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PREFACE

) This report develops a method for analyzing the propagation of ELF
(extremely low-frequency) waves in the presence of laterally nonuniform
ionospheric disturbances that violate the validity criteria of the

» widely used WKB approximation. The method is particularly useful for
calculating ELF propagation anomalies caused by nuclear detonations at

altitudes of 30 to 150 km.

3 The present report continues the Pacific-Sierra Research Corporation's
3 analysis of long-wave propagation in nuclear and naturally disturbed J
environments. In focusing on the effects of lateral ionospheric gradients

in the direction of propagation, it complements an earlier investigation

of the effects of gradients transverse to the propagation path (E. C. Field,
ELF Propagation in a Non-Stratified Earth-Ionosphere Waveguide, PSR 806,

April i978).
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SUMMARY

This report develops and applies a practical method for analyzing long-
wave propagation under conditions where the properties of the earth-ionosphere
waveguide change markedly over lateral distances comparable to a wavelength
or Fresnel zone. Full-wave solutions are used to describe both the vertical
and horizontal dependences of the fields, but certain compromises are made
to achieve tractability. The method is thus characterized as '"quasi-full-
wave." 1Its main limitation is that the equation describing the vertical
dependence is assumed to nearly decouple from the equation governing the |
lateral dependence. The method is valid at any frequency for which waveguide
modes describe terrestrial propagation. Nonetheless, its practical utility
is probably limited to ELF because the lateral properties of the earth-
ionosphere waveguide are usually gradual enough to permit use of the WKB

approximation at higher frequencies.

Since the literature provides abundant solutions for the equation l
describing the vertical dependence, this report focuses on solving the
equation for the lateral dependence. To facilitate numerical solution,
the lateral equation is transformed into an integral equation that accounts l

for most full-wave properties, including diffraction around a localized

disturbance and reflection from lateral gradients. Numerical solutions
based on model disturbances having lateral gradients in the direction of
propagation reveal a standing wave pattern in front of the disturbance.
The pattern is pronounced if the waveguide properties change substantially
over a distance equal to about one-sixth of a wavelength, and is minor if
the disturbance is more diffuse.

The often used WKB approximation omits the standing wave pattern and

thus gives poor accuracy for regions in front of a disturbance having a




relatively abrupt boundary. Because it ignores gradient reflections, the

WKB approximation also overestimates the signal transmitted beyond a
nonuniformity in the waveguide. However, for all models considered—-

abrupt or diffuse--the overestimate is minor.
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I. INTRODUCTION

The wavelength and first Fresnel zone for ELF waves propagating in the
earth-ionosphere waveguide can extend several megameters. Many types of
ionospheric irregularities exhibit significant lateral variations over such
a distance. Ideally, the effects of such irregularities on ELF propagation
should be analyzed by full-wave methods rather than the often used WKB approx-
imations, which work well for higher frequency signals having shorter wave-
lengths. To our knowledge, however, complete full-wave solutions that
simultaneously account for both vertical and lateral ionospheric inhomo-
geneities have to date proven intractable.

This report develops and applies a practical method for analyzing iong-
wave propagation under conditions where the properties of the earth-ionosphere
waveguide change markedly over lateral distances comparable to a wavelength
or Fresnel zone. Full-wave solutions are used to describe both the vertical
and horizontal dependences of the fields, but certain compromises are made
to achieve tractability. The method is thus characterized as "quasi-full-
wave." Its main limitation is that the equation describing the vertical
dependence is assumed to nearly decouple from the equation governing the
lateral dependence. That assumption appears reasonable for ionospheric

irregularities of large enough extent to significantly affect long-wave

propagation. The vertical equation can be solved using the well-known

method developed by Budden (1961a) and often applied in the literature.

This report focuses on solving the equation for the lateral dependence of
fields. To facilitate numerical solution, the lateral equation is trans-
formed into an integral equation analogous to that derived by Hufford (1952)

to describe ground-wave propagation over irregular terrain.




A previous report (Field, 1978) developed approximate solutions for
a weak, localized ionospheric disturbance rezote from the transmitter and
receiver. It pointed up the importance of gradients transverse to the
propagation path. The present report complements the earlier results by
giving solutions for ionospheric disturbances of arbitrary strength and
extent that are azimuthally symmetric about the transmitter.

Section II derives the integral equation that describes the lateral

dependence of the fields. Section III gives numerical results for propagation
in the presence of ionospheric disturbances centered over the transmitter and
over the midpath of a long ELF link. Several of the model disturbances
represent envirénments produced by single, high-altitude nuclear bursts.

All results are compared with WKB solutions, and the effects of varying

the lateral scale size and boundary diffuseness of the assumed disturbances

are examined. The conclusions are presented in Sec. IV.
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II. INTEGRAL EOUATION FOR LATERAL DEPENDENCE OF FIELDS

First we review the well-known equations for ELF propagation under
stratified conditions, then derive the integral equation that describes
the lateral dependence of the fields for nonstratified conditions. Two
simpler versions of the integral equation are derived for the special
cases of a localized disturbance remote from the terminals and an azimu-
thally symmetric disturbance centered over the transmitter. To avoid
mathematical complexities unrelated to lateral ionospheric gradients, we
ignore earth curvature and the geomagnetic field. The first approxi-
mation is well justified at ELF; the second yields results that are
reasonably accurate for ambient daytime conditions and very accurate for
disturbances where ionospheric reflection heights are depressed below
ambient levels. The equations derived below are inappropriate for esti-
mating propagation under normal nighttime conditions. A time dependence

ei“t is assumed.

STRATIFIED CONDITIONS

We begin by defining a function, §, that describes the lateral
dependence of the fields in the earth-ionosphere waveguide. For ELF
TEM-mode propagation at ranges exceeding the effective ionospheric
reflection height, ¥ could denote either the z component of the electric
field or vector potential, or the horizontal component of the magnetic
intensity. Here we associate y with the vertical electric-field

component, E.

ELF signals are typically radiated from a horizontal electric
dipole antenna. Hence the fields have both radial and azimuthal

dependences, even if the earth-ionosphere waveguide is laterally
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homogeneous. Under typical conditions, then, the wave equation can be solved
by separation of variables, which gives the following well-known result (e.g.,

Galejs, 1972):

Ey = AAoFo(z)wo(r,e) volts/m : (1)

In Eq. (1) A is a constant involving dipole moment, wave frequency, and
ground ccnductivity; AO is the excitation factor describing the efficiency
with which the TEM mode is launched; and Fo(z) is the height-gain function
describing the vertical dependence of the field, normalized to unity at

z = 0. Throughout this report the subscript 0 is used to denote quantities
associated with undisturbed, laterally homogeneous conditions.

The function wo in Eq. (1) satisfies the two-dimensional wave equation
2 2.2
(VT +k so)wo 0 s (2)

where Vi is the transverse Laplacian, k is the free-space wave number, and
S0 is a propagation constant determined by imposing boundary conditions on
Fo at the ground and in the ionosphere. For stratified conditions, Eq. (2)

is easily solved to give

s (2)
Yo = cosd SOHI (kSOr) s (3)
where r and © are the usual circular cylindrical coordinates; the horizontal
dipole transmitter is located at r = 0 and oriented at 6 = 0; and H is the

Hankel function.

NONSTRATIFIED CONDITIONS

In the presence of lateral ionospheric gradients a rigorous separation

of variables is impossible. Hence, the fields cannot be expressed as a
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product of vertical, azimuthal, and radial functions as in Eqs. (1) and (3).
However, for ionospheric inhomogeneities large enough to significantly
affect ELF propagation, scale lengths for lateral variations of the
ionospheric refractive index tend to be at least an order of magnitude
larger than those for vertical variations. It can therefore be argued

on semiquantitative grounds that the vertical dependence, F, of the fields
and the associated eigenvalue, S, are governed primarily by the local
ionosphere. In this approximation it is assumed by analogy with Eq. (1)

that the ground-level field is given by

E ~ AA(x,y)¥(x,y) . %)

To account for lateral variations that are nonsymmetric about the source,
we have switched from cylindrical to Cartesian coordinates. Equation (4)
also reflects the fact that F = 1 at z = 0.

To find the field from Eq. (4), we use a mixture of eikonal and full-
wave techniques perhaps best described as a "quasi-full-wave' method. By the
arguments above, the ionosphere is assumed locally stratified for finding the
vertical dependence of the fields, the eigenvalue S(x,y), and the excitation
factor, A. Thus the equation for these quantities, and the method of solution,
are formally identical to those widely applied in analyzing ELF propagation in
a laterally uniform earth-ionosphere waveguide. They differ in practice,
however, because the equation for the vertical dependence must be solved at
a large number of locations, (x,y), each characterized by a local ionospheric
height-profile. On the other hand, a single solution suffices for all
locations under laterally uniform conditions.

The lateral dependence of the field is expressed mainly in the function

¥, which by analogy with Eq. (2) satisfies the equation
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@2 + v =0 . (5)

The local eigenvalue S(x,y), unlike the propagation constant So, exhibits
spatial dependence, which precludes general analytic solutions of Eq. (5).
S(x,y) is found by imposing boundary conditions on the fields in the
ionosphere and at the ground for a large number of geographic locations,
thus obtaining a matrix of values to be entered in Eq. (5). The literature
supplies full-wave methods for obtaining S and A for virtually any ionospheric
refractive-index height-profile, as well as numerical results for many
ambient and disturbed models of the ionosphere (e.g., Budden, 196la; Field,
1970; Wait, 1970; Galejs, 1972; Pappert and Moler, 1974; Greifinger and
Greifinger, 1978). We can therefore assume that all quantities except ¥
are either known or readily obtainable, which allows us to concentrate on
obtaining full-wave solutions of Eq. (5) for the lateral wave function, .
To facilitate numerical solution, we first recast the problem into
an integral equation. Our main interest is in calculating the effects on
ELF propagation of a laterally nonuniform ionospheric disturbance, which
can be characterized by the difference Sz(x,y) - Sg. The undisturbed wave
function, 00, is governed by So and can be assumed known through Eq. (3).

Following Wait (1964), the subtraction of Eq. (2) from Eq. (5) leads to

@2+, w-vp = FisP-sdw . ®)

We convert Eq. (6) to the desired integral equation by using the Green's

function,

- -1yg(2)
G = -1vR " (kSyr,) 6]
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which satisfies

(V + k S$.)G = ~bw6(r2) ’ (8)

0)

where r, = |£ -~£l| (r and I, are vectors from the origin to the observa-
tion point and to an integration point, respectively). By following the usual
Green's function procedure and applying the two-dimensional Green's theorem,

the integral equation for ¥y is obtained:

YY) = by (xy) - 4 jdx ay'1s%x',y") - ST s e vy L (9)

Equation (9) is formally identical to an integral equation given by Wait
(1964), who used first-order perturbation theory to obtain approximate
solutions valid at VLF (very low frequencies).

It is also convenient to define a relative propagation function, W,
which denotes the fractional amount by which the disturbed lateral wave
function, ¢, differs from the undisturbed function, wo. Specifically, we

define the relative propagation function by

v(x,y) = H(x.y)wo(x.y) . (10)

The insertion of Eqs. (10) and (3) into Eq. (9) gives the following integral

equation for W:

2 w0
W(ix,y) = 1 - -1%-' fdx'dy'[sz(x'.y') - 8(2,]

‘.r] néz)(ks r,) H(z)(kso r)

o|=— W(ix',y') 5 (11)
nfl)(ksor) _

!l'l-
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Via SO —z“

s 2t - x2 + yz. rf = (x')z + (Y')z. and r, = (x - X')z + (y - Y')zo

Equation (11) is the most general form of the integral equation for the
relative propagation function. Note that in the absence of an ionospheric

disturbance, 82 = sg and Eq. (11) has the trivial solution W = 1.

LOCALIZED DISTURBANCES

Despite the great wavelengths at ELF, the distance, r, between trans-
mitter and receiver is usually large enough to permit use of the asymptotic
approximation for the Hankel function in the denominator of Eq. (11). In
the numerator, however, the validity condition on the asymptotic approxima-
tion for the Hankel functions is much more restrictive. That is
because r, or r, can be very small over part of the integration interval
if 82 - Sg is nonzero near the transmitter or receiver. Thus, we may use
the asymptotic formula only if the disturbance occurs at least a megameter
away from either terminal; S2 - Sg cannot be nonzero within a megameter of

the transmitter or receiver. If that condition is satisfied, the following

asymptotic approximation of Eq. (11) may be used:

L]

3/2 -ni/4
W(x,y) = 1+ 5—9—————’// dx'dy'[s2 - sg]
2/21!50 7

. [rlrrz]l’ [%:-.] exp;-ikso [tl e T r]l‘ ‘ (12)

Not surprisingly, Eq. (12), which describes propagation in a laterally
irregular earth-ionosphere waveguide, is formally similar to the classic
integral equation representing ground-wave propagation over irregular

terrain (e.g., Hufford, 1952).
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DISTURBANCE SYMMETRIC ABOUT THE TRANSMITTER

If an azimuthally symmetric disturbance is centered over the trans-

mitter, the quantity S2 - Sg in Eq. (9) depends only on the distance,

'&x')z + (y')z, from the origin. For that situation Eq. (9) can be rewritten
in cylindrical coordinates, and the azimuthal dependence can be integrated

out to give a one-dimensional integral equation for the relative propagation
function. (The procedure is outlined in Appendix A.) The resulting integral

equation is

2
W(r) =1 - “‘2” /dr'K(r,r')W(r') : (13a)
0

where r is the distance from the transmitter to the observation point and

A
o]

r'[sz(r') - Sg lJl(kSor')H{Z)(kSOr') r'

K(r,r') = . (13b)

' [8% (") - sg] Jl(ksor)n§2)(ksor')uf2)(ksor')

(2)
H, (kSor)

J denotes the Bessel function in Eq. (13b).

In the next section, the full-wave results computed from Eq. (13)

are compared with the often used WKB approximation, which is valid at
large distances from the source for lateral inhomogeneities with scales
greater than an inverse wave number. As shown in Appendix B, the WKB
approximation of the relative propagation function for a disturbance

symmetric about the transmitter is given by

r
W(r) ~ gl exp|-ik [S(r') - Sgldr’ . (14)
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III. NUMERICAL RESULTS

This section presents full-wave numerical solutions of the one-
dimensional Eq. (13), which applies to ionospheric disturbances that
depend only on distance from the transmitter. The solutions illustrate
the effects of gradients in the direction of propagation. We have not
yet developed numerical procedures for solving the two-dimensional Eq. (11),
which applies to disturbances that depend on both lateral coordinates.
However, as mentioned in Sec. I, Field (71978) gives approximate solutions
of Eq. (12) for weak, localized disturbances that depend on two lateral
coordinates. Those solutions pertain to gradients transverse to the
direction of propagation and thus complement the solutions given
below.

To check on the accuracy of the algorithm used to solve Eq. (13), we
performed numerical calculations for two idealized types of disturbance
for which ¢ (and hence W) could be analytically found from Eq. (5). The
idealized types are 1) a laterally uniform disturbance where S is indepen-
dent of r but differs from SO’ and 2) a nonuniform disturbance where
S2 - Sg varies as l/rz. The solution to Eq. (5) is a simple Hankel func-
tion for the first test case and a complicated combination of Hankel
functions of complex order for the second. Both solutions satisfy Eq. (13)

and agree almost exactly with the numerical solutions of Eq. (13).

MODELS USED FOR NUMERICAL CALCULATIONS

To illustrate the dependence of the relative propagation function on
the severity of gradients in the direction of propagation, we use three
simple but realistic models for S. Figure 1 depicts the models schematically
and gives the corresponding analytic expressions. In each model the distur-

bance is characterized by an exponential function with a scale length, Ar,




sf (dist)

sg (undist)

1 =

0 5 10

r(Mm)

a: Disturbance over transmitter ((sz—sg) - (S?-Sg) exp (- 2/(Ar)z))

sf(duﬂ
52 2 .
Sg(undist)
1 S
0 5 10
r(Mm)
b: Disturbance over midpath ((82— 8(2) )= (Si - Sg) exp (—(r—8)%/ (Ar)z))
$4 (dist)
S
Sp (undist)
| o
0 5 10

r(Mm)

¢: Uniform regions separated by diffuse boundary at midpath
(s—-8g) = (S, =8,)/(1+exp [—(r~5)/ar])

Fig. 1--Models of azimuthally symmetric disturbances used in
calculations (not to scale).
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that can be varied to indicate either abrupt or diffuse boundaries. The
first model (Fig. la) represents an ionospheric depression centered directly
over the transmitter. The second model (Fig. 1lb) represents a depression
centered over the midpath of a 10-Mm link. The third model (Fig. lc)
represents propagation from a uniformly undisturbed region into a region
of uniformly depressed ionosphere, the two regions being separated by a
diffuse boundary centered at midpath. Because of the large radius of
curvature, the models in Figs. Ib and Ic should reasonably represent a
plane waveguide-mode incident on a one-dimensional disturbance. Note that
a lowering of the "effective" ionospheric height usually increases both
the real and imaginary parts of S.

The symbols in Fig. 1 are defined as follows: SO is the eigenvalue
governing propagation in the undisturbed region; Sl is the eigenvalue
governing propagation at the most disturbed point; and Ar (Mm) is the charac-
teristic length over which the conditions change from undisturbed to disturbed,
i.e., S(r) effectively changes from S0 to Sl over a distance two or three
times as large as Ar. The table below shows the numerical values and corres-
ponding attenuation rates (in dB/Mm) used for the constants S0 and Sl. So
values represent nominal ambient daytime conditions; those for Sl represent

a severe ionospheric disturbance, such as a major solar proton event.

Table

PARAMETERS USED IN CALCULATIONS

f (Hz) So (undisturbed) Sl (disturbed)

45 1.2 - 0.08 1 1.75 - 0.3 1
(0.65 dB/Mm) (2.4 dB/Mm)

75 1.15 - 0.085 1 1.5 - 0.25 1
(1.15 dB/Mm) (3.4 dB/Mm)
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The simple analytic forms in Fig. 1 are, of course, used for interpre-
tive convenience. The numerical methods employed to obtain the corresponding
solutions to Eq. (13) work equally well for any disturbance where S depends
only on r. Then, however, S(r) must be calculated numerically and entered
as a table to the algorithm for solving Eq. (13). To illustrate this
capability, results are also given for ELF propagation in the presence of
a disturbance created by detonation of a high-altitude nuclear weapon

directly over the transmitter.

CALCULATED RESULTS

All results given below pertain to the relative propagation function,
W, the ratio of the disturbed to undisturbed radial wave function, Y. Recall
that the ground-level electric field is proportional to the product of y and
the excitation factor, A (see Eq. (4)). W does not contain the excitation
factor and therefore does not always represent the ratio of the disturbed to

undisturbed fields. The excitation factor is roughly proportional to the in-

verse of the thickness (i.e., effective height) of the earth-ionosphere wave-
guide. For laterally nonuniform waveguides, the geometric mean of the inverse §
thickness at the transmitter and receiver is often used as an approximation.
Ionospheric disturbances usually depress the ionosphere, thereby increasing the

local excitation factor. Thus, if either the transmitter or receiver is in a
disturbed region, as in Figs. la and lc, the excitation factor is larger

than the ambient value and the ratio of disturbed to undisturbed fields is

larger than the ratio W. However, W does represent the ratio of fields if

both terminale are in undisturbed regions, as depicted in Fig. 1b. Regarded
heuristically, W accounts for changes in attenuation and phase velocity,

whereas A accounts for the fact that the power density in the wavefront is

inversely proportional to the cross-sectional area of the waveguide.
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The calculated results for the ionospheric depression centered over

the transmitter, illustrated in Fig. la, are shown in Figs. 2 through 4.
Figure 2 shows the magnitude of W versus the lateral scale, Ar, of the
depression for a pathlength of 10 Mm and frequencies of 45 and 75 Hz.
Curves depict the full-wave solutions to the integral equation (Eq. 13)

and the approximate WKB solution given by Eq. (14). As expected, the
full-wave and WKB solutions agree closely if Ar > A/2w, where A is the
free-space vavelength.* This condition satisfies the familiar WKB validity
criterion that the waveguide properties change only slightly over a hori-
zontal distance equal to an inverse wave number. For smaller values of

Ar that correspond to highly localized disturbances having relatively large
horizontal gradients, the WKB solutions significantly overstate the magnitude

of W.
Figure 3, analogous to Fig. 2, shows the phase of W as a function of

Ar for a disturbance over the transmitter. Again, agreement between the
full-wave and WKB solutions is 80od provided the horizontal scale of the
disturbance exceeds a megameter or so.

Figure 4 shows the magnitude of W as a function of distance rather
than scale size, Ar, as in Fig. 2. Recall that W is the ratio of the
disturbed to undisturbed radial wave functions, and increases or decreases
in electric-field strength are characterized by W's greater or less than
unity, respectively. Figure 4 shows that widespread disturbances (large Ar)
cause a net reduction in the radial wave function, whereas more confined
disturbances actually increase it slightly. (Of course, as Ar approaches

zero the disturbance essentially ceases and W approaches unity.)

*
The quantity A\/2v is about 1 Mm at 45 Hz and about 0.6 Mm at 75 Hz.
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This phenomenon is a result of two competing factors: 1) increased

attenuation, which causes W to decrease with distance, and 2) propagation
from a disturbed region of low-phase velocity (large S) into an undisturbed
region of higher phase velocity (small S), which causes the electric field,
and hence W, to increase with distance. The latter is analogous to the
well-known increase of the electric field that occurs with a reduction in
the refractive index of a propagation medium. Clearly, the importance of
anomalous attenuation is proportional to the pathlength exposed to the dis-
turbance, whereas any increase in the electric field depends mainly on

the contrast between phase velocities at the transmitter and receiver. Thus,
W is slightly increased by localized disturbances with small exposed path-
lengths, whereas the degrading effects of increased attenuation dominate in
widespread disturbances. The curve labeled Ar = » in Fig. 4 shows how W is

affected by a horizontally uniform disturbance (the value S, in the table)

1
at all ranges. For this limiting case, W decreases essentially monotonically
because the phase velocity is independent of distance, whereas the attenuation
rate everywhere increases over the ambient value.

Figures 5 through 7 show the calculated values of W versus distance for
the disturbance at r = 5 Mm illustrated in Fig. 1lb. These figures portray the
effects of making the disturbance progressively broader and hence less abrupt.
A distinct standing wave pattern due to reflections from the disturbance is
evident in Figs. 5 and 6, which show results for the two cases (Ar = 9.2 and
0.5 Mm) where the waveguide properties change substantially over a distance
of A/2n. Since the WKB solution ignores reflections, it incorrectly omits
the standing wave pattern in front of the disturbance and overestimates the
signal transmitted through the disturbance. Nevertheless, even for distur-

bances as abrupt as those in Figs. 5 and 6, the WKB solution gives a remark-

ably good approximation of the signal behind the disturbance. In Fig. 7
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the disturbance (Ar = 1 Mm) changes fairly slowly over the distance A/2w.
As expected, the standing wave pattern is greatly diminished, and the
WKB solution affords an excellent approximation at all ranges.

Figure 8 illustrates propagation from a uniformly undisturbed region
into a uniformly disturbed one (see Fig. lc) where the boundary between the
regions is quite abrupt (Ar = 0.2 Mm) relative to the distance A/2n. Again, a
standing wave pattern--absent from the WKB solution--is evident in front
of the boundary, and W falls off monotonically behind the boundary because
of the increased attenuation associated with the disturbance. Calculations
performed for models similar to that in Fig. lc but with more diffuse
boundaries (larger Ar) produce results similar to those in Fig. 8 except
for the diminished importance of reflections and the corresponding reduc-
tion of the standing wave intensity.

A final purpose of this analysis is to assess whether lateral nonuni-
formities impair the accuracy of WKB calculations of the effects of high-alti-
tude nuclear detonations on ELF propagation. Field (1978) evaluates the
effects of bursts at midpath; here we focus on the effect of a burst
detonated over the transmitter. Bursts at altitudes below, say, 150 km
produce ionospheric disturbances with lateral scales up to perhaps 1500 km
(e.g., Field and Engel, 1965). The analytic models used to calculate
Figs. 2 through 4 are reasonably representative of that range of parameters.

To supplement those results, and to examine less idealized nuclear
environments, Fig. 9 shows calculated results for two nominal bursts
producing 1) two megatons of fisison debris at 300 km altitude 1 minute
after detonation, and 2) two megatons of fission debris at 1000 km
altitude 10 minutes after detonation. The values of S(r) used as inputs
to Eq. (13) were calculated by Greifinger and Greifinger (1977). Even for
the low assumed frequency of 45 Hz, Fig. 9 indicates that the WKB solution

affords an excellent approximation of the full-wave solution.
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IV. CONCLUSIONS

Recasting the equation for the lateral dependence of fields into an
integral equation is a convenient means of obtaining numerical solutions
for long-wave propagation under nonstratified conditions. The integral
version accounts for most full-wave properties, including diffraction

around a localized disturbance and reflection from lateral gradients.

§ Numerical solutions based on model disturbances having lateral gradients
in the direction of propagation reveal a standing wave pattern in front

of the disturbance. The pattern is pronounced if the waveguide properties
change substantially over a distance equal to about one-sixth of a wave-
length, and is minor if the disturbance is more diffuse.

% The often used WKB approximation of course ignores diffraction and
gradient reflection. Thus it omits the standing wave pattern, thereby
giving poor accuracy for regions in front of a disturbance having a
relatively abrupt boundary. Because it ignores gradient reflections,

the WKB approximation also overestimates the signal transmitted beyond

a nonuniformity in the waveguide. However, for all models considered--

v

abrupt or diffuse--the overestimate is minor.

The integral-equation method developed here is valid at any frequency

for which waveguide modes describe terrestrial propagation. Nonetheless,
its practical utility is probably limited to ELF since the lateral proper-
ties of the earth-ionosphere waveguide are usually gradual enough to

permit use of the WKB approximation at higher frequencies.

PR W AREOP R 1 S e sk b e

RN R AR I - “ T i i i 2 . i BN




Appendix A

INTEGRAL EQUATION FOR AN AZIMUTHALLY SYMMETRIC DISTURBANCE

If the disturbance is cylindrically symmetric and centered at the

2

origin, Sz(t) - So

= F(r), and Eq. (9) (p. 7) can be rewritten

- 4
¥(r,0) = ¥, (r,0) -1—:‘—[ e P(e’) [ odorn{P s gr et 00, (A-D)

where r and 6 are the usual circular cylindrical coordinates, and

2

r, = (r')2 + r2

- 2rr' cos(8' - 9) : (A-2)

To obtain a one-dimensional integral equation in the variable r, we expand

the terms in Eq. (A-1) in powers of cos® as follows:

y(r,0) -§ emwmcos mo . (A-3)

“52) (ksorz) = ng en:Jn (ksor<) H:Z) (ksot>) gcosn (8'-0) 5 (A-4)

vo(r,e) = soum(ksor) cos © v (A-S5)

where en = lor 2 forn=0or n > 1, respectively, and r . and r denote,
respectively, the lesser or greater of r and r'. Equation (A-4) is the
addition theorem for Hankel functions (e.g., Magnus and Oberhettinger, 1943),
and Eq. (A-5) is the well-known solution for a laterally homogeneous,

undisturbed ionosphere (see Eq. (3), p. 4).
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By inserting Eqs. (A-3) through (A-5) into Eq. (A-1), and noting that

m mcosb if n=m
f d0'cosnB®'cosm(B' - 0) -{ , (A-6)
0 0 ifné¥m
it follows that
N (2) 1wk S
e Y cosmd = S H "/ (kS.r) cosf - cos® € r'dr'F(r')
mm 01 0 4 m
m= m=0
v 3 ksor ) BP ks r ) v ") (A-7)
m 0 <’ ‘m 0> "m -

Using trigonometric orthogonality relations, it can be shown that only wl

is nonzero, and the equation for the radial dependence of Y becomes

2
v, () = 5D (esyry - LK b/ r'ae'F(e') 3 (ksygr DB (kSpr )v, () . (A-8)

The relative propagation function, W, is defined by

¥(r) = ¥ (£IW(r) ’ (A-9)

and combining Eqs. (A-3), (A-5), (A-8), and (A-9) gives the following

result:
o (2) (2)
2 J, (kS.r JH,; " (kS,r_ )H "7 (kS,r')
W) o f - i'i‘i- r'de'F(c') —05 (;) R S SRAFT S YR
Hl (ksor)

Aside from some differences in notation, Eq. (A-10) is identical to

Eq. (13) (p. 9).
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Appendix B

WKB SOLUTION FOR AN AZIMUTHALLY SYMMETRIC DISTURBANCE

If S depends only on the distance, r, from the origin, Eq. (5) can be

written

——7¢+%g-"—+(ks(r)-l/r)0'° ‘ (8-1)

)

By making substitution y = u/r®, Eq. (B-1) can be transformed into

the following standard form:

2

g—;+ k2 [32(,-) = g 2] u=0 (B-2)
dr 4k°r

1f S>> 1/kr, Eq. (B-2) is identical to the equation of a plane wave
propagating in a medium of refractive index S, and the WKB solution
normalized to the definition of y given in Eqs. (3) and (4) can be

written (e.g., Budden, 1961b):

r

¥ S(r =0)
vV =u/r‘~ —T— exp [-ﬂc / S(r')dr'] % (B-3)
r;i S(r) 3

Using the definition W = */00, the WKB approximation to the relative

propagation function is found to be

0

S(r = 0) [ f ]
W exp|-1k [s(x') - s,)])dr . (B-4)
ol X0 :

which is Eq. (14) (p. 9).
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