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ABSTRACT

P 
The added mass and damping coefficients for sway, roll and yaw are for-

mulated for a ship with forward speed. The theory is similar to that given

by Ogilvie and Tuck (1969) for the heave and pitch coefficients of a slender

ship. Numerical results are presented for the cross—coupling coefficients,
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INTRODUCTION

V 
A substantial amount of effort has gone into predicting the added mass and

damping coefficients of an oscillating ship. Historically, a large part of

this effort has been concentrated on the vertical p lane motions of heave and

pitch with some interest shown in the horizontal motion of roll. Korvin-

Kroukovsksy and Jacobs (1957) emphasized the importance of coupling coeffi-

cients in the vertical plane motions , i.e. the pitch force due a heave motion

and vice versa. Their method of calculating these coefficients was based on

strip theory with some adjustments made to include forward speed and three-

dimensional effects. However , their method for finding these “dynamic coupling”

terms appears to be incomplete in that these terms do not satisfy the symmetry

relations established by Timman and Newman (1962).

Salvesen, Tuck and Faltinsen (1970) applied a more consistant approach to
the problem of ship motions and developed a theory for both the vertical and

horizontal modes of motion. Their cross-coupling coefficients did satisfy the

Timman—Newman (1962) relations and gave improved results when theory was corn-
• pared with experiment.

Ogilvie and Tuck (1969) found the added mass and damping coefficients for

heave and pitch by using a systematic applic ation ef matched asymptotic expan-

sions. Their results satisfied the Timman—Newman (1962) sy mmetry relations

but d i f f e r ed  from the coefficients given by Salvesen , Tuck and Faltinsen (1970)

in a number of ways. The Ogilvie-Tuck coefficients included a term which rep-

resented the integral of the square of the velocity potential evaluated on the

free surface. They did not include a velocity-squared term which they consid-

ered to be of higher order. In an effort to determixie the relative importance

of the free surface integral terms , Faltinsen (1974) evaluated them and compared
them with both experiments and the terms given by Salvesen , Tuck and Faltinsen.

The results indicate that the Ogilvie—Tuck heave—pitch coupling coefficients

are important and compare better with experiment than previous theories.

Timman and Newman (1962) included the horizontal motions in their sym-

metry relations. Specfically they reported that the cross-coupling terms

between roll and yaw and yaw and sway were antisynunetric with respect to for-

ward velocity. Inspection of the Salvesen , Tuck and Faltinsen coefficients

show that they satisfy these conditions.

TI _ _ _ _ _ _ _ _ _ _ _  

1
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2

One motion coefficient in the horizontal plane that has received some

attention is the roll damping coefficient. Typically the damping coeffi-

cient is composed of a velocity independent part , calculated from potential

theory , and a correction factor used to account for viscous e f f ec t s . In an

e f fo r t  to more clearly understand these various e f fec t s  on roll motion , Sugai

and Yamanouchi (1963) conducted a series of experiments using a self—propelled

model with opposing gyroscopes to provide a rolling moment . One of the re-

sults of these experiments was the indication that roll ing motion becomes
more linear as forward speed is increased . In other words , the non—dimen-

sional quantity of roll motion divided by roll exciting moment (mul tipl ied

by the appropriate constant to correct for the uni ts )  becomes less a function

of the actual magnitude of the rolling moment. This impl ies that roll damping

is speed dependent and tha t this dependency may be at least as important as

the viscous damping. Watanabe (1977) applied the principle of thin ship

theory to this problem and produced results that show a speed dependency on

the roll damping coefficient. However, he did not conclusively state wha t

effects a non—thin ship would have on his theory.

Using the same assumptions made by Ogilvie and Tuck (1969) for the ver-
tical plane motions, we will consider in this paper the following two ques-
tions: First , will a corisistant slender body theory produce roll damping

coefficients that reduce roll motions as the speed of the ship increases?
And second , will the theory produce numerically significant terms to the ones

derived by Oqilvie and Tuck.
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STATEMENT OF THE PROBLEM WITH RESULTS

EQUA TIONS OF MOTION

Similar to that shown by Salvesen , Tuck and Faltinsen (1970) , the coupled

L equations of motions for sway , roll , and yaw may be given as follows :

(A
22 + M)~~2 + B 22~~2 

+ (A
24 — Mz )n 4 + B24~4

j et
+ (A

26
+ xM) n6 

+ B26~ 6 = F
2e 1)

(A42 — MZ
c~~i 2 + 842 r)

2
+ (A 44+ I4

)-~4 
+ B

44~ 4 + C44 r)
4

let
+ (A46

— I
46

) 
~6 

+ B
46ri6 

= F4e

(A
62

+ X M ) Y1 2 + B
62~ 2 

+ (A
64— I

46
)-n
4 

+ R 64
r~4

+ (A66+ 16
) ’fl6 + B

66~6 
F
6e~~

t (3)

where

M is the mass of the ship
A ik IB ik are the added mass and damping coefficients respectively

I . is the moment of inertia about the j-th axis
3

• is the product of inertia

z
c 
is the vertical location of the center of gravity

• 
F ,el~

t 
is the force or moment in the j-th mode due to waves3

C44 is the hydrostatic roll restoring moment

Xc is the longitudinal location of the center of gravity

w is the frequency of encounter

n .  for j =2 ,4 ,6 is the sway , rol l , and yaw displacement , respectively.

(The dots denote time derivatives , i.e. is the roll accel-
eration.)

• The coordinate system used is a right hand one with the origin located in
the plane of the undisturbed free surface and the z axis passing through mid-

ship. See Figure 1 for definitions of positive sway, roll , and yaw.

-

f_ I  
_ _ _  
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Figure 1 Coordinate System

Consider the coordinate system as fixed in an incident stream with veloc-

ity U flowing in the positive x direction and the ship swaying , rolling ,

and yawing about that system. We now desire to find the added mass and damping

coefficients, and 8jk 
, for sway , roll , and yaw using assumptions sim-

ilar to the ones used by Ogilvie and Tuck (1969).

If we define the motion of the ship in a two parameter expansion , c

a slenderness parameter related to t’, - beam to length ratio , and tS , a
motion-amplitude parameter related to the smallness of motion , we can require
that the motion be smaller than the be3m of the ship even as c-~0 . Specifi-

cally, assume tha t

displacements resulting from n . 0(~ €)

where r~• is the motion in the j—th mode. Also assume that the frequency of

encounter is of the following order:

= O(c 1/2) .

Then the velocity potential for the complete (linearized) solution can be

represented as follows:

4i(x,y,z,t) = Ux + UX (x,y,z )  + ~J(x ,y,z,t) (4)

where the first two terms give the solution of the steady-motion problem as

shown by Tuck (1965) and the last term represen•:,~ everything that must be ad-

ded in order to satisfy the boundary conditions. We assume that ip(x,y,z,t)

has a time dependence of e~~
t 

and the velocity U is of order one.

As shown by Ogilvie and Tuck (1969) , we may put equation (4) into the

governing equations describing the boundary value problem of the oscillating

ship. We next linearize the problem with respect to the amplitude motion, but

-
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keep higher order terms of the slenderness parameter expansion. The time-depen-

dent part of the potential then is found to satisfy the following equations:

L + iJ.~ 0 in the fluid domain , (5)
yy zz

+ = —iwU(24~ + 2X~4)~+ x~ Ip) on z=0, (6)

and on the hull

ien~~(ri~ + xn6
) + iwn 4

(yn
3
- zn

2
) + Un

2r1
6

—U(n2
+ x~6

) (n
2x~~

+ fl
3Xyz

) + Ur 14:(fl3Xy
— n

2x~
)

+ z(n2xyy+ n3xyz
) — Y(fl

2Xyz+ n3x~~):J 
(7)

where n is the unit normal directed out of the fluid, n
2 

and n
3 

are the
components of the unit normal in the y and z direction respectively and

varibles subscripted with y and/or z denote partial differentiation with

respect to that coordinate.

The form of the above equations (5) - (7) can only be correct if the for-

mal rules of matched asymptotic expansions are followed. In other words, the

far field expansion of the ~ (x ,y,z,t) potential must match, to an appropriate
- order , an inner expansion of a potential representing a line of pulsating

sources and dipoles. To show that this is indeed the case, we could use a
method similar to that used by Troesch (1975), where he applied the theory

of Fourier Transforms or iise the method of complex variables as shown by

Ogilvie (1974). In both cases, the authors were solving anti symmetric prob— IV
• lems, which are applicable to the sway, roll , and yaw potential discussed in

this paper.

A solution for the complete ~ (x ,y,z,t) problem can now be given in much
the same manner as shown by Troesch (1975) for the case of an anti symmetric

pressure distribution on the free surface. The actual solution is fairly corn—

plex and it is not necessary to repeat it here. Rather, we note that since a

solution exists, we may find the pressure from Bernoulli’s equation and sub-

seguently the hydrodynamic force acting on an oscillating ship. The details

are given in the appendix.

ADDED MASS AND DAMPING COEFFIC IENTS

{ 

Following Ogilvie and Tuck (1969), -the generalized hydrodynamic force,

_ _ _- -V  

-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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F . , may be related to the added mass and damping coefficients in the fol-
lowing manner

F.(t) = 
~[~

U2A
jk

_ iwB
jk Jn k

(t)E ~~~~~~~~ + T~~
) + ~~~~ k

(t)

where the superscript (0) denotes the usual zero speed strip theory terms.

The velocity dependent terms, which are of higher order are found in T(1) and

These coefficients can then be given in terms of the steady motion

potential, x , and the usual zero speed forced oscillation potential,
defined in the following manner:

4’ . + 4 ’ .  = 0 in the fluid domain
3yy ~zz

~~~~~ 
= N. , j = 2,4,6, on the hull

-w24’.+ g$. = 0 on z = 0
z

and

4 ’ •+ ± A.e ’ ~‘ as y + + ~ 
-

where N is now the two dimensional normal in the y-z plane and N
J 

is

given as follows:

N2 
=

N4 = fl
3Y 

- fl
2
Z

• N6
xn2 -

The complete expressions for the complex factors T
jk 

are given in the

Appendix. If we make two assumptions, we can simplify the expressions for
T~~

) , T~~) , T,~~) , and T4~
) considerably. First assume that the ship is

symmetrical. (For a symmetrical ship the half—beam at the waterline, y
0
(x)

is an even function with respect to x and the y and z derivatives of the

steady motion potential, x(x,y,z) , are odd functions with respect to x .)

Next assume that the ship in question has long sections of parallel mid—body,

that is, long relative to its end section. (This has the effect of making the

end contributions to T~~
) and T~~

) higher order than the mid—body contribu—

tions.) The complete factors T
ik 

may then be written in the following manner:

~~~ . ~~~~ 
—- - —  - - -
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(4  

7

~~~~ = -p ( iw) 2 J dx Jdin 24’2 fdx t~~~
• L C(x) L

•1 ~~~~ = -p(iw) 2 
J 
dx J d~ (n3y - n2z)4’4

L C(x)

T66 = cl xx 2

= = -p ( iw) 2 dx J d ~~n2 4’4
L C(x )

= ~~~~ = f dx x tj~~
)

= ~~~~ = -p ( iw) 2 dx x J d i n 2 4’4
L C(x)

= 0 , j = 2,4,63)

T(1) = -T~
1
~ = ~~~~26 62 ix~ 22

• T~~
) 

~~~~~~~~

~ (i )  — —T~~’~~= —~ — T~°~• 64 — 46 iw 42

Tc~) = 0 , j = 2,4,6 -

p~~
) = ~~~~ 0

= —T~~~ = p (iw)3 

~J dx [JdY (4~ — ~~5_2ivy)

— L

- 
~~- a~ e

2
~~Yo]

-: and

= -T~~~ ~ p(iw)
3 

~J dx[j dY(4’2414
_ A2A4~~~

2i
~~

7

L

— ~~~ A2A4
&..2iVY~1
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where

p is the water density

C(x) is the hull contour at station x

L is the ship length

v is the wave number found from w2 = vg

g is the gravitational constant

y0(x) is the half-beam at station x

and
—ivy .A~e is the behavior of 4’. as y-*~=.

The added mass and damping coefficients are then given by the relations

= 4Re (Tc~~ + Tc.’) + T~~~} (8)

and

B. = —K Im {T~°~ + Tc’) + Tc 2)} (9)
jk w jk 3k

where Re and Im denote the real and imaginary parts of the complex expres-

sion respectively.

Before we compare these coefficients with those derived by Salvesen, Tuck

and Faltinsen (1970), write T~~
) and ~~~ following a notation established -

by Ogilvie and Tuck (1969) and used by Faltinsen (1974). Let

p(iw)3 ds 4>2 T~
2
~g j  2 26

F

and

p ( i w ) 3 .a!L
:i 
ds 4>24>4 ~~~

where a bar has been drawn through the integral sign to indicate that the in-

tegral does not really exist as written,and F denotes that the limits of

integration extend on the free surface frcm the body to infinity.

The added mass and damping coefficients derived by the two different methods

are given in Table 1. The ship is assumed to be pointed at both ends so that

the end terms given in the Salvesen, Tuck, and Faltinsen (1910) coefficients

do not appear. Also a
~k 

and b
ik 

represent the usual two dimensional sec-

j tional added mass and damping coefficients.

~~~~~~~~~~ ~~~

. I~~~~~~~~~~~~~~~~~ VV V VV V~~~~~~~~~~~~~~ V 
_ _ _

- — ~ I. 
~~~ -i 

-
~ 4.
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-‘ NUt~~RICAL RESULTS

Recall that we are addressing ourselves to two questions . First , will

thin I ht~’ >ry UtI f l W .i r ; IN ’’d d’j~’tidenci’ for t h~’ roll damp i nq coc’fflcl t’nt •lfld, ~~~~~~~~~

ond, are the extra terms, ~~~ 
, numerically significant? In order to answer

the first question, set F in equation (1) and F in equation (3) equal

to zero and let F4 in equation (2) be some constant. This corresponds to

the experiments described by Sugai and Yamanouchi (1963) where they applied

a pure roll moment to a moving model. A computer program was written that

solved equation (1) - (3) using the added mass and damping coefficients given

in equations (8) and (9). The hull offsets used were from a Series 60,

CB = .70 hull and the model was assumed to have the following additional char-

acteristics:

z = —0.2d
c

14 = M[(0.397B)2 +

C44 = MgGM

G M = - z
c

* 
16 M(0.25L)2

146 = 0.0

where d is the draft of the ship, B is the beam, and L is the length.

The computer program that calculated the horizontal plane coefficients

also returned the oncff. for the vertical plane , i.e. ,  the Ogilvie-Tuck added

mass and damping coefficients for heave and pitch. The Series 60 hull form

was selected in order to compare the results returned for heave and pitch

with those reported by Faltinsen (1974). (The comparison was satisfactory.)

While the hull form selected is not truly symmetrical and does not have large

sections of parallel mid—body, it should satisfy the conditions of symmetry

and relatively constant cross sections to a sufficient degree to answer the

two questions posed in the Introduction.

The method used for evaluating the free surface integrals is described

in the Appendix. The results of the forced rolling tests for three different

Froude numbers (F — .15,.20,.30) are shown in Figures 2,3, and 4. Inspec-

tion of Table 1 shows tha t B44 is independent of speed. Therefox~ , the only

r — way that the roll motion at resonance will b. influenced by speed is through

9

~~~•,—•.•—.———-—. ?--V-_ - 
.

•
~ ~~~~~~~~ ~~~.. ,• - . •~~~~~ —

~~

- - -
‘:

~~~ 
-



~~~~~ W ~~ 
-. —. - - - - -- -.

~~~~~~~~ 
. — -  — — - . — - - - -

10

~~~~ ~~~~
U) (~V 4 C ~1
0

~~~~~~~~~~~~~~ U
— Vb~ ‘—4----. r~4

0-’t~-13
~~
(~ J (~_l

3
>1
I.,
0 LJ
S +

U)
~1j 4~) c’J

+
•.-i .S
° 

(‘-1
IN

~4-1 ~~~S 0~ I
o ~~ L~p &-‘,
o W U )  •> ._I 

~? L~~ IN IN &.p k~P &~r ~~ ‘5 ‘5‘5 ‘5 IN IN ‘5 ‘5 ‘5 ‘5 IN IN
(N (N ~~ ‘ ,o .‘~ ~

. •
~~‘ •~~‘ IN IN

(N IN

l~~ ~-I ‘—__. -~ .—_-._~ ..-_ -----_. .. —
‘ 

.—.-- ‘ ‘—. ,.—. ..—. .—
‘ ~~~~~~~~~~ •-V~

__
~~~

0
‘5S

U)

F’ ~~ ~~~~~~~~~ ~~

-•—
‘ 

~~~~~~~~~~ 

.-•__ , ...

~~~~~~~~ 

.—_--
‘ 

.

~~~~~~~

4.’
S

C)

‘4.4
(N (N

r 
C) ~r ~~~~~ ~~ (14:

10 ~~O 
,~~~ ~~.

~~~ ~. •..~ • -..--~~-- r •-~ ~~ -
~~~~‘+ •. ‘ I 

—



— -----V -. . —

- • -~V. - ~~~~~~~~~~~~~~~~~~~~~~~~~ —

( 
11

4

i-i IN IN 1 I
IN IN

U) (NC’1 U) U)
‘5 ‘5 ‘5

‘—+-.---. ~~ U) ‘—4---—~ ~%• U) .—I-—--. Is.. U)
— ‘5 — V — ‘5
0-’ ‘—F--. ~ D’ ‘—i---. r~ e-’ ‘—+—~ r~

0-’
IN (‘4 IN
3 3 3

IN a (N IN

1_J LJ L-J
>~ a- E a a-

L~~J L~~J
S I 4) + 4) I lb 4~) ~~
.5 ~~ 0
4-) C-I C-I (N S

3 I 3 + 3 I 0 b
4) — —V. 

-V—V. )•~ 
,4

.5 ‘5IN (N ~~
. 4)

0) (N (N IN (N (‘4 (N $4

+ I I + + I U)
5 4-)
4) U) Li’ Li’ Li’ Li’ U’  Li’ >-, C)

‘5 ‘5 ‘5 ‘5 ‘5 ‘5 $4 0)
.5 (‘1 (N ~~‘ 0 “-i

0-’ 4~) IN (N IN IN IN (N QJ ‘44
.Q .0 I~ .Q .5 W

(I) 5 Li’ LI’ LI’ LI’ U-p Li’ 4.1
.•i: .-i ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ .—.------ ‘ .—. ..—.

o 0
— N C)

~~ U)
4.) -4 .•.4

--V. >
0o S
— 4)

cn 4-1
5

0) 4.1 ..4
4 1)

.0 (~
~~ Il -I

(4-i
‘0 ‘V5 0
‘)~ °

$4
S (N (N (N C) 5 4)
~ 3 3 3 ~ .,-4 Q~0 -— . -

~~ 
-
~~ F’ 0~.~~~N ~~

0 0 1  (N IN ~~
. -~

. 
~~

. -
~ 

_.4 (N IN (‘4 (N 5 ‘5 U)
4 4) I

U) U) .5
- S  + I I + + I 0) ~ 4.1

S W  > 0
0) U) Li’ UP Li’ Li’ UP U-P .-4 C) S

‘5 ‘5 ‘5 ‘5 ‘5 ‘5 f~ (n -_ I
(N ~~> 4-) (N IN IN IN IN (N ‘5

‘-4 .-I l~ .Q .0 ‘~ .0 ‘V ‘Vm ‘~ ‘-.-‘ ~-r ‘si’ -i ’ .5 ~ 4.’
U) ~~ ~~~~~~~~~ ‘_._-

~
.
~~ ‘-_.--_ ‘_ ..... .

~ ~~
.-_. ‘-.__-.., 4) 4~ 5

S S._I .,.4 4)
$4

In I

~~a) (~ $4
“4
‘44
S

V
S S U) 4)
0) 4) •_I .5

4.’
° S

.5 ~• S
‘4.4 F’
41 (N IN 40 40 ‘~~‘ — —o 10 10 ~~ ‘ 40 40 ‘.4 (No 4 4 4 — —

i lL
-
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

- 
~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~ 
. _ :

~
; VI9~~~~~~~~V~~~~ 

~~~~~t 
— — —



- - -~ -~ — . - - _ -
~~~~~~ 

- V -  . - -  V —

12

r the coupling between roll and sway and roll and yaw. Figure 3 indicates that

• this effect is negligible. Only the motion of yaw, in Figure 4, shows any

speed effects. We can conclude that slender body theory, as derived in this

paper, will not show an increase in the roll damping coefficient as forward

speed increases. This result can be contrasted with the results given by

Watanabe (1977) where an application of thin-ship theory did produce larger

roll damping coefficients as the forward speed increased. It should be noted,

however, that the theory of that paper included a trailing vortex sheet and

consequently differed fundamentally from the theory presented here . In a

recent paper by Ikeda, Himeno and Tanaka (1978), it is suggested that the

“wave damping component” of a moving, rolling ship is, to a large extent,

independent of speed for values of -r greater than 0.5. Here -r equals

Uw/g . The “wave damping component” corresponds to the damping coefficient

B44 presented in this paper. Our assumptions make T=0(~~ hI2) , which

represents high speed and/or high frequency of rolling. Thus it appears that

B44 is consistant with the results presented by Ikeda, et.al. (1978).

To demonstrate the difference between the added mass and damping coef-

ficients as derived by the theory presented in this paper and those coeff i-

cients derived by Salvesen, Tuck and Faltinsen (1970), Figures 5 through 8

are presented. The coupled sway—yaw added mass and damping coefficients are

non-dimensionalized by pVL and pVL4ç7i respectively. Here V is the

volume displacement of the ship. The coupled roll-yaw added mass and damping

coefficients are non—dimensionalized by pVL2 and pVL2vQE respectively.

They are all plotted as functions of . The results are shown for

a F =0.2 only. Froude numbers of 0.15 and 0.30 showed similar tendencies.

From the figures, it is clear that there are some differences. Figure 5

which shows the added mass coupling coefficient A62 of sway into yaw also

has included results of experiments conducted by Vugts (1970) . The experi-

ments were forced motion tests on a 10 foot segmented model. The sectional

added mass components were added to give the results shown in the figure. The

comparison between theory and experiment , at least for the coefficient of A62
-: ‘ ‘~ms reasonable. (Recall that the expressions A62 and B62 are unaffected

by the antisymmetry and constant mid body assumptions. Consequently, they

should be more applicable to ship shapes than any of the coefficients resul-

ting from a coupling with roll.)

In Figures 9 and 10, the ratios of ~~~ to ~~~ are plotted as
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F,” fun ctions of w /E7~ . These ratios are speed independent since both T(~~
and Tc~

) vary linearly with velocity. From Table 1, it is clear that the

real part of ~~~ corresponds to the velocity dependent part of the Salvesen,

Tuck and Faltinsen added mass and the imaginary part of ~~~ corresponds

to the velocity dependent part of their damping coefficient. Since Tc~~
represents the free surface integrals, we can see from these plots the rela-

tive importance of these terms to the usual forward speed terms as given by

Salvesen , Tuck, and Faltinsen (1970). For some frequency ranges, T~~~
)

the free surface integral, is equal to or larger than the usual forward speed

term.
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Figure 2 Sway response to unit roll moment
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Figure 3 Roll response to unit roll moment
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APPENDIX

FORCE AND MOMENT ON THE H ULL

Since most of the details for finding the force and moment on the hull

due to horizontal motions are similar to those for vertical motions as presented

by Ogilvie and Tuck (1969), only a brief simunary of the derivation will be

given here.

The time dependent solution is given by the ~(x,y,z,t) potential. It

must satisfy equations (5) - (7) which are repeated here for convenience

= 0 in the fluid domain (5)

—w2$~ + g4) i4)U(2$P
~
+ 2~< q , + 

~~~~~ 
On z~0 (6)

and on the hull

= iwn 2 (n 2+ xri 6) + iwri 4 (yn
3

— zn2
) + Un

2ri
6

-U (n 2+ xn 6
) ( n 2x~~~

+ n3Xyz
) + Ufl 4 I3n 3X~ — n 2 X~

)

+ z(n
2
x~~~ + n3X~~

) _  
~‘~~2

Xyz~ 
fl
3Xzz

) 
]

There is also a radiation condition that must be satisfied. More will be said

about this later.

In order to simplify the solution of the forced oscillation potentials,

Ogilvie and Tuck (1969) defined the following quantities:

n. and m.  for j =2 ,4 ,6 where

r>
2

n4 yn3- Zn 2

V n6 xn2 ¶

m — - n x — n x2 2 y y  3 yz

m
4 x~,

fl
3- x~

n
2
+ z(n

2X~,
+ n

3x~5
) - ~(n 2x~5+ n3x~2)

m6~ ~~~ ~~2

~~19
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Let the mean hull surface be defined by the equation

S0
( x ,y , z) = 0.

Then define a potential where

+ ~ . = 0 in the fluid
V yy 3zz

Ofl S = 0
~N j  0

and
+ g

~~. 
= 0 on z=0

Jz
Note that +6 X +2

Next define a potential ‘V • where -

- ‘~~~. = 0 in the fluid
3 + 3yy zz

—~- = m . on S = 0aN 3 0

and

+ g’1 . = 0 on z=0
z

Finally define a potential where

~~~~• + = 0 in the fluid

L 0 on S~~ = O

and

—u2~~ + gc2~ = — (2+4 + + x •~ ) on z=0
z ‘x Y y YY

Then +“~ (iw+ + U’Y - w2UIZ )n  satisfies all the equations in the boundary

value problems (equations (5) - (7))  to the order considered . The radiation

conditions for the and ‘Vj problems are the usual ones which require
out going waves. The potential represents an anti-syninetric pressure

distribution on the free surface, and as shown by Troesch (1975) , its radiation
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condition is represented by linearly growing, anti-syninetric out—going waves.

As shown by Ogilvie and Tuck (1969), the pressure can be found from

Bernoulli’s equation and then integrated over the mean position of the ship’s

hull to give a total force consistent to an order of O (c~ 
2,5) . It has the

following form:

F .(t) = —p jds~~rn.(iw)
2 — Urn. (iw)J $k r

~k+ Ufl.Er(iWYVk

+

As done in the main text, let us define several quantities as follows:

F.(t) ~ I:T~~
) 

+ Tc~
) + ~~~~ ]1lk(t)

Then -

= _P (iw)2Jd8 flj+k
So

= -piwU J ds(n .’~
!k

_m .+ k )

So

• and

T~~
) = -p ( iw ) 3U Jds ‘~j~ k

See the main text for the complete expressions for Tc~~
) when j=2 ,4 , 6 and

k=2 ,4 ,6

Consider now ~~~ . The far field behavior of and ‘I’. are given

as 

~~~ sgn(y)A~(x)e~~e~~
Wt - v Iy I )

and 

~~~~ sgn(y) B
j

(x) e
V5

e
i
~~~

t - vIYI )

as y -~ - ~ . Here v is the wave number given by w2—vg . Using this fact

and Green ’s theorem for two dimensions , we can follow the method used by

Ogilvie and Tuck (1969) to easily show that

r 

- 

!r~~
) .io 
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1

and 

~~~ = piwU 
L:5~~

j
m
k 

- +k
m
~
)

The following expressions are given for specific modes of motion:

= —T~~~= —piwU Jds ~‘2
+2

So

= —T~~~ = —piw U Jds(+ 2m4 
-

and

= —Ta ) = —Piwu [Jdsxcm2+4 — m
4+2
) + Jdsn2+4]

So So

To simplify Tç~
) 

, we need the far field behavior of the ~ potential.
Using the method shown by Troesch (1975) for a anti-symmetric pressure dis-
tribution on the free surface we can write

_w2UQ~n ..i. sgn(y)e~ 
wt~~ j~’~ [C .(x) - 

2iwU 
A
~~
(x)(z_ilyI)]

as y-’~~

Then we can show, using a method similar to that used by Ogilvie and Tuck
(1969) , that

T~~
) = 0

~~~~ 
— —T~~

) = p (jw)3 - A~e
2
~~
’
~
’)

— J A2~~~~”~
Yo

2v 2

and for roll , when either j~4 or k=4 and the other subscript equals 2 or 6

4 ~~
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T~~
) -T1~~ = p ( i w) 3 

~~~~J
dX çfdY[(.~ +k 

- A
i

AkX
e 2

~~~
)

L

- 

* * 
_ ( 4 4 j~+~ — A~~A,~e

2
~~
/) + Xy(+ j+j~~~ +jy

+k)]

+ ~~~~~~ e~~~~~’0 (~~. A. - A.A.2v Jx k J ’ ~x)

where the subscript of x means the derivative of the subscripted variable

with respect to x

Note the following:

i) For symmetric hull forms in
2 , 

m~ and x are odd functions
with respect to x .

ii) In regions of constant cross sections, m2 , in4 , x ~ and
A.  are equal to zero. ~“ -Ix

J x

iii) In the end sections the beam of the hull becomes higher order
than the beam at mid ships. As a result the oscillation poten-
tials +2 and +4 , also are higher order there than in the -

mid sections.

NUMERICAL METHOD FOR DETERMINING THE ADDED MASS AND DAMPING COEFFICIENTS

The added mass and damping coefficients were found in two steps. First,

the potential valid on the hull surface was determined. Next, a multipole

expansion, valid outside some radius R which inclosed the body, was matched

to the first potential. Using t~iis scheme significantly lowered the computing

time of evaluating the free surface integrals.

The potential in the near field was given by an integral representation

of sources distributed over the hull surface. The source strength, a~(c~n)
was found by solving the following integral equation:

= ~1TC j(Y~
Z) + J dLa j (c~n) .

~— (y,z,,C,n)

CH

on the hull , where }~-i is the normal velocity on the hull and G(y, z , g ,n )
is a Green’s function given by

—:; r 
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G(y,z;~~,~ ) = log /( y—r,) 2 + (z—ri )2 - logv’(y— ~)
2 + (z+~)

2

2e
V(Z+h1

e
(
e
iV
~~

_ d 1
E rv(z+n) + iv I y-c~ J)

+2~rie~~~~~ 
— iv I y—i :~

and E1
(x+iy) is the complex exponential integral. The method for solving

the integral equation is given in Troesch (1975).

Once the source distribution, ~~~~~~ was known, a circle of radius R,

where R enclosed the entire station being considered, was found. Then the

potential given by the source distribution on the hull was matched to a multi-

pole expansion consisting of a dipole and wave free potentials that were odd

with respect to the x-z plane. The matching took place on the circle. The

multi-pole expansion had the following form: 
-V

= A3[_ ~ e
’
~ sgn(y)Re {.e

’
~~~~El(vz+ivIYI) ,

)

+ ~~~~~~~~~~ + sgn(y) e~~
_
~~~1~~~]

N—i 
2in+ir sin(2m+l)e sin2mO 1

m=l 
A . (vR) 

J~~~~(vr)2m+l 
+ 
2m(vr)2mJ

where A. and A
im 

are coefficients determined from the matching processes,

r equals /y2+z 2 , and 0 is the angle between r and the negative z

axis.

The free surface integrals, defined as

— A~e
2
~~

’ )
yo

and 

Idy(s2s4 - A A e 2i
~~)

have integrands that oscillate with a neriod of w . The subroutine that

evaluated the integrals used Simpson ’s rule on 25 points for each interval of it.

The integration was terminated when a given interval made no significant con-
tribution to the total integral.
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