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# Abstract

One of the difficulties in relating the shadow prices of a
linear economic model to their counterparts in the real economy being
modelled is the assumption of perfect competition. Under this assump-
tion competition would force the price of any resource in excess supply
down to zero. In real economies, however, owners of capacity routinely
receive a return even when that capacity is underemployed, precisely
because competition is imperfect. We present a method for determining
a stable system of shadow prices consistent with an absence of competi-~
tion among the owners of slack capacity and show that this implies

non-zero prices on all resources, regardless of excess supply.
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Pricing Underemployed Capacity in a Linear Economic Mode)

George B. Dantzig and Peter L. Jackson

Introduction

This paper presents a method of associating a new set of dual
variables with the optimal primal solution of a linear program so that
the shadow price associated with an item in excess supply need not be
zero. The general motivation for the method is the observation that, in
real economies, resource prices must be positive if the ouners are to
have sufficient incentive to supply their resources to the market. A
solution to the system in which a resource in excess supply had non-zero
price clearly represents a dis-equilibrium situation which would give
rise to competition among the ouners that would presumably drive the
price doun toward zero. However, for technical or institutional reasons
this competition may not exist, at least in the short run. Barriers to
competition can take the form of market entry costs, resource
differentiation, conversion costs, and the existence of large bargaining
units, all of which effects may not be captured or even represented in
the linear economic model. In the absence of competition there may be a
range of prices which “work” and we propose to allouw a small amount
(actually an infinitesimally small amount) of substitution among the
resources and capacities that are actually employed and to select a
price system which reflects the marginal substitution possibilities

within this amount.

PLEASE NOTE: ALL o and B are subscripts.
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Ihe Method

We are given the primary optimization problem: maximize Z subiect to

X20, Y20, s20 and

Dual Variables

ad + BX + 1Y =K g 20 1)
-gy+s =0 720 (2)
10 = Z (max) (3)

The objective is to maximize a vector output from the system, the
bill-of-goods vector a@. The vector X may represent both production
activities and certain exogenous consumption activities. Similarly, K
may represent both resource capacities (upper bounds) and required
outputs (the negative of lower bounds) of the system. The vector Y
measures excess supply of the resources/commodities of the system and
the scalar variable s is a weighted total of this excess. Equations (1)
and (3) form a very general representation of a single period linear

economic system.

Equation (2) defines a variable s as a composite measure of the slack
capacity of the system. In general, the zero components of g correspond
to (end-use) commodities and the positive components correspond to
resources. MWe wuill refer to s as a measure of the availability of

“generalized capacity”.

Let the solution to this problem be denoted 0°, X®, Y°, and s° with

dual variables ¢°, and r°. In general, this solution will satisfy:
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8920 q)
19 =0 (5)
0% = 1 (6)
o%% = @° (&)
Furthermore, the dual variables partition the matrices B and I, and the

corresponding vectors X and Y, into two groups, indexed by subscripts a

and B, according as the columns of B and I price out positive or zero,

respectively:

o%8q > 0, and 0%1g > O (8)

¢%8g = 0, and o°Ig = 0

(9)

Note that (Xq%,Yq%)

We require that the system be efficient with regard to the

availability of generalized capacity, by which we mean that it is not

possible to attain max (Z) = 6° unith s ¢ 8°. Such a solution can be

obtained by a secondary optimization: maximize W subject to 6 2 O,

X 20, Yp 2 0 and

Dual Variables

a0 + BgXg + IgYp

=K o220 10)
-gpYg + 8 =0 720 11)
18 = N (max) (12)
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Note that the original optimal solution 6°, Xg°, Yg° and s° also
satisfies (10) and (11) so that this system is feasible. Moreover,

multiplying (10) by o° yields:

0%a0 + o%BgXp + ¢°IpYpg = oK

which upon substituting (6), (7) and (9) yields 6 = 6° so that the

solution obtained also optimizes the original problem.

Let the solution to this secondary problem be denoted 0', Xg', VYg',

s' with dual variables o', and 7'. This solution will satisfy:

! =1 (13)
o'a 20 (14)
o'Bg 2 0 (15)
o'lg 2 g8 (16)
o'k = 8! an

We choose as basis the latter, which is optimal for both the primary
and secondary optimizations. Note that the previously obtained prices
(e®,7%) hold in the original problem for this basis so that no revision

of these prices is necessary.

He next assuvae that in the short run, for technical or institutional
reasons, the system is “sticky” with respect to generalized capacity. By
this, we mean that if the data a, B or K shouid change by small amounts

during the period for which the model is defined the availablility of
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generalized capacity, as measured by s, would be unable (in the short
run) to adjust for these changes. So, given 8' , the real system is
“better” represented by the problem: maximize Z subject to Xg 2 0,

Xg 20, Yg 20, Y 20, t 2 0 and

Dual Variables

a0 + BgXq + BBXB + IqYa + IBYR =K o (18)
- gaYa ~gRYB + t = -s! T (19)
10 = Z (max) (20)

where ue have set t = s - g, Because of our choice of s', max (2)
yields t = 0 and (19) is now an active constraint. With t = 0 this

constraint may be uritten:

gy - Y9) =0

This relationship implies that even though a resouce may be in technical
excess supply an increase in its use can only be accompanied by a
decrease in the use of one or more other resources, where the
substitution occurs according to the vector g. Effectively, what this
constraint has done is remove all the slack capacity from the system but

permit substitution among the capacities actually in use!'.

'No substitution actually takes place in this problem since the original
primal solution, with Y = Y9, is still optimal. Our device for
generating a new system of prices consists of forcing an
infinitesimally small amount of substitution to take place.




We do not propose to solve this problem directly because there can be

t numerical difficulties during computation due to round-off of s'.

By construction, the original basis (uwith t taking the place of s in
the basis) is optimal for both the primary and secondary optimizations
and so will be optimal for this modified problem. Since at an optimum
t =0, the basic solution is degenerate and the optimal prices are not
necessarily unique. The set of the optimal values for the dual
variables can be easily parsmetrized by a single parameter, A. MWe will
resolve the price ambiguity by proposing a stability condition which, in
turn, will be seen to imply a particular value of the parameter A, easy

to compute.

To begin, ue claim that the optimal dual variables for problem will

be of the form:

02 = ¢% + Ao! 21)

; 12 =) (22)

where A is chozen from an interval [0,L] for some positive real number,

L. This can be seen by combining (6) - (9) and (13) - (17):

ola = g%  + Ac'a 2 0 (23)

o2Bg = ¢%8g + Ao'Bg 2 O (24)

o2lpg - rigg = o%Ig + A(o'Ig -gB) 2 O (25)

02K - 728" = g% + A(o'K - s8' ) = 0° (26)
-6-
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which hold for all values of A 2 0. In addition for optimality we

require

02Bg = 0%Bg + A0'Bg 2 O 27

o02lq - 12gq = 0%1q + Al(0'lq - ga) 2 O (28)

which hold for at least A

0. Since 0°Bg and 0%°Iq are both strictly
positive there is some L > 0 for which the relations (27) and (28) hold
for all A € (0,L). Relations (23), (24), (25), (27), and (28) represent
dual feasibility and equation (26) shous that the solution satisfies
strong duality. Thus, (02,72) is optimal for all A ¢ [0,L]). The proof
that there is a maximal L ¢ +e rests on a further assumption, to be made
shortly. Let A2 equal the maximal such L, assuming it exists. From (27)

and (28) it can be seen that:

A2 = max (L)

=min [ min _g%3; , min il 1 2D
iea -0'B; iea -(o'l;i - g3i)
¢'B8;<0 o'l -g;i<0

The numerator in each expression within the brackets of (29) is the
per unit amount that the objective function for the primary optimization
(0) is reduced by the introduction of a non-basic activity corresponding
to i ¢ a. The denominator is the per unit amount that the objective
function for the secondary optimization (s) is increased by the
introduction of the same activity. To emphasize this tradeoff, which A2

optimizes, urite:
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AT = _pO (30)
-as

et AP,

To motivate the next step, we propose a stability condition. Imagine
that the generalized resource is ouned by some monopolistic agent in the
econ;mv. Under the original basis with 7° = 0, this agent receives
nothing. Hoxever, since t is basic and zero in the solution these
prices may not be unique. By reducing the amount of the generalized
capacity which the agent supplies to the economy by some small amount,
¢, the agent can effect a change in prices resulting in 7 > 0. Under the
neu price system, the agent’s return is then maximized by supplying as
much of the resource as he now has available (that is, by letting € tend
to zerc). If there is a price system which is optimal for all ¢ in an
interval [0,e4] for some sufficiently small €4 we will define this to be

the stable system of prices we seek at ¢ = 0.

The next step, then, is to remove an infinitesimal amount, € (e€>0),
of the generalized capacity from the system?. Reuritten, the problem

becomes: maximize Z subjeoct to Xq 2 0, Xg 2 0, Yog 2 0, Y3 2 0, t 2 0 and

Dual Variables

a0 + BgXa + BgXpg + laYa + IBYB K o (31}

- ga¥Ya -~ gBYB + t -(s! +e¢) T (32)

10 Z (max) (33)

2An  alternative approach would be to “introduce into” rather than
“remove from” the system. However, no change in prices would result
since t is already in the basis.
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Assume that this system is feasible for sufficiently small ¢. Since s!
is maximal for @ = 6' any solution to (31) - (32) must hava 6 ¢ 0! and t
non-basic. Again, we do not propose to solve this system directly
because of numerical problems due to redundancy and round-off ervors in

representing s' exactly and in choosing ”small” values of €.

Defining 02 and r2 as before, we note that there is some L > 0 such
that (02,7r2) is a dual feasible solution for all A € [O,L]. That is,
relations (27) and (28) hold for all A € [0,L]) and the relations (23) -

(25) hold for all 2 2 0. With the new right hand side, relation (26)

now becomes:

0% + A(o'K - 8') - e

02K - 72(s'+e)

0° - Qe (34)

I1f there is no upper bound for L then (¢2,12) is dual feasible for
all A 2 0 and equation (34) shous that the dual program is unbounded.
Thus, the assumption that (31) - (32) has a feasible solution, and hence
a bounded dual, implies that A2 as defined in (29) does exist and that L

has a finite upper bound.

Proposition: 1If, using the original basis, all basic variables other
than t are strictly positive and if the system (31) - (32) is feasible
for small €, then there exists a sufficiently small €420 such that the
dual variables given by 02 = ¢° + A2¢' and 72 = A2, for AZ as defined in

(29), will be optimal for all € in the interval [0,¢,].




Proof: Consider the original basis applied to the system (31) - (32).
t Since t was basic, the solution value of t is given by the inner

product of the “t rouw” of the basis inverse and the right hand side. It
is easily verified that the ”t row” of the basis inverse must be
(o',7') since this basis is optimal for the secondary optimization.

Hence the solution value of t is given by:

-
n

o!'K - 71(st! + ¢)

o'K - 8' - ¢

=-¢

using the substitutions (13) and (17). Given the non-negativity

constraint on t this basis is not feasible for any positive €.

Let X;i, or possibly Y;, be the non-basic variable which minimizes the
expression for A2 (29) and consider the effect of increasing this
variable. For convenience let us assume this variable is X;j. Denote
the column of coefficients in the problem associated with this variable
by P. Note that in general the vector P is either of the form [B;/,0]’
, or [1;7,9;)/. Premultiplying this column by the basis inverse yields the
F representation of P in terms of the basis. It may also be interpreted as
the column of “substitution factors” (Dantzig [1], p. 268). The
substitution factor for the basic variable 0 will be the inner product
of the “0 row” of the basis inverse and the vector P. Since this basis
is optimal for the primary optimization, it is easily verified that
(6%,79) is the ”0 row” of the basis inverse. It follous that the

substitution factor for 0, (0¢%,7%°)P, is AO as defined in (29) and (30):

- 10 -
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0 = 0° - 40°X; (35)

Similarly, the substitution factor for t, (o',7')P, is As as defined

in (29) and (30):
t=-¢€ - 8s8°X; (36)

Consequently, we can maintain feasibility (t 2 0) by setting t = 0 and

Xj = es(-8s8) 2 0.

Assume first that all basic variables other than t are strictly
positive so that there is a range [0,X;] over which X; can be increased
without forcing other basic variables negative. Let ¢4 = As*Xi. For any
€ € [0,eq]) we can maintain primal feasibility by pivoting X; into the

“ 7 basis at level €/(-8s) and dropping t from the basis.

It is easily verified that the dual variables corresponding to this
neuw basis must be (02,72) with 2 = A = A2, We have already shoun that

this solution is dual feasible. From (30), (34) and (35) the right hand

side prices out:

02K - 12(s! + ¢)

0% - aAZ¢

8% - ¢A8/(-As)

0% - 40°X;

=0 37
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demonstrating that strong duality holds. The new basis must be optimal

for all ¢ € [0,¢4). Q.E.D.

In general, however, ue cannot expect all the primal basic variables
to be positive so the poasib%litv remains that this new basis will be
optimal for € = 0 but not optimal for any positive e. Since ue do not
propose to actually perform the optimization of (31), (32), and (33) for
some pre-selected ¢, uwe will content ourselves with defining the new
prices to be the same as those obtained in the non-degenerate case -
namely (02,72) with 12 = A2,  In either case, since 12 > 0, any agent
owning generalized capacity has less incentive to withhold the resource

than under the original price system (v = 0).

Combining relations (25) and (28) reveals that we have achieved our

objective:

72 > 0 ; and,

o21; 2 1293 > 0 , for all i such that g; > 0. (38)

Under the original price system we had o°Ig = 0 which meant that items
in excess supply received a zero price. Under the new price system
(v2 > 0) we have that a resource (in general, any item i for which
9% > 0) uill receive a positive price regardiess of technical excess
supply. Interpreting 72 as the price per unit of generalized capacity
and g as the physical conversion factor for specific resource i, (38)
states that the price of a resource must not be less than its value as

generalized capacity. Furthermore, we may interpret r2s' as a transfer
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payment to the ouwners of slack capacity, suggesting that our device will
provide prices more compatible with models using an “institutional

arrangements” approach (eg. Dantzig [2]).

In summary, equilibrium prices of a linear economic mode! can be
unstable. Small changes in capacities or resources can induce wide
variations in prices. As an alternative, we have looked at an economy
where an absence of competition prevents changes in slack capacity from
optimal (equilibrium) levels except for some potential substitution
among capacities in use. We proposed neuw prices obtained through a
device of forcing an infinitesimally small amount of substitution to
take place among the capacities in use. These new prices are given by
(21) and (22) uwith A = A2 as given by (29). These new prices are stable
in the sense that they are invariant to small changes in available

resources and capacities.
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