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A CLASS OF SOLUTICNS TO THE.GOSSIP PROBLEY

Douglas B. West

Computer Science Department
Stanford University
Stanford, California 94305

Abstract

We characterize and count optimal .solutions to the zossip prob-
lem in which no ore hears his owm inforration., Trat is, we
consider zraphs with n vertices where the edges have a linear
ordering such that an increasing path exists from each vertax
to every other, but there is no increasing path from any ver-
tex to itself., 3Sucn grarhs exist only when n is even, in which
case the fewest number of edses is 2n-4%, as in the orizinal gzos-
sip problem, e characterize optimal solutions of this sort
(NOHO-graphs) using a corresvondence with a set of permutations
and binary sequences. This correspondence enables us %o count
these solutions and several subclasses of solutions, The rum=-
bers of solutions in each class are simple powers of 2 ard 3,
with exponents determined by n. We also show constructively
that NOHO-graphs are planar and Hamiltonian, and we mention
applications to related problems,

i
" v

The publication of this report was supported in part by National Science
Foundation grant MCS-77-23738.and by Office of Naval Research contract
NOOO1k-76-C-0330. Reproduction in whole or in part is permitted for any
purpose of the United States government.




|

l! UNCLASSIFIED

'{ SECURITY CLASSIFICATION OF THIS PACE (When Dota Fnterod)

A ‘ s REPORT DOCUMENTATION PAGE SErORE o .
}’ l“/ 1. REPORT NUMBER / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

f STAN-CS-79-693

5. TYPE OF REPORT & PERIOD COVERED
A CLASS OF SOLUTIONS TO THE GOSSIP PROBLEM / Technical rust ) l
= = *. - e
- g RT MBER
— STAN-CS-79-693

7. AUTHOR(s) 3 . CONTRACTY OR GRANT NUMBER(s)

, (e ]

9. PERFORMING ORGANIZATION NAME AND ADDRESS/
Computer Science Department
atanford University
ctanford, California 94305

1. CONTROLLING OFFICE NAME AND ADDRESS

J2neREPORT-ORTE |

Office of Naval Research Januery mzj

Department of the Navy : S NOIBER OF PAGES
61

Arlington, Va. 22217
14. MONITORING AGENCY NAME & ADODRESS(i{ dillerent from Controlling Office) 1S. SECURITY CLASS. (of this report)

—— |

)

| NOOOLL-76-C-033Q, )
NSE ~McST11-23737 ]

AREA & WORK UNIT NUMBERS

ILTﬁ‘

)

ONR Representative: Philip Surra Unclassified
Durand Aeromautics Bldg., Rm. 165 ~—
Stanford University 3) é/y / 15a, DECL ASSIFICATION/ DOWNGRADING
Stanford, CA 94305 / ol SRtk
16. DISTRIBUTION STATEMENT (of this Report) LA
Approved for public release
i . Distfibution Unlimited «*.

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il ditlerent Irom Report)

18. SUPPLEMENTARY NOTES

L 19. KEY WORDS (Continue on reverse alde il ncceasary and Identlly by block number)

’wﬁ‘» R
-

!

20. A RACT (Continue on reverss side Il neceasary ond icentify by block number)

We characterize and count optimal solutions to the gossip problem in which
no one hears his own information. That is, we consider graphs with n vertices
£ where the edges have a linear ordering such that an increasing path exists from

each vertex to every other, but there is no increasing path from any vertex to
% itself. Such graphs exist only when n is even, in which case the fewest number
g& of edges is 2n-4, as in the original gossip problem. Whe characterize optimal
: solutions of this sort (NOHO-graphs) using a correspondence with a set of
permutations and binary sequences. This correspondence enables us to count -w

i+
2

Lt

¢

* DD ,5%"5; 1473  €oiTion oF 1 NOV €5 1S OBSOLETE UNCLASSIFIED

0 9q z 20 SECURITY CLASSIFICATION OF THIS PAGE m.ninua'm" ored)
; ->~ " N S—— — 2 4 - e P ——

TR T

TR T




T N

1 W e S
¥
|
’

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whon Deta Entered)

these solutions and several subclasses of solutions. The numbers of solutions
in each class are simple powers of 2 and 3, with exponents determined by n.

We also show constructively that NOHO-graphs are planar and Hamiltonian, and
we mention applications to related problems.

- UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entersd)

4

¥ W § .

o s




i S i g gy B
]
3 :
4

A CLASS OF SOLUTIONS TO THE GOSSIP PROBLEM

There are two kinds of people who
¢ blow through life like a breeze;
il 3§ And one kind is gossipers, and the
other kind is gossipees,
-=-0gden Nash

Gossip is mischiavoue, light and easy
| to raise, but grievous to bear and
hard to get rid of, No gossip ever i P
dies away entirely, if many people
voice its it too is a kind of divinity,

-=-Hesiod
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1. Introduction

The "gossip problem” has the unusual distinction of being
solved four times within a year, Proposed by Boyd and popular-
ized by Erdds, it considers a group of n people, each posses-
sing a distinct item of information. Telephone calls are ar-
ranged between two people at a time, in which they exchange all
the information they know, (It is also called the "telephone
problem.”) We seek the minimum number of calls required to
transmit all the information to everyone. For nz4, it is 2n-4,
This was proved by Bumby and Spencer(unpublished), Baker and
Shostak{1], Tijdeman{12], and Hajnal, Milner, and Szemerédi[?7].
These proofs were all different and fairly short,

Ways were quickly found to generalize the problem. The
calling scheme can be represented by a graph whose edges are
linearly ordered to represent the order of calls., We require
an "increasing path” from each vertex to every other, Edges
may be repeated in the ordering, in which case they are counted
twice, representing repeated calls.

Moving from graphs to hypergraphs, we can ask the same
question when the medium of transmission is "conference calls”
of a fixed sise k. The minimum number here was discovered by
Lebensold[10]. It is on the order of 2(n-1)/(k-1), with a num-
ber af techcnical adjustments. Bermond[2] recently rederived
the result with a sherter proof.
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Thus far we have considered complete graphs. Suppose the
“allowable” calls are restricted to some subgraph., For example,
we don't wish to assign sworn enemies to talk to each other.

This problem was considered by Harary and Schwenk{8], and also
by Golumbic[é]. As long as the graph is connected, we can trans-
mit the information in 2n-3 calls using a spanning tree, with

the calls ordered to and then from some root, If the graph con-
tains a 4-cycle, we can still achieve 2n-4, Here we use the
4-cycle and edges which grow tree-like to the remaining vertices,
It is easy to find a suitable ordering., It is conjectured that
if the graph does not contain a 4-cycle, then 2n-3 edges are
required,

Instead of ordinary graphs, we could consider directed
graphs, representing one-directional transfers of information,
This is the "telegraph problem." Harary and Schwenk[S] and
Golumbic[6] have shown that if the digraph of allowed edges is
strongly connected, then the minimum number of messages for com-
plete transmission is 2n-2, Golumbic also examines how many
messages are required to tranmit whatever can be transmitted
when the digraph is not strongly connected,

Another variation asks for the minimum time of transmission,
where each vertex can participate in at most one call per time
unit, Knodel[9] solved this for complete graphs, and Schmitt[11]
for complete hypergraphs, Cockayne, Hedetniemi, and Slater(3]
consider this in terms of individual vertices, Entringer and
Slater{5] consider time of transmission in complete digraphs,

S e

" %

N

‘;, LY w




The behavior of all these minima is logarithmic in the number

of vertices, adjusted by constant terms depending on residue
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classes of n,
Cot[u] discusses ways to vary the problem, We consider :
here not a generalization of the situation, but a restriction
of the allowable calling schemes, We consider calling schemes
that transmit all information, with the additional requirement
that no one ever hears his own information, That is, no one
speaks to anyone who knows his original tidbit, . In the graph- {
ical formulation, with an ordering on the edges, this means we i
can find no pathwhich leaves a vertex, continually "increases”,

and returns to it, We determine when such solutions exist and

how many edges they require, and we characterize and count the
optimal ones. X
We show that calling schemes completing all transmissions
and satisfying NOHO ("no one hears his own information") exist |
only when n is even, We call such such a salution with fewest E
edges (on n vertices) a NOHO-graph, NOHO-graphs have 2n-4 'L
edges, the usual gossip result., Particular examples include
C, (the 4-cycle) and any regular graph of degree 3 on 8 ver- i
tices having no triangles. The latter set we call Q*, since i
it includes the cube, We characterize other NOHO-graphs by two
permutations and two binary sequences. Each of the four describes
the placement of approximately n/2-1 edges in the graph., We
show that any two of the four suffice to determine the other !

tw& and hence the entire graph, We use this to count the num-
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ber of realizable quadruples determining NOHO-graphs on n ver-
tices, (Realizable quadruples, or simply "solutions,” are
those sets of sequences which correspond to NOHO-graphs.,) Let-
ting p=(n-4)/2, this number is 3P1 for n=6, n even. NOHO-
graphs whicli are not symmetric are counted twice in this; that
is, they correspond to two realizable quadruples, We later
count the number of symmetric solutions, so the number of NOHO-
graphs is retrievable,

We also define an operation of "concatenation,” which puts
two solutions together two form a larger solution, This yields
a concept of an "irreducible” solution as one which admits no
concatenation from smaller solutions, We show the number of
solutions on n vertices concatenated from k irreducible parts
is (ﬁ:i)zp‘k. We also determine the number of symmetric solu-
tions concatenated from k irreducible parts. In particular,
the number of irreducible solutions is 2p'1, the number of sym-
metric solutions is BLP/bJ. and the number of symmetric irre-

ducible solutions is sz/ZJ. Ignoring the special graphs Cy

and Q* and eliminating the double-counting, the number of NOHO-
graphs is (Bp-1+3Lp/2j)/2.

Additional results include constructive proofs that NOHO-
graphs are planar and Hamiltonian and applications to related

gossip questions, In the next section, we outline the steps of

the proofs toward these goals,
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2, Summary of Proofs and Résults

The original argument used by Baker and Shostak[1l] begins
by showing that the smallest graph which could transmit all
information in fewer than 2n-4 edges would have to satisfy
NOHO, They use NOHO to discuss the "first edges” and "last
edges” of the graph and consider the components of the sub-
graph obtained by deleting those edges. They obtain a contra-
diction by showing that not all transmissions can be completed.,
In our preliminary details, we parallel this argument. In a
graph satisfying NOHO, the set of edges which correspond to
first calls made by some vertex and the set of edges which
correspond to last calls made by some vertex each forms a com-
plete matching in the graph. As a corollary, we see that NOHC-
graphs must have an even number of vertices.

We consider, for each vertex x, a tree O(x) of edges used
to pass its information elsewhere and a tree I(x) carrying in-
formation to it, Characterizing the edges which appear in the
intersection of the trees, we determine the number c(x) which
appear in neither, c¢(x) turns out to be two less than the de-
gree of the vertex., Now we consider the graph M(G) obtained
by deleting the first edges and last edges. Considering where
edges of O(x) and I(x) can appear in it and bounding the "use-
less” edges by c(x), we obtain the major result of section 3.
For a NOHO-graph G, M(G) consists of exactly four components
which are all trees, Along the way we exhibit such solutions

with 2n-4 edges. The contradiction abtained by Baker and Shos-
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tak does not arise because these graphs have enough edges,

In section 4 we consider the case where G has no vertex of
degree 2, The trees of M(G) must each contain an edgey and ex-
amination of cases shows they must all consist of single edges,
This requires G to be a 3-regular graph on 8 vertices, and NOHO
prchibits triangles, All such graphs admit an edge-ordering
which transmits all information, so they are NOHO-graphs,

Returning in section 5 to graphs with vertices of degree 2,
we find C), which works, If n>4, then M(G) consists of two i-
solated vertices and two caterpillars on n/2-1 vertices each.
(A caterpillar is a tree with a path hitting every edge,) This
enables us t® label the vertices of the graph{x?l where ic{l.z},
j€{0,1,...,n/2-1}, according to the order in which information
from the isolated vertices xg travels along the caterpillars.
The placement of edges in the caterpillars can be described by

th is

binary sequeces, where the j element describes how xi

j+l
jolned to the earlier vertices.

To completely characterize the graph, we must describe how

the first edges and last edges may be added, To satisfy NOHO a

first edge or last edge must always join x% and xé: with i#i°,

So, the placement of these edges can be described by permuta~

tions, where the Jth element of the permutation is k if xi is

the first (respectively, last) neighbor of x%.

J
In section 6 we derive necessary conditions for

pairs of these integer sequences to be realizable by NOHO-

graphs, One condition imposes inequalities relating elaments
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of the two permutations, Another restricts where l1l's occur in
the binary sequences in terms of where reversions occur in the
first-edge permutation, The reversions of that permutation are
explicitly characterized, (A reversion is a maximal con-
tiguous subsequence of a permutation where the first element is=
the least.,) The characterization is equivalent to forbiddirg
subsequences of length three (in a permutation) whose last ele-
ment is the largest, All these conditions follow from requir-
ing NOHO, transmission of all information, and the characteri-
zation of the graph in terms of the caterpillars., Other condi-
tions follow from the same basic reasons when the graph is re-
flected, which consists of relabeling the vertices of the graph
so the two caterpillars are switched., The sequences for the
reflected graph are easily obtained from the original sequences,

Having derived enough necessary conditions, we can show (sectin 7)
that any pair of sequences satisfying the appropriate ones u-
niquely determines the remaining pair, Furthermore, the result-
ing quadruple is realizable, so the conditions are sufficient.
- Therefore, we need only count realizable pairs (P,S), where P
is the first-edge permutation and S is the sequence determining
the first caterpillar. There are (g:i) such permutations whth
r reversions (where p=(n-4)/2), and 21 realizabvle binary se-
quences for each of those, so a simple application of the bi-
nomial theorem gives 3p'1 realizable quadruples,

In section 8 we consider symmetric NOHO-graphs, When the

operation of reflection yields the same sequences as before,
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the graph is symmetric, Otherwise, two quadruples determine

the same graph. To count the number of symmetric NOHO-graphs,

we first count the number of symmetric realizable first-edge

permutations. A simple fact about the number of entries in a

permutation enables us to construct such permutations step by

step, where at each step we have two options and determine two

elements with our choice. .Then we count the number of symmetric ;
NOHO-graphs associated with it by counting the number of last-

edge permutations which can be paired with it, Por the choige

made at each step in constructing the first permutation, making

it one way results in two options at a corresponding‘stage_of : »l
the second construction, whilé making it the other way leaves |
only one, Boiling all this down, we have another simple appli-

cation of the binomial theorem to obtain altogether 3[1’/2J sym-

metric NOHO=-graphs,

Section 9 treats concatenation, ‘ Concat-

enation creates a NOHO-graph from two smaller ones by identify- S . E

ing two vertices and merging the edge-orderings in a natural Q

' way. Also, one vertex of degree two is deleted from each, So, f
the resulting graph has four fewer vertices than the union of Lf

the original two graphs., This is one reason to define p=(n-4)/2; L
that quantity adds directly under concatenation, With adjust- - tj

. L

|

ments for the deleted and identified vertices, the "top"™ cat- i
erpillars, "bottom” caterpillars, first edges, and last edges :
of the two small graphs are united to form those respective

sets in the new graph, The orderings are merged to make infor-
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mation flow properly along the caterpillars,

In section 10 we examine irreducible NOHO-graphs—those
which cannot be formed by concatenation, We show there is a
unique decomposition of any NOHO-graph as a concatenation of
irreducible ones, This follows because the "least refinement”
(in terms of compositions of integers) of two such decomposi-
tions is also a decomposition, and would lead to a decomposi-
tion of one of the original irreducible pieces. Now, using
concatenation and the number of compositions of p into k parts,
an induction shows there are (ﬁ:i)ap'k realizable quadruples
formed from k irreducible parts. This holds for k=l also,
since precisely that many remain when the others are subtracted
from the total, When we require symmetry also, the number with
k parts remains an ugly summation, but the proof is similar,

In the special case of symmetric irreducible solutions, the
summation can be computed, and the number of these is ZLP/ZJ.

In section1l we show that NOHO-graphe (except Q*) have two
properties that are frequently investigated; they are Hamilton-
ian and planar, Uniting the first edges and last edges of the
graph forms a Hamiltonian circuit., This is proved by dividing
it into two paths which are shown to meet at their endpoints
and be simple, disjoint, and exhaustive. For planarity, we take
those two paths and draw one inside and one outside of the "Ham-
iltonian caterpillar” formed by M(G)., This accounts for all the
edges, Showing the no crossings exist completes the proof,

Finally, section 12 presents applications to a few related




gossip questions. We note that every NOHO-graph contains a 4-
cycle and that NOHO-graphs other than Cy, and Q* contain dupli-
cated transmissions. A generalization of the gossip problem is

proposed, and some trivial special cases of it are solved.

3. Preliminary Results

To facilitate comprehension, we attempt certain rules of
notation. In general, the following apply. Upper case letters
indicate graphs or graph-valued functions, except that P through
T usually denote integer sequences, Where upper case letters
refer to sets of some sort, lower case letters refer to elements,
except for the elements of a sequence, which are simply sub-
scripted, a through e denote integer-valued functions, f,g,h
are vertex-valued functions., 1i,j,k,1 are indices or utility
integers. n,m,p are fixed integers with a particular relation-
ship., gq,r,s,t are utility integers, and finally, u through 2z
denote vertices of a graph, .

We deal with undirected graphs G which have n vertices and
e(G) edges, Let V(G) be the vertex set, E(@) the edge set.

S| denotes the cardinality of a set S, The edges of a graph
are unordered pairs chosen, with possible repetition, from the
Cartesian product V(G)xV(G), (x,y) denotes the edge with x and
y as endpoints, d(x) denotes the degree of vertex x, which is
the number of edges to which it belongs. A pegular graph of

degree k, or a k-regular graph, is one where each vertex has

degree k,
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A path of length k from v, to v, is an ordered sequence of
vertices (vg,VysecesVy), where (v;,v; .)€ E(G) and v, are dis-
tinet, except possibly Vo=V If Vo=v) the path is a gycle.

A graph is connected if it has a path from each vertex to every
other, A tree is a connected graph for which e(G)=n-1; equiv-
alently, a connected graph with no eycles, A spanning tree of
a graph is a subgraph which is a tree on all n vertices, A
caterpillar is a tree with a path that covers (contains one ver-
tex of) every edge. Ethernétively. it is a tree not containing
Y as a subgraph, where Y is obtained from the complete bipar-
tite K1,3 by subdividing each edge with a new vertex.,] Cater-
pillars have also been called "hairy paths,”

For a graph G whose edges are linearly ordered, we adopt the
following ngtation. We put (x,y) < (u,v) if (x,y) is less than
(uy,v) in that ordering, Similarly for other:notations of order.
F(G) denotes the set of first edges of G, A first edge is the
least edge incident to some vertex. Similarly L(G) denotes the
set of last edges of G, any of which is the greatest edge inci-
dent to some vertex., Let M(G) be the grapﬂ obtained from G by
deleting the edges of F(G) and L(G), and let C(x) be the con-
nected component of M(G) containing x.

Por any vertex x, let f(x) be its first neighbor, namely
the vertex adjacent to it via the least incident edge. Simi-
larly, h(x) denotes its lngj_ngggnpg;.‘adjacont via the great-

est incident edge. We use x-py to replace the words "an inc-

reasing path from x to y," moahing a path from x to y where
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each successive edge 1s greater than the previous one.
Henceforth, whenever we refer to a graph, we assume its
edges are associated with a linear ordering. If for every x,

there is not x-$x, we say "no one hears his own information,"

or the graph satisfies NOHO,

REMARK (1), A graph satisfying NOHO has no loops, repeated
edges, or triangles,

Proof: The first two are immediate, If there is a triangle,
the edges obey some order, and the vertex at the intersection

of the least and greatest edges violates NOHO, (]
Expanding on this argument, we obtain

IEMMA (2). In a graph satisfying NOHO the first edges and the
last edges each form a disjoint matching,

Proof: Suppose F(G) is not a matching, so there exists y=f(x),
z=f(y), with z#x, Then (y,z)<(x,y). Since y=f(x), (x,y) is
no greater than the least edge in x-»z., If Shey are equal, re-
placing (x,y) by (3,y) at the beginning of the path creates
2=z, If they are not equal, adding (z,y) and (y,x) at the
beginning of x-$z again produces z-»z, So, NOHd requires
x=f(y), and P(G) is a matching,

Similarly for L(G). If y=h(x), z=h(y), and z¥x, we re-
quire (y,z)»(x,y) and (i.y) no less than the greatest edge in

z-sx, This time the end of z-sx can be adjusted to produce z-bz. (]
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COROLLARY (3). Graphs satisfying NOHO exist only .on even

numbers of vertices,

Proof: Complete matchings exist. [J

If x-»y exists for all x#y, then we say the graph "solves
the gossip problem,” From previous results [1,10,12], we know
such a graph on n vertices has at least 2n-4 edges. If a graph
on n vertices solves the gossip problem, satisfies NOHO, and
has the fewest edges among all such graphs, we call it a NOHO-
graph.

LEMMA (4), NOHO-graphs have 2n-4 edges, for nal, n even,

Proofs A NOHO-graph solves the gossipjproblem, so requires at
least 2n-4 edges., We exhibit such a graph with that many edges.

Let D, be a graph on vertices {x%s i=1,2; j=0.1.....n/2-1}.
- S 1

2
We write x};/z”xov Xn/2%Xpe Let F(D ) = {.(xi'xi/z-tl-i)' i=1,2.....n/2}

and L(D,) = {(x3,x2/, 3 ;)¢ 1=0,1,...,n/2-1}, The intermediate
edges of D are {fx%,x§+1)c i=1,2; jcl.....n/é-z}. ordered by
(x}_y o x)eta,xb0)

partial ordering is acceptable, Easy inspection shows that Dn

Any linear ordering compatible with this

solves the gossip problem and satifies NOHO, and it has 2n-4
edges, [

Figure 1 illustrates Dih' Whenever we draw a NOHO-graph, first
edges will be dotted and last edges dashed, '

S —— -
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Figure 1. Dln' a NOHO-graph

COROLLARY (5), For a NOHO-graph G, M(G) has at least four

components,

Proofs Recall M(G)=@-(P(G)VL(G)). By (2), e(F(G))=e(L(G))=n/2,
and they share no edges (1). So, (4) implies e(M(G))=n-4,

With n vertices, this means it must have at least 4 components, []

A graph solving the gossip problem is connected, so the
following concepte are meaningful. For any vertex x, let O0(x)
be the "spénning tree of useful edges transmitting information
from x,” or simply thevogt-tree from x, It can be defined u-
niquely and recursively as follows, Begin with x. At each
step add the least edge incident to but not contained in the
tree that i) does not create a cycle and ii) bvecomes the great-
est edge of an increasing path from x along the tree. After
n-1 steps the result is O(x). Thr tree must exist, since x-dy
exists for all y#x. Similarly, I(x) denotes the in-tree to x,
It is defined recursively and uniquely like O0(x) by adding at
each step the greatest non-cyclic edge which is the least edge
of an increasing path to x along the tree. Again, I(x) exists,

since y-»x exists for all y¥x., Let c(x) be the number of edges
useless to x., Deleting them leaves increasing paths for x to

AR, A b e 01
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and from every other vertex. We have c(x)= e(G)-e(0(x)uI(x)),

Now we can characterize the edges lying both in 0(x) and in I(x).

LEMMA (6). If G solves the gossip problem and staisfies NOHO,
then (y,z)e(0(x)aI(x)) if and only if (y,z) is incident to x.

Proofs Suppose (y,z)e(0(x)nI(x))., Then (y,z) is the greatest
edge of some increasing path starting from x and the least edge
of some increasing path ending at x, Joining the two paths and
dropping (y,z) if they connect to it‘at the same endpoint, we
have x-»x, unless (y,z) was the only edge in both paths, in
which caaé it is incident to x.

Conversely, suppose (Xx,y)f#0(x). Then there exists x—sy
in 0(x) disjoint from (x,y). To avoid having x-»x, (x,y) must
be less than the greatest edge in that path, But then, accérd-
ing to the construction for 0(x), at the time when that edge
was added (x,y) was also available, and we would have chosen it
instead., Similarly, we cannot have (x,y)¢I(x) unless we have

X=pX, u

COROLLARY (7). In a NOHO-graph, c(x)=d(x)-2 for any vertex x.

Proof: c(x) =2n-4-e(0(x)VI(x)) = 2n-b=(n=-1)=(n=-1)+e(0(x)AI(x))
= d(x)-2, since by (6) e(0(x)a(I(x))=d(x). [

Vertices in a NOHO-graph always have degree at least 2, so
c(x)=d(x)=2 makes sense,

The next lemma investigates how the edges of 0(x) and I(x)

e A A A e
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are distributed, Recall that C(x) is the component of M(G)

il

containing x, We claim that edges of M(G) not in C(x) or C(f£(x))
are useless for carrying information out of x, and those not in \

C(x) or C(h(x)) are useless for bringing it in., In other words,

LEMMA (8), If G solves the gossip problem and satisfies NOHO, g
then for any vertex x, (M(G)n0{x)) € (C(x)vC(f(x)) and i
(M(G)nI(x)) e(c(x)uC(h(x)), so
e(M(G)) - e(C(x)vc(£(x))vC(h(x))) S c(x). 4

Proof: First consider 0(x)., No edge of M(G) not im C(x) or
C(f(x)) can belong to an increasing path beginning at x. The : g
path would have to enter that component via a first edge or a

. last edge. No first edge othe than (x.f(x)) exists on any in-
creasing path from x, and any path which uses a last edge cannot

continue increasing thereafter. Applying similar reasoning to
I(x), no edge of M(G) not in C(x) or C(h(x)) can belong to an ' }
increasing path leading to x., Therefore, the number of edges tj
of M(G) not in C(x)vC(f(x))¥C(h(x)), all of which are useless s
to x, is at most c(x). [J r

The "excess edges” counted in (8) can be fewer than c(x) 1

if one of the components of M(G) is not a tree or if some edge
in P(G) or L(G) is useless to x. As we see next, the former

cannot occur in a NOHO=-graph.

LEMMA (9), Por a NOHO-graph G, M(G) consists of exactly four
components, all of which are trees,
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Proof: By (6), M(G) has at least four components, In showing
it has at most four and they are trees, we consider two cases,

Case I, Every vertex of G has degree at least 3, This
means M(G) has nc isolated vertices, and each component has at
least one edge. G must have at least 8 vertices of degree ex-
actly 3, else the sum of all degrees will exceed 4n-8, which is
twice the number of edges, By (7), a vertex x of degree 3 has
c(x)=1, By (8), M(G) has at most one edge not in C(x)VC(f(x))
vC(h(x)), so there can be at most one other component, If any
component were not a tree it would have at least as many edges
as vertices, Then the remaining three components would have
together at least four more vertices than edges. As before such
a situation requires at least four components.,

Case II, G has some vertex x of degree 2, C(x) is an iso-
lated vertex in M(G)., By (?7), c(x)=0, Since M(G)nC(x) and
M(G)nI(x) can have no cycles, (8) then implies C(f(x)) and
c(h(x)) are trees and all other components are isolated vertices
Two trees have two more vertices than edges, Since M(G) has n-4
edges, the two components have n-2 vertices, leaving x and one

other isolated vertex for a total of four componsnts, []

REMARK (10). For any x in a NOHO-graph G, M(G) contains at
least n/2-2 edges of 0(x) and of I(x).
Proofs At most one edge of O(x) lies in F(G) and at most n/2
in L(G), while I(x) has at most one edge in L(G) and n/2 in F(G). [

% Tk ‘ﬁw-@.,‘n:f:“jﬁ' St S
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The remaining lemma in this section becomes useful when we show
later that for a NOHO-graph every tree in M(G) is of the type
in its hypothesis., This lemma applies to all graphs, because
if G does not solve the gossip problem we can still define 0(x)
and I(x) withvthe same construction, and simply grow the trees

as far as possible, They may not span.

LEMMA (11)., A tree lyim in both O(x) and I(y) for some x and

y is a caterpillar with an increasing path touching every edge.

Proofs Let (vo,vl) be the least edge in the tree, and let
(vo,vl....,vk)=v be the longest increasing path in the tree.
Suppose the assertion is false, and the tree contains an edge
(w,2) with neither w nor z in vi « Since the tree is connect-
ed, there must be some path that joins V to this edgé. say
U-(vj,ul.uz;...,ur.w.z). Each edge is in O0(x) and must lie

on an increasing path from x. Conyider (vj,ul). If the in-
creasing path containing it does not include (vj-l'vj)' there
would be two increasing paths to Vi impossible in O(x)., If
it does, then (vj-l'vj) (vj'“l)'

Applying this argument to each successive edge of U, we
f£ind that (vo,vl.....vj,ul.....ur,w.z) is an increasing path,
Similariy, each edge is in I(y), and must lie on an increasing
path to y. V is part of such a path, Since I(y) is a tree, an
argument like that above yields (ul'vj) (vj’vj+1)' Applying
the argument to each successive edge of U, we find that
(l.w.ur;..dul.vj.....vk) is also an increasing path., This can
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happen only if (w,z) is the only edge in U, So, every edge
of the tree is incident to a single increasing path, If it
is not on the path, it occurs between the neighboring edges
of the path in the edge ordering. [

4, g+ b ! Cube"”

The remainder of the characterization of NOHO-graphs var-
ies groatiy depending on whether the graph has a vertex of de-
gree 2, In this section we consider the case where it does not.

Let Q* be the set of 8-vertex 3-regular graphs with no tri-

angles, Q* contains the cube., We have

THEOREM (12). A NOHO-graph with no vertex of degree two may be
any graph in Q’.'but no other,

Proof: By (9).'M(G) consisfa of four non-trivial trees. Thus
nz8, If n=8, then M(G) consits of four single edges.‘ So G ad-
mits a factorization into disjoint matchings F(G), M(G), and
L(G), and by (1) it must lie in Q*, We claim any graph in Q¥
can be suitably edge-ordered,

Suppose GeQ*, We will assign first neigbors, last neigh-
bors, and "middle neighbors" (denoted g(x)) to satisfy all the
required conditions, Consider the passage of information out
from x, It can reach f(x),g(x),h(x),g(£(x)),h(f(x)),h(g(x)),
and h(g(f(x))). To reach all vertices, these must all be dis-
tinct, (This implies there is no duplication of transmission

in these solutions, See (40).) So, we find a spanning tree with
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two neighboring vertices of degree 3, each of whose other neigh-
bors have degrees 2 and 1, For a graph in Q¥%, this is always
possible, since it has no triangles. Place the central edge in
F(G), the end edges in L(G), and the remainder in M(G). Infor-
mation can come to x from h(x), g(x), f(x), g(h(x)), f(h(x)),
f(g(x)), and f(g(h(x))) along a similar tree, Five edgeés re-
main unassigned in G. This tree will use four of them, adding
three edges to F(G) and one to M(G). Again, for a graph in Q¥
it is possible to find the additional tree, The remaining edge
is assigned to M(G),

In choosing and labeling this second tree we must take
care to preserve the matching property of F, L, and M and to
avoid completing a circuit with two edges of M and one each of
F and L, Such a circuit would result in duplicated transmission
between two other vertices, Having labeled these trees to sat-
isfy vertex x and these latter conditions, detailed checking
shows that all other information is also transmitted and NOHO
is satisfed. .

Suppose n>8 and G is a NOHO-graph, We will produce a con-
tradiction. Let x be an end-vertex of one of the trees in M(G).
d(x)=3, so c(x)=1 (7). (8) shows that at least one of the re-
maining components is entirely useless to x and must be a single
edge, Applying the same argument to an endpoint of that edge,
we obtain a second isolated edge in M(G),

Let (xi.x%) and (xf.xg) be such single edges., By (10),

c(f(xg)) contains increasing paths from f(x%) to at least n/2-3

i
2
3
X
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other vertices, and C(h(x%)) contains increasing pgths to h(x%))
from at least n/2-3 other vertices. Since c(x%)sl. f(x%) and
h(x%) must lie in different components, each of which contains
half the remaining vertices. When n>8 these components con-
tain more than two vertices, and all their edges must be use-
ful to x%. In particular, C(f(x%))co(xﬁ) and C(h(x%))ﬁl(x§).

Suppose f(x%) and f(xéz) lie in the same component of M(G).
That component is a tree of increasing paths out of each of
those vertices, so they must be joined by the least edge in
that component, Therefore, it is not possible for three such
vertices to lie in the same component, Similarly, no three of
{h(x%)} lie in the same component, Each of the “large"” compo-
nents contains two each from {f(xg)} and {h(x?)}, so by (11)
they must both be caterpillars.

Let (v,w) be the least edge in one of the caterpillars,
80 v-f(x%). w=f(x§:). Let y-h(xg). z=h(x§:). y and z lie in
the other caterpillar, For v and w both to be "roots" of the
caterpillar, one of them must be an endpoint, say v. Now
d(v)=3, c(v)=1, t(v)=x§ lies in a single-edge component; the
other such component must be the edge useless to v, Therefore,
the other caterpillar must be a tree of increasing paths into
h(v)., However, it already does that for y and 2z, also. Yy, z,
and h(v) are distinct, since their last neighbors are distinct,
but we saw in the last paragraph that three distinct vertices
could not all play this role. This gives us the final contra-

diction that eliminates the possibility n»8., (]
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Figure 2 gives several examples of NOHO-graphs in Q%, in-
cluding the cube. The usual conventions are observed for draw-

ing edges in F, M, and L.
N i :

Figure 2. Some graphs in Q¥

5. NOHO-graphs as Quadruples of Sequences

We now embark on a journey to narrow down and finally
characterize NOHO-graphs having a vertex of degree 2, Hence-
forth when we refer to NOHO-graphs we generally ignore Q*. We

“already know by (9) that the "middle edges" of such a graph
form four componenents, at least two of which are isolated ver-

tices. Proceeding from there, this section describes the edges

T

of a NOHO-graph with four integer seQuences. The first edges |

; and last edges are described by permutdions, and the middle edges g
. by two binary sequences, |
We begin by taking a closer look at the components of M(G). i

’

LEMVA (13), If a NOHO-graph with a vertex of degree two has ¥

ad jacent vertices of degree two, then it is a 4-cycle, If

n>4, then it has exactly two non-adjacent vertices of degree

two, and the remaining components of M(G) are caterpillars :

on n/2-1 vertices.,
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Prooft Suppose G has adjacent vertices {x,y} of degree 2,
{x,y) may lie in F(G) or in L(G). Suppose (x,y)€F(G) and con-
sider 0(x), O0(x) contains (x,h(x)), (x,y), and (y,h(y)), but
after hitting these edges in L(G) there can be no further in-
creasing paths in 0(x). h(x)#h(y) by (1) or (2), so G con-
tains exactly 4 vertices and must have an edge in F(G) joining
h(x) and h(y). If (x,y)eL(G), then considering I(x) leads to
the same conclusion,

Now suppose n»4, "By (9) there are two vertices of degree
two, and the remaining two components may be two treés or a
tree and isolated vertex, Suppose the latter, so we have
{xl.xz.xB} isolated in M(G), By the above they must be non-
ad jacent in G, Consider the increasing paths by which infor-
mation is exchanged among them, Let Z3 be the last vertex be-
fore xi—oxj and X3 =Xy permanently diverge edgewise. That is,
we have increasing paths (xi’""yi'zi'“ij”"'xj) and
(xi""'yi'zi'“ik'""xk)' where uijﬁhik' z; is different from
Xi0 since all increasing paths from x4 to non-ad jacent vertices
must pass through f(xi). So, the edge (yi'zi)'o(xi) is well-
defined, Simmilarly, let v; be the first vertex where xj-oxi
and x,-»x; share an edge. We have increasing paths (xj.....tji,
VieWireoasXs) and (XppeeertyioVioWioeeesX;)e Again, v; is aif-
ferent from x5 since all paths from non-adjacent vertices pass
through h(xi) when d(xi)-z. 80 the edge (vi.wi)cI(xi) is well-
defined,
In fact, the paths from xy to xJ are all unique, so that
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24 and vj lie on a single increasing path from xy to vj. Sup-
pose there are two increasing paths from vertex r to vertex s,
where d(r)=2, Since O(r) is a tree containing the edges inci-
dent to r (6), some other edge in the paths is useless or lies
in I(r)., The former is forbidden by (7) since c(x)=0, while
the latter creates r-»r, The same conclusion follows from
considering I(s) if d(s)=2,

Now, consider the ordering of zy and Vv, on xi-oxj. We

J

have three cases, Case I, vj strictly precedes z; on the
path, Le.(vj,wj)s(yi.zi). Then for the remaining vertex v,
there exists Vk-’vk via (xk'.'.’tkj.vj"...zi'uik'."'xk).

Case II., z; strictly precedes vj on the path, Lc.(zi.uij)
‘(tij'vj)' If (zi.uij)lI(xk), then (zi'uij) lies on x;=bx)
and zi was not the furthest shared vertex from x;, or I(x,) is
not a tree. If (zi.uij)co(xk). then (zi'“ij) 1iea on X =¥x
and v, was not the first shared vertex on the way to xj. or

J .
_O(xk) is not a tree, But (zi'“ij) cannot be useless to X
since c(x,)=0, A '
s Case III, Neither of these possibilities can occur for

any pair (i,j), so we must have vlzzl-vztz2=v3=z3. To avoid

4 X;=»X; we must have (vi.wi)<(yi,zi) for all i, but to maintain
the other paths we need (yi'zi)<(vj'"j) for ifj. But (vi.wi)
<«(y3r24)<(vyow)<(y oz 4)<(v; ow;) is impossible.

So, there must be exactly two isolated vertices Xy and X,

in M(G), and the two remaining components are non-trivial trees.

f(xi) and h(xi) appear in different components, since c(xi)-o.
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By (10) each of these components contains exactly n/2-2 or half
of the edges in M(G), and C(f(xi))co(xi), C(h(xi))cI(xi). In
order to have Xy =X, f(x;) and h(xj) must appear in the same
component, Now we can apply (11) and conclude that the two
non-trivial components of M(G) are caterpillars on n/2-1 ver-

tices each,

To facilitate the subsequent discussion, we introduce some

additional notation, Henceforth fix m=n/2-1., Label the ver-

tices of G {x%u i=1,2; j=0.1.....m}. Let xg be the vertices

of degree 2, and xi-f(xg). Let Ci be the caterpillars of M(G).

The vertices of Ci get the labels x%. where j=1,2,...,m and x%

th g
J

is the to receive the information originating from Xqe We

may refer to xg as x;ﬂ.
Since ci‘is a caterpillar of increasing paths from xé to

x;. the following properties are obvious.

REMARK (14)., Let Cl be defined as above. Then
i g4

i) C” contains xj"xk whenever j<k,

11) xi neighbors exactly one xi with j<k,

138) If xi neighbors any xi with r>k, it neighbors every
xg with kejgr.

i

iv) xi-oxg within C* with j<k requires (xi.x})cx(o).

Suppose we have a caterpillar C with a fixed initial and
final vertex, and an ordering of edges to make it a tree of

increasing paths both out of the former and into the latter,




28

We claim C can be uniquely described by a forward sequence R(C)
or a backward sequence R'(C) of zeroes and ones, The length of
these sequences is one less than the number of edges in C, We
will not use the backward sequence. We merely note it exists,
arises from considering the edges in reverse order, and refers
to a different ordering of the vertices,

To ebtain R(C), proceed as follows. Begin with the least
edge and a null sequence for R(C), Call the initial vertex the
"active” vertex (xi in the caterpillar Ci) and its neighbor the
"current” vertex. When the next smallest edge is added to the
caterpillar, adding also a vertex, the new vertex becomes the
current vertex, The label "active” stays where it is if the
new edge is incident to it, If the new edge is incident to the
former current vertex, then that vertex becomes the active ver-
tex. In the former case, append a 0 to R(C) as generated so
far, In the latter case append a 1.

As each edge is added to the tree in order, it can only be
incident to the active vertex or the current vertex. This fol-
lows because the caterpillar must remain a tree of increasing
paths toward the final vertex, At any stage the tree is one of
increasing paths toward both the active and current vertices, é

A11 2% binary sequences of length r describe caterpillars :
in this way and correspond one-to-one with caterpilars on r+l
edges and r+2 vertices, where the initial vertex and order of
edges is specified, The initial vertex must be specified to

distinguish between sequences that differ only in the first
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place.

If we add the edge (h(xg),xg) to Ci. we still have a cat-
erpillar, since this is a last edge. It has paths from x% and
to xg. This is the caterpillar of interest. Note that h(xg)
need not be x;. Let S(G) be the associated sequence
: R(ClU(h(xg).xg)). and let T(G) be the associated sequence
R(CZU(h(x%).x%)). but written backwards., When we discuss ir-
reduciZbility and concatenation in section 8 it will become
clear why T(G) is written backwards,

From S and T we can reconstruct M(G) and know the first
and last neighbors of xg. To complete the characterization of
G we need to know which pairs of sequences (S,T) can be assoc-
iated with a NOHO-graph and how the edges of F(G) and L(G) can
be placed to complete the graﬁh.

i can have a first or last neighbor in e,

No vertex in C
By (14.i), having such an edge in F(G) or L(G) would violate
NOHO, So, the edges in F(G) and L(G) can be described by per-
mutations P(G) and Q(G), where P;=j means f(xi)-xg. and Q;=j
means h(x%)ﬂxg. (Whenever R is a sequence of integers, we de-

note its ith

element by Ri')
S and T have m-1 elements; P and Q as described have m

elements. P is a permutation of {2,3,...,m+1} which begins

with m+l, since x%-xg*l-f(xi). Q is a permutation of (O,l.....m}

with some element deleted. The deleted element is j, where
h(x%)-xi. Note that O is never deleted., We will see that O

appears in Q at the same position as 2 in P, so that P and Q

—r TR
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could be compressed to m=1 pieces of information., However,
bookkeeping and proofs will be easier if we leave them as is,
To align the useful information properly, we say that the ele-
merits of S and T as generated above appear in positions 2
through m, Si indicates what happens when Cl reaches xi+1.
and T, indicates what happens when ¢? grows to reach xi_i+3.
We can summarize the construction of these sequences and

the properties required of them in the last few pages by the
following remark,

REMARK (15). The quadruple (P,Q,S,T) defined above completely
specifies a graph. Such a graph has the properties ascribed
to NOHO-graphs in (2) through (14%),

'If (P,Q,S,T) =(P(G),Q(G),S(G),T(G)) for some NOHO-graph G,
we call the quadruple realigzable. We have not yet determined
what is required of (P,Q,S,T) ﬁo tranemit all information and
to satisfy NOHO, For example, although any S or T except the
zero sequence can appear iﬁ realizable quadruples, it is not
true that every permutation P or Q defined above appears in a

realizable quadruple, nor is it true that every pair (8,T) is

realizable, In the next section we determine necessary

conditions for realizability.
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6. Necessary Conditions for Realigzability

We will derive a number of necessary conditions for pairs

from (P,Q,S,T) to be realizable.

LEMMA (16)., For a NOHO-graph G, the pair (P(G),Q(G)) satisfies
i) P;>Q; for all i=l1,2,...,m,
ii) 1f Pi=Qj. then i>j,
iii) P2 is the element missing from Q, and Qj=0 iff Pj=2'
Equivalently, f(x%)=h(xé).
Proofs Consider (i), P, =m+1, which is greater than any e:e-
ment of Q. For some k from 1 to m, Q, =0, which is less than

any element of P, For i1, ifk, f(x;) and h(x}) lie in 2,

If P4<Qy, (14,i) guarantees xgi-oxgi in c%. Now we can add
(xi.xgi) to the beginning and -(xgi.x}) to the end to ob-
' 1 1 :

tain - Xj=dX; .

" For (ii), we argue similarly, If Pisknqj with i<j, then
we can add (xi,xi) at the beginning of xi-ox} and (x%.xi) at
its end to obtain xi-oxi.

Pinally, consider P,. By (ii), if it appears in Q it must
be Q;. Then f(x%)-h(x%). The caterpillar cl always contains
the edge (xi.x%). 80 we have a triangle. Similarly, if P, =2
but Qkﬂb. (i) says Q=1. Now f(xg)-h(xi), and again we have

a triangle. [J

If P or .Q is not strictly decreasing, certain edges must

appear in the graph,
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LEMVMA (17). For a NOHO-graph G, F(G) and Q(G) satisfy
iY &y Pi<Pj with i<j, then E(G) contains {(x%,x}).(xg ,xg )}.
i s
1) 1r Q1<Qj with i<j, then E(G) contains at least one of
R 2 2
{(xi'xj)’ (in.ij )}.

Proof: Consider any increasing pair in P, Suppose P;=r and

P.=s, where i<j and r<s, If (xl,xl) is not an edge, then (14,iv)

J
implies information from x% could reach x1 only via the other

caterpillar., So, we use (xj.xz)cF(G), continue to xi in c2
where tas or (xs,xt) is an edge, and finish with (xt.xi)CL(G).
t>r would imply Q;>P;, violating (16.i)., therefore (x2 xz)
must be an edge, with t<res, By (14,iii), (xt.xz) is also an
edge, but this creates a triangle with xi.

Now suppose (xﬁ,xg) is not an edge. By a similar chain of

reasoning that switches the roles of C1 and Cz, completing
xg-bxi will contradict (16.ii) or (1).
Finally, suppose Q. <Q with i<j, but (xi.xl) is not an

edge, We use (l4,iv) again to require x% -oxg in ¢% for

i
?—oxi. By (16.i) Q. <Qj<P , so (14.iv) nupires (xP .xg ) as

S
an edge to complete that path, Now (1l4,iii) says

(xgi.xgj) must also be an edge. ]

We define a reversion in a permutation to be a maximal
consecutive subsequence of the permutation where the first

element is the least, The reversions of a permutation parti-

tion it into segments. In a NOHO-graph, the reversions of P(G)

|
sl
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have a very special form,

LEMMA (18), If G is a NOHO-graph, then P(G) has the following
form,
i) Every reversion of P is a single element or has the |
form (r,s,s-1,...,r+l) with s-r+l elements.
ii) EBquivalently, P has no subsequence of length 3 whose i

last element is largest,

Proof: First we show equivalence, By definition, the first

il i i e,

elements of reversions form a decreasing subsequence, else the

reversions would not be maximal, If reversions are as in (i),

e -

any increasing subsequence must lie entirely within a single
reversion, The form described in (i) prohibits two increasing ;j
pairs with the same second element,

Conversely, assume (ii). Suppose a reversion has more L
than one element and we drop the firét element r, This must
leave a decreasing subsequence beginning Qith 8, since any in- ; é
creasing pair would violate (ii) with r. Suppose there is some |

element t, r<t<s, that does not appear in this reversion., 1Its L

appearance before r violates (ii) with r and s, and its ap- 4
pearance in a later reversion violates (ii) with r and the L
first element of that reversion. 5

w

That (ii) holds for realizable P follows immediately from
(17.4), (14,1i1), and (1), They provide a contradiction if

some such subsequence is assumed to exist,

NI e & 1 ‘:&; Wy !
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REMARK (19), A permutation P satisfying (18) is uniquely de-
termined by choosing a subset of indices from {3.....m]
at which reversions will begin in P, in addition to the
m=-2

reversions beginning at P1 and PZ' Hence, there are 2

guch ‘permutations,

Note the equivalence of (18,i) and (18,ii) is independ-
ent of realizability., We will see that the necessary condi-
tions (16) and (18) together are sufficient, Also, it is easy
to see that for any P satisfying (18) there is at least one Q
satisfying (16), |

Next, we derive a condition for the pair (P,S).

LEMMA (20), If G is a NOHO-graph, then P(G) and S(G) satisfy
the following.,

i) Suppose 31 begins -a reversion in P(G), P begins the
next reversion, and k2j+2, Then Sj-l. and if k>j+2
then sj+1=...=sk;2=o.

1) iT Pt=2, beginning the last reversion in P(G), then
S;=1 and any succeeding elements of S(G) are 0.

Proofs 1If Pj begins a reversion of length at least two, every
succeeding element of the reversion forms an increasing pair
with Py, By (17.1), {(xjx{)t i=j#1,...,k-1}€E(G). §; indi-
cates what happens when ct grows to meet x}*l. Considering
the edges we have just shown to exist, xg+1 is joined to the

then-current vertex, and succeeding xi are joined to the active

e e S

D P
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vertex, So SJ-I and succeeding S; are 0, if k>j+2, sk_l
tells what happens when the vertex beginning the next rever-
sion is added to the tree, so it is unrestricted.

Now consider the last reversion in P(G), which begins
with P,=2, By (16,111) Q=0 and (xi,xi+l) is an edge. Apply-
ing (14,iii) to the caterpillar Clv{(xi,xg)}, we deduce that
{(xt.xi)s i=t+1,....m+1} are all edges, since tsm., As above

we conclude S,.=1 and any succeeding S; are 0, 0

' REMARX (21), For each P satisfying (18), the number of se-
quences S satisfying (20) is Zr'l, where r is the number

of reversions after Pl’

Proof: An element of S is unrestricted if and only if its po-
sition (Sk_1 in (20)) corresponds to the last element of a re-

vergion in P other than the last reversion., ]

Define (P'(G).Q'(d).S'(G).T'(G)) as follows, Set P'\=
if Py=i, Extend Q so that Qq=k where x=h(xg), then set Q=]
as Qj=i. Set Sy=T ., ;» and set =S __, .. We call (e,
the reflection of (P,Q,S,T). A little "reflection" shows

REMARK (22), The reflection of a realigable quadruple is also
realizable, in fact by the same graph.

Proof: Considering (P,Q,S,T) instead of (P,Q,S,T) is equiva-
lent to interchanging the roles of ct and C2 and looks at the

graph upside down, [
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If G is a NOHO=-graph, we define the reverse graph K(G) as
the graph with the same vertices and edges as G, but with | ‘
(x,y) (u,v) in X(G) if and only if (x,y) (u,v) in G, All in-
creasing paths of G are increasing in the opposite direction *
in K(G) and vice versa, so X(G) is clearly a NOHO-graph, Note }

that the vertices need to be relabeled with C1 and 02

to o ‘
tain the defining sequences for K(G). The "hairs"” of the cat- i
erpillar swing around as the wind blows from the other direc-
tion,

By reflecting and reversing, we obtain additional neces-

sary conditions,

REMARK (23), If G is a NOHO-graph, then
i) (P(G),T(G)) is such that (P'(G),S'(G)) satisfies (20),Mm.
ii) (Q(G),S(G)) is such that (P(K(G)),S(K(G)) satisfies (20),08. :
iii) (Q(G),T(G)) is such that (P*K(G)),S'K(G)) satisfies (20),08h

(16), (20), and (23) are necessary conditions for any pair : 2
from {P,Q,S,T} except (S,T) to be realizable, There are appro- b
priate conditions for (S,T), but we have no simple expression
for them, We will soon see that when paired with (18) each of |
“these conditions is sufficient, gJ

Te X Num 0 i

Besides showing the sufficiency of the previous conditions,
we will show +that any pair from {P,Q,S,T} satisfying them




TR

37

is realized by a unigque NOHO-graph. To prove this, we need a
lemma that will enable us to generate one sequence in {P(G).
Q(G),S(G)} when we know the other two. By reflection we can
apply it to {P,Q, 5} to obtain similar results for {P,Q,T}.
S(G) is a binary sequence indexed from 2 through m, OCn
its index set we can define a function b that points to the
previous 1 in the sequence. Let b(i) be the greatest positive
integer such that j<i and Sj=l. if such exists, If there is

no such integer, set b(i)=l, Then we have

LEMMA (24), For a NOHO-graph G, P(G), Q(G), and S(G) are re-
lated by
i) Si=l if and only if Pi+1’Qb(i)'
ii) Si-O if and only if Pi+l'Qi’

Proof: In one direction the lemma is trivial, Recall the
construction of S from active and current vertices. S;=0 ir
and only if (x%(i),xi+1) is an edge, and S;=1 if and only if
(xi.x%+l) is an edge. So, if Py 41=Q;+ then choosing S;=1 cre-
ates a triangle, while if Pi+1’°b(i) then Si-O creates a tri-
angle.

We prove the other direction by induction, For the basis
step, b(2)=1, and by (16.1i,iii) we always have P3-Q2 or P3=Ql.
If SZ-O. then choosing P3-Q1 creates a triangle, while if
Sz-l then P3-02 creates a triangle,

Now we prove the lemma for k, assuming it holds for all

2si<k, By (16,ii,iii) we know that Pk+1-QJ-r for some j with
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jsk., Suppose Jj=k, Then if sk-o we are finished, while if

S) =1 we have a triangle. Suppose j=b(k), Now if S) =1 we are
finished, and if Sk=0 we have a triangle, So, if the lemma
fails we may assume j<k, j#b(k), If $;=0, then by induction
we have Pi+1=Qi=r’ wpich contradicts P being a permuation.

So assume Sj=l, in which case jsb(k) by the definition of b,
We assumed j#b(k), so let t be the least integer greater than
j such that S =1, j=b(t), and t<k since Sb(k)=l. so we have
jetsb(k)<k, Applying induction, Pt+1'°b(t)=Qj=r' which again

contradicts P being a permutation. ]

Now we proceed to the main results, Henceforth, fix

p=(n-4)/2§m-l.

THEOREM (25)., Any pair from (P,Q,S,T) which satisfies the cor-
responding necessary conditions for realizibility in (16),

(18), (20), (23) is realized by a unique NOHO-graph., : Foced

Proof: First we show how to uniquely generate the remaining
sequences from any pair satisfying the necessary conditions.
Then we show the resulting quadruple is realizable. Q
Suppose the two known sequences lie in {P,Q,S}. We gen- ﬁ
erate S from (P,Q) satisfying (16),(18) so as to satisfy (24). t
[ Initialize k=1, Then for i=2,3,...,m in order, if Py 41 =Q x
set 5181 and reset k=i, If Pi+1'°i' set 5,=0 and leave k un- |

changed, This is well-defined for (P,Q) satisfying (16). P, g

'Ji disappearing leaves ore index “free."™ As we proceed in P, the
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enly previous elements of Q which have not been encountered in
P are Qk and Q.

We claim the resulting (P,S) satisfies (20). It is easy
to show the requirement for when Si must be 1 holds, Other-
wise, we have Piﬂ-q1 when P1 starts a reversion and is less
than P;,,, violating (16,i). For the other requirement, con-

sider the first time Si is set to 1 by P =Q) with i+l in the

i+l
midst of a reversion, k is the previous 1, so it is the start-
ing position of the reversion, Thus Pi+1’Pk' and we violate
(16.i) again,

Next we generate Q from (P,S) satisfying (18),(20) so as
to satisfy (24)., Set Q=0 if P;=2, If k is the least integer
such that S,=1, set Q=P .. (If S has no ones, xg-h(f(x%)).
with (16,iii), this contradicts n»4,) For all other i, if
si-o set Qi'Pi+1' while if Sial set Qb(i)'Pi+1’ Again, this
is well-defined. The Q skipped by the first'option are those
with si=1. so that subsequehce is just shifted within itself
from P to Q. Pa disappearing makes room for the shift, and
0 under P;=2 fills the hole left at the end, sinée that's where
the last 1 occurs in S,

We claim the resulting (P,Q) satisfies (16). (16,ii,iii)
are obvious by construction, so assume some PJ‘QJ' The algo-
rithm sets Qj'Pi for some i»j, so by (18) PJ. must begin a re-
version containing Py, By (20) Sjnl. 80 Qj is set the next
time a 1 is encountered in S, i.e. at S;_;, with i-1>j. (20)

then implies Pi must be in a later reversion than PJ.
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For the remaining cases, we give less detail. To gener-
ate P from (Q,S), set P,=m+l, and let P, be the element in
{1,...,m} missing from Q. For all other i, if S;.170 set
P;=Q; ;. while if S; ;=1 set P;=Qy(j-1)+ This is well-defined
for (Q,S) satisfying (23), since the only elements of Q not

placed in P at the gth

stage are Q; , and Qy(j-1)+ The re-
sulting (P,Q) clearly satisfies (16.ii,ii)) and can be shown
to satisfy (16.,1) and (18). By the construction, they also
satisfy (24),

To generate T from (P,Q,S), form (P',Q') and use the first
algorithm above to get S'., Then T=(S')°‘.

To generate the unknown sequences knowing T and one of
{P,Q)}, reflect them and apply the above algorithms for S and
one of {P.Q}. This generates T' and the unknown element of
{P'.Q'}. and reflecting again gives the desired quadruple.

This leaves the case of generating (P,Q) knowing (S,T).
Set P,=m+l, P,=j where Tm+2-j is the first 1 in T, and Pj=2
where Sj is the last 1 in S, These requirements follow from
(16,1ii), since those elements of S and T determine h(xé).

The remaining elements of P and Q can be uniquely generated
by refusing to violate (17), (24), or (1), We omit the details
of this algorithm,

By (24), etc., the unknown sequences can only be as gen-
erated above., We have shown uniqueness, now we show suffi-

ciency, No matter what pair we started out with, we have shown

that for the generated quadruple all the necessary conditions
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are satisfied, We must show that increasing paths exist be-
tween all ordered pairs of vertices and NOHO is satisfied,

As noted in (14.1i), x j-Ox with j<k exists., Next we show
x}-Oxi exists, If Pj=s with ssk or Qr=k with raj, we are done
by (14,i) again., Suppose both of these possibilities fail and
P,=k, I t<j, the (Pt'Pj) form an increasing subsequence of P,
The condition (20) on (P,S) was determined so that G would
satisfy (17.i). So, (x .xﬁ) is an edge of G, and (s xi)
is the desired path, Suppose instead t>j, and apply (24).
Since rej<t, we have tFr+l but PtaQ so we must have r=b(t-l)
and S, ,=1, So, (xr,xt l)CE(G). By (14,iii), (xl.xl) is
also an edge, making (xj.xr,xk) the desired path.

We must also have x%-bxi. even if rej. Let s-Pj and str.
f & 4 (x}.xi) or (xi.xﬁ) is an edge or if ssk, then we are done.

In considering x}-’xﬁ above, we showed that if r<j and s»k we

" must have (xj.xl) or (x xk) as an edge.

That paths xj-Oxk and xg-bxr also exist follows from

reflection and the preceding two paragraphs,

As constructed, G trivially satisfies NOHO, v-$v cannot
occur using the edges in a single tree, so it must cross to
f(v) and return from h(v). Suppose f(v)-x and h(v)sxk. Com=-
pleting the path requires (xj.xk) to be an edge or jsk, The
former never occurs because we've constructed a graph with no
triangles, and the latter never occurs because (P,Q) satisfies
(16). So, the graph determined by the generated quadruple is
a NOHO-graph. [
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THEOREM (26). The number of realizable quadruples is 3p-1'

where p=(n-4)/2, n even, n26,

Proof: By (25), pairs (P,S) determine the rest of the quad-
ruple, so we count those., As noted in (21), a realizable P
has 2°~! realizable S associated with it satisfying (20),
where r is the number of reversions atter P,. By (19), there
are (?:f) such realizable P, Using the binomial theorem, the
total number of realizable quadruples is :g(?:i)zr'l = 3P-1, 0

Figure 3 exhibits the quadruples and associated graphs

for n=6 and n=8,

¥ A N i SR Y r s
< s X ) bt ?'{ >
\\ '.o . “c ; \‘ ..c = ... N »
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(32,10,1,1) (432,210,011, 1)
\ | : :
: (w (423,301, 10,01)
B S DS . 'l v = '-"
. ?..0 i . N i S e P S
{ s .?"\ <‘:~‘ o e
N L !..' -~ .':.'\ & l,

Figure 3., Small NOHO-graphs

G has 180° rotational symmetry when drawn as in Figure 3
if and only if (?',Q',S8',7')=(P,Q,S,T). This occurs for all
the graphs in Figure 3. If (P',Q',S',T')#(P,Q,S,T), then G is
counted twice when the quadruples are enumerated., In the next

section we enumerate the symmetric solutions, so we will know

the extent to which NOHO-graphs are overcounted here.
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8., Symmetric NOHO-graphs

In this section we count the symmetric NOHO-graphs., We
define a gymmetric gquadruple as a realizable quadruple for
whienh (P',Q',S*,T')=(P,Q,S,T). A symmetric NOHO-graph is one
where the vertex permutation interchanging xi and xﬂ for all k

leaves the graph unchanged. As noted earlier,

REMARK (27)., G is a symmetric NOHO-graph if and only if
(P(G),Q(G),s(G),T(G)) is a symmetric quadruple.

The following remark applies to all P(G), and is useful

in determining the number of gymmetric ones.

REMARK (28), In a realizable P, P;=j implies i+j2m+3.

Proof: By (18,i), the number of positions after i in P must

be at least as big as one le8s than the number of elements less

‘than P;, so m-iaj-3. ]

LEMVA (29), The number of symmetric realizable P is ZL(m'l)/ZJ.

Proof:s P symmetric requires Pj=i if Pi=j. so P corresponds to
a matching of the positions (2,...,m)., Some positions maybe
matched to themselves, if P;=i, (In fact, this can only happen
twice,) Note we always have P)=m+l and P __,=l. We construct

P match by match from m down to [ (m+3)/27, matching P; on step

m=j,

At each step there are two choices, By (18.1),'Pmt{2,3}
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and at step j Pm_Jc{z.j.....m-j+3}. However, j of these have
already been matched with higher positions on previous steps,
This leaves two choice for Pm_ j* one of which is m-j+3, since
it was not available before, Upon reaching Pr(m+3)/21, the
choices are [ (m+3)/2] and one lower value, If m is odd, we
choose between matching them to each other or to themselves,
If m is even, set Pr(m+3)/21 equal to one of them and match
the remaining one to itself, Now we have made m-[ (m+3)/27+1
= [ (m=1)/2] choices and completed the matching. Every P so
coustructed satisfies (18), and these are all the symmetric P

which do so. By (21),(25), they are all realizable. ]

Examining the construction in the proof above, we can de-
fine a binary sequence B(P), indexed from [ (m+3)/27 to m,
where BJ-O ir Pj-m-j+3 and Bjtl if Pj<m-j+3. Now we can count
the graphs associated with each P.

LEMYA (30). Suppose P is realizable by a symmetric NOHO-graph.
Then the number of symmetric NOHO-graphs realizing P is 29,

where q is the number of ones in B(P).

Proof:s We consider how many ways symmetric Q can be construct-
ed so that (P,Q) satisfies (16). We claim that each way deter-
mines a unique symmetric quadruple. By (25) it determines a
unique realizable quadruple. Using the algorithms in (25) we
generate S and T, Reflecting and applying the algorithms again,
we find S'sS and T'=T, since P and Q are symmetric. So by (27),
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the NOHO-graph realizing the quadruple is symmetric,

First suppose B(P)=(0,,..,0). Then P=(m+l,2,m,m~1,.,.,4,3).

There is one reversion after P,, so (21) and (25) imply there
is one realizable quadruple with this P, The corresponding Q
is (m,0,m=1,..,.,%,3,1), which is symmetric as desired,

Now suppose B(P)#(0,...,0). By the way B(P) is construct-
ed, Bkal implies. Pk begins a reversion in P, The uppermost
1 occurs when P =2, beginning the last reversion, That post-
pones picking m~k+3 until the next lower 1 in B, at which point
it must begin a reversion, and so on,

Recalling (20), the elements of S are unrestricted if and
only if they correspond to the last element of a reversion
other than the last one. So, covering the index range [ (m+l)/2]
to m, there are 29 ways to write down this portion of a realiz-
able (P,S). Using the algorithm in (25), we can write down
what the corresponding segment of Q must be.

Determine the rest of Q by setting Qj=k 2 4 Q=Jj, where
ka(m+l)/2., That this is well-defined is ensured by (28), Q
is now symmetric and campletely defined. We need only verify
that (P,Q) satisfies (16), »

For (16,iii), we have guaranteed Q=0 placed where Pk=2’
since B(P)¥#(0,.,..,0) and the last reversion begins in the "good*
segment, By symmetry Pz-k and k is the element missing from Q.
(16,i,i1) hold for all elements of Q at (m+l)/2 or later. Sup-

pose Q;=P;=k with jeie(m+l)/2, Then by symmetry and (28),
P, <Q, with k>(m+l)/2, violating (16.i). Finally, suppose chqj

Em———
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with je<(m+l)/2, Applying symmetry and (28) again, we violate
(16,ii) in the good segment,

To summarize, we have shown that there are 29 symmetric Q
that might be paired with P, and that all such pairs are real-

izable and determine symmetric quadruples., (|

THEOREM (31). The number of symmetric NOHO-graphs is BLP/ZJ.

Proof+ If B(P) has q ones, they may occur at any of the [p/2]
steps in constructing P. So (29), (30), and the binomial
theorem yield g(LpéZJ )24 = BLP/ 1" a5 Uhe humber of symmetric

solutions, [J

Symmetric quadruples are one-to-cne with symmetric NOHO-
graphs., Other realizable quadruples are two-to-one with other

NOHO-graphs, So we have from (26), (27), (31)

COROLLARY (32). The number of NOHOQgraphl on n26 vertices, n
even (other than Q* when n=8) is (3p'1+3Lp/2J)/2.

9. Concat tio O= h

Before dofinipg the concept of an irreducible NOHO-graph,
we need to define i way of combining NOHO-graphs, Suppose we -3
have two NOHO-graphs G, and G, on'n, and n, vertices {x%} and i
{y;'}. with associated quadruples (Pl.ql.sl.rl) and (PZ.Qz.lonz)- :
We define the concatengtion of Gy and G,, denoted G,+G,, as a

new graph 03 constructed as follows,
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To obtain the edge set of G_, unite those of G, and G,,

deleting the edges incident to x5 and yé. The vertex set of

~

G4 is the union of the vertex sets of Gl and Gy with xg and
1

Yo deleted, Furthermore, identify h(xg) with y% and h(y%)
with xf. Now G3 is a graph on n3=n1+n2-4 vertices, with
an-lH-an-l&-ll» = an-l& edges.

For the ordering of edges, any edge that was a first edge
or last edge in G1 or G, remains a first edge or last edge,
The order between two edges from the same Gi is preserved, In
addition, every edge from Cl(Gl) is set less than every edge
from Cl(Gz), and every edge from CZ(GZ) is sét less than every
edge from Cz(Gl).

Figure 4 gives an example of concatenation,

P T i, LS P ‘t.\ o "~~.]. N‘\:.. e
IS ',-" AN N l .\‘A
Gl Gl Gt‘G.

Figure 4, C(oncatenation

Note that concatenation is not a commutative operator,
Also, if we label the vertices of the 4-cycle {xo.xl.xo.xz} it
becomes an identity element under concatenation. In fact,
NOHO=-graphs not in Q* form a non-commutative semi-group under

concatenation, Associativity is clear from the construction,

The next lemma verifies closure,
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LEMMA (33), If G, and G, are NOHO-graphs, then the concatena-

tion Gl+62 is also a NOHO-graph,

Proof:t We need only show that Gl+62 contains paths between
all pairs of vertices and satisfies NOHO, We may consider the
identified vertices as elements of either of the original
graphs, }ny path wholly within one of the component graphs is
still present in Gl+Gz. unless it used one of the deleted ver-
tices., The only paths which used them as non-endpoints are
(xf.xg.h(xg)) and (yi,yé.h(y%). In the concatenation these
paths can be replaced as follows, Since we have identified
xf with h(y%) and h(xg) with yi, we can consider the endpoints
as ~riginating from the other summand graph. The transmission
pain batween these vertices in that graph uses nore of the de-
leted edges.

Obtaining an increasing path from a vertex of G; to a ver-
tex in G. is quite simple., If v lies in G1 and w in Goy VW

J
can be formed by attaching yi-»w from G, to the end of v—yh(xg)

from Gy o Similarly, w=dv can be formed by attaching xf-ov
from G1 to the end of w-oh(yé) from GZ' These constructions
work because every edge incident to y% in Gl+02 that comes from
G, is greater than every such edge from Gy, and every edge in-
cident to xf in Gl+02 from G1 is greater than every such edge
from G,« The edges that could have violated that were the
edges deleted from the union,

Finally, to prove NOHO we note that no increasing path

which starts at a vertex from 01 can leave those vertices and

Lo R X wuf‘l'




L9

AU

R

later return. This would require traveling along Ci(G1+G2),
crossing to Cj(G1+Gz). and returning. The crossover could
only use a first edge or last edge, which would prohibit in- |
cluding the earlier or later portion of the path, On the other

nand, no path violating NOII0O can lie entirely within the edges

coming from one of the summands, since they are NOHO-graphs, ]

To determine (P,Q,S,T) for Gl+GZ=GB' we obtain S(GB) and
T(GB) by concatenating in the usual sense S(G;) and T(G,) with
s(G,) and T(G,). That is, with my=n,/2-1, s(c;3) contains S(G,)
in positions 2 through m, and it contains S(Gz) in positions
my+1 through m3=m1+m2-1. Sm1(G3) describes what happens
when 01(63) reaches y%. which is the same as what happened
when Cl(Gl) reached xi o’ The remainder of Cl(Gi) is as before,

1
The same argument applies to T, P and Q can be determined as
in (25), or they can be determined directly by adjusting and
combining P(G;) and Q(Gy) as was done with S and T. This re- -
quires dropping an element, adding Py or p, to the elements in A
one portion, and concafenating. |

If is natural to call a realizable quadruple or a NOHO-
graph irreducible if it cannot be expressed as a concatenation

of two smaller ones, In the next section we will count the g
»

number of realizable quadruples in subclasses involving
irreducibility.

i
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10, Irreducibility and NOHO-graphs

Before discussing irreducibility, we introduce soine stan-

dard terminology about compositions of integers, A composition
. of e intggers
of an integer p is an ordered sequence,whose parts sum to p.

Again, we are using p here because (n-4)/2 adds simply in con-
catenation., The § B partial sum Q3 of a composition is the

sum of the first i parts., A refinement of a composition of p

is a composition of p with as least as many parts whose par-
tial sums contain the partial sums of the original composition,
The least refinement of two compositions is the composition
whose partial sums are the union of the partial sums of the
original compositions, For example, the least refinement of
(2,3,5) anda (1,3,1,4,1) is (1,1,2,1,4,1).

This terminology will be useful for the following lemma,
which states a very convenient fact about concatenation.
Namely, NOHO-graphs are "uniquely factorable” into irreducible
pieces, In algebraic terms, this means the irreducible solu-
tions are the generators of the semigroup of NOHO-graphs under

concatenation,

LEMVMA (34), Any realizable quadruple can be uniquely expressed

as a concatenation of irreducible quadruples,

Proof: Any such decomposition of a quadruple breaks up (S,T)

into segments which each determine NOHO-graphs., For example,
describing graphs as G(S,T), we have G(101010,112101) = G(1,1)

— e -
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+ G(010,111) + G(10,01) . We can describe the decomposition
by a composition of the integer p=(n-4)/2,

We claim the least refinement of two compositions of p
which correspond toAdecompositions of G also corresponds to
a decomposition of G, If one composition is a refimement of
the other, we are finished, If not then the least refinement
has two consecutive partial sums Qi =r and Q34158 where r is
a partial sum for exactly one of the compositions, and s is
a partial sum only for the other., Performing the decomposi-
tion, we have indices j and k such that the segments (Sj'Tj)
through (ss+1'Ts+l) and (sr+2'Tr+2) through (sk'Tk) determine
NOHO-graphs G, and G,. (We have assumed r<s,)

Define another graph GB' whose vertices and edges include
the vertices and edges that lie both in G1 and in G2. plus two
vertices y and z of degree two., (By "both in G, and in G," we
mean when the vertices are labeled as the fit into G.) The
neighbors of y and z are defined by fGB(y)sxi+l, hGB(y)=
hg, (£, (Xpay s fGB(z)=x§‘_8. and hGB(z)=hGl(fGl(xﬁ_s))-

G3 is a NOHO-graph, and the proof of this rests on the
fact that increasing paths which leave G3 can never return to
it, When such a path leaves 03 it simultaneously leaves G1 or
G,. By the same argument used to verify NOHO in (33), it can-
not return, So, the increasing paths in G between vertices of
G3 must lie wholly within 03. Information is transmitted for
y and 2 also, since y takes the place of a vertex in G, of
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degree 2 and z does the same in Gl' That NOHO is true follows
because any increasing'path in 63 appears in Gl or in G2
(except y~»z and z-9y), and they satisfy NOHO,

Let Gi be obtained from Gl by deletingﬁvertices and edges
belonging to G3. Add a vertex w of degree two with fG’(w)=

1
he (y) and hg,(w)=f, (y). By the arguments in (33) and above,
5 1 3
it is easy to see Gi is a NOHO-graph and Gi+G3=Gl. So G, was
not irreducible,
Repeating this argument over all decompositions of G, we

see the only decomposition into irreducible segments is the

least refinement of all the decompositions., (]

Having proved unique decomposition, it becomes easy to

count various classes of solutions by induction.,

THEOREY. (35). The number of realizable quadr ples formed by

concatenating k irreducible quadruples is (ﬁ:i)zp‘k.

Proofs By.induction on p, Examining Figure 3 yields the

basis steps for p=l1 and p=2, Assume the theorem is true for

~

smaller values than p.

N

First consider k»1, To obtain such a quadruple we deter-

mine a composition of p and fill the quadruple with irreducible

-

(S,T)-segments of those lengths, p is the eventual length of

S N A

S and T from positions 2 through m=n/2-1., By induction, each
segment of length r can be filled by 2°~1 irreducible pairs.
Filling each segment in all possible ways, (33) says these are
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realizable, and (34) says there are no others. So, for each
composition r1+...+rk==p with k parts, there are zrl']‘nczfrk"l
=2P-K quadruples of this type. There are (E:i) compositions
of P with k parts, so the total number of solutions is
G

This holds also for k=1, since that is precisely how many
remain of the 3p-1 quadruples counted in (26), The binomial

theorem says there are 2p’l irreducible quadruples, U

THECREN. (36)., The number of symmetric NOHO-graphs formed by
concatenating k irreducible parts is tp X where
1 ]
ades
(ﬁ;%:i)z(p'k)/é ; p even, k even
p odd, k even

0

Lon/as
oLp/2)-r 5 (1) 4 k odd, k»l, r=(k-1)/2
LZLP/ZJ $ k=1

ot
"
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Prk

Proof:t We use a similar induction to the above. Figure 3
again provides the basis, though now p=l1 and p=2 are both nec-
essary., Assume the theorem is true for smaller values ofan p,
'First consider k»1, If k is even, p must be even to allow

symmetry, We determine a composition of the first p/2 places
into k/2 parts, fill it with irreducible (S,T)-segments, and
then obtain the rest by reflection (27). (33) and (34) again
justify the conclusion that this counts everything. There are

(ﬁfg:i) compositions and 2(1"1‘)/2 solutions for each one,

If k is odd and k>1, determine a composition of q with
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r=(k-1)/2 parts, where 2q<p. The middle. segment of (S,T)
will have length p-2q., In that segment we place a symmetric

irreducible segment, of which by induction there are 2L(p-2q)/2j.

There are 21°T ways to fill the remainder, With the usual ar-
guments about reflection, number of compostions, and the cor-
rectness of the count, we have r ™ :é”gg:i)ZQ-rzf(P-Zq)/Z]
= oL/ ZJ'rgA‘(gj) i r=(k-1)/2,

To compute tp 10 e subtract the other tp k from 3[P/2]'
’ ’

tp'

the total number of symmetric NOHO-graphs, derived in (31),

Note that
el ) tp-2v2)
rI.:I 2Lp/2J-rq§ (1) = ‘B 2Lp/2]-q %1((1_1 )20-F

= Jlp/2)21 21-43a-1
o AP/20 (5 /)L -0)/20 191 (3/2)-1]

{ 2.3P/2-1_,p/2 i p even

3(P-1)/2_5(p-1)/2 | o 4q

When p is even, we must also consider k even, If s=k/2, we

have (p/s:i)ép/Q-s = 3p/2'1 as the number of these solutions.

So,

31’/'2"1.'.2.31’/2‘1.21’/2 i P even
tp.l = 3Lp/2.| -

3(p-1)/2_,(p-1)/2

$ p odd

-~ 2LP/2J' 0
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11, Planarity and Hamiltonicity

In this section we note two properties of NOHO-graphs
that are commonly of interest, Constructions are given for

both, First, a quick lenma,

LEMMA (37). In a NOHO-graph, consider a path R that begins

at xé and alternates along first edges and last edges, Then

2. reaching Cl al-

i) The path alternates between ¢l and c
ways on first edges and C:2 on last edges,

ii) R eveatually reaches xg.

iii) From x%’ to xg, R is a simple path,
iv) Among the x} and x? that appear along R until xg, the

indices i increase and the indices j decrease,

Proofs (i) is obvious, We verify the remainder in reverse or-
der., For (iv), it suffices to consider pairs of consecutive
appearances, If x%._- f(h(x}_')) so that f(x]i'.)ah(xi'). then (16.i)
says i'>»i, 1If x§.= h(f(xg)) so that x§.=h(x1];) and x?-f(xi).
then (16,i) says #<j. (i) implies the consecutive appearances
are as described, (iv) immediately implies (iii)., Since the
path connot contiue in the same direction forever, (iv) also

implies (ii)., [

THEOREY (38)., In a NOHO-graph (other than Q%), uniting the
first edges and last edges yields a Hamiltonian circuit,

Proofs Consider the alternating paths guaranteed by (37) that
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emerge from xé and proceed to xg. One begins with a first edge,
one with a last edge. Call them Rl and R2. respectively., We

claim R, and R, intersect only in {x%.xg}.

1

If not, let v be the first vertex where they meet after x.

g, 3y (37.i), both

If it is before xg, it lies in C1 or in C
paths reach it via the same type of edge, i.e. first or last,.
But F(G) and L(G) are matchings by (2), so there is only one
such edge incident to v. This means the paths had to meet at
the previous vertex,

So, uniting R, and R, yields a simple circuit, It is easy
to see it must be Hamiltonian, If v lies outside it, we can
begin paths there that proceed alternately along first edges
and last edges, By the argument of (37), one such path R, pro-
ceeds to xg. The next-to-last vertex on it is in R, or R,,
since R, and R, reach xg separately and d(x§)=2. It also lies

1 2

in C" o €7 Am in thé preceding paragraph, all of R, includ-

ing v lies in that same R, or Rye [

THEOREN (39). Every NOHO-graph (excluding Q*) is planar,

Proof: We construct a planar representation, Place the ver-
tices on the boundary of the shadow of a sasusage, Put xé at
the left end, xg at the right end, xi along the top edge from
left to right, and x% to x: along the bottom edge from right
to left,

Let R, and R, be as in the previous proof, Draw in R, as

a path of chords, By (37.iii,iv), there are no crossings.




57

Blur the boundary of the sausage so that the top and bottouw
boundaries become doubled, still meeting at the endpointsa,

Let the vertices of Ry remain on the inside boundary, and move
the vertices of R, to the outside boundary. R, can be drawn
as & path of non-crossing chords in the outside infinite face,
again by (37).

- We still must show that the edges in the caterpillars can
be added without crossings. The interior of the boubled bound-
ary has not yet been entered by any edge, No edge of the cat-
erpillars joins two vertices on the same Ri’ i.e, on the same
side of the doubled boundary., If so, (14,iii) and (37.iv)
require a triangle. So, we can draw the caterpillar edges as
chords across the interior of the boundary.

‘We claim there are no crossings., Since the vertices have
been placed in order, (xg.xi) cannot cross (xi.xi) with
max{j k}<min{r s}, If a crossing exists, we may assume jer<k,
res, By (14,iii), (x ' X, ) is an edge., Similarly, if k<s then
i.xi) is an edge, while if k»s then (xj.x ) is an edge.
Either way, we have created a triangle in a tree, using xj.
i

X, and one of {xi,x:}. 1

Figure 5 shows a representation drawn with this method.

A planar representation

Figuro 5."

'
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12, Related Gossip Questions

Golumbic[6] and Harary and Schwenk[8] have shown that any
connected graph with n vertices, 2n-4 edges, and a 4-cycle ad-
mits an edge-ordering which solves the usual éoSsip problem,

By 2n-4 edges, we mean 2n-4 calls will be made using "allowed"
edges., Of course, most of these violate NOHO, The question
remains open, however, whether every optimal solution of the
gossip problem contains a 4-cycle., An affirmative answer would
characterize these solutions, Examining (12) and (16,iii), we

note

REVARK (40). Every optimal solution of the gossip problem
satisfying NOHO has a 4-cycle,

It may be possible to prove the conjecture by applying this
remark,

Graph theorists have also considered solutions of the
gossip problem in which no transmission of information is dup-
licated, so there is a unique increasing path from each vertex
to every other, Usually this includes the condition NOHO,
Paradoxically, forbidding wastage requires more work, if in-
deed the problem can be solved at all, In other words, the
information cannot be transmitted in 2n-4 calls unless n=4 or

n=8, which follows from

TR T T .
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’ RENARK (41), Every NOHO graph other than Cy, and those in Q¥

duplicates some transmission,

Proof: Ch and graphs in Q*, as remarked in (12), duplicate no
transmission, Consider any other NCHO-graph, and suppose

S,=0. We claim there are two paths from xg to x#. By (16,iii),
f(x2)=h(xo). By (14,iii), (x;.h(xg)) is an edge. So (xg,

h(xo).xk) forms one such path, By (14,i) there is an increasing

pathe in C2 from x% to every other vertex of C2. including {
h(xl). which completes the path, On the other hand, if S,,=L,

then x =h(xg) Applying (16.iii) again, there exist increasing
paths (xz,xm,h(x )e xz) and (xz,xz). 0 ‘ i

Finally, we describe a generalization of the problem con-
sidered here. Consider an n by n "transmission matrix" on ; X

vertices {vl,...,v } with entries from {1,0,-1}. ' If a, .=1,

ij

we require an increasing path fronm vy to vj. ir a, J—-l we

forbid such a path, If aij=o we don't care, We ask whether

b danake. v ik Rk

‘a calling scheme satifying the matrix exists, what is the least

number of calls in such a scheme, what schemes achieve the min-

N

imum, and so on., The original gossip problem results when di-

agonal entries are 0 and off-diagoanal entries are 1, Chang-

" N S ¥
h ™S

AR

ing the diagonal entries to -1 yields the subject here, The

’ problem with ones above the diagonal and zeros on or below it

is clearly optimized by a chain of n-1 edges. For a matrix

in block diagonal form, we require the sum of the calls re-

quired by the smaller problems, Here's another example:

R T
" Sk
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REVARKX (42), Consider a transmission matrix with a; =0,
aij=0 for i>raj, and all other aij=l‘ The smallest graph
solving this gossip problem has 2n-7 edges, This remains

true if aii='l' n even, r even,

Proof: Take an ordinary (2r-4)-edge solution H) on {vl....,vr}
and an ordinary (2n-2r-4)-edge solution H, on {Vr+l""’vn}’
Order the edges so all those of Hz occur after all those of

Hl. Add an edge joining a vertex of the last edge in El

to the first edge in Hy,, and let it occur between them, This
uses 2n-7 calls and satisfies the matrix,

To show optimality, take any solution and delay all edges
not wholly within {vl....,vr}. in order, until after every
edge within that set, The resulting scheme still satisfies
the matrix, But now it must consist of an ordinary scheiie on
r Qertices, followed by at least one connecting edge and a
solution on n-r vertices, So, there are at least 2n-7 calls,

It aii='1' simply use NOHO-graphs in the H,, Hz con-

struction, This requires n and r even, []

There are innumerable variations,

U L300 il |
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