ii. wholly within 0,. Information is transmitted for

y and z also, since y takes the place of a vertex in 02 of
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degree 2 and z does the same in G~. That NOHO is true follows

because any increasing path in 03 
appears in 01 or in 02

(except y— z  and z—.y), and they satisfy NOl-IC.

Let be obtained from Gi by deleting vertices and edges

belonging to G.~. Add a vertex w of degree two with f,,(w)=
-, 

tJl
h0 (y) and h01(w)af0 (y). By the arguments in (33) and above ,

3 1 3
it  is easy to see is a NOHO—graph and Gj+GfG1. So G

~ 
was

not irreducible.

Repeating this argument over all decompositions of G, we

see the only decomposition into irreducible segments is the

least refinement of all the decompositions. Q

Having proved unique decomposition, it becomes easy to

count various classes of solutions by induction.

THEOREM (35). The number of realizable quadr pies formed by

concatenating k irreducible quadruples is (~:~)2P
.1c
.

r.
Proofs By induction on p. Examining Figure 3 yields the

basis steps for p=l and p2. Assume the theorem is true for

smaller values than p.

First consider k>l. To obtain such a quadruple we deter—

mine a composition of p and fill the quadruple with irreducible

(S ,T)-segments of those lengths . p is the eventual length of

S and P from positions 2 through m=n/2-l. By induction, each

segment of length r can be filled by ~~~ irreducible pairs,

Filling each segment in all possible ways, (33 ) says these are

- 

~~~~~~~~~~~~~~~~~~~~~~ 

- - - 
- 

~~ -~h~~~~~~ *-w * .~~~~~~~
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realizable, and (34) says there are no others . So , for each

composition rl+...+rk =p with k parts, there are

quadruples of this type. There are ~ compositions

of P with k parts, so the total number of solutions is
(P ]. ~2p—k‘k—i’

This holds also for k=l, since that is precisely how many

remain of the quadruples counted in (26). The binomial

theorem says there are 2~~
1 irreducible quadruples, ~

T]-(ECREM (36). The number of symmetric NOHO—grapha formed by

concatenating k irreducible parts is tpk P where

~~~~~~~~~~~~~ 
; p even, k even

0 ; p odd, k even
tp,k 2Lp/2J—r 

2 (
~~~~~~~~ ) ~ k odd, k~’l, r— (k—1)/2

- 2Lp/2J ; kl

Proof , We use a similar induction to the above. Figure 3

again provides the basis, though now p 1  and p=2 are both nec-

- essary. Assume the theorem is true for smaller values ofan p.

First consider k,]., If k is even, p must be even to allow

symmetry. We determine a composition of the first p/2 places

into k/2 parts, fill it with irreducible (S,T)-segments, and

then obtain the rest by reflection (27). (33) and (34) again
justify the conclusion that this counts everything. There are

(~~~~~~~~~~~~~
) compositions and 2~~~~

),/2 solutions for each one.

If k is odd and k>l, determine a composition of q, with

ii
_ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~
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r=(k—l)/2 parts, where 2q.p. The middle. seg-nent of (S,T)
will have length p—2q. In that segment we place a symmetric

irreducible segment, of which by induction there are
There are 2q-r ways to fill the remainder. With the usual ar-

guments about reflection, number of compostions, and the cor-
rectness of the count, we have t ~~~~q—l )2q—r2[(p—2q)/2]p,k ~~ r—l
= 2LP/2i—r~~~~a—~) r (k— 1)/2,

To compute t~,11 we subtract the other tp,k from 3
[p/2J,

the total number of symmetric NOHO—graphs, derived in (31).

Note that

/ L~~-I~~~J
1 /

£ 
2LP,2J—r E (q-l) E 2~p,2J—q ~~~ (q_ 1)2 q—r

r’~1 r—1 .1

=

2LP/2J_l[(,/2)L.(P_1)/zLl],t (3/2)—i]

f 213
p/2—1 2p/2 s p even

= 1 3(p— l )/2_2 (p-i )/2 ; p odd

When p is even, we must also consider k even, If s11k/2, we
have (P’~~~)2~

)~
’28 ,p/2—l as the number of these solutions. -

So, 
f , p/2-.l+2.,p/2—l _ 2p/2 p even

p 1  = 3 -~~
j p odd

— 2L~,’2J

Lg:~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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11. Planarity and Hami].tonicity

In this section we note two properties of NOHO—graphs

that are commonly of interest. Constructions are given for

both, First , a quick lemma.

LE?~ A (37), In a NOHO-graph, consider a path R that begins

at x~ and alternates along first edges and last edges. Then

i) The path alternates between C1 and C2, reaching C1 a].-

ways on first edges and C2 on last edges ,

i i)  R eve1itually reaches x~ ,

iii ) From x~ to x~, R is a simple path.

iv) Among the 
4 

and x~ that appear along R until x~, the

indices i increase and the indices j decrease .

Proof s (i) is obvious . We verify the remainder in reverse or-

der. For (iv),  it suffices to consider pairs of consecutive

appearances. If 4,.’ f(h(xI)) so that f ( 4)  = h ( x~7, then (16. i) 
-

says i’~ i. If x~,=h (f(x~)) so that x~,a’ h(x~ ) and

then (16.1) says jcj. (1) implies the consecutive appearances

are as described. (iv ) immediately implies (iii). Since the

path connot contiue in the same direction forever, (iv) also

implies (ii). 0

THEOREM (38). In a NOHO-graph (other than Q~
), uniting the

first edges and last edges yields a Hamiltonian circuit.

Proofs Consider the alternating paths guaranteed by (3?) that

- 
— 

~~~~~~~~ ,~~~~~~~~
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‘- 
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emerge from x~ and proceed to x~. One begins with a first edge,

one with a last edge. Call them R1 and R2, respectively. We

claim R1 and R2 intersect only in {x~,x~3.
If not, let v be the first vertex where they meet after x~.

If it is before xg, it lies in C1 or in C2.- 3y (37. !), both

paths reach it via the same type of edge, i.e. first or last.

But F(G) and L(G) are matchings by (2), so there is only one

s-ach edge incident to v. This means the paths had to meet at

- 

- the previous vertex, 
- -

So , uniting R1 and R2 yields a simple circuit. It is easy

to see it must be Hainiltonian. If v lies outside it , we can

begin paths there that proceed alternately along first edges

and last edges. By the argument of (37), one such path R
~ 
pro-

ceeds to x~. The next— to—last vertex on it is in R1 or

since and R2 reach xg separately and d(x~)2. It also lies

in C’ or C2. As in the preceding paragraph, a].]. of includ-

ing v lies in that same R1 or R2. 0

THEORE?~ (39). Every NOHO-graph (excluding Q*) is planar,

Proofs We construct a planar-representation. Place the ver-

tices on the boundary of the shadow of a sausage. Put x~ at

the left end , x~ at the right end , 
4 

along the top edge from

left to right, and x~ to x~ along the bottom edge from right

to left.

‘ 

Let R1 and R2 be as in the previous proof. Draw in R1 as

a path of chords, By (3?.iii ,iv), there are no crossings,

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; -  -- - - T~ ~~~~~~~~~~ 
- - ‘

~~
‘
~~ 

‘
~~~~~

- 
‘ - - :- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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slur the boundary of the sausage so that the top and bottoiu

boundaries become doubled, still meeting at the endpoints.

Let the vertices of R1 remain on the inside boundary, and move

the vertices of R2 to the outside boundary. R2 can be drawn

as a path of non-crossing chords in the outside infinite face,

again by (37).

~%~e still must show that the edges in the caterpillar s can

be added without crossings. The interior of the boubled bound-

ary has not yet been entered by any edge. t~ø edge of the cat-

erpillar s joins two vertices on the sam e R~. i.e. on the same

side of the doubled boundary. If so, (14.iii) and (37,iv)

require a triangle. So, we can draw the caterpillar edges as

• chords across the interior of the boundary.

We claim there are no crossings. Since the vertices have

been placed in order , (x~ ,4) cannot cross (x~,x~) with

max{j,k cmin~r,s}. If a crossing exists, we may assume ~~~~~
r’s. By (lLf.iii), (x~ , x~ ) is an edge. Similarly, if kcs then

(4,4) is an edge, while if k~s then (x~ ,x~ ) is an edge.

Either way, we have created a triangle in a tree, using x~,

4, and one of {4,x~J, ~ 
-

Figure 5 shows a representation drawn with this method.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~
‘

,

‘

Figure 5. A planar representation
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12. Related Gossip Questions

Golumbic [6] and Marary and SchwenkC8] have shown that any -

connected graph with n vertices, 2n—4 edges, and a 4-cycle ad-
mits an edge-ordàring which solves the usual gossip problem.
By 2n—LI. edges, we mean 2n-4 calls will be made using ~‘ailowed”
edges. Of course, most of these violate NOHO. The question

remains open, however, whether every optimal solution of the
gossip problem contains a 4-cycle. An affirmative answer would

characterize these solutions. Examining (12) and (l6.iii), we
note -

REr~ARK (40). 
- 

Every optimal solution of the gossip problem

satisfying NOHO has a 4-cycle,

It may be possible to prove the conj3cture by applying this

remark, 
- 

-
Graph theorists have also considered solutions of the ~- 

-

gossip problem in which no transmission of information is dup-

h eated, so there is a unique increasing path from each vertex

to every other, Usually this includes the condition IWHO,

Paradoxically, forbidding wastage requires more work, if in-

deed the problem can be solved at all. In other words, the ‘

information cannot be transmitted in 2n~Lf calls unless n~4 or 
•

na8, which follows from -
•

— -~~~~~ 
-‘ 

~
- 

-, .
~~

— 
~~
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~
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REI.ARK (4i). Every NOHO graph other than C4 and those in Q*

duplicates some transmission.

Proofs C4 and graphs in Q~, as remarked in (12), duplicate no

transmission. Consider any other NOHO-graph, and suppose

Sm=Os We claim there are two paths from 
4 

to x~. By (16.iii),

By (14.iii), (x~,h(x~)) is an edge. So (4,

h(xg).x~ ) forms one such path, By (14.i) there is an increasing
pathe in C2 from 

4 
to every other vertex of c2, including

h(x1), which completes the path. On the other hand, lf S~~l,

then x~~h(x~). Applying (16,iii) again, there exist increasing

paths (x~,x~,h (x~),x~) and (x~ , x~ ),  
~

Finally, we describe a generalization of the problem con-

sidered here. Consider an n by n “transmission matrix” on

vertices {v1,...,v~} with entries from (l,0,—l}. ‘ If a13 1,

we require an increasing path from V
1 to v~. If .ä1~~-l we

forbid such a path. If a1..=O we don ’t care. We ask whether
J

a ca11in~ scheme satifyirig the matrix exists, what is the least

number of calls in such a scheme, what schemes achieve the miri—
-7

imum , and so on. The original gossip problem results when di-
V

agonal entries are 0 and off—diagoanal entries are 1. Chang-

ing the diagonal entries to —l yields the subject here. The

problem with ones above the diagonal and zeros on or below it

is clearly optimized by a chain of n-i edges. For a matrix 
•

in block diagonal form, we require the sum of the calls re-

quired by the smaller probleffis. Here’s another examples

r
di

~~~~~~
4

~ 
7~ ~~~~~ -~~- - • ~~~~~~~~~~~~~~~~ 

~~~~ ~~~~~~~~~~~~~~
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REXARK (42). Consider a transmission matrix with a11=O,
a~~~O for i~’r~j, and all other a1~=l. The smallest graph

solving this gossip problem has 2n-7 edges. This remains

true if a11=-l, n even, r even,

Proofs Take an ordinary (2r-Zi.)-edge solution on IVl • I I P VrJ

and an ordinary (2n-2r—4)-edge solution H2 on {Vr+ ii •~~~I~~
V

n J ~

Order the edges so all those of H2 occur after all those of

Add an edge joining a vertex of the last edge in li1
to the first edge in H2, arid let it occur between them. This

uses 2n—7 calls and satisfies the matrix.

To show optimality, take any solution and delay all edges

not wholly within {Vl~~S • • I Vr}~ 
in order , until after eve ry

ed-ge within that set. The resulting scheme still satisfies

the matrix. But now it must consist of an ordinary scheme on

r vertices, followed by at least one connecting edge and a

solution on n—i’ vertices. So, there - are at least 2n— 7 calls.

If a11 —l, simply use NOHO—graphs in the H1, d2 con—

struction. This requires n and r even, 0

There are innumerable variations.

• ‘~ k~

— 

-
~ 
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