AD-J	A066 06	B GEN STU JAN	ERAL EN	LECTRIC	CO P FFECTS	HILADEL	PHIA P T SHIE OLDEN, AR	A RE-EN LD MATE W G BR 0-14077	TRY AN	D ENV	ETC F	/6 20/5	5
	OF AD AGOGB								<pre></pre>	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC			
								71-1					
								The second secon			END DATE FILMED 5 -79 DDC		
		and an and a second	alogada -							¢			
1		1							· · · ·		· Jegel		

-MSX AD AO 66068 STUDY OF LASER EFFECTS ON HEAT SHIELD MATERIALS FINAL REPORT BY .D./ZAVITSANOS A. / GOLDEN PROPRINTIP BROWNE JAN 1079 **DDC** FILE COPY PREPARED FOR U.S. ARMY RESEARCH OFFICE POST OFFICE BOX 12211 RESEARCH TRIANGLE PARK, NC 27709 CONTRACT NO. DAAG29-76-C-9943 PREPARED BY GENERAL ELECTRIC CO. RE-ENTRY AND ENVIRONMENTAL SYSTEMS DIVISION 3198 CHESTNUT STREET PHILADELPHIA, PA 19101 404 884 APPROVED FOR PUBLIC RELEASE; LB DISTRIBUTION UNLIMITED. 79 03 19 035 -- 13"

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

491-10

1 mil

and the second second

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. JOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TITLE (and Subtitie)	1	5. TYPE OF REPORT & PERIOD COVERED
STUDY OF LASER FEFECTS ON HEAT SU	TELD MATERIALS	Final Report
STOPI OF LADER EFFECTS ON HEAT SH	TELD FATERIALS	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(.)		8. CONTRACT OR GRANT NUMBER(.)
J.A. Golden		DAAG29-76-C-0043
W.G. Browne		2411029 7 0 0 0045
PERFORMING ORGANIZATION NAME AND ADDRES	s	10. PROGRAM ELEMENT, PROJECT, TASK
General Electric Company /		AREA & WORK UNIT NUMBERS
Re-entry & Environmental Systems	Division	
3198 Chestnut Street, Philadelphi	la, PA 19101	
U. S. Army Research Office		January, 1979
P. 0. Box 12211		13. NUMBER OF PAGES
Research Triangle Park, NC 27709)	35
4. MONITORING AGENCY NAME & ADDRESS(II differe	nt from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION DOWNGRADING
Approved for public release; dis	tribution unlimit	m Report)
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the ebstrect enforce	tribution unlimit fin Block 20, 11 different fro	m Report)
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract entered 8. SUPPLEMENTARY NOTES The view, opinions, and/or findi: author(s) and should not be cons position, policy, or decision, un	tribution unlimit In Block 20, 11 different fro ngs contained in trued as an offic nless so designat	m Report) this report are those of the ial Department of the Army ed by other documentation.
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract entered The view, opinions, and/or findi. author(s) and should not be cons position, policy, or decision, un S. KEY WORDS (Continue on reverse side if necessary a Laser irradiation, heat shield may carbon dioxide laser, carbon phenolic resin, ATJ graphite, gas	tribution unlimit a In Block 20, If different from trued as an offic nless so designat and Identify by block number) sterials, material holic, phenolic as a sampling.	this report are those of the ial Department of the Army ed by other documentation.
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the abstract entered The view, opinions, and/or findi: author(s) and should not be cons position, policy, or decision, un S. KEY WORDS (Continue on reverse side if necessary a Laser irradiation, heat shield may carbon dioxide laser, carbon pheno- phenolic resin, ATJ graphite, gas O. ABSTRACT (Continue on reverse side if necessary and An experimental study of CO2 1 been conducted. The interaction asbestos, ATJ graphite and pheno- laser has been examined. Experim- induce mass losses of 1-4x10 ⁻⁵ g/ losses from ATJ graphite are an or spectrometric analysis of gases e was also carried out.	tribution unlimit In Block 20, 11 different fro ngs contained in trued as an offic nless so designat and identify by block number) terials, material holic, phenolic as a sampling. didentify by block number) aser heating of h of carbon phenoli ic resin with a C ments at power der joule in phenolic order of magnitude manating from the	this report are those of the ial Department of the Army ed by other documentation. Is interaction with laser, sbestos, silica phenolic, beat shield materials has ic, silica phenolic, phenoli W 100 watt and a CW 10 KW On sities of 101-104 watts/cm ² c-containing materials, mass a lower. Sampling and mass a laser interaction zone
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract entered The view, opinions, and/or findi author(s) and should not be cons position, policy, or decision, us KEY WORDS (Continue on reverse side if necessary a Laser irradiation, heat shield may carbon dioxide laser, carbon phen phenolic resin, ATJ graphite, gas ABSTRACT (Continue on reverse side if necessary and An experimental study of CO2 1 been conducted. The interaction asbestos, ATJ graphite and phenol laser has been examined. Experim induce mass losses of 1-4x10 ⁻⁵ g/ losses from ATJ graphite are an of spectrometric analysis of gases of was also carried out.	tribution unlimit In Block 20, 11 different from trued as an offic nless so designat med identify by block number) terials, material holic, phenolic as a sampling. In a sampling. In a sampling of hold of carbon phenolic ic resin with a Company der joule in phenolic order of magnitude menating from the	this report are those of the ial Department of the Army ed by other documentation. Is interaction with laser, sbestos, silica phenolic, beat shield materials has ic, silica phenolic, phenoli W 100 watt and a CW 10 KW O sities of 101-104 watts/cm ² c-containing materials, mass a lower. Sampling and mass a laser interaction zone

Contraction of the State of the second s

ľ

TABLE OF CONTENTS

.

1.	INTRODUCTION	1
11.	EXPERIMENTAL APPROACH	2
	A. Parameters Measured	2
	B. 100 Watt Laser System	3
	C. 10 KW Laser System	5
111.	RESULTS AND DISCUSSION	7
	A. Materials Studied and Range of Conditions	7
	B. Temperature History Data	8
	C. Ablation Rate Data (Weight Loss)	18
	D. Gaseous Species	29

i

The second state of the se

LIST OF ILLUSTRATIONS

FIGURE

Congress and an and the second

PAGE

1	Experimental Apparatus - 100 Watt Laser System	4
2	Experimental Apparatus - 10 KW Laser System	6
3	Laser Irradiated Carbon Phenolic Temperature vs. Time	15
4	Laser Irradiated Phenolic Asbestos Temperature vs. Time	16
5	Laser Irradiated Silica Phenolic Temperature vs. Time	17
6	Carbon Phenolic Mass Loss per Unit Energy vs. Laser Power Density	19
7	Silica Phenolic Mass Loss per Unit Energy vs. Laser Power Density	20
8	ATJ Graphite Mass Loss per Unit Energy vs. Laser Power Density	21
9	91LD Phenolic Resin Mass Loss per Unit Energy vs. Laser Power Density	22
10	Phenolic Asbestos Mass Loss per Unit Energy vs. Laser Power Density	23
11	Carbon Phenolic Mass Loss Flux vs. Power at Sample Surface	24
12	Silica Phenolic Mass Loss Flux vs. Power at Sample Surface	25
13	ATJ Graphite Mass Loss Flux vs. Power at Sample Surface	26
14	Phenolic Asbestos Mass Loss Flux vs. Power at Sample Surface	27

LIST OF TABLES

TABLE		PAGE
1	Data Summary 100 Watt CO ₂ Laser Experiments - Carbon Phenolic Samples	9
2	Data Summary 10 KW CO ₂ Laser Experiments - Carbon Phenolic Samples	10
3	Data Summary 100 Watt and 10 KW CO ₂ Laser Experiments - Phenolic Asbestos Samples	11
4	Data Summary 10 KW CO ₂ Laser Experiments - Silica Phenolic Samples	12
5	Data Summary 10 KW CO ₂ Laser Experiments - ATJ Graphite Samples	13
6	Data Summary 100 Watt CO ₂ Laser Experiments - 91LD Phenolic Resin	14
7	Mass Spectra Observed During Laser Heating of Phenolic Resin (GE 91LD)	30

iii/iv

Les Jour

The grant water of the state of

INTRODUCTION

I.

Materials of the type used for heat shields on re-entry vehicles undergo varying degrees of property and characteristic changes as a result of exposure to laser radiation in a space type environment at flux levels ranging from about 1 watt (cm²) up to flux levels in excess of 10,000 watts/cm2] These changes are, in general: (a) outgassing and depolymerization of the resin binder at low heat fluxes with potential loss in strength and/or delamination of the shield; (b) surface charring and high rates of outgassing and material decomposition/vaporization at intermediate heat fluxes and; (c) excessive rates of outgassing and material vaporization and shield thickness reduction at high heat fluxes. Thus a re-entry vehicle heat shield exposed to laser radiation in a space environment may provide inadequate protection during entry for reasons of reduced structural capability or inadequate remaining shield thickness. Also the heat soak into the shield and structure resulting from exposure times of several minutes may result in unacceptably high levels of temperature for the vehicle substructure or payload prior to or during entry.

SQ CM

To assess the importance of exoatmospheric laser heating to weapon system missions involving re-entry vehicles, it is necessary to conduct a systematic study of the response of generic classes of thermal protection materials (carbon phenolic, asbestos phenolic, phenolic refrasil and carbon) to varying radiative fluxes and exposure times. With these data and a detailed understanding of thermal protection material behavior and specific re-entry vehicle mission requirements, it will be possible to assess the adequacy of existing weapon systems against this threat. Also,

countermeasure approaches can be planned or defined if the threat is found to be unacceptably severe.

Although laser radiation exposure above about 500 watts/cm² results in very rapid material removal or loss the laser radiation flux range of 10 to about 100 watts/cm² appears to be of the greatest importance from the standpoint of studying the radiative response of thermal protection materials. Under these heating conditions, particularly with fluctuating or cyclical temperatures, organic resin bonded refractory fiber composites tend to have poor structural integrity. The tendency of the composite to warp, crack or delaminate under exposure is a complex function of the char forming characteristics of the resin and the thermal conductivity, surface area and chemical stability of the fibers. Thus the selection of phenolic based composites reinforced with carbon, refrasil or silica and asbestos for study will result in much detailed understanding of the importance of fiber-matrix interaction in controlling laser radiation induced structural damage.

11. EXPERIMENTAL APPROACH

A. Parameters Measured

A system was set up to heat cylindrical plug samples of shield materials in vacuum or in air at atmospheric pressure. Samples were heated by CO_2 laser irradiation. Two series of experiments were performed, the first with a 100 watt C.W. laser and the second with a 10 kilowatt C.W. laser.

Instrumentation was set up to measure the following parameters

INSTRUMENT

during sample irradiation:

MEASUREMENT

1	Surface Temperature vs. Time	Radiation Pyrometer (2-2.5 µm pass band)
2	Subsurface Temperature vs. Time	Chromel-Alumel Thermocouple
3	Pressure Rise	Wallace & Tiernan Ab s olute Pressure Gage
4	Gaseous Species Produced from Laser Heating	Gas Chromatograph and Time of Flight Mass Spectrometer
5	Mass Loss	Balance

B. 100 Watt Laser System

Figure 1 shows a diagram of the experimental apparatus. The output beam (1.5 cm diameter) from a 100 watt CW CO_2 laser (A) is passed through a KBr beam splitter (B) and a Germanium meniscus condensing lens (C) onto the surface of the shield material sample to be heated. A chromel-alumel thermocouple bead is imbedded on axis in the cylindrical plug sample midway between the ends. The sample is mounted in a pyrex vacuum vessel (D) connected to a sampling flask (E) which collects an integrated gas sample for gas chromatographic analysis and a gas sampling valve (F) which is attached to a Bendix Model 12 Time-of-Flight mass spectrometer (G). A mass spectrum of gases produced from the heated shield sample can be recorded at about 10 sec. intervals during a run. Surface temperature is measured with an IRCON Co model 300 Radiation Pyrometer (2-2.5 μ m band pass). The pyrometer detects radiation from a 1.5 mm diameter spot

FIGURE 1 . EXPERIMENTAL APPARATUS - 100 WATT LASER SYSTEM

-

1 1 1

- -

4

Togethe state in the second

on the front surface of the sample. Power density (watts/cm²) at the sample surface is monitored with a Coherent Radiation Co Model 201 Power Meter. A portion of the CO₂ laser beam (approximately 10% of the total power in the beam) is reflected from the KBr beam splitter into the laser power meter for this measurement. Calibration of the laser power monitor is accomplished by replacing the pyrex vacuum vessel (D) with a second laser power meter located in the same plane as the plug sample surface. A measurement of the ratio of power transmitted through all optical components to that reflected into the laser power monitor (E) as a function of laser operating power level provides the calibration data. A multichannel oscillograph is used to record the time history of pressure, temperature, and power level from the instrumentation shown in Figure 1.

C. 10 KW Laser System

The GE 10 KW CW CO₂ Laser Facility was used for this work. A detailed description of the facility is given in Reference 1. The output beam from this laser is 9 cm diameter and the power level in the beam is variable from a few hundred watts to ten kilowatts.

Figure 2 shows a diagram of the experimental setup. The output beam of the laser (A) passes through a salt beam splitter (B) to monitor power at the detector (C). The main beam is reflected from a flat mirror (D) onto a concave mirror (E) which serves to condense the beam onto the surface of the sample.

6

WUSA

the property of the second second second

A cylindrical copper vacuum vessel (F) was used in place of the pyrex vessel shown in Figure 1. In this vessel the laser beam entrance and the pyrometer viewing KBr windows were mounted at the end of 30 cm extension tubes to minimize the build-up of ablation product condensation. This arrangement was effective up to 2000 W/cm^2 heat load. At 2000 W/cm^2 graphite vaporizes from the shield sample and forms an opaque film on the salt windows. The film absorbs a portion of the incoming laser radiation, the window is rapidly overheated and fractures. As a result, all experiments above this power level were carried out at atmospheric pressure.

The remainder of the instrumentation used in the high power work was the same as shown in Figure 1 except that no in situ mass spectra were obtained.

III. RESULTS AND DISCUSSION

A. Materials Studied and Range of Conditions

Three R/V shield materials were studied along with GE 91LD phenolic resin. This resin is one of the components of the carbon phenolic heat shields. Also several baseline experiments were performed with ATJ graphite samples. Following is a listing of the materials examined:

7

1. Carbon Phenolic

- 2. Phenolic Asbestos
- 3. Silica Phenolic
- 4. ATJ Graphite
- 5. 91LD Phenolic Resin

Cylindrical plug samples (6.3 mm diameter x 10 mm) of the above materials were irradiated at power levels ranging from 10 to 9100 W/cm^2 at exposure times from 1 to 60 seconds. Experiments were run in air at 1 atmosphere and in vacuum (.05 - 1.5 torr).

A summary of the data obtained is given in Tables 1 through 6.

B. Temperature History Data

The measured surface temperature is shown in Figures 3 through 5 versus the laser irradiation time for carbon phenolic, phenolic asbestos and silica phenolic specimens respectively. The carbon phenolic surface temperatures in Figure 3 display a pronounced maxima at early times <4 secs when irradiated by 10 KW laser heat fluxes ≥ 650 watts/cm². A substantial falloff in temperature occurs at longer times for these conditions. The temperature peak and rapid falloff behavior exhibited at 10 KW laser fluxes ≥ 650 watts/cm² is associated with a change in the emissivity of the char as a function of time. Carbon phenolic surface temperatures increase monotonically with irradiation time for 100 W CO₂ CW laser heat fluxes ≤ 44 watts/cm². The intermediate laser heat flux range ~ 100 to 500 watts/cm² displays the same temporal characteristic of a broad maxima followed by a virtual isothermal zone. The anomaly of the juxtaposition of the 115 watts/cm² data with the 100 watt laser and the 325 watts/cm² data with the 10 KW laser has not been resolved.

The phenolic asbestos surface temperatures shown in Figure 4 reach their maximum values in ~ 5 seconds. The remainder of the irradiation period is uneventful. Carbon phenolic specimens reach higher temperatures than phenolic asbestos specimens under comparable irradiation conditions.

TABLE 1. DATA SUMMARY 100 WATT CO2 LASER EXPERIMENTS --- CARBON PHENOLIC SAMPLES

the state of the state of the

1

			TEMPE AT END	RATURE OF RUN							
RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE T IME	SURFACE	MID POINT OF SAMPLE	MAS TOTAL	IS LOSS RATE	MAJOR	CASEOUS	ABLAT ppm	TION PR	ODUCTS
int.	w/cm ²	sec	°c	°c	8m	mg/cm ² -sec	H2	H ₂ 0	8	c02	HC's
LEI	10	60	260	50	*			8600	1	:	:
LE2	NO LASER EXP.	GC BACKGROUI	ND CALIBRAT	NOI				6600	:	:	:
LE3	10	60	412	220	5.5	.290		12800	:	:	*
LE4	15	60	607	295	16.3	.860		11000	:	114	*
LES	23	60	140	*	15.0	162.		48.78	184	744	100
LE15	36	60	062	180	12.5	. 656					
LE6	44	60	820	246	18.0	.949		4800	27	512	50
LE7	44	60	882	239	15.5	.817		2400	54	92	75
LE8	100	60	1050	280	31.5	1.66					
LE9	115	60	1390	*	29.0	1.53					
LE16	135	60	1335	270	29.0	1.53					
LE43	4840	4.1	NO DATA		4.8	11.70					

9

* MEASUREMENT NOT MADE

NOTES: THE LASER BEAM DIAMETER OF THE SAMPLE WAS . 635 CM FOR ALL RUNS EXCEPT LE43 WHICH WAS .1 CM

ALL EXPERIMENTS WERE RUN AT .05 TORR EXCEPT LE43 WHICH WAS AT 760 TORR.

DATA SUMMARY 10 KW CO2 LASER EXPERIMENTS --- CARBON PHENOLIC SAMPLES TABLE 2.

The group in the of the

		the press style and		TEMPE AT END	RATURE OF RUN				N.			
	RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE	SURFACE	MID POINT OF SAMPLE	TOTAL	S LOSS RATE	MAJOR	GASEOU	PPm	ION PR(DUCTS
		w/cm ²	sec	°c	°c	80 E	mg/cm ² -sec	H2	H ₂ 0	8	c02	HC's
	LE31	325	30	1280		62	6.5	23.27	56.61	10.86	5.62	3.64
	*LE17	340	60	1570		90.5	4.8					
	LE18	630	15	2180		83.5	17.7	19.92	34.9	3.06	1.22	9.79
	LE25	650	15	1440		73.7	15.5	25.91	4.84	10.94	4.42	4.09
	LE40A	650	15	1250		7.0		28.33	48.36	12.44	4.42	3.52
	LE40B	650	11.5	1280		C.21						
10	LE20	655	15	2635		0.06	18.9	11.98	23.67	31.77	1.13	
	LE28	970	10	1675		79.4	25.1	19.85	17.06	8.53	1.05	3.54
	LE19	1000	15	2325		100.0	21.1	21.35	26.5	3.81	1.35	13.87
	LE34	1250	8	1600		80.6		27.53	49.07	11.67	3.71	4.55
	LE37	1500	6.5	1825		76.0		31.51	47.27	12.98	3.61	4.26
	*LE21	2000	7.5	2920		156.0	65.7	15.89	6.35	19.95	2.37	
	LE22	4050	3.75	2800	c	159.0	133.9			0		
	*LE23	5000	3	a Access.	OK TOWLER	132.5						
	LE48	5000	2	2150	ALD NOTIL	80.3	126.8					
	LE51	7150	1.4	1890		83.5	188.4					
	LE54	9100	1.1	1810	AND AND	75.3	216.4					
	*IR WIND	DW CRACKED ON THESE RUN	50									

		TABLE 3. DATA SUM	ARY 100 WATT	AND 10 KW	CO2 LASER E	XPERIMEN	ISPHENOLIC	ASBEST	OS SAMP	LES		
	RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE TIME	TEMPE AT END SURFACE	RATURE OF RIN MID POINT OF SAMPLE	MAS	S LOSS RATE	MAJOR	GASEOUS	ABLAT ppm	ION PRO	DUCTS
		w/cm ²	sec	°c	°c	Bu	mg/cm ² -sec	H ₂	H ₂ 0	8	c02	HC's
	LE32	350	30	1280		111.3	11.7					
	LE26	600	15	1675		118.9	25.1					
	LE29	970	10	1750		123.5	39.1				•	
	LE44	50*	. 09	x		37.1	1.95					
	LE45	100*	33	x		35.8	3.43					
1	LE35	1250	80	1850		130.4	51.5					
11	LE38	1500	6.5	1550		130.9	63.6					
	LE47	5000	2	1700		101.9	160.9					
	LE42	5095*	4.5	x		9.7	274.7					
	LE41	5350*	4.1	x		9.4	292.1					
	LE50	7150	1.4	2050		105.5	238.1					
	LE53	9100	1.1	1950		107.8	309.8					
		CONTRACTOR AND										

٤

Construction and the second second

1

*100 WATT LASER RUNS

14 J. 14

30

X = MEASUREMENT NOT MADE

TABLE 4. DATA SUMMARY 10 KW CO2 LASER EXPERIMENTS---SILICA PHENOLIC SAMPLES

The group we dealer the state of a

1.1

	DALED DENCITIV	adiibuana	TEMPERA AT END O	TURE F RUN	NAC	0001 0	DOT AM		A RI AT	OR DRO	DICTS
RUN #	(AT SAMPLE SURFACE)	TIME	SURFACE 0	F SAMFLE	TOTAL	RATE	NOCAL	0003040	mdd		
Cr.41	w/cm ²	sec	°c	°c	80 100	mg/cm ² -sec	H2	H ₂ 0	8	c02	IIC's
LE33	325	30	1210		49.6	5.2					
LE27	620	15	1650		60.6	12.8					
LE30	1030	10	1350	•	100.9	31.9					
LE36	1250	80	1675		90.2	35.6					
LE39	1500	6.5	1800		93.2	45.3					
1E46	5000	2	1825		74.3	117.3					
LE49	7150	1.4	1850		113.1	255.0					
LE52	9100	1.1	1810		92.8	266.0					
1.55W											

12

W Satt

KUN # (AT SAMPLE SURFACE) TIME SURFACE CALL AMPLE SURFACE POLA AMPLE AMPLE </th <th></th> <th>POWER DENSITY</th> <th>EXPOSURE</th> <th>TEMPE AT END</th> <th>RATURE OF RUN MID POINT</th> <th>MAS</th> <th>S LOSS</th> <th>MAJOR</th> <th>GASEOU</th> <th>S ABLAT</th> <th>LION PR</th> <th>ODUCTS</th>		POWER DENSITY	EXPOSURE	TEMPE AT END	RATURE OF RUN MID POINT	MAS	S LOSS	MAJOR	GASEOU	S ABLAT	LION PR	ODUCTS
LE448 5000 2.0 1350 0.2 0.31 LE51A 7150 1.4 1700 2.3 5.20 LE51A 9100 1.1 2100 2.5 7.20 LE55 9100 3.0 2550 19.7 16.6 LE55 9100 5.0 2400 19.7 12.5 LE57 9100 8.0 2400 19.7 12.5 LE57 9100 8.0 2400 19.7 12.5	KUN #	(AT SAMPLE SURFACE) w/cm ²	TIME	<u>°</u> C	OF SAMPLE °C	TOTAL	<u>RATE</u> mg/cm ² -sec	H2	H ₂ 0	Bpm 8	c02	HC's
LE51A 7150 1.4 1700 2.3 5.20 LE54A 9100 1.1 2100 2.5 7.20 LE55 9100 3.0 2550 15.7 16.6 LE57 9100 5.0 2400 19.7 17.7 LE57 9100 8.0 2400 19.7 17.7	LE48A	5000	2.0	1350		0.2	0.31					
L6544 9100 1.1 2100 2.5 7.20 1456 9100 3.0 2550 15.7 16.6 1455 9100 5.0 2400 19.7 12.5 1457 9100 8.0 2400 19.7 12.5 1457 9100 8.0 2400 19.7 17.7	LE51A	7150	1.4	1700		2.3	5.20					
II56 9100 3.0 2550 15.7 16.6 II57 9100 5.0 2400 19.7 12.5 II57 9100 8.0 2400 44.8 17.7	LES4A	9100	1.1	2100		2.5	7.20					
IE55 9100 5.0 2400 19.7 12.5 IE51 9100 8.0 2400 44.8 17.1	LE56	9100	3.0	2550		15.7	16.6					
IE31 910 8.0 24.0 44.8 17.1	LESS	9100	5.0	2400		19.7	12.5					
	LE57	9100	8.0	2400		44.8	17.7					

an an reas

a the second state with the second state of th

Image Tank Tank Tank Tank Mass Loss	Image Protective Activation Protective European Protecive European P					TEMPE	RATURE OF RIN				1			
M/ma2 sec °G °G mg/cm2-see H20 CO	4/m ² sec °C °C mg mg/cm ² -sec H2 H20 C0 C0 1E10 10 10 520 75 10 527 12 0 02 10 1E11 81 60 1300 130 130 12 1.4 1E13 122 60 1300 120 23 4.14 1E14 73 60 1305 180 58 3.05		RUN #	POWER DENSITY (AT SAMPLE SURFACE)	EXPOSURE	SURFACE	OF SAMPLE	MAS TOTAL	S LOSS RATE	MAJOR	GASEOU	S ABLAT	LON PR	ODUCTS
IEI0 10 50 50 50 521 IEI1 87 60 1300 150 IEI3 23 60 900 120 35 4.14 IEI3 102 60 1305 180 36 4.14 IEI3 102 60 1305 180 36 4.14 IEI3 102 60 1305 180 36 4.14 IEI4 73 60 1305 180 58 3.05	Ialo 10 60 520 75 10 521 Iali 87 60 1300 150 Iali 87 60 1300 120 35 1.84 Iali 73 60 1305 180 58 3.05 Iali 73 60 1305 180 58 3.05			w/cm ²	sec	°c	°c	Вш	mg/cm ² -sec	H2	H ₂ 0	8	c0 ₂	HC's
Image: Sector of the sector	Image: state stat		LE10	10	09	520	75	10	527					
IEI2 23 60 900 120 35 1.84 IEI3 102 60 1305 180 58 3.05 IEI4 73 00 1305 180 58 3.05	101 23 00 102 303 414 111 102 00 103 103 104 111 103 103 103 103 104		LE11	87	60	1300	150	: :						
Image:	IBI3 IO2 60 1645 78.5 4.14 IEI1 73 60 1305 180 58 3.05 IEI1 73 60 1305 180 58 3.05		LE12	23	60	.006	120	35	1.84					
Image: Mark 1 Mark1 M	80 80 90 80 300 81 90 80 90 80		LE13	102	60	1645	1	78.5	4.14					
			LE14	73	60	1305	180	58	3.05					
			12.37	3100										
		14				•								
			1223	97 LO					0.00					
			- 2 A	COLR .										
				120										
			A. U.S.	0048				0						
					•									
			••••		ų		· · · · ·		užen, neo	•				•• ••
	TONE OF DESCRIPTION OF THE OWNER		1212	THE OWER PROPERTY	- The second			19.19						

TABLE 6. DATA SUMMARY 100 WATT CO₂ LASER EXPERIMENTS---91LD PHENOLIC RESIN

The second state of the second se

•

HAT ISIN'

LASER IRRADIATED CARBON PHENOLIC TEMPERATURE VS. TIME з.

÷

-

The state of the s

	. 1
	ч
-	-
	-
- 5	-
-	
	4
. r.	n
	~
E .	• 7
<u>د</u>	r
	-
	-
E	
-	-
	э
6	2
	-
0	١.
10	
1.2	
1	
- 6	c
1	-
	0
0	
2	-
	-
- 2	-
0	\circ
C.	n
-	1
C	3
C	2
5	2
C.F	211
UT T	TT
UT IC	TTT
OT TO	OFTO
OT TON	VULLU
OT ION	ULL L
OT TONS	ENULIC
OT TOWER	IENOL LC
OT TOWER	DENULLU
OT TOWALD	LIENULIC
DT TOWALIG	FRENULTU
DI IONALIO	FRENULLU
DI IONALIO V	FRENULLU
OT IONALIA A	U FRENULLU
OT IONALIA AS	U FRENULLU
OT IONALIG UN	CU FRENULLU
TTONING UL	LEU FRENULLU
TED BUENOI TO	TEU FRENULLU
ATTR BUENOI 10	ALEU FRENULLU
ATTE BUENOI 10	ALEU FRENULLU
TATER BUENOI IC	LALEU FRENULLU
TATER BUENOI IC	JIALEU FRENULLU
DIATER BUENOI IC	UTALED FRENULLU
DIATER BUENOI IC	AUTALEU FRENULLU
ADIATO BIEVOI IC	AUTALED FRENULLU
ADIATED DIENOI IC	NAULALEU FRENULLU
DI NULLER DIENOI IC	NAULALEU FRENULLU
TINNIN NATATA	KNAULALEU FRENULLU
TIPNALL TTATE DIENOI IC	INNAUTALED FRENULLU
TEPADIATED BIENOI IC	INNAUTALEU FRENULLU
TITNATT BUENOI TO	INNAUTALEU FRENULLU
TIDAATATA BUENOI 10	I TANADIALEU FRENULLU
TERADIATED BIEVOI 10	N IRNAUTALED FRENULIC
TITATATATA	IN INNAUTATED FRENULTU
ED TDAATATTA DIENOLIC	EN INNAUTATED FRENULTU
TTATATATA DIENOI IC	SER IRRADIATED FRENULIC
OF TONADIA TATA DIENOI 10	SER IRRADIATED FRENULIC
TOPATIATE BUENOI 10	ASEN INNAULALED FRENULIC
AGED TOPADIATED DIFNOLIC	ASEN INNAULALED FRENULIC
AGEN TODADIATATO DIEVOLTO	LASEN INNAULALED FRENULIC
IAGED INDARATED BUENDI IC	LASEN INNAUTALED FRENULIC
TAGED TODADIATED DILEVOLTO	LASEN INNAUTALED FRENULIC
TAGED TERADIATED BUENOI TO	LASEN INNAUTALED FRENULIC
TAGED TRAATATER DIFNOL TO	LASEN INNAUTALED FRENULIC
TAGET TEACHTATE BUENOT TO	. LASEN INNAUTALED FRENULIC
TAGED TRAATATER DIFNOT TO	+. LASEN INNAUTALED FRENULIC
A TAGED TRRADIATED DUEVOI IC	4. LASEN INNAUTALED FRENULIC
A TAGED TRAATATE DIFNAL	4. LASEN INNAUTALED FRENULIC
1 TAGED TERADIATED BUENOU IC	4. LASEN INNAULALED FRENULIC
A TAGED TRAATATATA NIEVAL	E 4. LASEN INNAUTALEU FRENULIU
TAGEN TRRADIATED BUENOU IC	VE 4. LASEN INNAUTALED FRENULIU

SAME

the states .

Figure 5 shows the temporal response of silica phenolic to irradiation by the 10 KW CW CO₂ laser in air at 1 torr pressure. The temperature rise for silica phenolic is far steeper than for any of the other R/V materials tested.

C. Ablation Rate Data (Weight Loss)

Data on mass loss from Tables 1 through 6 have been presented in Figures 6 through 14 as a function of laser power delivered at the sample surface. The carbon phenolic (GE CP109A) laser irradiation data in Figure 6 presented as mass loss in grams of sample lost per joule of irradiated energy falls within the range of 1×10^{-5} to 3×10^{-5} g/joule (with the exception of several tests run in air at 1 torr pressure) over the entire range of 10^1 to 10^4 watts/cm² of power density. The carbon phenolic mass loss data in Figure 6 at high power densities, i.e., 600 W/cm^2 can be represented as $2.7 \pm 0.7 \times 10^{-5}$ g/joule. This corresponds to an apparent heat of ablation of 9.5 ± 2.5 kcal/g. High mass loss rates, i.e., $\geq 2.7 \pm 0.7 \times 10^{-5}$ g/joule at low power densities < 30 W/cm^2 are attributed to the release of adsorbed water from the samples.

The silica phenolic mass loss data in Figure 7 covers the range of $1.5 \ge 10^{-5}$ to $3.5 \ge 10^{-5}$ g/joule over the more restrictive power density range of 300 to 10^4 W/cm². The silica phenolic mass loss data in Figure 7 at high power densities ≥ 600 W/cm² can be represented as $2.8 \pm 0.8 \ge 10^{-5}$ g/joule. This corresponds to an apparent heat of ablation of 9.3 ± 2.6 kcal/g.

the group and the state of the state

٨

.....

497.7000

The group and when the statistics is

ALC: N

0 8.04

CARBON PHENOLIC MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE FIGURE 11.

FIGURE 12. SILICA PHENOLIC MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE

A THE STATE OF THE STATE

ATJ GRAPHITE MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE FIGURE 13.

104 6 4 +++ 1 1-+++++ 111 5 5 55 5 0.635 0.1 0.635 4 m 11 760 TORR 1 TORR 760 TORR FIGURE 14. PHENOLIC ASBESTOS MASS LOSS FLUX VS. POWER AT SAMPLE SURFACE 103 100. 002 LASER CO2 LASER 1-+-1 LOD W CW D KW CW 102 7891 ω 5 \Box 4 Ð O i ... 111 0 101 1 6 8 + i . . + + + + -----100 ~ 1 ... -----10-1 POWER AT SAMPLE SURFACE (WATTS/CM²) -.... 4 104 101

Contract and the second second

MASS LOSS FLUX (MG/CM²SEC)

Set Spect

Results for ATJ graphite irradiated by the 10 KW CO₂ laser are shown in Figure 8 for the power density of 920 W/cm²; the data appear to cluster at 0.7 x 10⁻⁶ to 2 x 10⁻⁶ g/joule. The ATJ graphite mass loss data in Figure 8 can be represented as $1.33 \pm 0.6 \times 10^{-6}$ g/joule which corresponds to an apparent heat of ablation of 225 \pm 101 kcal/g. Zavitsanos² has irradiated pyrolytic and spectroscopic grade graphite with a pulsed ruby laser. Mass loss data of $1.76 \pm 0.35 \times 10^{-5}$ g/joule were obtained in the energy range of 0.85 to 12.6 joule. This mass loss corresponds to an apparent heat of ablation of 14.1 \pm 2.8 kcal/g. The power densities used by Zavitsanos² are $\geq 10^5$ W/cm², i.e., greater than a factor of ten above the power densities used in the present investigation. The pertinent fact appears to be that the mass loss in ATJ graphite is substantially lower than specimens which contain phenolic.

Figure 9 displays a mass loss range of $4 \ge 10^{-5}$ to $8 \ge 10^{-5}$ g/joule for 91LD phenolic resin. The 91LD phenolic resin mass loss data can be represented as $4.1 \pm 0.1 \ge 10^{-5}$ g/joule at 70 to 100 W/cm². This corresponds to an apparent heat of ablation of 5.8 kcal/g.

The phenolic asbestos mass loss in Figure 10 covers the range 3×10^{-5} to 5.5×10^{-5} g/joule. The phenolic asbestos mass loss can be represented as $4.3 \pm 1.1 \times 10^{-5}$ g/joule which corresponds to an apparent heat of ablation of 5.9 ± 1.5 kcal/g.

Figure 11 presents the mass loss rate in mg/cm^2 sec versus the power at the sample surface in W/cm^2 for carbon phenolic. The data are well represented by a line with a slope of 1. The silica phenolic data shown in Figure 12 behaves in much the same way as the carbon phenolic

data cited above. The ATJ mass flux data in Figure 13 demonstrates the low volatility of this specimen relative to phenolic-containing materials upon irradiation by laser. The phenolic asbestos mass flux loss data in Figure 14 exhibits a slope of one when plotted versus power density in the same manner as other phenolic-containing specimens.

D. Gaseous Species

A series of experiments was conducted in which the gaseous ablation products were sampled during irradiation using a Bendix time-of-flight Mass Spectrometer. This work was done with the pyrex vacuum system described in Figure 1. A specially designed gas sampling valve which allows direct sampling into the mass spectrometer at pressures up to one atmosphere was used in these experiments. The material examined was 91LD phenolic resin. The power range was 10 to 100 W/cm² and the exposure time was 60 seconds.

Preliminary analysis of the mass spectra indicates the following: NH₃ and CH₄ at 10 W/cm² power; from 25 to 100 W/cm² NH₃, CH₄, 2-propanol, 2-butanol, C₂H₆, C₃H₈, C₄H₁₀ and C₅H₁₂. These results are displayed in Table 7. TABLE 7. MASS SPECTRA OBSERVED DURING LASER HEATING OF PHENOLIC RESIN (GE 91LD)

このない いっち 王の いちた

30

IV. REFERENCES

The state of the s

- Smith, D.M., Thibault, R.J. and Horne, T.T., "10 KW CO₂ Laser Test Facility for Vulnerability and Hardening Programs", presented at 3rd DoD Conference on Laser Effects, Vulnerability and Countermeasures (1977).
- Zavitsanos, P.D., "Mass Spectrometric Analysis of Carbon Species Generated by Laser Evaporation", Carbon 1968, Vol. 6, pp. 731-737, Pergamon Press, NY.