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ABSTRACT

We study first order systems of hyperbolic partial differential
equations with periodic boundary conditions in the space variables for
which complete initial data are not available. We suppose that we can
measure uI, the first J components of a solution u of the system,
perhaps with its time derivatives, but cannot measure uII, the rest
of the components of u , completely and accurately at any time level.
Such problems arise in geophysical applications where satellites are used
to collect data. We consider two questions. How much information do we
need to determine the solution u wuniquely in a way which depends
continuously on the data? How do we use these data computationally to
obtain complete initial data at some time level?
We investigate several approaches to answering these questions.
We show that under certain hypotheses uII at the initial time is determined
uniquely by and depends continuously on the data obtained by measuring
either uI over a whole time interval or uI and its first time derivative
at the initial time, together with either uII on a hyperplane in space of
one lower dimension or a finite number of Fourier coefficients of uII at
the initial time. Our results demonstrate that it is possible to reduce
the data requirements on uII if sufficient information about uI is available.
One application we examine is the effect of the Coriolis term in the
linearized shallow water equations on the possibility of recovering the wind
fields from the geopotential height.
We present algorithms and computational results for these approaches
for a model two-by-two system, and examine the method of intermittent updating
currently being used in numerical weather prediction as a method for the
assimilation of data. Our results suggest that the use of different frequen-

cies of updating is important to avoid slow convergence.
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CHAPTER I

INTRODUCTION

Statement of the Problem

One major consideration in the use of computers to solve partial
differential equations approximetely in scientific applications is the
availability of data. The equations governing many physical systems
have associated auxiliary conditions which together with the differential

equations give well-posed problems-=~problems which have existence,

uniqueness, and continuous dependence of the solution on the data.
Unfortunately, it is often difficult to obtein the data necessary to

;V completely specify the auxiliary conditions. Some physical quantities
are inherently more difficult to measure than others. Present systems

of observation may be either incomplete or inaccurate, and the necessary

FIRE ( AONREMER a

improvement of these systems to provide adequate classical data may

be too expensive to be practical,

s e

In this thesis we study first order hyperbolic systems of

partial differential equations of the form

Kk
(1.1) u, = 2, A,(x,t)u. + B(x,t)u + £(x,t)
t J X
J=1 J
where
! u = u(x,t) = €, x € RS, 0<t<t,

with periodic boundary conditions in x. The initial condition
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(1.2) u(x,0) = uo(x)

and the system (1.1) form a well-posed problem. We suppose that complete
initial data is not available. More specifically, we assume that we can

measure uI = (ul, ... », u,)', perhaps at several time levels and perhaps

4)
with its t derivatives, but cannot measure ur = (uz+l, S un)'

completely and accurately at any time level. We consider two questions:

(1.3) How much information about a solution of (1.1) do we need
to determine the solution uniquely in a way which depends

continuously on the data?

(1.4) How do we use this data computationally to obtain complete

initial data ai some time level?

We want as much of our data as possible to be measurements of uI, which
we presume to be available if we need it, and as little of our data
as possible to be measurements of uII.

Several remarks on (1.3) and (1.4) are in order. The answer to
(1.3) will certainly depend on the linkage between ul and uII in
the differential equation, so appropriate linkage conditions on system

|
(1.1) will need to be assumed. Although it would be nice to include

the existence of a solution for the data we measure in (1,3), we shall

see that we often have to overdetermine the problem to obtain continuous

dependence. The importance of uniqueness and continuous dependence are
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clear if we plan to use computational methods. If our data come from
physical measurements which are sufficiently accurate and the differential
equation is a good model for the physical system, then there will be a
solution of the differential equation which almost agrees with the
measured data; we assume this is the case when dealing with overdetermined
formulations of the problem., We thus take the perspective in answering
(1.3) that there is a solution u of the differential equation, we know
certain theoretically exact information about u, and we want to determine

u for all x and all t in some interval O <t<t Since this

0°
involves determining u at each fixed time level, since the initial-
value problem for the system (1.1) is well-posed, and since the system
(1.1) is reversible in time, it suffices to determine u at some fixed
time level, which we take to be t = 0. In addition, constructing an
approximation to u at one time level is sufficient computationally, for
we can then solve for u over the time interval of interest by standard

difference methods. See Richtmyer and Morton (1967) and Kreiss and

Oliger (1973).

Application--Numerical Weather Prediction

Problems of this kind arise in geophysical applications where
satellites are used to collect data., One area in which there has been a
considerable amount of work is global numerical weather prediction. One
of the simpler models investigated, a barotropic model, is governed by

the shallow-water equations (given here in a rotating Cartesian coordinate

system):
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where u and v are the horizontal wind components, ©® = gZ 1is the
geopotential (g is the acceleration of gravity and Z is the height
of the free surface), and f 1is the Coriolis parameter. Using satellites,
it is possible to measure atmospheric temperature reasonably well over
the whole globe, but measuring the wind field is more difficult. If
surface pressure or pressure at some reference height is measured, the
pressure field and thus the geopotential can be determined from the
temperature field., In more complicated models like the model governed
by what meteorologists term the primitive equations, the same discrepancy
in the availability of data persists: the temperature and pressure
fields are more completely and accurately measured than the wind field.
See Oliger and Sundstrdm (1976) for a discussion of several meteorological
models,

The problems involved in constructing complete and accurate

initial data for global weather prediction are more involved than just

the lack of complete measurements. The task of using all available
observations to the best advantage in a numerical prediction model is
called data assimilationy it is often called four-dimensional data
assimilation to emphasize the fact that observations are distributed in
time as well as space, To assimilate data, two main difficulties must

be overcome, Grid point values have to be approximated from the
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observations, which are irregularly distributed in space and time and

vary in accuracy. Objective analysis is the attempt to obtain these

appr xinations in a manner compatible with the numerical model., Once

a complete set of approximate date at the grid »oints at some time level

is assembled--perhaps with larger errors than desired because of incomplete
measurements--there is the numerical difficulty of initialization shock

to be overcome. This shock involves the repid growth of the fast-moving
gravity waves which physically should have small amplitudes. The gravity
waves drown out the slow-moving but physically significant Rossby waves

by nonlinear interaction. A discussion of these waves for a linearized
version of system (1.5) is given in Morel, Lefevre, and Rabreau (1971).
Initialization is the attempt to construct an altered, compeatiible set

of initial data which does not yield ar initialization shock when
numerically integrated forward in time. For a linear problem, initiaslization
can be thought of mathematically as the attempt to project the given
initial data into the subspace of initial data without gravity wave
components,

There are two main approaches to initialization. Static
initialization is the attempt to use relations among the variables which
have no time derivatives to derive a balanced initial state, often by
requiring some variables to be compatible with other variables. For
example, we may want a wind field compatible with a given mass field.
Dynamic initialization is the attempt to use the properties of the

numerical prediction model to imitate the adjustment among the variables

which occurs in the atmosphere., This involves inserting data at different

‘."\{




? time levels into the numerical model as the numerical integration proceeds.
The hope is that this will both construct a balanced state by the adjust-
ment from the model and improve the accuracy of those variables which
are incompletely or inaccurately measured. Dissipation in the numerical

f model is often used to damp the gravity waves.

Good summaries of recent research in meteorological data
assimilation are available in Bengtsson (1975) and McPherson (1975).
Because of the volume of work, we cannot mention all the important papers
which have contributed to the advances in this area. The interested

reader is encouraged to check the references in these papers and in the

H papers in the following summary.

Early approaches to initialization concentrated on the use of
balance equations~-equations derived by setting the time derivative of
the divergence of the velocity equal to zero in the divergence equation.
See Charney (1955), Thompson (1961), and Haltiner (1971) for discussions
of balance equations., It was soon noted that this approach did not pre-
vent initialization shock. The balance between the wind field and the
mass field (i.e. the pressure field) required by these equations is
only approximately valid in the atmosphere. Miyakoda and Moyer (1968),
Nitta and Hovermale (1969), and Charney, Halem, and Jastrow (1969)
proposed the procedure of dynamic initialization to solve both the
initialization problem and the problem of incomplete data. The method
used was intermittent updating, e.g., the replacement of the mass field

by its correct values at various times as the numerical integration

proceeds to construct the wind field, In the following few years,




many refinements to this procedure were introduced and many numerical
experiments were performed. See, for example, Miyakoda and Talagrand
s (1971), Talagrand and Miyaskodas (1971), Williamson and Kasahara (1971),
L j Williemson and Dickinson (1972), Mesinger (1972), Kasahara and Williamson
% (1972), and Temperton (1973). Some experiments integrated forward and
: backward in time, updating the mass field whenever certain time levels
were passed through. ©Some experiments also tried to construct the mass
field from the wind field., Morel, Lefevre, and Rabreau (1971) performed
experiments using data from the space-time manifolds on which satellites
gather data.

Although some success was obtained with dynemical initialization,
there are many difficulties yet to be overcome, Often the errors in the
wind field decreased to a non-zero asymptotic value when the mass field
was updated, The optimal frequency of insertion--the length of time
between successive updates in intermittent updating--is difficult to
determine. Often convergence is very slow. There was a marked decrease
in the effectiveness of the method when real data or data with errors
was used instead of the model-generated data used in simulation experi-
ments. The wind field does not appear to adjust to the mass field
in the tropics; wind observations in the tropics will be needed. It
was found to be difficult to.use data from the space-time manifolds on
which satellites gather data without creating an initialization shock
at each time level at which some data is inserted. For this reason,
McPherson (1975) suggests that intermittent updating is preferable to

continuous insertion. We also direct the reader to the recent papers

 ar—
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of Temperton (1976€), Blumen (1976), Hoke and Anthes (1976), Davies and
Turner (1977), Blumen (1977), Miyakoda, Strickler, and Chludzinski
(1978) and their references. Talagrand has recently studied some mathe-
matical aspects of four-dimensional data assimilation in a more general
setting and has derived a general criterion for convergence of data
assimilation. See Talagrand (1977) and Talagrand (1978). For informa-
tion on some of the current statistical techniques employed in objective
analysis, see Schlatter (1975) and Schlatter, Branstator, and Thiel
(1976).

Because of the difficulties encountered in dynamic initialization,
Ghil (1973) suggests returning to a static initialization procedure.
His idea is to derive an auxiliary system of differential equations
directly from the model equations being used which do not have time
derivatives of the wind field in them. Presuming the mass field and
sufficiently many of its time derivatives are known, we can conceivably
solve these diagnostic equations for the wind field at some time level,
yielding a balanced initial state. ile points out that the initialization
shock encountered using the balance equations comes from the fact that
they are not compatible with the model equations, having been derived
using an approximation. The systems Ghil derives are similar to the
balance equations, but are compatible with the model equations since
they are derived from them. He derives such a system fsr the shallow-
water equations linearized around a state of rest in Ghil (1973), and

for the shallow-water equations (1,5) and the primitive equations in

Ghil (1975). The diagnostic equations for the shallow-water equations
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are of mixed elliptic-hyperbolic type; the type of those for the primitive
equations is harder to determine. In Ghil, Shkoller, and Yangarber

(1977), numerical experiments are performed on the diagnostic system

for the shallow-water equations using an iterative relaxation scheme,

The results are reasonably accurate, except when there are large regions
of hyperbolicity. However, since two time derivatives of the mass field
are needed, these equations can only be of practical use where the measure-
ments of the mass field are sufficiently accurate.

The compatibility obtained by Ghil's approach is a substantial
improvement over that obtained by the use of the classical balance
equations, but it does not directly require the gravity wave components
to be small, particularly if thg data used has errors. The problem is
that the model equations essentially have too many solutions--Rossby
waves and gravity waves--and we are only interested in the slower-moving
Rossby waves. This problem may persist in using initial data obtained

from diagnostic equations compatible with the model equations unless the

data used-~the mass field with its time derivatives and boundary conditions

for the wind field--come from é solution of the model equations w’th small P
gravity wave components; this assumption is not guaranteed in view of f
the errors of observation and the fact that the model equations only

approximate the atmospheric motion from which data are observed. Kreiss f
has developed a general method using asymptotic expansions to essentially

project a given set of initial data into the appropriate subspace; more-

over, his method extends to non-linear problems. He points out that
the fundamental difficulty is the existence of different time scales

among the solutions of the equations, and we are only interested in the
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slower moving motions. His method modifies the initial data to suppress
the fast time scales. See Kreiss (1977) and Kreiss (1978) for details.
G. Browning has applied these techniques to meteorological systems in
work to appear.

Ghil's work demonstrates that the wind field is determined by
the mass field and its time history (given in the form of two time
derivatives) and appropriate boundary data for the winds, modulo the
theoretical and numerical difficulties encountered in solving nonlinear
equations of mixed type. By measuring a certain nonstandard set of
data, we can construct complete initial data at some time level. If
initialization shock still occurs because of errors in the data, Kreiss'
method could be applied. The most desirable approach to solve both the
incomplete initial data problem and the initialization shock problem
would be to go directly from a sufficient set of nonstandard data
which is possible to measure to the initial data projected into the
right subspace. This may require less data than to pass through the
intermediate step of constructing a complete set of initial data, and
then modifying this initial data. The best way to do this is not known.
A more thorough understanding of the construction of initial data from
nonstandard data for similar systems of equations would be helpful in
the attempt to solve this difficult problem, and we address ourselves
to this construction in this thesis.

We have made scveral choices in the formulation of the problem
as stated., We deal with linear equations, although some results extend

to certain nonlinear equations. We consider periodic boundary conditions
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to eliminate complications, for programming convenience, and also since
the torus, like the sphere, is & compact manifold without boundary.

We assume that measurements of uI are uniform in space. We construct
the complete set of initial date at time t = 0 for convenience;
because of the time-reversibility of system (1.1), we can view our
measurements of uI for times t > O as measurements of the time

history of uI.

Other Related Work

A somewhat similar problem for the heat equation and wave

2 T S Tyt

equation is discussed in a paper by Greenberg (1963). He 1ntro&uced
a method which uses data at different time levels on a course mesh to
construct initial data on a finer mesh. He constructs a multi-level
difference scheme on the coarse mesh which has the property that there

exist initial values on the fine mesh such that if the numerical integra-

L3
P
«
®
g
x

tion were performed on the fine mesh, then the computed solution would
agree with Greenberg's scheme on the coarse mesh. However, the set of
initial data on the fine mesh which is compatible with the given data
on the coarse mesh is not uniquely determined. His method uses more
data than necessary to achieve higher accuracy, which is basically
the reason one constructs multi-level difference schemes. See Kreiss
and Oliger (1973) for an analysis of such schemes.

Fattorini and Radnitz (1971) consider the problem of existence
and uniqueness of solutions of the n-th order Banach space valued

differential equation

11
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o (£) = Au(t) t >0

satisfying initial conditions

Jm®)=% for k € o

where « is a subset of (O,1,...,n-1}, with the condition that these
solutions must also satisfy an estimate of the form [lu(t)| = O(emt)
as t — + o, Fattorini (1973) considers the same question on a finite
time interval without the energy estimate. Necessary conditions on the
operator A are discussed in terms of the spectrum ¢(A) and the growth
of the resolvent R(A,A) for there to exist a (not necessarily unique)
continuous linear map from the data to the solution. In some cases,
it can be concluded that A 1is bounded,

In a more classical vein, there has been interest in the past
in the Dirichlet problem for the wave equation., Bourgin and Duffin
(1939) proved that uniqueness holds for the Dirichlet problem for the
equation g * U in a rectangle with sides parallel to the coordinate
axes if and only if the ratio of the sides is irrational. More recently,
Young (1971) and others have extended this result to more general
hyperbolic equations. See the references in Young (1971) and Young
(1972) for details, These results, however, do not include the con-
tinuous dependence of the solution on the data.

There has been a growing interest in other related improperly

posed problems, e.g., inverse problems. See Payne (1975) for a discussion
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of some of these and a good bibliography. Our approach to the stated 1
problem is to treat it as much as possible as & well-posed problem by
obtaining a priori estimates from which we can conclude uniqueness and
continuous dependence, Preliminary results of our work were reported

in Bube and Oliger (1977). 1

Summary of Results

The main results of this thesis are given in Theorems L4.9, L4.12
through 4,16, 5.6, and 5.8. They show that under certain conditions on

system (1.1) (mainly involving the linkage between u> and u'l),

measurements of either uI and uI at time t =0 or uI(t) for

t
O< T < to, combined with measurements of either uII at t =0 for
x restricted to a k-1 dimensional hyperplane or a finite number of

Fourier coefficients of uII at t = 0, are sufficient to uniquely

B

determine u at t =0 in a manner which depends continuously on

the measured data., These results demonstrate that it is possible to

reduce the data requirements on uII if sufficient information about

uI is available, The results requiring measurements of uI(t) for
0<t< to give a theoretical justification for the attempt to use
intermittent updating for hyperbolic systems satisfying the necessary
conditions.

In Example 4,11, we show that for the shallow-water equations
(1.5), the geopotential o(x,y,0) is determined by the winds u and

v and either u, and ¢(C,y,0) or v, and »(x,0,0). 1In

t
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Theorem 5.10, we show that for the linearized shallow-water equations
with constant coefficients, the winds u and v can be determined from
the geopotential ¢(x,y,t) for 0 < t < t, provided that the Coriolis
parameter f is not zero.

We also examine the method of intermittent updating for a sgample
two-by-two equation of the same form as the linearized shallow-water
equations for one-dimensional flow. The results suggest strongly that
the use of different frequencies of updating is important to avoid
slow convergence. .

We now outline the reat ofAfhe thesis. In Chapter II,
we introduce the notations and the function spaces we will use, and
present the necessary background results on pseudo-differential operators
and hyperbolic systems. In Chapter I1I, we Jdiscuss question (1.,3)
for a sample two-by-two equation to motivate the more general results
by understanding what approaches work and what approaches do not work
for this sample equation.

Chapters IV and V present answers to question (1,3) for more
general equations. We discuss approaches using time derivatives of

uI in Chapter IV and approaches which do not use time derivatives of

uI in Chapter V,
In Chapter VI, we discuss computational methods for the sample
equation of Chapter III, including an analysis of intermittent

updating.
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CHAPTER II

PRELIMINARIES

In this chapter, we introduce the notations and the function
spaces that we will use and present the background results on hyperbolic

systems that we will need.

Notation
The transpose and conjugate transpose of a vector or a matrix

@ will be denoted by ' and ¥, respectively. (x,y) = y*x will

denote the usual inner product for vectors x, y € mk. For x < mk,
the norm of x 1is |x| = (x,x)l/é. For a matrix A, the norm is
given by
[A] = sup [Ax]
|%|=1
We will also use |[x|_ = sup [x,| and
1<j<k I
|Al, = sup |Ax|
lx °°=1

If 0 1is an open set in ka, L2(Q), c®(a), p(a), and p'(2) will

denote the usual spaces with their usual topologies, as in Rudin
(1973) or Yosida (1974); we will also use these to denote spaces of

¢”-valued functions, each of whose components belongs to the appropriate

15
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space, For mn-valued functions, the inner product in LQ(Q) is

given by

(u,v) = [ v*(x) u(x)dx
Q

If ¢ € X, a locally convex topological vector space, and

u € X', the dual space of X, then we defined

(2.1) (p,u) = u(o)

We will use this notation in particular when X = p(2).

Periodic Distributions

We will be considering distribution solutions of the system (1.1).
The concept of periodic boundary conditions for functions can be extended
to distributions in two natural ways. Fortunately, there is a natural
identification between these two extensions. We refer to Rudin (1973),
Chapter 7, Exercise 22,

If y € Iﬁy the translation operator ry on functions ¢

defined on ]Rk is given by
(Ty¢)(x) = ¢(x-y)

If r§¢ =@ for each ¢ & Zk, we say that ¢ 1is periodic.

¥

- 7 i
(R o - .”,‘*,," Ww gy b




Tk denotes the torus IRk /Zk. D(Tk) is the subspace of all

® € Cm(]Rk) which are periodic. Convergence in D(Tk) is uniform
convergence of the function and all its derivatives. o' (Tk) is the
k

).

dual space of p(T). LZ(T¥) denotes the Hilbert space of all periodic,

locally L2 functions defined on ]Rk , with the inner product

(2.2) (u,v) = [ u(x) v(x) dx
"

where Q  1is the open unit cube (0,1)k in le. Functions u € L2(Tk)

can be viewed as elements of o' (Tk);' for ¢ € D(Tk), define

(p,u) = [ o(x) u(x)dx

A distribution v = z)'(]Rk) is said to be periodic if for
each y = D(]Rk) and ¢ € Zk,
<T§\U,V) = <“’)V)
D"'(IRK) denotes the subspace of all v € p' (]Rk) which are periodic.

The identification between elements of o' (Tk) and elements of

D;'(IRk) is as follows. Let ;1 denote a function in p(R) such

that 0 < §151 and

Al e
, gez t1
Define
k i
gk(x)= n g(x) for xER , ;
j=1

17




Then

(2.3) 5

EE =)
ezt ©K

Define the continuous linear operators G:D(Tk) —»D(IRk ) and
J:D(]Rk) —-»D(Tk) by Gy = qu> and Jy = Zgé‘.zk Tguy. The dual operators
G':D'(]Rk) 59 (1) and o :D'(Tk) -9 (R*) are given by G'v = voG
and J'u = ueJ. The range of J' 1is contained in b#(IRk Yo TORE G

#

denotes the restriction of G' to D#(]Rk), then G," and J' are

inverse mappings, yielding the desired identification. Note that G#

is independent of the choice of {1 depending only on (2.3). By this

identification, we can view elements of o' (Tk) as periodic distributions.
If o€ LE(Qk) or L2(Tk), the Fourier coefficients of ¢

are defined by

(2.4) 8(e) = e 2008 o(x) ax  for ¢ € 2¥

%

and the Fourier series of ¢ is

(2.5) L, 8(e) 2TH(x:E)
€T

For u € D'(Tk), define

(2.6) G(e) = <e'2"1(x’§),u) for ¢ € I




If vE€ D;Cﬂk), we define 9(¢) = (i(¢) where u = G'v. This is

consistent with (2.4) if v is in I2(T®), If ue€ p'(T") and

o € p(T%), then

(2.7) (p,u) = L, ®(&) u(-t)
t€T

If u, ve L°(T%), then

(2.8) (u,v) = 2 K ale) v(e)
t€T

For any real number s, define

g 2 2 & 2
(2.9) HuHs = ;gzk (1 + |§‘ )s |u(§)1

The Sobolev space HS(Tk) is the space of all u € D'(Tk) for which
”uHs < w, The topology of D(Tk) is the same as the topology induced

by the seminorms HﬁHs for s = 1,2,3,... . From this, we see that

Every g defined on zk such that

L.+ 8l®)® lele)|® <=
e e [g(e) |

for some s € IR is the Fourier transform of a u € D‘(Tk) given by

(p,u) = L, o(e) a(-t)
t€T

19
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s
- We can extend the L2(Tk) inner product to distributions u € H 1(Tk)
s
f and v € H 2(Tk) using (2.8), provided that s, * 5, > Oy under the
I
L same assumptions, we also define
| (2.10) (w,v) = T, ) $(-t)
L€l

For an integer s >0, HS(Tk) is the set of all distributions
in D'(Tk) whose distribution derivatives up to order s are all in
L2(Tk). See Agmon (1965) for a discussion of 1% derivatives. The

importance of Sobolev spaces stems from the following result.

2.1l. Sobolev's Lemma, If u € HS(Tk) and s > (k/2) + m for some
k
)

integer m > 0, then there is a function wu, € c(r such that

u =u, a.e. The induced inclusion map from Hs(Tk) into Cm(Tk) is

0

continuous.

We now consider functions and distributions depending on the
time variable t as well as the space variables x € ]9‘. Let
Y = B*x (0,1)' and‘ Z, = Tk % {0,1). D(Zk) denotes the space of
all ¢ € dm((k) which are periodic in x and whose support in 1,
is a compact subset of (0,1), topologized ﬁs the inductive limit of
the subspaces of d”(nk) whose elements are periodic in x and have
fixed compact support in t. This is similar to the usual construction
of the topology on p(n) as in Yosida (1974). o'(zk) is the dual
space of D(Zk). D&((k) denotes the subspace of all v & D'(fk)
which are periodic in x. As before, there is a natural identification

between elements of D'(Zk) and elements of D&(Qk)'

20
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From here on, we will overlook the technical distinction between
elements of D'(Tk) and D;ka) and that between elements of D'(Zk)
and D*(gk)‘

The distributions in D'(Zk) thet we will be interested in can
be considered as continuous (or at least integrable) functions from
[0,1] into H®(T®) for some s. C([0,1], H®(TX)) 1is the Bansch space
of all continuous Hs(Tk)-valued functions u(t) defined on [0,1] with

norm

(2.11) lull = sup [lu(t)]l
"0 ogegl 3

L2((0,l), HS(Tk)) is the space of all Bochner square-integrable

HS(Tk)-valued functions u(t) defined on (0,1) with norm

1
2 1/2
(2.12) lall, , = (1 la(e) 2 at)*
4 0
See Yosida (1974) for a presentation of the Bochner integral, If
u & LE((O,l), Hs(Tk)), we can view u as a distribution in D'(Zk) or

k+1

in o' (T ) defined by

1
(2.13) (p,u) = [ {(o(t),u(t)) at
0

for o(x,t) € D(Tk+1) where ¢(t) denotes the function of x in
D(Tk) obtained by holding t fixed. We will say that a distribution
v in 9'(zk) or in D'(Tk+1) is in L2((0,1), Hs(Tk)) if there is

& u€ LQ((O,I), Hs(Tk)) for which (2,13) yields the same distribution.

Similar statements hold for C([0,1], H*(T¥)).




Pseudo-differential operators on a torus

The theory of pseudo-differential operators is a powerful tool
for handling linear partial differential equations with variable
coefficients, We present here a theory of pseudo-differential operators
based on Fourier series instead of Fourier transforms. The constructions
are almost identical, and we refer to Taylor (1974) for details., We
define symbols to be ¢” 1in the dual variable ¢ as in the transform
case to carry over the results depending on asymptotic expansions.

The main difference between operators based on series and those based
on transforms involves the discrete nature of the dual variables in the
series case. When new symbols are constructed in the theory, we have
to manipulate them into a form which defines them for all ¢ < ]Rk;
this is necessary since exp(2mi(x,t)) 1is periodic only for ¢ € Zk.
However, in dealing with symbols which are periodic in x, we never
have to worry about compact support, so many of the technicalities of

the theory are simplified.

2,2. Definitions. A multi-index is an element « of zk with non-

negative components. |a| denotes 5o 03, and «! denotes

J=1
H§=1 (a&!); Bz denotes the partial differential operator
a|a|
a
1 %
axl voe axk
o
For ¢ € Gk, ga denotes 511 s §Zk. We define
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For u€ p' (Tk), we have

P
(2.14) Dau(g) = go‘ G(e) for ¢t € % .

2.3. Definition. Let m€ R. S™(T¥) 1is the set of p(x,t) € c°(T5 xE5)
(the set of functions o(x,t) € ('Zm(]Rk X ]Rk) which are periodic in x)

such that for each pair of multi-indices & and B, there is a constant
k

ca,ﬁ such that for all ¢ € R
(01 -1
(2.15) sup 265’ p(x,8)| < ¢, (1 + [6)™ 1

X

This corresponds to the case p =1 and & = 0 in Taylor's notation.

p(x,t) 1is called a symbol. We also allow matrix symbols,

2.4, Definition. If p(x,t) € ™, define the operator P = p(x,D)

on p(1%) by

(2.16) (Pu)(x) = T 20E) oy vy age)
eezs

p(x,¢) 1is called the symbol of the operator P and is often denoted

m 1s called the order of the symbol or the order of the operator.

GPO
P 1is called a pseudo-differential operator. We write P € ps”,




2.5. Theorem, If p(x,t) € S™, then P = p(x,D) is a continuous
linear operator from D(Tk) into itself. P can be extended to a
continuous linear operator from p'(Tk) into itself, using either the

strong dual topology or the weak* topology of D'(Tk).

2.6. Theorem, Let {mj] be a decreasing sequence of real numbers

m
with mj — = ©, Suppose pj(x,g) €S j. Then there exists a
m

p(x,t) € 8 % sueh that

m
(2.17) p~ L p.€a” for v =1,2,...
gV J

When (2.17) holds, we write

p~ij

and we say that p is an asymptotic sum of the pj's.

2.7. Theorem. The product of two pseudo-differential operators is

m
again a pseudo-differential operator. If r(x,t) € § : and
m, m1+kn2
a(x,t) € 8 “, then P = q(x,D) r(x,D) € PS and
2mi(x=-
(2.18) op(rm) = I [ ETHEEE) gk 4 ) r(yn) ay
ezt 7%

g e el
" lo A"‘ﬂ

-
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In addition, 3

(2.19) oo(x,t) ~ & 3% a(x,t) D r(x,t)
3, a>0 ol ¢ X

my tmp= o]
The term corresponding to @ in this expansion is in S .

2.8. Definitions. If A:D(Tk) —»D(Tk) is a continuous linear

operator, then the dual operator A':p' (Tk) -9 (Tk) is defined by
(2.20) (u, A'v) = (Au, v)

The adjoint operator A*:p' (Tk) ~»p' (Tk) is defined by

(2.21) (u, A*v) = (Au, v)

This defines A*v as an element of D'(Tk) since

(2.22) C(@,¥) = (0}

for g p(T*) and y ¢ p'(TX). If A% = A, we say that A is

self-adjoint.




2.9, Theorem. The dual operator and the adjoint operator of a pseudo~
differential operator are pseudo-differential operators. If p(x,¢t) € st

and P = p(x,D), then P' and P* are in PS" and

(2.23) ops (%,8) = Z . [ Frilx,0) p(y, -t-1)' dy
(2.24) ope(X,8) = z:‘zk r{-k Frilagn) p(y,& +n)* dy
T\Q

In addition,

(2.25) opr(8) ~ T 2 3D(p(x, -¢)')
>0

ol a

(2.26) ope(X,8) ~ azgo a-!- a"n p(x,)*

The term corresponding to « in each of these expansions is in

sn-lol
i | M
2.10. Corollary. If r(x,t) =8 and q(x,t) € 8 ©, then
m, +m_ -1
nQR(x,g) - q(x,t) r(x,e) <8 - o8 {f the symbols r(x,t) and
+m, -
q(x,t) commute, then [Q,R] € PSm1 2", where (Q,R] = QR - RQ

is the commutator of Q@ and R. If p(x,t) € S", then

np*(x,g) - p(x,e)* < Sm'l. If p(x,e) is a Hermitian matrix for

all x and ¢, then P* - P € ps™!




P

2.11, Theorem. If p(x,t) € s™ and s € R, then p(x,D) is

a continuous linear operator from Hs(Tk) into Hs'm(Tk).

2.12. Definitions. If p is an n x n matrix, define Re p = (p + p*)/2.
1f (pv, v) > c(v,v) for all v€ m“, we write p >cI or just p >ec.
If P 1is a continuous linear operator on Q(Tk) which extends to a

continuous linear operator on 9'(Tk), define Re P = (P + P¥)/2,

R - S

2.13. Theorem (Garding's Inequality). If p(x,t) is an n X n matrix

symbol in s° and Re p(x,t) > c, >0, then for any s < O and

0

¢ > 0, there exists a constant R s such that
)

o

2 2
(2.27) Re(Pu,u) > (e = €) [ully - e . lhall

for a1l u € L2(TF) = HO(T®). See Theorem 7.3 in Strikwerds (1976)

for a proof alloﬁing matrix symbols.

2.1, Definition. Let A(t) = (1+ |e|2)/2. Por s € R, let
NOE (A(E))5%. We will use A% to denote both the symbol and the

operator obtained from this symbol as in (2.16).

; A% 1is an isometry of Hr(Tk) onto Hr-s(Tk). If u€ Hs(Tk),

then 3
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(2.28) lally = A%ully = (A%, A%u)l/2

a sl 32 s.+s
The operator A~ is self-adjoint, and A “A © = A

First order hyperbolic systems

We consider equations of the form

k
= & A (x,t)ux + B(x,t)u + f(x,t)

(1. %) u
j=1 I j

t

We assume here, without loss of generality, that the time interval

we are interested in is [0,1]. We adopt the following conventions.

e sv—,

% € ng‘ denotes the space variables Xir een X,
k is the number of space dimensions

t is the time variable

n is the number of components in u

Y is the number of measurable components,

For y € g@, yI denotes (yl, T yz)' and yII denotes

(yz+l, Vs 3 yn)’. AJ(x,t) and B(x,t) are real-valued n xn

matrix functions, periodic in x and C* in X and t for x € ]Rk
and t 1in a neighborhood of (0,1], We assume that ¢ ¢ L2((0,1), 1% (%))

for some s € R, (1.1) is to be understood as an equality of distri=

butions. Define




o

v’ k

4 £, (x,%,8) =2m T A, (x,t)e
! j:l J J
I (2.29)

. ZO(X,t,E) L B(x)t)

Viewing t as a parameter, (1,1) becomes

(2.30) u, = (L, (8) + Ly(t))u + £

2.15. Definition. A symmetrizer for zl(x,t,g) is a smooth one-
parameter family of n X n matrix symbols -r(x,t,t) € SO(Tk) depending
on the parameter t € [0,1] such that r(x,t,t) is Hermitian and

homogeneous of degree O in ¢ for || >1,
(2.31) r(x,t,6) >e¢>0 for |[g] >1
for some constant ¢, and

(2-32) r(x;txg) 2l(x,t,§) * Zl(X,t,g)* r(x)tlg) =0

2.16. Definitions. System (1.1) will be called symmetrizable hyperbolic

or s-hyperbolic if ll(x,t,g) given by (2.29) has a symmetrizer.

System (1.1) will be called symmetric hyperbolic if the matrices

Aj(x,t) are symmetric. System (1.1) will be called strictly hyperbolie ;
if the eigenvalues of ll(x,t,g) are purely imaginary and distinct

for ¢ # O,

29




Clearly symmetric hyperbolic systems are s-hyperbolic. Strictly
hyperbolic systems are also s-hyperbolic; see Taylor (1974) for a
construction of a symmetrizer. We can also show that system (1,1) is
s=hyperbolic if ll(x,t,g) is diagonalizable, has purely imaginary
eigenvalues, and has eigenvectors which are c® in X, t, ¢ except
where ¢ = 0; if p(x,t,t) denotes the matrix whose columns are these
eigenvectors for |§| = 1, extended to be homogeneous of degree O in
¢, and @(¢) is a C" cut-off function which is O near ¢ = 0 and 1
for |¢| > 1, then r(x,t,t) = ¢(¢) (p(x,%,6)™ 1) plx,t,6)! isa

symmetrizer.

2.17. Theorem. If system (1.1) is s-hyperbolic, then the initial
value problem for the system is well posed: given Uy € Hs(Tk) and
£ € 12((0,1), HS(TX)), there exists a unique solution

u€ ¢([0,1], HS(TX)) of system (1.1) satisfying u(0) = u.; in addition,

O’
there is a constant K independent of Yy and f such that J
(2.33) lully , < KClgll + el )

The proof involves deriving an energy inequality using the

symmetrizer and then using this inequality with some functional

analysis to obtain the result, See the sections on symmetric hyperbolic

systems and strictly hyperbolic equations in Taylor (197L4).
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Returning to our discussion of the questions (1.3) and (1.k4)
in Chapter I, we recall that we take the perspective that there is a
solution u of the system (1.1), we know certain information about u,
and we want to determine wu. We have chosen to pursue the intermediate
problem of constructing initial data at time t = O, A natural question
arises; does it make sense to discuss the initial data of a distribution
solution u € D'(Zk) of system (1.1)? The answer is affirmative, as
Theorem 2.20 will show. The proof of Theorem 2,20 is similar to the
methods which Taylor (1974) uses to handle elliptic boundary value
problems. We will need some auxiliary spaces of distributions in the

proof.

2.18, Definition. For real numbers s and m, define

(2.3) Jull? T @ [el®® s [fP)" [a, 0|
E<
T

s,m) 1
y 4

N

(

where ¢ 1is the variable dual to x and 7t 1is the variable dual to t.

+
Hs,m(Tk l)

is the space of all u € D'(Tk+l) for which :HuH(s ) < o ,
b b
Note that these norms are different from ”u“S w and “u“s 5 as
’ )
defined in (2.11) and (2.12).

If s <m<O0, then

L+ 6?5+ [P+ [e]DH™ @+ D"

<1+ fe)+ |1)DH"
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.

so HNTY) cu® ™), Also, 1r u e BOU(T™) ana o € o(TF*Y

+
then gu € HST(T¥*Y),

2.19. Lemma,

k+1 k+1

+
(i) If ue€ Hs,m(T s,m+l( k+1

) end u, € HS™(1*" %), then ue€ H T

(11) 1°((0,1), HS(T)) = S O(r**Yy,

k+1

(111) SN < e(lo,1], B (TH)) .

A SR IS o e S T o L Y (P
ezt
€z

£ 5 (1 5P [P |1l [, 0]
eez
€z

2
Proof. ”u”s,m+l

2 1
ol o+ =25 |

ut"i m
(am) ¢

and (i) follows,
Suppose u € Le((o,l),HS(Tk)). We view u as a distribution
in D'(Tk+l). Define

(2.35) U(e,t) = <e'2"i(x’§), u(t)? .

Then

(0l = £ 1+ e]?)® [5,0)2 .
gez®

Hence

e ‘~":.“l'g","0 R gt MR p s
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e 1
Lo+ (e a0 (Pat = [ ()R at <o
ez a 0

so u(g,t) € L2(O,l) for each t. Now

f a(e, 1) = (e'277'1((x,§)+t7), a )

fle-2v1t1 (e-eni(x,g)’
0

u(t)) dt

i
= [ P (et at
0

so @(&,7) 1is the t-th Fourier coefficient of u(¢,t). By Parseval's

relation
3
e 2 A 2
[ ule,t)|%at = L |d(e,v)|°,
0 1€T
Te)
2 2 o
”u“S e ) X 1+ [e]9)® T |G(§,T)|2 < w, proving (ii).
7 tE€L 1€T
Suppose Vv € Hs’l(Tk+l). Then

L o+ e]®® £ @+ fe|® |oG,))® <
§€Zk 1€EL

So for each ¢, the function

glt,t) = & €M 9(¢,q)
1€L

i1s in HY(TY) and

& z:k<1+|e|2>s le(e,*)
' tET

2
|l < o,




By Sobolev's Lemma, g(¢é,t) € C[0,1] for each ¢, and

letz, ), = sup Ja(e,t)| < cllete, ")l
o<t<1

for some constant ¢. Hence

2 2
(2.36) Lo+ [e]9)° llete, ) <=
ecz®
For each t € [0,1], define u(t) € o'(Tk) by setting the &-th
Fourier coefficient of wu(t) to be g(e,t). By (2.36), u(t) € HS(Tk)
for each t. Since each g(¢,t) is continuous, the dominated convergence

theorem and (2.36) imply

hae) - w2 = = 1+ [6]%)® |ale,t) - ale,t5) |2 0
t€l

as t-t,. So u€ ¢(fo,1], Hs(Tk)). If u(e,t) is definead by

(2.35), then u(e,t) = g(6,t) by construction. So wu(e,7) is the r-th
Fourier coefficient of u(e,t) = g(t,t), which is ¥(e,t). Hence
u = v, proving (iii).

2.20. Theorem. If u€ p' (s is a distribution solution of system (1.1)

»)
and this system is s-hyperbolic, then u : C([0,1], HO(TK)) for some

oE N,




r Proof. Suppose u € n!(q) is a distribution solution of (1.1).
_ el %

‘ Given € > 0, choose a ¢0(t) € p(0,1) such that 0 < Py < 1,

L . @0(t) =0 near t =0 and t =1, and wo(t) =1 for e¢f2<t<1l-c¢f2,
Extend the distribution @ to be periodic in t; then quu € D;(nﬁ‘*l),
} S0 we can view Q,u as an element of D'(Tk+l). Now
:
(2.37) (@gu)y = (L) (8) + Ly(t)) (@qu) + oy f + wotu

since @, 1is independent of x. By assumption, f € L2((0,1) Hs(Tk))

s’O(Tk+l) by Lemma 2.19 (ii). Since Pt

k+l)

for some s, so @of €H

k+l)

and @o u are in o' (T , they are in some Sobolev space Hr(T

1
We assume without loss of generality that r € Z, r <0, and r < s,

k+l) k+1

Then o,f € Hr’o(T » and @.u and @y u are in B T (1

(;k+l

). Hence

T Ykt so vy (2.37),

r-l,r+l(Tk+l)

by (2.14) (L (t) + Ly(t))(pu) € H

I‘-l,r k+1)

(pou), € H (T"°7). By Lemma 2,19 (i), 9u € H
Choose @1, ... , ¢_ € p(0,1) such that 0 < ¥y < 1, the

support of QJ is contained in the set where ¢j-l = 1, and

¢ =¢ =1 in a neighborhood of (e, l-c]. We can view wju as

+
an element of D’(Tk 1), and

(2.38) o (pgu)g = (D (8) + Ly(8)) (pgu) + oyf + -

Also, wju = @J(wj_lu) and ¢Jtu = ¢J (wj_lu). So p,u and

t
i @l u € Hr-l,r+l(Tk+l), r-2,r+1(Tk+l)
H t

(if r < -1). By Lemma 2,19 (i), P u € H

and (2,38) implies (cplu)te H

r-2,r+2( k+1)

T . Continuing
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by induction, we obtain qu € per-1,1

ou € ¢([0,1], HTH(TY)).

(Tk+l)

, and by Lemma 2.19 (iii),

Hence, given e >0, there is a ¢ _<s (where f € Lg((O,l),HS(Tk)))
such that u restricted to R¥ x (e, 1l=¢) 1is in C([e,l=€], HUE(TK)).
Let o be the ¢ corresponding to ¢ = 1/4, Let Yy = u(%).é HU(Tk).
Since s-hyperbolicity clearly does not depend on the sign of the time
variable t, we can apply Theorem 2,17 going both forward and backward
in time from t = 1/2 to obtain a solution v € C([0,1], H°(T®)) of
system (1.1) satisfying v(1/2) = Vy- We claim that v and u are
the same distribution in Dé(fk)' It suffices to show that for each
¢ >0, v and u agree in RE x (e,1-€). But this follows directly
from the uniqueness part of Theorem 2.17, applied with s equal to the
smaller of o_ and o. We conclude that u € C([0,1], HO(T%)),
proving Theorem 2.20,

Theorem 2.20 shows that if system (1.1) is s-hyperbolic, then
every distribution solution of (1.1) in 9'(Zk) is in C([O,l],Hs(Tk))
for some s € IR, We can thus restrict our attention to solutions u
which are in C{[0,1], Hs(Tk)) for some s € lR. To determine u,
it suffices to determine u(0) as an element of Hs(Tk).

We remark that if u € ¢([0,1], H%(T%)) ana £ € c([0,1],5"H(T%)),

then u, € C([0,1], Hs'l(Tk)), so it makes sense to view ut(O) as a

t
distribution in D'(Tk).
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CHAPTER III
AN ILLUSTRATIVE EQUATION

In this chapter, we consider question (1,3) for the sample

problem

(3.1) w, = Aux

where u = u(x,t) = (ul,ue)' is periodic in x, x € R, 0 <t < %,

is a constant real-valued matrix, and uy is the more completely observable
component, This sysfem is symmetric hyperbolic, and it is strictly
hyperbolic unless b =0 and a = ¢, The linearized shallow~water
equations for one~dimensional flow can be written in this form. Our
purpose in considering this example is to gain some understanding of
ﬁhat answers to question (1.3) can reasonably be expected.

To be able to infer any information about u, from ug, there
must be sufficient linkage between the equations of the system. For
(3.1), we must have b # O; otherwise the system uncouples. Also, some
information about u

2

u, = constant is a solution of (3.1). A measurement of some linear

functional of u

is necessary. This is clear since u, = 0,

will be needed.

2




A natural approach to this linear system with constant

coefficients would be to cross-differentiate and eliminate Uy reducing

the system to a second order equation for ul. If a=c=0 apd Db =1,
the system reduces to the wave equation Upy = U for ul; and
appropriate data for determining vy would be giving uy and 8tul

as functions of x at time t = 0. For equations with variable

coefficients, Courant and Hilbert (1962) point out that this reduction

is not always possible., Also, solving for uy does not solve our

problem; u, may be the component of interest. We are essentially back

where we started: given as much information as necessary about u

l)
find U, However, this approach does suggest that we consider measuring

uy and J,u., at

£ t = 0 as part of the data necessary to determine u.

If time derivatives of Uy are available, we can use the

first equation of system (3.1) to determine u, at t=0 from

u, and a,cu1 at t =0 and u2(0,0). If b # O, we can solve this

equation for 3 u

o yielding

(3.2) du =%(3u-abu)

At each time level, this is an ordinary differential equation for u,.

This leads to a well-posed formulation of the problem,

3.1. Theorem. Suppose b # 0. Given vl(x) € Cl(T), w(x) € ¢(T)
satisfying %(0) = 0, and Yo € T, there exists a unique v2(x) € Cl(T)

aich that the solution of (3.1) with initial conditions




-~ e —

(3.3) u, (x,0) = v, (x) , u, (x,0) = v, (x)
satisfies

ul(x,O) = vl(x)
(3.4) 344y (x,0) = w(x)

u2(0,0) = yo

v2(x) depends continuously on the data vl(x), w(x), and Yot

(3.5) A <yl + B3] lIv, + = |l
2C1(T) 0 b 101(T) [o] c(T)
where
lloll = sup |o(x)]
¢(T) " o<x<1

ol 3. gy = Wolry * 12,0l

Proof. (5.2y.implies

X
{ (3.6)  uy(x,0) = u,(0,0) + %(f) 3,u,(0,0)do - & (u,(x,0) - u,(0,0))

L The theorem, including the estimate (3.5), follows immediately. The
1

condition @(0) = [ wl(x)dx = 0 ensures the periodicity of v2(x).
0

o T A o S 5 8




3.2, Corollary. Let C(T) denote the subspace of ¢ = C(T) such

' that $(0) = 0. Define

LicH(T) x (1) - cl(T) x E(T) x €
by

L(Vl:ve) - (ul(o)’ atul(o)’ u2(0,0))

where u = (ul,ug)' is the solution of (3.1) with initial conditions

(3.3). If b #0, then L is a Banach space isomorphism.

e 1 ~
Proof. Given (vl’VE) ¢ (T) x ¢°(T), clearly anvI + baxv2 € ¢(T),
so the first equation of the system, viewed as an equality of distri-
butions in p'(T) at t =0 which we can do in light of Theorem 2,20

and the remarks following it, implies that btul(o) € C(T) and

134, OYlg gy < lal'llu1<0)lIC1(T) + lbl-llug(O)Ilcl(T)

So L is a continuous linear operator. Theorem 5,1 implies that L
is invertible and that L™= 1is bounded.
This corollary shows that there is a continuous one-to-one
, correspondence between the standard initial data ul(o) and ue(o)
and the nonstandard data ul(O), btul(o), and u2(0,0). For more
complicated equations, the compatibility conditions on the nonstandard
data for the existence of a solution will be more complicated, and we

will concentrate on obtaining estimates like (3.5) from which we can

obtain uniqueness and continuous dependence results,

8 TR ar e iy by
3 !
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The data requirements on u2(0) in this approach are as minimal

as we could hope. Thinking in terms of weather model, a measurement of

1
-

u2(0,0) could be obtained from a single weather station. We can also
use the same approach using 32(0,0), the mean of ug(x,o), as the

date required of u,(0) (where u(t,t) 1is defined by (2.35)).

i 3.3. Theorem. Suppose b #0 and s S R. Given v, € H(T),
¢ wE Hs-l(T) satisfying @(0) = 0, and 90 € €, there exists a unique

v, € H%(T) such that the solution of (3.1) with initial conditions

PRy

g (3.3) satisfies
2 ul(o) = ¥y
u,(0,0) = g,

v, depends continuously on the data vy, W, and 90:

TN g R S T A

(3.8) v lly < kCIgo1 +

1
vyl + R vl )

-
b
where K 1is a constant independent of a, b, and c.

Proof. (3.2) implies

~ 1 e 8 ~
| (3.9) (2rit) w,(€,0) = & d4u, (¢,0) - ¢ (2mie) U, (¢,0)

so for ¢t #0,
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A
atul(g’o)

~ aN

|u2(§,0)l 5_ '6 ul(glo)

The estimate (3.8) and the theorem follow immediately. The condition

@%(0) = 0 1is necessary to make (3.9) hold for ¢ = O.

4E s=1
(T) denote the subspace of @ € H™ (

3.4, Corollary. Let e T)

such that @(0) = 0. Define

L:E5(T) x B5(T) » #S(T) x 5" 1(T) x €
by

L(vy, v,) = (,(0), 3,u (0}, %,(0,0))

where u = (ul,ue)' is the solution of (3.1) with initial conditions
(3.3). If b #0, then L is a Banach space isomorphism.

Corollary 3.4 follows from Theorem 3.3 in the same way that
Corollary 3.2 follows from Theorem 3.1, Note that the linkage factor
|b|, a property of the system, appears explicitly in the estimates
(3.5) and (3.8), indicating that the accuracy to which we can compute
u2(0) from the measured data depends quantitatively on the linkage in
the system: the weaker the linkage is, the less accurately we can

expect to be able to compute u2(0).

A second approach to the problem is to consider using ul(O)
and ul(tl) for some t1 € (o,to] to determine u2(0) up to a

constant., This data is analogous to the deta given in a two-point

W TR
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3 Proof. By Theorem 2,17, the solution u of (3.1) with initial conditions

boundary value problem for a second order ordinary differential equation 1

which has been written as a system in the usual way. ]

3.5. Lemma, Suppose b # 0 and v, € H*(T) for some s € R.

The first component of the solution of (3.1) with initial conditions 1

(3.10) u,(0) =0, uy(0) = v,

is given by

(3.11) El(g,t) = 1.%? ewigt(afc) sin(mttd) 02(5) ¥
where

(3.12) d = ((a-c)2 + hbg)l/é

This defines u ], B%(2)).

L @s an element of ([0, %

0

(3.10) 1s in ¢([0,t.],H®), so by the equation (3.1) itself,

s=1

0

u, € C([0,t,],H°7"). Hence u € cl(;o,to],Hs'l), so for each t € I,

u(e,t) is a ct function of t € [O,to], and

5 (B(e,8)) = W (6,6) = AT (¢,t) = (2nit) Al(e,¢)

So G(g,t) is the solution of the ordinary differential equation

A IRV B 2
o u NG f
?J TRY o g%
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(3.13) g% (erdk)Ay

}

with initial conditions y(0) = (O, og(g)).- Hence

ue,e) = M0, 9,(e))
The eigenvalues of A are
(3.1k) A == (a+c+a) =% (a+c~d)
“ 1 %% ) N

where d 1is given by (5.12). The matrix with the eigenvectors of A

as columns and its inverse are

-b i Al-c b
(5.15) P = &nd P-l S - % .
TR Mot o W
We have 5
N
(3.16) Plhp ]
L
If ef = (1,0)', then
- oTietP AP -1, o
u (€,t) = efPe P (0,9,(e))"
2,(¢) i 2TiEtN 0 b
e —— - "'b
' orit oriet ‘
| S Tt ) 9,(0)
f Ly

IR
A T ETER R by
P TR 2 % &
97, % % y

o

r
e mrmﬂ;-f:r“"""' -
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and the lemma follows since xl + %2 =a + c and Al - %2 = d,

3.6, Theorem. Suppose b # 0
(1) 1f tld is a rational number, then u2(0) cannot be determined
uniquely from ul(O), ul(tl), and ;2(0,0): there are C.

solutions of (3.1) with u2(0) # 0 and
(3.17) u (0) = (t)) =0 and Eg(o,o) =0,

(11) 1f t,d 1is an irrational number, then u2(0) is uniquely
determined by ul(o), ul(tl)’ and 32(0,0). However, for each
s € R, we do not have continuous dependence in H°: there is

no constant K such that

(3.18) lhu, @), < k([ (0,0)] + fluy (+))11)

for all solutions u € C([O,to],Hs) with u, (0) = o.

Proof, If tld is rational, then there is an integer n # O such that

qt1§ € T. By Lemma 3.5, the solution of (3,1) with initial conditions
ul(O) =0 and u2(0) . 67T atieties (3.17) since sin(thld) = 0,
This proves (i).

If t,d 1is irrational, then sin(ngtld) # 0 for all integers
¢ # 0. For the uniqueness, we may assume without loss of generality
that u,(0) = 0. If not, let w and v be the solutions of (3.1)

with initial conditions

45 i
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(3.19) w, (0) = u,(0) , w, (0)

|
o

n

(3.20) v,(0) = v,(0) = u,(0)

2

By the linearity of (3.1), u=w+ Vv, so v =u - w, Theorem 2.17

e

implies that wl(tl) is uniquely determined by ul(O), and thus vl(O)
is uniquely determined by ul(O) and ul(tl). Hence u2(0) is
uniquely determined by ul(O), ul(tl) and 32(0,0) if and only if
v2(0) is uniquely determined by vl(tl) and ;2(0,0). Now that we
have reduced the problem to the case ul(O) = 0, the uniqueness follows
directly from Lemma 3.5 since Eg(g,o) is determined by El(g,tl)
for ¢ #0 by (3.11).

Since tld is irrational, given ¢ > O, there is an integer
n # 0 such that the distance from qtld to the nearest integer
is less than ¢/m. Hence Isin(wntld)l < ¢. Define u to be the

solution of (3.1) with initial conditions
ul(O) =0 and uQ(O) = (1 + Iqld)-s/2 P

. Then f!u2(0)HS =1, u

2(0’0) i 0’ a.nd

by (el = (% 115572 15 (0

2b 2b|
v} Sin('rrf]tld)' < ‘T'e

Since ¢ was arbitrary, there is no constant K such that (3.18)

b holds for all solutions u € C([0,t,],H°) with u,(0) =0,
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y We call the date (u,(0), u,(t)), U,(0,0)) € #® x #° x g
admissible if there is a solution u € C([0,t ],HS) which yields

this data. Consider the mapping M from the space of admissible

o~

data in H® x H° x € to H° vhich maps (u,(0), wy(t)), ©,(0,0))
to the uniquely determined u2(0). Let V be the subspace of

H® x H® x @ consisting of all admissible data in (0} x H® x C.

The restriction of M to V 1is a linear one-to-one map of V onto

HS

by Theorem 2,17 and the uniqueness result above. Since (3.18)

does not hold for any K, M 1is not continuous on V, so we do not have
continuous dependence. We remark that V cannot be a closed subspace
since if it were, the open mapping theorem applied to the continuous
'inear operator M-l:HS -V would imply that M is continuous,

This completes the proof of Theorem 3.6.

The uniqueness result in Theorem 3.€ and its dependence on the
irrationality of a certain parameter is similar to the result of
Bourgin and Duffin (1939) discussed in the introduction.
1P e tm

As before, the best we can hope to do

We can also consider measuring ul(t) for t =0, t

& v oL ;
where 0 < tl tm = to

is to determine u2(0) up to a constant, If t t  are

1y Ede ™

rational multiples of each other, we may assume without loss of generality

in the following theorem (by adding elements to the sequence

by ee s by if necessary, increasing m) that tJ = 5%

1°
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3.7. Theorem. Suppose b # 0, and tJ =Jt, for Jj=1,...,m
(1) It t,d is a rational number, then u2(0) cannot be determined
uniquely from ul(O), ul(tl), A ul(tm), and ua(0,0).
(i) If t;d is an irrational number, then u2(0) is uniquely
determined by u,(0), u,(t;), ... , u (t ), and 52(0,0),
but for each s € IR, we do not have continuous dependence

in Hs.

Proof. The proof is essentially the same as the proof of Theorem 3.6.

A5 tld is rational and ntld € L, thent gt d € 'F for ji= Xl ..,m,

J
and (i) follows as in Theorem 3.6.

If tld is irrational, the uniqueness is a result of Theorem 3.6.
Given ¢ > 0, there is an integer 7 # 0 such that the distance from
nt,d to the nearest integer is less than ¢/mr. Then for j =1,...,m,
the distance from ntjd to the nearest integer is less than ¢/7, so
Isin(wntjd)l < ¢, and (ii) follows as in Theorem 3.6.

Since the distinction between rational and irrational numbers is =
not practical when measurements are involved, if we measure uy at a
fixed finite number of time levels and 52(0,0), we cannot expect
theoretical uniqueness or theoretical continuous dependence. Practically,
however, the extra information we have by measuring ul(t) at several
time levels may enable us to determine Ee(g,o) for more small values

of ¢ # 0 more accurately., We will discuss this further in Chapter VI,

Even though we are restricted to using ul(t) at a finite

N

number of time levels for computations, it does not necessarily follow
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that the appropriate theoretical question involves a finite number of
time levels. For example, difference methods for the numerical solution
of differential equations use discrete equations to model continuous
equations, If the time levels at which we measure u, are sufficiently
dense in time in view of the step sizes of the discrete variables and
the accuracy desired in a computation, we may consider our measured data

as an approximation to u in C([O,to],Hs). The following theorem

1
suggests that this may be a fruitful point of view to take.

3.8. Theorem. Suppose b # O and s and t are fixed, Then there

0
is a constant K such that for every solution u € C([O,to],Hs) of
(301))
(3.21) lay )l < KCJuy(0,00] + llay @) + fhuyll; )

Proof. Let u € C([0,t.], H°) be a solution of (3.1). Let w and

O )
v be the solutions of (3,1) with initial conditions (3.19) and (3.20),

respectively. Then u =w + v, By Lemma 3.5,

~ " a'q . ~
[vy(e,0)] = |5 sin(metd) u,(¢,0)
" . t :
el , = 1 v @R at =1 % L+ [eD)® 506,82
18,2 0 1 8 0 €z i %
t !
0 5 i
= 2 (1+ ¢]®)" |a, (€,0)|° | sin®(retd)at i
d 0

g - q

4( !-» R4
b wﬁﬁ

: t‘; .,;f -' ,1;
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Since for ¢ # o,

4 t
r 0
| 2 ale] - sin(afe])
' sin (metd)dt =
| ) PSR Tdle |
1
L» where «a = 2mtod, clearly there is a constant Kb 2> 0 1independent of
¢ # 0 such that
to i
[ sin®(mttd)at > Ko for ¢ #0
0
Hence
2
2 o 2 d 2
lhay OIS < 15, (0,0) (2 + o w5,
Lp Ky
Now

”Vlus,e < ”wl”s,e + ”ulus,e

<V Il ¢yl

< Klﬂul(o)ns * ““1“5,2

for some constant Kl by Theorem 2,17. The theorem follows,

5ed. Corollary. Suppose b #0 and s and t, are fixed. Then
there is a constant X such that for every solution u € C([O,to],Hs)

of (3.1);
(3.22) lhay ()1l < K([T,(0,0)( + fhay flg )

Corollary 3,9 follows immediately from Theorem 3.8. These
show that ue(o) is uniquely determined by and depends continuously on

the data w,(t) for 0 <t < ty and u,(0,0).

g‘--‘&' >
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CHAPTER IV

APPROACHES USING TIME DERIVATIVES OF uI

In this chapter, we investigate ways in which uII(O) can be

recovered from data involving time derivatives of uI for the general

system
k
(1.1) uy = 3§1 Ad(x,t)uxJ + B(x,t)u + £(x,t)

which we assume to be s-hyperbolic (see Definition 2,16). In view of
the difficulties in obtaining higher time derivatives accura£ely from
measurements, we consider data with at most one time derivative of

uI. We present two main approaches. The first approach (Theorem k4.1)
is the analogue of the method used in Theorems 3.1 and 3.5. We use
the first £ equations of system (1.1) at time t =0 as a system
to be solved for u t(0), using the data ul(0) and ui(o). This
approach is similar to methods for static initialization as in Ghil
(1975). The second approach (Theorem 4.2) can be used when there are
inhomogeneous terms which are not necessarily continuous in time,

in which case ui(o) may not be well-defined. This approach yields
estimates involving the Le((o,to), Hs(Tk)) norms of ur and ui.
In both approachs, sufficient linkage in the system between uI
and uII is necessary. The linkage may occur in the first order

terms, the zero order terms, or in a combination of the two. We

discuss sufficient conditions in the section on the inversion of
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first order operators, and then put these conditions together with
the two general methods.

We split each of the matrices A (x,t) into blocks;

1 3
N (1) ,02)
A; Ay
(L4.1) AJ = (
21) _ 190}
| s *
where A(ll) is 4 x 4, Agle) is £ x (n-2), Aggl) is (n-2) x 2,
and Aggg) is (n-£) x (n-£). Split B(x,t) into blocks similarly.

Viewing t as a parameter, define the operators

(uv) N (uv)
(k.2) LH(¢) = Z Aj“”)(x,t) o, *+B™M(x,t) for 1<y,v<o2

J=1 J

Then (1.1) becomes

(4.3) % “i & L(11)u1 s pli) I L 2
(k. 1) o o pf2l) T o(e2) IT | X

General methods

L,1, Theorem. Suppose f € C([O,to],Hs), and suppose
u e C([O,to],Hs) is a solution of (1.1) for which uI(O) e p*

and ui(o) € 5. Then

sy L2 o) o)l < KO, + Il + %)l
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Proof, As we remarked after the proof of Theorem 2.20, since u and
£ are both in C((0,t,],H%), u (0) 1s & well-defined distribution

in D'(Tk). The estimate (L4.5) follows immediately from (4.3).
L,2. Theorem. Suppose that f € L2((O,1), H°+l) and that the system

(4.6) v, = p(22),

is s=hyperbolic., Assume that for some constant KO independent of

t € [0,t4],
(8.7) Ivll, < & (L2 eyl + Ivil__)

I ot+2 )

If v C([O,l],Hs) is a solution of (1.1) for which u” € Le((o,to),H

m

12((0,t.),H°), then

h

and u

ot H

I
I

IT I II
5.8 WO, < KUy, + Il 5+ el , + WO, )

and hence there is a constant M such that

I

+ gl o+ el o)

9 Wl <k = §(g,0) + [uT

e <M e

for some constents K, and K, where u(e,t) 1is defined by (2.35).




Proof. Let v denote the solution of (4.6) with initial conditions
(4.10) 26} = 5 e{0) .

By the well-posedness of the s-hyperbolic system (4.6) with initial

data at time t and the solution moving backward in time,

! '
(4.11) Hv(o)hs <K Ilv(t)lls for 0<t <t

for some constant K', which can be chosen independent of t. Let

f w denote the solution of

(k.12) Wy = L)y 4+ g

with initial conditions w(0) = O where

o My B S

By Theorem 2,17,

I
I

! (4.13) l|w||0+1,2 < ||w||0+l,w < k"(Jlu o+2,2

Clearly u'l = v + w. Substituting this for u'l in (k.3), we obtain

ui = L(n)uI o L(lz)w + L(lz)v + fI

- e LT 8 AL M i
gy v .-'-mva-'.‘“ﬂw; o
I 8 s R s

ot By -
g -
i




Hence

(12) I I (12) I
(1) A, < ety o gl o+ I+ e,
I I
< const(|ju "°+2,2 + "“t"o,e + "f”0+1’2)

by (4.13). By (4.11), (4.7) and (k.14)

%
tolvlig = [ vl ot

t

0 2
const( [ "V(t)“s at)
0

t
0

const f ([L2)(£) v(&)[2 + Iv(e)IZ_))at
0

In

IA

2
=1,

< const(llL(l2)V“2 + vl )
- 0,2

I I 2
const ([lu”| * gy, o+ el yy o+ v )

IN

o+2,2

and (4.8) follows from (4.10). Since clearly there is a constant M

such that

I L g ' ~IT
(4.15) b0, s 3 WO, f oot 2 [0,

we can pull the %‘- Ilun(o)lls_l term in (4.8) over to the left hand side.

and (L4.9) follows, proving Theorem L.2,
We remark that (L4.6) is automatically s-hyperbolic for symmetric

hyperbolic systems (1.1),
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Inversion of first order operators

Both of the methods presented in Theorems 4.1 and 4.2 rely

(12) defined

on the partial inversion of the first order operator L
in (4.2). 1In this section, we consider first order operators of the

form

k
(4.16) v = 2 aJ(x)vx + B(x)v
J=1 J
where aj(x) and B(x) are real-valued £ X m matrix functions in

D(Tk) with 2 > m. The principal symbol of L is

(4.17) 2, (x,€) = eri Z LA

We discuss four possible ways of inverting L. The first (Theorem

4.4) is analogous to Theorem 3.1, If x, is a time-like variable,

k
we can recover v from Lv and v restricted to the k-l-dimensional
hyperplane X = 0. The second (Theorem 4.5) uses the observation
made by Lax (1955) that if the first order terms of anm X m periodic
first order operator are symmetric and the zero order terms are
sufficiently positive, then the operator can be inverted on .

In the third (Theorem 4.7), we assume that zl(x,g) is of full rank
for ¢ # 0, and conclude that we can recover v from Lv and a

finite number of Fourier coefficients of v. The fourth (Theorem 4,8)

uses a result of Friedrichs and Lax (1965) for square systems combining

g : i o
-l. il
's s .-rpub-lw"w’:' g




the second and third approaches which extends readily to the non-
square case, In each of these, we desire to bound the norm of v
by some norm of Lv and an appropriate norm of the necessary
observations of v.

We will need the following Lemma in the proof of Theorem L. L,

4.3, Lemma. Let s be a non-negative integer. Assume that system

(1.1) is s-hyperbolic, that the coefficient matrices A, and B

J
X1y 12 we c([0,1],E5(TF))

k+l)

are periodic in x and t, and that f € H®(T

is & solution of (1.1) which is periodic in t, then u € HS(T and

(4.18) ||u||Hs( 1y < K@)l + llflle(Tk+l)) .

k+l)

Proof. We use the spaces Hs’m(T and norms “V”(s m) introduced
2

in Definition 2.18. For o = 0,1,...,8,
(L+ [e]®)50 1+ [15)7 < (1 + [e]® + [£]5)®

s-o,o(Tk+l)

so fE€H and ||f||(s_0,o) < ||f“H8(Tk+l) <M wvhere

W= fsior, * beb ()’

By Lemma 2,19 (ii) and methods similar to those used in

Lemma 2,19 (1i1), L((0,1), H®(T®)) ana HS’O(7%*1)

k+1

are the same A

space (as subspaces of 9'(T" ~)) and ”v"(s 0) = ||v||s , are the
) ’

k+1
)

seme norm, Since u € C([0,1], H%(T®)), u € H®O(T and

M Sy

i =t wr-m’"f;‘.'ll""‘"
3 )




...lI!."l.'l.....-..-..-..-.--lllIllllll-l-I'-l'.--'-"""'"""_‘i

IA

lall g,y = ol 5 < lall,

IN

const(”u(o)”s * “f“a,2)

A

const("u(o)"s + “f”(s’o))

< const M

The second inequality is a consequence of Theorem 2.17. The equation

(1.1) now implies that u, = HS~%2O(p¥*l)

t and

hagll(qo1,0) < constllall o oy + ligll g oy < const M

s-1, 1 (pkt1

So by Lemma 2.19(i), u < H T 7) and

hull(gon, 1) < comstlliullqy gy + ugllg y o))
< const M
-2,1, k+1
The equation (1.1) implies that u, € H*™>'N(T*), ana ‘

”ut"(s-2,l) < const"uﬂ(s_l,l) + "f"(s-l,l) < const M ,

HB-2,2 k+1)

So again by Lemma 2,19(i), u < (T and

"“"(5-2,2) < const M .

Continuing in the same manner, we obtain

(4.19) "u"(s_o’a) < const M  for o =0,1,,..,8




Now, since
8
* )P+ |12 = T (5 (@ + [£]P) (J<]?)°
0=0

g 2,8=0 2\0
<const L (1+ |g]F) (i + |=|%)
o=0

we conclude that u € Hs(Tk+l) and

2 2
Z |l < const M

2
(4.20) ”u"HB(Tk...l) < const P (8=0,0)

and the lemma follows.
L.4, Theorem. Consider the operator L defined by (L4.16).
Suppose that there is an m X £ matrix function r(x) € D(Tk) such that

for some i,

(4.21) r(x) ai(x) =

1
[ ]

Without loss of generality we assume i = k. Let s be a non-negative

8+1('1‘) and

integer. If k=1, vE p'(T), and Lv € H°(T), then v € H

(.22) Ivll,4y < K(I¥(0)] + vl )

If k > 1, we suppose further that the equation

k-1
(4,23) w*k + ng r(x) aJ(x) ukd + r(x) B(x)w =0

NI N T NP - |



. ' N '
is s-hyperbolic with x, as the time variable and x = (xl""’xk-l)
as the space variables, If v < D‘(Tk) is in C([O,l],Hs(Tk-l))

s and Lv = H3(T¥), then v € H3(T®) and
1
(h.24) Il < K0 oy + .

Proof. Suppose k =1, v < p'(T), and Lv € H3(T). Let g(x) = r(x)Lv.
—— )

Then multiplying (4.16) by r(x) yields

(4.25) v+ r(x) Bx)v = g(x)

Let ®(x) be the fundamental solution matrix of the homogeneous

adjoint equation
(4.26) W, = (r(x) B(x))*w.

00 *
Then ¢ € C [0,1], and by definition ¢(0) = I. We have ax(¢ )

e r(x) B(x), so multiplying (4.25) by 0*(x), we obtain
3, (07v) = 0" (x) alx) .

Since H°(T) 1is the set of functions in Cs-l(T) whose s-th

derivative is in LQ(T) and g € HS(T), o'v € ¢%(0,1] and

)*

is invertible and C°, v € ¢%(0,1],

ai(o*v) € 1°(0,1). Since o(x

ABv e 1°(0,1), and

it vt i
s = .

L 'm‘"l,'



= =
b (k.27) v(x) = o*(x) “(v(0) + o*(x) é o*(0) g(o)do)

s+l(

) Since v 1is periodic by assumption, we conclude that v S H 4 I

The estimate (L4.22) follows from (4.27) since ”u”s is equivalent to

8 J
b the norm ZJ=O”5xV|O-

, Suppose k > 1, v € D'(Tk) ie fn ©([o;1], Hs(Tk-l)

), and
Lv € H3(T®). Let g(x) = r(x) Lv. Then multiplying (4.16) by

r(x) yields

ko
(4,28) v.+ 2 r(x) a(x)v. +r(x) alx)v=g(x)
¥ e e

k

By Lemma 4.3, v € H°(T") and

i
. vl . < const([v(x~,0)]l + lell )
s Hs(Tk-l) s

and (L4.2L4) follows, completing the proof of Theorem L. L,
The condition (4.21) is satisfied in the case k = 1 if and
only if a(x) is of full rank for all x. Recall that we have assumed
4 >m., If a(x) is of full rank, then a(x)* a(x) is invertible,
and we may take r(x) = (a(x)* oz(x))'l o*(x).
We remark that the assumption in Theorem L.4 that v € C([0,1],HS(TX™1))
can be reduced. Since v 1is a solution of the s-hyperbolic equation
(4.28) and g € L°((0,1), H3(T®Y)) by the assumption that Lv € H®(T¥),
Theorem 2,20 implies that v £ C([0,1], Ho(Tk'l)) for some o, SO
v(xl,O) is a well-defined element of D'(Tk-l). By Theorem 2.17, it

suffices to assume that v(xl,o) € Hs(Tk'l).

———
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L.5. Theorem. Consider the operator L defined by (k.16).
Suppose that there is a real-valued m X £ matrix r(x) € D(Tk) such
that r(x) aj(x) is symmetric for all x and for j = 1,...,k.

Define

k
(4.29) a(x) = 2Re(r(x) B(x)) - £ 3 (r(x) a,(x))
=1 % :

Suppose that for some constant % > 0, either

(4.30) afx) > cOI or q(x) < -COI for all x.

1f v< BH(TY) and Lv = HO(T), then

(L4.31) Hv”o < KO“LVHO

for some constant Ko.

Suppose that s € R is such that the norm Ty of

[As,RL]A"s = A°RLA™® - RL as an operator from HO to Ho sétisfies

2ry < ¢, where A° is defined by Definition 2.1k, If v € H® and

0
=38
Lv = H, then

(k.32) 4 Ivlly £ % llLvll

for some constant Ks.

"’-: WMMW.L-W- o
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Proof. We assume without loss of generality that q(x) > coI.
We use the convention here as in Definition 2.4 that if lower case
letters are symbols, the corresponding operators are represented by
capital letters. By integration by parts, the adjoint of the operator
RL is clearly

k

k :
(RL)* = =« ¥ r(x) QJ(x) Bx - 7 Bx (r(x) a

J(x)) + (r(x) B(x))*
3=1 - S

since r(x) Qj(x) is symmetric. So Q = RL + (RL)*. Suppose v = #°
and Lv € HO. Since r(x) € SO, the Schwarz inequality and Theorem 2.11

imply

| (RLv,v)| < ||RLv|

o'Vl < constliLvll - lIvl,

2
So co”v”O = co(v) V)

< (Qv,v)

n

((RL + (RL)*)v,v)

(RLv,v) + (v,RLv)

2Re(RLv,v)

IA

2| (RLv,v) |

< constHLvHo'”V”o

“and (4,31) follows.

Since A°(¢) commutes with cRL(x,g), Corollary 2.10 implies

0 and by Theorem 2.11, [A®,RL]A™S

[4%RL] = PS5, so ‘A°,RL]A™® € P8
maps Ho continuously into HO. Suppose that 2rs < Cyr V 3 HB, and

Lv € H®. Then
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’ (s, 0] < Dol ISl = TRl - v,
< constuvl, - v,
1
™ Also, z
| ((A%,RLIv,A%V) | = | (145, RL1A"5A%, A%V)| < Ys(Agv,Asv)
2
v VI
so
2
collvl = co (A%, 4%)

< (Qn°v,A%v)

2Re (RLA®v, Asv)

IA

2| (ASRLv, ASv) | + 2| ([A%,RL]v,A%V) | 1

IN

IA

2 .
2r V2 + constlivll vl

and 4,32 follows, proving Theorem 4.5.

L.€. Lemma. Consider the operator L defined by (4.16). Suppose

that for each x and ¢ # O, the matrix ll(x,g) defined by (4.17)

has full rank., If v € H®> and Lv€H® ), then v & H® and

(k.33) Ivily < % Cvll__ + vl _))
for some constant Ks.

Proof. Since el(x,g) has full rank for ¢ # O, z*{(x,g) zl(x,g) is = | |
positive definite and homogeneous of degree 2 in ¢ for |[g| > .
Since Tk and the unit sphere in lé‘ are compact, there is a constan"‘

% > 0 such that

6k




(L.3k) £40) £,(x,6)% £, (x,8) > ¢ T

for all x and for |g| > 1. Let o(¢) € D(EF) satisfy

(L4.35) 0<9<1
o(e) =1 for [g] <1
o(e) =0 for |¢| =2
Define
= K708 2 (00)% 2008) + eqp(e)T

(L.36) p(x,¢)
Then the matrix p(x,¢) 1is Hermitian for all x and ¢, and
(L.37) p(x,e) > &yt

Since el(x,g) € Sl, p(x,t) € So. Define r(x,t) = p(x,g)-l.
0

Clearly r(x,t) € s°, Let
BO(xyg) . ORP(X;E) -1I= URP(X’E) - r(x,g) p(xyg)-l
( s8) = ( ,§) - ( ) )
g, (x,¢) UL*A-2L x p(x,¢

By Corollary 2.10, g, and g are in "

e

1 Suppose that v < H®™ - and Lv € H°"', Then since L*a 2epst,
L L*A"%Ly = H®, so Pv = L*A 2Ly - G,v € H®. Hence RPvE€ H, so ,
; v = RPv - Gyv € ¥, i
65
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To prove (4.33), we first assume that s = 0. By Gdrding's

Inequality (Theorem 2.13) applied to p(x,t),

(4.38) Re(Pv,v) > constlvll5 - constllvl®,
So
vl = (A", a™lv)
= | (L*A %Ly, v) |
> (v, v)] - |(@w,v)]

> Re(Pv,v) - const”le”O'”v"o

v

- olbale: 2
const”v”o - const“v“_1 - const”v“_1 ”v“o
Since Hv”_l < Hv”o and IILVH_l < const”v”o, we have

vl

IN

2
const(”LVHf1 +vll_y Ivlly + IvIZ)

IN

const ([Lvll_y« vl + 2livil_ - Ivll)
so for some constant K

(1.39) Ivlly < Ky (lvl_y + VI,

For general s, since we now know that v € HB, A?v & Ho,

so by (4.39) and the fact that [L,A°] € Ps®,




-

_ || .8 8 8
Il = la®vll, < Ko Cluavll_y + Iavll,,)

IN

Ko lafLvll_y + (L, 2%l + vl

IA

const ([[Lvll,_, + llvil_,)
which is (4.33), proving Lemma k4.6,

L.7. Theorem. Consider the operator L defined by (4.16). Suppose

that the matrix zl(x,g) has full rank for each x and each ¢ # O,

: If vE p'(T) and Lv € H®L, then v € H® and

‘ (L4.33) vlly < (vl _y + livll,_)
. Hence there is a constant Ms such that
(k. ko) vy < k1€ Z 0 (v(e) | + vl _))
<M
-8

Proof. Since v € p! (T ), vE€ H’ for some o = R, and without loss

of generality we may assume Vv Hs'-'j for some positive integer j.
Since Lv € HB°1, Lemma 4.6 implies that v € HS™9*L, Applying Lemma 4.6
s=-1

repeatedly, we obtain v € H and now Lemma 4.6 applies as stated,

giving (h.35).. (k.40) follows from (L4.33) in the same way that (L4.9)
follows from (L4.8),
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%l 4.8, Theorem. Consider the operator L defined by (4.16). Suppose : 1

L that there is an m x £ matrix symbol r(x,t) € S0 such that r(x,t)

is Hermitian and homogeneous of degree O in & for |[¢| > 1 and
(4.41) r(x,t) El<x:§) 3 21(x,§)* r(x,t) =0
Define the symbol q(x,e) € S° by

o aY T _3'pr
(4. k42) q = Re(2rp + |Y%=l (2 gerEl agnx(rzl)))

.

Suppose that for some constant >'O, either

o)

(k.43) ax,e) 2 el or  alx,e) < = eyl .
in an open set TI'; ™ x R® which contains every (x,t) with [¢| > 1
for which zl(x,g) is not of full rank; since q and £, are homo-
geneous in ¢ for |[¢| > 1, we may assume that r, < ((x,:):]e] > 1)
and that (x,¢) € T, if and only if (x,pt) € r, for o> |§|'1.

{ If veE HO and Lv = Ho, then
L (L) Ivlly < k(v + vl _y)

é and there is a constant M such that

| (4. 45) Ivily < K'(Igil:su [v(e)] + j\Lleo )




r—

Tl

.~

I T—

Proof. Let o(¢) GD(]Rk) satisfy (L4.35), and define
plx,6) = A0(8) 22(x,8) £ (x,8) + 0(g)I

As in the proof of Lemma 4.6, since T® and the unit sphere in B*

are compact, there is a constant ¢ > O such that

p(x,g) > eI

for (x,t) € P, = Tkx R* - Iy Since p(x,t) > 0 elsewhere, q(x,t)

is uniformly bounded, and assuming q(x,¢) >c.I in T there

(0] e

is a & >0 such that for all x and ¢

p(x,e) + 6q(x,6) > const I >0 ,

Noting that p + 5q 1is Hermitian and applying Gg.rding's Inequality,

(L,L6) Re((P + 5Q)v,v) > constllvllg - constllv[lfl

By (L.41) and Theorems 2.7 and 2.9, it is easy to verify that

URL"'(RL)*(X’E) = Q(X,g) + So(xxg)

8”1, Also

m

where go

OL*A'QL(X’g) = p(x,t) + g, (x,¢)

S ~., Hence

m

where 8,




M :

Re((P +8Q)v,v) = Re((L*A-QL + &(RL + (RL)*))v,v) -Re((bGo+Gl)v,v)

< I(L*A-QLV,V)I + 28| (RLv,v) | + |((SGb-+Gl)v,v)|
< lovl?) + constlivlly Ivlly + comstiivll_y-lvly
const([[Lvl, [ivll, + lvll_y - livlly)

IA

So by (L.L46),

A

—

Ivlly < const(llLwlly Ivlly + Ivll_y*livlly + IvIiZ))

IN

const(HLvH0 ”V”O + “v“_l'“V“o)

and (L.b4) follows. (4, 45) follows from (k4.L4) in the same way that

(k.9) follows from (L.B).

Methods Using uII(O) Restricted to a k-l-dimensional Hyperplane

In the last three sections of this chapter, we state the
conclusions which can be drawn by combining Theorem 4,1 or Theorem 4.2
with the theory of first order operators presented in the previous
section. The proofs are immediate consequences of the theorems
presented earlier in this chapter, We assume for the rest of this
chapter that the system

k
(1.1) g ng AJ(x,t)uxJ + B(x,t)u + f

is s~hyperbolic,
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4,9, Theorem, Suppose that f € C([O,to], Hs(Tk)) and that the
operator L(12)(O) defined by (4.2) satisfies the hypotheses of
Theorem 4,4, Suppose u € C([O,to], HB(Tk)) is a solution of (1.1)
for which u (0) € B¥*1 (1)

™) and ui(o) € H5(T®). If k =1, then

o) € 8 (1) ana
I II I I I
(.47) w0 gy, < K(Ju7(0,0)| + fu™(0)ll,y + llug()llg + l£7(0)I1)

If k>1, and uwT € H3(T*L), then

0
(v.48) Il < K(llu(I)IHHS(Tk_l) + It )y + gl + I£5 (o))

I -
where ug defined on T ! ig uII(O) restricted to the plane

4L.10. Example. If £ = n-1, and for some i and some m < n-1, the

~ mn element of the matrix Ai(x,o) (which we will call a(x)) is non-

zero for all x, then the hypotheses of Theorem L.l are satisfied for
L(12)(0), and we can apply Theorem 4.9, Assuming i = k for simplicity,
let r(x) = (0, ..., 0, 1/a(x)). Iz g =152 (0) uT¥(0), then

multiplying this equation by r(x) yields

(hb9) 3 un(o)+ 5 r(x) A3 (x,0) 3. uTX(0) + r(x) B2 (x,0)u’(0)
" j=1 J X

= r(x)g ,

which, for k > 1, is a first order partial differential equation which

is thus clearly s-hyperbolic,

Th
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B Example. The method of Example 4,10 can be used for some non-
linear equations. We can recover the geopotential ¢ from the winds

u and v in the shallow-water equations (1.5). Using the first equation
of (1.5), we can recover ¢(x,y,0) from u(x,y,0), v(x,y,0), ut(x,y,o)
and ©(0,y,0). Or, using the second equation of (1.5), we can recover
wlx,y,0) from u(x,y,0), vi(x,y,0), vt(x,y,O) and ©(x,0,0).

~

Methods Using No Information About uII(Q)

L.,12, Theorem. Suppose that fEIC[(O,tO],HS(Tk)) and that the operator

L(lg)(o) satisfies the hypotheses of Theorem 4.5 for this s. Suppose

u € c([0,t.], (™)) is a solution of (1.1) for which ul(0) € HE"H(T¥)
and ui(O) € B5(T™). Then
(4.50) la™ o)1l < %™ (0)l_,, + lagto)l, + lleF)ll,)-

s+1)
b

4,13, Theorem. Suppose *hat f < L2((O,t T that the system

v, 1(3)y 14 s-nyperbolic, and that the operator L12)(t) satistien

the hypotheses of Theorem 4,5 for this s and for t € [O,to]. Suppose

u€ C({O,to],Hs) is a solution of (1.1) for vhich u’ € L2((O,to),H8+2)

(O}

and uI

2
e €L ((O,to),Hs). Then

(k.51) ™01l < Klllutllgyp 5 + Mughy 5 + I8l )




‘§ Methods Using a Finite Number of Fourier Coefficients of uII(O)

—

b.1h. Theorem. Suppose that f € C([0,t,],H°™") and that the

operator L<12)(0) satisfies the hypotheses of Theorem 4.7. Suppose
u 1is a solution of (1.1) for which uI(O) € H® and ui(o) e g* L, L

Then uII(O) € H®, and there is a constant M such that i

(4.52) [Nl < X F [W(g,0)| + lluT(o)l, + llug o)l _, +lie* o)l _,

where u(f,t) 1s defined by (2.35). ]

4,15, Theorem. Suppose that f € L2((O,to),Hs), that the system

= L(eg)v is s-hyperbolic, and that the operator L(le)(t) satisfies

Ve
the hypotheses of Theorem 4.7 for t € [O,to]. Suppose u € C([O,to],Hs)

s+l
)

is a solution of (1.1) for which uI € L2((O,t ),H . Then there

is a constant M such that

~1T I I
P O I8y o o el )

(1.53) "), < X

4,16, Theorem. Suppose that f € C([O,to],Ho) and that the operator

12)

L( 0) satisfies the hypotheses of Theorem L4.8. Suppose

u € ¢([0,t,],K°) 1is a solution of (1.1) for vhich u’(0) € H' and

ui(o) € H°. Then there is a constant M such that |

~

(h54) (), < * 2 M|un<;,o>| + It + lhug (o), + l£X@),).
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CHAPTER V

APPROACHES WITHOUT TIME DERIVATIVES OF uI

We now consider recovering uII(O) from data which does not
involve time derivatives of uI. As we saw in Chapter III, measuring
uI(t) at several time levels does not yield the continuous dependence
of uII(O) on the measured data, but we may have continuous dependence

using uI(t) for 0<t<t We restrict our attention here to strictly

o
hyperbolic equations with constant coefficients. Theorem 5.6 is similar
to Corollary 3.9, but as in Chapter IV, the linkage conditions are more
complex than in the two-by-two example of Chapter III. We also investi-
gate the effects of lower order terms on the data necessary to recover
uII(O).

We use slightly different norms in this chapter; the main tool

in our approach is Theorem 5.5, and its application is more direct in

these norms,

5.1, Definition. For any s € IR, define

(5.1) lulg = sup , (1+ [e])® [uCe)]
tex
Ms(Tk) is the Banach space of all u € D'(Tk) for which |u|s < o,

The norm on C([O,to],Ms) is
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(5.2} [u] = sup [ul
. P g
=%
L
We remark that H° ¢ M® for all s, and if s, > k/2 + s,, then
s 8,
4 M i C H “. The induced inclusion maps are continuous.

f We now present several lemmas needed in the proof of Theorem 5.6.

It is well known (see e.g. Ortega (1972)) that for n X n matrices Q,

g
(5.3) Q] , = mex X |q

i<i<n §=L

l

The following lemma appears in Gautschi (1962).

C

5.2. Lemma. Let V = Vn(xl,...,xn) denote the Vandermonde matrix

i e 1

X, e X
(5.4) v, =

n-1 xn-l

-Xl n -

Then
(5.5) det V_ = i1 (x,=-x,)

R T T T

If the xi's are distinct, then Vn is invertible and

it L+ [x|
(5.6) Vi | < max m T—:J—r
AT icien e en iy T %

J#

5

T AT S G

e i




5.3. Lemma. Let xl, et s kn be distinct real numbers, and define

ikltl ikntl)

(5.7) v(t,) = vn(e AR A=

If we say that ]V(tl)'llm = © when V(tl) is singular, we have

-1
(5.8) inf (e ) 1. < B(t.)

Gt bt Muedy) £ ® 0

1=-""0

where
(5.9)  B(ty) = inf ( max m  |sinz (AR )t ™)

0<t,<[ty/(n-1)] 1<i<n 1<j<n i

J#i
Nty

Proof, Follows directly from Lemma 5.2 with xj =e Y since

1+ |le =2 and

P i
lxj-xil fexp(i (kj-xi)tl] ~ exp[i 3 (Ai«%j)tl]l

n

i
2|sin 3 (kj-%i)tl|
5.4, Lemma. Let %l,..., kn be distinct real numbers, and define
(5.10) 8, = min NN | 5, = max |A,=A|
Llsgecseny v 2 jetcyex’ *

and p = 52/61 >1. If p(t,) is given by (5.9) and
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g - .
(5.11) t = (n=%) 5 R
2
”n
then ﬁ(to) < K'(to, 5, 52) <K (to, 8 52) where

61to l-n £
Slnm—)- if O<tost

l-n
. T 5 *
(51n 1t p) if . >t

(5.22)  B'(f4e Bys B} =

Blto 0 -
n
(5.13) K"(tys 85 By}
/ 1+ |21 *
Sl if t. >t
\ 2 0 -
-1 n-1
Rs ((nglév : 1 ; S
10
) *
Proof. t is chosen so that
1 t* 1 t*
T
e i m sz 2y ~F
and
§ e B
(5.].)4) sin -2-615-_—1 = sin 552 ey
Since
* *

(5.14) holds because wp/(1+p) =1 = (m/(1+p)). 3

———-




*
If 0<ty,<t, choose t, = to/(n-l). Then for j # i,

1 t *
s 1 8.1 o K& _ 7B
20 1S3 My MIb <58, 57 = T2
*
Since togt,
t *
Lg b Lo B Ny
2 1ln-1=2 "1n-l1 1+ p

so the minimum of sin x for

t
Py 0 e
x € [2 51 =1’ T+ QJ

is taken on at the left endpoint of this interval., So

i 61t0

|sin(3 (Ay-2)t))] = sin(: g7 18)) 2 sin sy

and hence

5.t l-n
10
Blto) < (sin m)

If t, > t*, choose t, = t*/(n-1). Since

ct+
*

T

o} T

-
‘_l

1 n-
the same argument shows that

" l-n
B(to) < <sin lTD) .

The fact that sin x < (2/m)x for x € [0, /2] implies

that K'(to, 8 52) < K"(to, 85 52). This proves Lemma 5..4,




| | 5.5. Theorem. Consider the system of ordinary differential equations
(5.1k) vy = 1Ay

where y = y(t) € Gn for t >0 and A 1is a complex-valued n X n

matrix with distinct real eigenvalues kl,...,An. Let

= '
Ty (rjl’ R RIS rjn)

denote an eigenvector of A belonging to %j. Let

SRCTRER

T
denote the matrix whose columns are r., ... , r . If r #0 .
I n 3
for j=1,...,n, we have for each to >0,
||

(5.15) [y()[, < = T
min |rj|°°

Blty) sw [y(8)],
0<t<t,
1<j<n

vhere 3(t is given by (5.9).

o)
Proof. Let D = diag(%l,...,Rn), the diagonal matrix with Al,...,xn
on the diagonal. Then PIAP =D and PDP = A. The solution of
(5.14) is

iDt _-1
F-ye)

y(t) = Pe

i o

=
i




[
l;. ] Let w = P-ly(O). Then for 1< m< £, consider that
; :
iklt i%nt
| ym(t) & (rlm’ cee rnm) diaG(e 3 eee 5 € W
‘ it i\t
= (e S ) diag(rlm, i rnm)w

If we define

y(m)(tl) = (y,(0), Yt )seees y,((n-1)t,))"

then for 0 < t, < t,(n-1) we have

‘i

where V(t)) is defined by (5.7). Hence if V(tl)-l exists,

1

diag(rlm, e rnm)w=v(tl) y(m)tl .

| So

[r

| .jmw:] ,

IN

VG 9y ()

=1
< vie) Tl swp |y (8)] .

Taking the infimum over all such tl,

+
B
3

r < inf v(t,)™t t)].
£ | -(0<t15[to/(n-l)] v(e,) '“)oss?psto 1908

By Lemma 5.3,
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|z .| < B(ty) sup IyI(t)lm
0<t< :

Im”3

Taking the maximum over m for 1< m< 4,

I 11
751, 1wyl < B(ty) szitoly ()],
Hence

B(t)) sw  [yT(o)|,
0<t<to
IWL,, = - T
min  |r ]
1<j<n

and the theorem follows since |y(0)| < |P| +|w|_.

Equations Without Lower Order Terms

5.6. Theorem. Consider the system

k
(5.16) u = 2 A,
t ;jljx

where the Aj's are constant real-valued n X n matrices. Suppose

(5.16) is strictly hyperbolic, i.e., suppose that the matrix

has distinct real eigenvalues )\1(§) > ?\2(§) > ees > T\n(E) for all

non-zero ¢ € ]Rk. Let rl(g), vis 3 rn(g) denote corresponding

: normalized eigenvectors, Assume that for each w € BE with |w| =1,

we have

‘0‘.“
gy i Fﬂmm*'




(5.18) r;(w) £0 for j=1,...,n,

and let s be & glven resl mmber. If u € C([0,t,], M%) is a

solution of (5.16), then

(5.19) [a™(0) | < [8%%(0,0)| + K(ty) o],
b

where u(g,t) is given by (2.35) and K(t,) 1is a constant, depending
on tg. K(to) behaves like té"n as ty -0 and is constant for

large to.

Proof. Define for o€ RB® with lw|] =1

i 15??;13%“3(&) i
5,(w) =  max 2v|xj(w) - N ()]

1<i<j<n

Since A(t) has distinct eigenvalues, the eigenvalues and normalized
eigenvectofs of A(w) for |w| = 1 can be chosen to be continuous
locally. See Theorems 3.1.2 and 3.1.3 in Ortega (1972). Since the
unit sphere in mk is compact, the following three numbers are

positive and finite:

I
(5.20) R= inf lrJ.(w)l°°
1<j<n

|w] =1
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Suppose & € Z¥ and & £0. Let w=E/|t]. By the equation

(5.16) and remarks as is the proof of Lemma 3.5,

S u(e,t) = ari A() ule,t) = 1 2r|g] Aw) B(s,t) f
The eigenvalues of 2r|&| A(w) are or|é| )\l(w), san 5 Cw)El An(w).
The &, and 5, in Lemma 5.4 for these numbers are |[¢| 8, (w) 4

and [g] 5,(w). Let K"(t,, 8;, 5,) be given by (5.13). Since K"

clearly increases if either 61 decreases or 62 increases,

K" (%, le] 8, (@), el 8,(w)) < K"(%y, [E]np, 1§1u2)- Also, note that 4

if 5, and ®, decrease with p = 52/51 remaining constant, K"

increases. Hence K"(to, lélul, lﬁlug) < K%, uys pg). Let P(w)
be the matrix whose columns are rl(w), e rn(w). Clearly,

|P(w)|, € n. By Theorem 5.5 and Lemma 5.k,

|P(w) ';, ~T
[U(g,0) |, < ———— K"(ty, [&] 8 (), [€[8,(w)) sup [u™(E,t)],
min |r;(w)]|, o<ttty
1<j<n 9
no..n ~E
gk (to: Mq2 Hg) Oss?ﬁto [u™(e,t) |

{ So
; (5.22) 56,00 < vz |3 (e,0) ],

< K(t,) sup ITII(bt)I
o<t<ty

-




where

_nyn=£ _,

By (5.13), K(t,) behaves like té'n as t, -0 and is constant for '

large to.

Since (5.22) holds for each ¢ # 0 in Zk, we have

IE ~IT
W) = sy @+ 1eD® (6,00
WT(0,0)] + K(ty) supy (1 + JeD® swp [3l(e, )]
¢€T 0Lt <ty

"

]GII(O,O)I + K(t,) sup IuII
()

S
0<t<t,

and the theorem follows,

We remark that the dependence of K(to) on t. indicates

0

that up to a certain point, the longer the time interval over which

we measure uI, the more accurately we can expect to determine uII(O).

Note that K(to) must go to « as to — 0; otherwise, uII(O) would

be determined by uI(O) and GII(O,O). !
Restriction (5.18) is necessary for a dense set of w's in

the unit sphere of Iik. Suppose rﬁ(n) = 0 for some non-zero n in

Zk and some Jj; this holds if and only if r§(m) =0 for _

w=n/|n]l. If o(x) 4is any scalar-valued function such that §

®(¢) =0 unless ¢ is a non-zero integral multiple of 17, and

v.(x) = p(x) rj(n), then the solution of system (5.16) with initial

conditions




(5.23) u'(0) =0, u't(0) = v, .

satisfies uI(t) =0 and GII(O,O) = 0. Hence uII(O) cannot be

determined from uI(t) for 0<t<t, and GII(O,O) in this case.

(0]

5.7. Example, We present sample conditions under which condition

(5.18) is satisfied. Suppose £ =n-1 and k < n-1l. Let &; be

the last column of Aj' 1if gi, ool gi are linearly independent,

then (5.18) is satisfied. The linear independence of g{, A gi

implies that the last column of A(¢) with its n-th component

k

removed is not zero for all ¢ # 0. in R, and hence (0,...,0,1)*

is not an eigenvector of A(e).

(12)

In general, if A} denotes the upper right £ x (n-£) -
block of Aj and A§22) denotes the lower right (n-£) x (n-2)
block of Aj’ then (5.18) is satisfied if and only if for all & # O
vk A(ez)E

. s _—
J=1"J J

in ]Rk; every non-zero eigenvector of A(EE)(g) =

not in the kernel of A(le)(g) = Z?:l A§12)§j-

Equations with Lower Order Terms

Theorem 5.6 no longer holds in the same form if there are lower

order terms in the equation, as the following example illustrates.




(1 5.8. Example, Consider the equation

4
a (0} 8 (B 0 0 2T
(5.24%) u, = Aux + Bu = ) (ot u +[ 0 -2r O u
o 10 0 0 a1

with k=1 and £ =1, The eigenvalues of A are O and

+ V2, so (5.24) is strictly hyperbolic. In the notation Jjust above,
(12)

(22)

» 80 the hypotheses of Theorem 5.6 are satisfied

the kernel of A = (1, 0) 4is spanned by (0, 1)!, which is not an
eigenvector of A

for the equation u, = Aux. However, it is easy to see that

u(x,t) = (0, cos 2mx, sin 2mx)*

is a solution of (5.24) for which uI(t) =0 and EII(O,O) =10,

We can still obtain the continuous dependence of uII(O)
on uI(t) for 0<t< to and the necessary measurements of uII(O).
The difference is that we have to measure more than Just the ¢ =0

Fourier coefficient of uII(O); a finite number of Fourier coefficients

will suffice.
5.9. Theorem. Consider the equation

+ Bu

k
(5.25) u = % A
= J

u
t §=1 J %




where B 1is a constant real-valued matrix. Suppose that the correspond-
ing system (5.16) with B = 0 satisfies the hypotheses of Theorem 5.6.
Then there is a constant M, independent of s and to, and a constant

K depending on s and t; such that if w € c([0,t], M%) is a

solution of (5.25), then
(5.26) W), < mx (1+ [e))® [T(,0)] + x[ul]_ .
°7 lefgm e

Proof. Define A(¢) by (5.17). Suppose ¢t € T and E #£0. Let

=t/|e|. By the equation (5.25),

1l

(5.27) £ u(e,t) = (2miA(e) + B) e, t)

The eigenvalues Kj(m, le]) of A(w) + B/(2wilt|) need no longer
be real, but if [¢| is large enough, their real parts will be

distinct and uniformly separated and their imaginary parts will be

uniformly bounded.

If z,, 2, €€ and |Im(z )] <1 for j =1,2, then

e < | j| < e and it follows easily that

_ll iRe(zl) iRe(z2)| l iz iz,
e < |e

iRe(z,) 1iRe(z.)
g % 1 1 2

- e |Se|e - @

So Lemma 5.3 carries over to complex numbers %l’ ey %n ir

|Im(xd)| < 1 provided that Re(xl), ..., Re(A)) are distinct,




S ——

——

%j - Ai is replaced by Re(kj - ki) in (5.9), and B(to) is replaced

by (2e)nml B(to) in (5.8},

Because of the coméactness of the unit sphere in Iik and
the continuity of the eigenvalues and local continuity of the normalized
eigenvectors rj(w, |&]) (for |&| 1large enough to meke the eigenvalues
?\J.(w, |e]) of A(w) + B/(2rit) distinct), there is an M such that
if |g] >M and « is in the unit sphere, then lIm(?\j(w, le]) <1,
the real parts of kj(u» |&|) are distinct, there are uniform positive
lower and upper bounds on IRe(kj(u» lg]) - ki(u» le]))| for j # i,
and there is a uniform positive lower bound on |r§(a» |e])| . The
proof of Theorem 5.5 goes through, and the theorem follows as in the
proof of Theorem 5.6, applying the analogue of Theorem 5.5 to (5.27)

for |&| > M.

The Effect of the Coriolis Term on the Linearized Shallow-water Equations

We consider the application of the methods of this chapter

to the linearized shallow-water equations

e )7 - = '
ut uoux vouy i @x fu=0
(5.28) v, * ugv, * Voly - % +fu=0
Pt 1 q)O(u‘x i vy) 2 uwa i vOch =¥

where Uys Vor ¢O, and f are constants. From physical considerations,

we assume that P > 0, As we noted in Chapter I, simulation experiments

88




indicate that the wind field does not adjust to the mass field in the
tropics when intermittent updating is used, but adjustment in mid-
latitudes does occur. We can explain this effect for the linearized
system (5.28). In the original system (1.5), the Ceriolis parameter
f is 0 at tﬁe equator and relatively large'in absolute value in the
mid-latitudes. We examine the effect that the size of |f| has on
the possibility of recovering the winds u(x,y,0) and v(x,y,0) from
the geopotential o(x,y,t) for 0 <t < to and.a finite number of
Fourier coefficients of the winds at time t = 0.

If f =0, then u(x,y,0) and v(x,y,0) are not uniquely
determined by o¢(x,y,t) for 0<t < t, and a finite number of

Fourier coefficients of u and v at time t = 0. For system (5.28),

the matrix A(t) defined by (5.17) is

udy * Vobs = &
A(e) = - ) uo§l + VO§2 ' 52
L %t Pk, Uoby * Vobo

For each ¢ € Zk, the vector r(¢) = (-52, €., 0)' is an eigenvector

l)
of A(t), and the component of r(%) corresponding to ¢ is O.
As in the remark following Theorem 5.6, this implies that an infinite

number of the Fourier coefficients of the winds u and v at time

t =0 cennot be determined by ¢(x,y,t) for 0<t < toe

If f # O, however, then u(x,y,0) and v(x,y,0) are uniquely

determined by o(x,y,t) for 0<t < t, and the (0,0) Fourier

coefficient of u(x,y,0) and v(x,y,0).
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s 5.10, Theorem. Consider the system (5.28) with Py >0 and
F: f #0, Given s and to, there is & constant K such that if

z = (u,v,p)' € C([O,to], M%) 1is a solution of (5.28) for which

O

® € ¢([0,ty), ¥*™1), then
(5.29) [w(0) | < |w(0,050)| + Ko,
where w = (u,v)' and ;(gl,gz;t) is defined by (2.35).

Proof. Setting ¢y = \/Qo , dividing the third equation of (5.28)

by o’ and replacing o by co¢, we obtain the system

u uy 0 ¢ } u Vo 0 O u ‘
: (5.30) v|==l0 u, O v “{ 0 v, ¢ v ?
@ t % 0 u, P & 0 %% Vo V] y ;
i
o T 0 u
+ -f 0 O v ;
0 0 0 P :

—
Al A s W P S

Clearly it suffices to prove (5.29) for the system (5.30)., If

z = (4,v,9)" € C([0,t,], M®) 1is a solution of (5.30), then

i (5.31) £ 26,1 = 1) %t t)

where




—

[ i - =
| r(e) if emicyt,
j (5.32) Qe) = -f -v(e) -2micyE,
oricgt,  -2micyt, ~r(e) ;

where y(¢) = Ew(uogl + Vb§2)° As in Elvius and Sundstrom (1973),

the eigenvalues of Q(¢) are

A (e) = -r(t)
(5.33) M(g) = =r(e) + ofe)
Ns(e) = -r(e) - ale)
where «a(e) = (hw2c§|§|2 + f2)1/2. The corresponding eigenvectors -

for & # 0 are

rl(g) = 2wc0l§|2 (-2wicog2, 2v1c0§1, )
(5.34) r,(8) = 2018, - ,a(e), -1¢,f - £,0(8), 2mey|e]?)" f
r(e) = £1,f + £10(8), -38,F + £,006), 2meg|e]®)

Note that since f # 0, a(¢) > O, so the eigenvalues of Q(t) are

distinct and real for all ¢&.

; To obtain the winds from the geopotential, we want r§ to

denote the third component of rJ and rgI to denote the first

two components of T. Suppose t # O, The scaling factors avcolgla

and f appearing in (5.34) were chosen to equalize lrgl°° for

J=12,5. We have

h

-




(5.35) min |ri(e)], = Jeme £t ?|
. 1<J<3

Let P(¢) = [rl(g), r2(§), r3(g)] denote the matrix whose columns are

rl(E): r2(§), r3(g). By (5.3), IP(Q)lm is its meximum row sum, where
e row sum is the sum of the absolute values of the elements in that row,

The first row sum of P(t) 1is bounded by
2
kP32 e, | + 2(brPel|e]®[e, |22 + |g|2t’l‘)1/2
< eIt |® Jegl + 2(emeyfe] ey] le] + ¢|£)

< brfeSle | + meyle|® |2| + 2] |£?

< bg] (regle] + 22

Similarly, the second row sum of P(g) is also bounded by
ble| (megle] + |£])°. The third row sum of P(¢) 1is 6Wc0|§|2 2],

which is also bounded by hlg](wcolgl + Ifl)2 since ¢ # 0. Hence

. < ST A A 5

- HOIR ble| (reyle] + |£])?
s (5.36) oy < 5
min |r(e)], emey |2 ¢l
' 1<j<3
2(me, + |f|)2 !
] s ng[fl l¢| :
0
Now

IN() = A(e)] = IA(8) = A(e)] = 3 A (e) = Ag() | = ale)

For |¢| large enough, a(t) [ty/(n-1)] > 27/3, so if t,(e) = (en/3) a(e)L,




e R S E——

then 0 < t, < to/(n-l) and sin(%‘- a(€) tl(g)) = sin(a(t) t,(€)) = \/3/2.
Hence the B(to)'s (depending on &) defined by (5.9) are bounded
independent of & # O. Applying Theorem 5.5 to equation (5.31),

we obtain

(5.37) |2(€,0)| < const|E| sup |p(E,t)]
o<t<t,

The theorem follows immediately.

Note that by (5.36), the constant K in (5.29) goes to =

as |£| =»o0.
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g CHAPTER VI 3
COMPUTATIONAL METHODS :
5, In this chapter, we consider question (1.L) for the sample %
: equation of Chapter III 4
(5 . l) u t = Aux ’

where u = u(x,t) = (ul,uz)' is periodic in x, xE R, 0<t <t

e

is a constant real-valued matrix, and Uy is the more completely

0’

el

observable component. We discuss computational methods for the recovery

of u?(x,o) using the theoretical results of Chapter III. The results

Lk i v P

of our computations are in close agreement with the theory of the
equations which has been developed.

In our computations, we use the test equation

e

f (6.1)

The matrix A in (€.1) 1is chosen to model the signs and relative

! sizes of the elements of the matrix in the linearized shallow-water

equations for one-dimensional flow




(6.2) = -

See equation (5.30).

Methods Using Time Derivatives of ul

By Theorem 3.1, uz(x,O) can be determined uniquely from and
depends continuously on the data ul(x,O), Btul(x,o), and u2(0,0)
if b # 0. We assume that this data is available. The first equation

of the system (3.1) is an ordinary differential equation for ue(x,o)

1

(3.2) axu2 -g (atu1 - abxul)

and the initial data u2(0,0) for this equation is available. So we

can solve (3.2) numerically to obtain an approximation to u2(x,0).
Although Bxul appears explicitly in (3.2), we can solve (3.2)

without measuring bxul or computing an approximation to bxul. 15

w(x) = ug(x,o) o % ul(x,O), then (3.2) becomes

(6.3) ¥ = L 3,u,(x,0)

We solve (6.3) numerically for w, and then compute ua(x,o) from
w(x) and ul(x,O). Using the notation of Henrici (1962) for linear

multistep methods, we solve (6.3) approximately by the leap-frog

method




war paas

i
% ‘
"‘ (6.4) Ypsp = Vo = 20 |
L~' where h is the step length in the x direction. We use Euler's
method {
= 1

to generate the extra starting value ¥,+ The method (6.4) is of
order 2; Euler's method is of order 1, so the error made in using it

once to generate y, 1is O(hg).

Once we have constructed complete initial data at t =0, we

can solve (3.1) numerically using standard difference methods. We

use the leap-frog scheme '

(6.6) ulx, t + k) = u(x, t = k) + % Alulx + b, t) = u(x - h,t))

where k is the step length in the t direction. We use periodic

boundary conditions u(0,t) = u(l,t), and forward differencing in ! 1
time

(6.7) u(x,k) = u(x,0) + %A(u(x +h, t) - u(x - h, t))
to get started. This method is also of order 2,

]
Since this approach is essentially the combination of two g
|

well-posed problems, we expect nc difficulties in the computations,

and none arose in our test computations. We applied this method to

equation (6.1) with
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ul(x,O) = 10 + sin(2mx)
atul(x,o) = - sin(2mx)
u2(0,0) =0

At each time level, the L2 norm of the actual solution is 10.1.

The Le norms of the errors in the computed solution are

e 2 oy - -
h=55, k= 555 h =g, k = 5%
u2(-,0) . 00063 .00016
u (-3 15 037
u (-,1) .29 .073

(where the {? norm of a function defined on a grid is the square
root of the average of the squares of its values at the grid points).
Notice that dividing h and k by 2 divides the error by L, as is
expected of second order methods. We also ran a test where we used
ul(x,k) and ul(x,-k) as data to approximate ul(x,O) and Btul(x,o).
The Lg errors were virtually identical to those above.

It is clear that the success of this approach does not depend

on the particular choice of numerical methods to solve the ordinary

differential equation (3.2) and the partial differential equation (3.1).

This approach also extends readily to the situation in Theorem 4.9.
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Methods Using ul st Several Time Levels

For simplicity, we assume that ul(x,O) = 0. If not and
ul(x,o) = vl(x), then we can subtract off from u the solution of

(3.1) with initial conditions

ul(x,O) = vl(x) i u2(x,0) =0

and proceed as if the original ul(x,o) were O,

We first consider trying to recover u2(x,0) by measuring
ul(x,O) (which we assume is 0), ul(x,tl), and 32(0,0) where
t, € (O,to] and U(¢,t) is defined by (2.35). By Theorem 3.6, we
know that uniqueness depends on the irrationality of tld where
(3.12) d=((a - ¢)2 + 12/
and even if we have uniqueness, ue(x,o) does not depend continuously

on this data. However, if u_ (x,0) has a finite Fourier expansion,

o
or if we want to recover only a fixed finite number of the Fourier
components of u2(x,0), we can consider using data of this form if
we make a judicious choice of tl in view of Lemma 3.5, which gives

(6.8) 2b ewigt(a+c)

U (e,t) =132 sin(rgtd) U, (¢,0)

We performed an experiment to compute ue(x,o) from the data

ul(x,tl) and u2(0,0) under the assumption that ul(x,o) =0, We

use the measurement of u2(0,0) to determine the constant term of




u2(x,0). The method we use follows.

Form the matrix E (which depends on tl) which maps the

e

initial conditions in discrete form into an approximation of ul(x,tl)

==
in discrete form using leap-frog. Setting : }

<
|

= (uy(h,0), u,(2h,0), ..., u,(1,0))" |
(6.9)

(e}
I

B U(tl) = (ul(h’tl)’ ul(2h’tl)’ cee ul(l’tl))'

the j-th column of E 1is the computed value of U using leap-frog
(with forward differencing to get started) with initial data

e (0, «v. , 1, ... , 0)', the 1 occurring :

in the j-th place. We want to solve

ul(x,O) =0 and V=e

(6.10) EV=U

for V given U, If n=1/nh, E is an nxn matrix. But E is

singnlar; B(1, 1, ... , 1) =0, If n is even,

B, 0, 5,0, oo s LU =0 13,0, % oov ;6 1) nd

If n is odd, we find experimentally that the rank of E is n-l,

and that the (n-1) x (n-1) matrix obtained by deleting the last row

% and column of E 1is nonsingular, We delete the last column of E -




(i.e. we move it to *he other side of the equation) by using our extra

piece of information (the measured value of u2(0,0) = u2(1,0)). Then

ignoring the n-th equation (i.e.the last row of E), we solve the
resulting nonsingular (n-l1) x (n-l) linear system by Gaussian Elimination.
We applied this method to the equation (6.1) (for which
= 10) with the actual u2(x,0) being 1 - cos(bkmx) for many values

of t,, with h = 1/19 and k = 1/380. The error in the computed
u2(x,0) behaves as we would expect from (6.8): if Isin(wdgtl)l
with ¢ =2 is close to O, the error is large (for t1 = 20/580, the
relative 42 error is 4.,0) and if |sin(wgtld)| is close to 1,
the error is small (for t = 9/380, the relative 22 error is .016).

8 We applied this method to equation (6.1) with the actual
u2(x,0) having other single nonzero Fourier coefficients. There were
similar relationships between the relative LQ error in the computed
u,(x,0) and the size of |sin(mtt,d)|. Also, if the actual u,(x,0)
had several nonzero Fourier coefficients, the relative 42 error in
the computed u2(x,0) was small only when |sin(w§tld)| was not close
to O for all ¢'s with nonzero Fourier coefficients.

We now consider trying to recover u2(x,0) by measuring

ul(x,O) (which we assume is 0), uL(x,tl), Wit ul(x,tm), and

; 32(0,0) where 0 < tl Woes KBS to. Remarks similar to those

above concerning uniqueness and continuous dependence apply here as well,

but we have more parameters than just tl at our disposal.

We performed an experiment to compute ue(x,o) from the

g : data ul(x,tl), i ul(x,tm), and u2(0,0) under the assumption
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that ul(x,O) = 0, Using the notation introduced above, we want to

solve the overdetermined system

—

'E(tl) ! u(t,)
(6.11) E(?e) ¥V = U(?E)
[E(t)) | LU(;m) ;
for V given U(tl), — U(tm). If n is odd, again we found

experimentally that the rank of the mn X n matrix in (6.11) is n-1.
We want to solve (6.11) in the least squares sense. To do this, we
compute the singular value decomposition of this matrix using the
Golub-Reinsch algorithm, and then apply the pseudo-inverse of this
matrix to find the least squares solution of (6.11) with minimal
norm, See Golub and Reinsch (1971) and Dahlquist, Bjdrck, and Anderscn
(1974) for discussions of the singular value decomposition, pseudo-
inverses, and linear least squares problems. We then add the same
constant to each element of V to obtain the correct u2(0,0).

We applied this method to the equation (6.1) with the actual
u2(x,0) being

(6.12) u,.(x,0) = 6 = 3 cos(2mx) - 2 cos(bmx) = cos(6mx)

2(
and with h=1/19 and k = /380, The L° norm of u,(x,0) is
V47'= 6.6. The {? errors of the computed approximations to u2(x,0)

for several test cases were:

101




m=1; t, =k . ko6
v m=2; ty =k t, =2k .329
m = 3 t, =k t, =2k ty =3k .350 I
m = 2; t, = 12k, t, = 2k .391
m = 3; t, =7k t, = 9k t; = 1% .058
m = 3; ty = 7k, t, = 19, t, = 2% .077

v t2 and t3 were

chosen to obtain good information on all three Fourier components.

In these last two computations, the values of ¢t

Because of Theorem 3.8 and the remarks made preceding Theorem 3.8,
it is not surprising that we can obtain good results using this least
’ squares method. We would expect similar results if we applied this
method in the situation of Theorem 5.6 where the data requirements on
o

uI are also measuring u (t) for O <t <t,. The main difficulty with

0

this method is that computing the singular value decomposition for
large systems is expensive. Since the matrix in (6.11) is not of
full rank, we cannot use the less expensive methods for least squares
solutions using orthogonal transformations. T. F. C. Chan (1977)

has developed a modification of the Golub-Reinsch algorithm aimed at
solving systems with many more rows than columns more efficiently.
This can help in the situation here, but the expense for large systems
may be impractical, If the equations are nonlinear, a similar method
is still possible, but it will lead to a nonlinear least squares problem,
For the equations of weather prediction on a grid which is dense

T enough to be of value, it appears that the expense of such an approach

is prohibitive.
102
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Intermittent Updating

We consider the method of updating uy to obtain u, for the
equation (3.1) in this section. We assume that b # 0. The results
in Chapter III give us hope that we have enough data to determine uy

if we know the constant term of u, and if we know vy for a sufficiently
dense set of times to meet our accuracy requirements. The question here
is how the method of intermittent updating makes use of this data.
Since equation (3.1) is reversible in time and since it has constant
coefficients, we consider updating which only moves forward in time;
our results can easily be modified to handle the case of integrating
forward and backward in time.
Suppose u(x,t) is a solution of the equation (3.1). Let
g(x) be some initial guess for u2(x,0). Define the function .
v = v(x,t) = (vl,v2)' by: for 0<t <7, v(x,t) is the solution
of (3.1) with initial conditions vl(x,O) = ul(x,o) and vz(x,o) = g(x);
inductively for Jt < t < (j+l)r, v(x,t) 4is the solution of (3.1)
with initial conditions vl(x,Jr) = ul(x, j1) and v2(x,JT) is
obtained from the previous interval. For now, 7 is a fixed positive
number which we call the frequency of updating. If ul(x,t) is
measured at jt for j =0,1,2,... and we have an initial guess
g(x) for ue(x,t), then v(x,t) can be approximated by finite
difference methods in the obvious way: while proceeding with the
numerical integration, replace the computed vl(x,t) by ul(x,t)
at the times when uI has been measured.

Let tl = Jtv for some J. Let
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- go(x) = vy(x,%y) = u (x,¢,)

(6.13) g (x) = vy(x, 8y + 1) - u,(x, t; + 1)

=

fl(x) = vl(x, t. + () - ul(x, t + 1)

3 1

Then (fl(x), gl(x))' is the solution at t =t, + v of (3.1) with

initial data ul(x,tl) =0 and ua(x,tl) = qo(x), 80 by Lemma 3.5,

(6.14) 12,(6)| = |2 sin(mra) gy (c)

Now, it is easy to show that for solutions u of (3.1),

Iﬁl(g,t)l2 + |§2(§,t)|2 is independent of t for each t. So for

-

each ¢,

- OGRS T PN SR A R

(6.15) lgo®)1% = 12,(6)12 + [g,(e) [

Combining (6.13), (6.14), (6.15), and Parseval's relation, we obtain |

e S C—.

" A 2 '
le, ()% = Igo(g)I2<1 - '*:;2 sin2(7r§'rd)> ;

80 .

SR VAR DA 40 1,

A 2
(6.26)  llvy(ty + 1) - uy(t, + D) = = Iso(g>|2<1 : “—:2- sine(vgrd)>
¢

R

Note that Lb° < d2, with equality if a = c, Since v, is reset to

2l
u; at t + 1, (6.16) reflects the total error in v as an approxi-

‘ mation to u at tl + 7. The effect of intermittent updating is to

decrease each Fourier coefficient of the error v, - u, by a factor




1/2

of (1 - (hbe/de) sina(wgrd)) per iteration as we advance in time.
This factor is.always at most 1, Note that it depends on E.

In particular, the ¢ = O Fourier coefficient of the error v, = U,

remains the same., Thus ;(O) should be 32(0,0) if we want

lv, =ufl. >0 as t =+,

2 = Ylly
A perhaps unexpected result of this is that maeking T smaller

(i.e. using more information about ul) does not necessarily make

v, approach u, faster as t increases; it may make things worse,
If tv 1is close to O, the decrease factor will be close to 1 for small
lgl, which is not desirable., Thus in intermittent updating, it is not
always best to "throw in' any and all measured data--even if it is

accurate. The way the process works requires enough time between up-

dates of v, for some of the energy of the error to pass from the

L
second to the first component, and then out of the system when vy is
updated. We remark that the problem is not that we have too much data,
but that the updating process does not use the data to its best
advantage. However, since the updating process is not as costly as
methods for least squeres, it still may turn out to be the most
efficient method, provided that we can find modifications to prevent
slow convergence due to decreare factors close to 1.

We applied this method to equation (6.1) in two test cases.
In the first, the initial data of the exact solution is ul(x,o) =0
and u2(x,0) =1 =-cos(2mx); only ¢ =0 and ¢ =1 occur. We used
g(x) = 1 as our initial guess for ua(x,o), note that the necessary

condition g(0) = 32(0,0) is satisfied, The numerical integration

was performed using the Lax-Wendroff methods
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(6417) u(x, t + k)

= u(x,t) + 2= Alulx + B,t) - u(x-h,t))

2
+ —1‘3 A%(u(x + h,t) - 2u(x,t) + u(x-h,t))
oh

See Kreiss and Oliger (1973) for a discussion of this difference scheme.
We use a one-step method to avoid the difficulties involved in trying

to update a multi-step method. In the following, the observed decrease
factor (which we label d.f.) in the {? norm of the error v, - u,
is given for the first two iterations. The initial error is v@ﬁ? = (3

T is the first time for which the error is at most .1.

% ol d.f. (1 - sin2(10m7)) /2 T
Iel-s 516 Te% .9686, .9683 . 9686 .488
= % .3090, ,3009 .3090 .08
é%o- = 5;—0 .9921, .9921 .9921 *

-513 + -2-;-0- .8090, .8086 .8086 .20

The asterisk indicates that at t = .5, the error is still .262.

It is interesting to note that (.9921)'%° . (/2 = .262, so the
error is as expected. Observe that far better results were obtained
with a coarser mesh, but with a better choice for .

In the second test case, the initial data of the exact

solution is ul(x,o) =0 and u2(x,0) given by (6.12); ¢ =0,1,2,
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and 3 occur. We used g(x) = 1 as our initial guess for u2(x,0);
again, this gives the correct ¢ = O Fourier coefficient. We used
the Lax-Wendroff method (6.17) with h = 1/40 and k =1/250. The

initial L° error of v, is V7 = 2.65.

The theoretical decrease factor (1 - sin2(10wgr))l/2 for
¢ = 1,2, and 3 and various values of 1 are:
1 =2k Lk 6k 8k 10k 12k
B =1 . 9686 .8763 .7290 .5358 .3090 .0628
£ =2 . 8763 .5358 .0628 k258 .80% 9921
£ =3 .7290 .0628 L6374 . 9921 .8090 .1874

Note that this factor is very good for ¢ =1 and rt = 12k, for s
E =2 and T =6k, and for £ =3 and 7 = bk, This factor is very
poor for £ =2 and =12k and for ¢ =3 and 7t = 8k.

The 42 error in v, for various values of 1 and t are:

2
T =2k Lk 6k 8k 10k 12k

t =.240 .8151 .2935 .0934 . 720k k265 1.3814

t = .480 .3109 .okol .0237 L7621 <1275 1.3881

t = .720 .1189 .0133 .0211 7551 0567 1,ko01

t = .960 .0L484 L0117 .0168 L6401 .0523 1.3%53

(Note: for 7 = 8k, the values of t are .256, .48, .704, and .960.)
If| r is 2k, bk, 6k, or 10k, the method works well for this test case.
For 1 = 8k, the ¢ =3 Fourier component is difficult to recover;

for 1 =12k, the ¢ =2 Fourier coefficient is difficult to recover.

107




T — W T — —

,f We see that for equation (3.1), there are two possible reasons
& that would cause the error in vy to approach a nonzero asymptotic value.
L_ : The first is if the initial guess g(x) for u2(x,0) has the wrong ¢ =0

Fourier coefficient. The second is if the frequency of updating =
happens to yield a decrease factor which is very close to 1 for some ¢
such that ;(g) #ag(g,o). The second of these problems might be
eliminated if, instead of restricting ourselves to one fixed frequency
of updating, we use several different frequencies Tyreees Ty together,

we update vy at

t=rl
| . rl+T2
£ :
! i
B o m
i %
| i L el Sl o s
é .
: " + ccveg + cee
% T, T, By ¥ty b Lt
; and continue to repeat this cycle, The gain we make by doing this
&
i is analogous to the gain we make by measuring u, at t =0,t,,...,t
b

instead of just at t =0 and tl in the previous section. If one
value of 1 ylields a poor decrease factor for a particular ¢, then
hopefully some other value of 1 in the set Typeeor Ty will yield

# a good decrease factor for this ¢. Repeating the cycle ensures that

if even one of the TJ'I ylelds a reasonably good decrease factor
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for this ¢, then eventually the ¢-th Fourier coefficient of the error

in v2 will be small.

Temperton (1973) suggested that using different frequencies of
updating may be beneficial, but he rejected this idea because his test
results did not substantiate it. In the experiment he performed, he

used = 12k, 1, = 11k, T, = 10k, ... , 7., = 3k, and he stopped after

2 3 10
the tenth iteration and did not repeat the cycle. We suggest that it
may be better to keep m relatively small, choose TJ'B which are sub-
stantially different, and to repeat the cycle.

We ran some experiments for our second test case using these

ideas, and the following are the results for the 4? errors in v,

T, =2k
T, =2k T, - Lx
T =2k r, = bk Ty = 6k 1 = bk
12=hk 1'5=6k rh=8k 12=8k
t = .2k k4125 .1935 .08ko .0551
t = 480 .0788 L0274 L0431 L0347
t =.720 .0189 .0232 .0b52 L0377
t = .960 .0121 0194 .0385 033k

Notice that we have convergence of v2 to u, without difficulty in

each of these four cases, substantiating our suggestion for the sample

equation (3.1).

oy
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