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1. Introduction

High speed impact of an object on solid media is a complicated
phenomena which is influenced by variables such as material properties,
impact velocity, projectile shape, target support position and
relative dimensions of the target and projectile. 1In this research
work we have concentrated our effort in the investigation of a class
of impact problems whose angle of impact is so shallow that the
target impact disturbance might be considered as a surface wave
problem.

The above assumption has certain advantage. The theory for the
wave disturbance resulting from the avplication of a pressure dis-
tribution on the fluid surface is well known, Lamb [1]. Knowing the
shape of the projectile the resulting pressure at the contact area
can be determined. Under these pressure the dynamic behavior of the
projectile can be computed by a step by step approach.

Our other goal is to simulate this class of impact problems
using a general purpose finite element program. The NASTRAN program
was selected because this general purpose program is most widely used
by the Army ordnance engineering community, and the program has the
capability of handling load matrices due to nonlinearity.

Before we could start to study the pressure developed during
impact we had to be certain that NASTRAN can handle any nonlinear
material problems.

Most of this first year of research on this project was spent
in doing nonlinear material problems using NASTRAN. The theoretical
background for the pressure distribution developed during impact is
given in the last chapter. Unfortunately no "numerical experiments"

were performed to verify the theory presented.
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2. Nonlinear Material Problems using NASTRAN

NASTRAN is a finite element computer program for
structural analysis that is based on the displacement approach.
The program includes a limited capability for the solution of
nonlinear elastic-plastic problems using Piecewise Linear Analysis.
In version 16 of NASTRAN the elements that do have this capability
are ROD, TUBE, BAR, and PLATE. In this report a Direct Iteration
Method is described that allows the elastic-plastic analysis of
structures that can be represented by combinations of elements
contained in the NASTRAN element library, such as beams, rods, shear
and twist panels, triangular and guadinlateral plates, conical and
toroidal shells, solids of revolution, scalar elements, three
dimensional elements, isoparametric elements, and constraint elements.

In the Piecewise Linear Analysis the load is applie&
in increments such that the stiffness properties can be assumed
to be constant over each increment. The stiffness matrix for each
increment is dependent on the current state of stress in the
structural elements. The increments in displacements and stresses
are accumulated to produce the final, nonlinear results. Since the
algorithm assumes linearity between sequential loads, the results
will depend on the user's choice of load increments. When the user
selects large load increments and the material properties are changing
rapidly, the results may be unacceptably inaccurate. If small load
increments are used when the structure is nearly linear the solution
will be more accurate but relatively costly. Based on the same
approach Yang and Frederick [ 21 expanded the NASTRAN capability to
include axisymmetric solid ring elements. :

The Direct Iteration Method provides a very simple but
approximate solution of an elastic-plastic problem. 1In brief, the
procedure is as follows. Assume that all material is elastic, compute
the structure stiffness matrix, apply the full load to the structure,
and solve for displacements and stresses. Compute strains in each
element. For those elements strained beyond their elastic limit,

i
La) ‘

i TN g

P % e : y

A . "
O I ¥ e " 5 g 'r"..» . gt e s Vo e s I
' A g T R
ol il U5 i ARSI AP oy i R BN



approximately reduce their elastic stiffness, and compute a different
structure stiffness matrix based on the modified elastic properties.
Again apply the full load and compute displacements and stresses.

Stop iteration when source convergence criteria is satisfied. The
final set of displacements and stresses is the elastic-plastic solution

of the structure.

The principal advantage of the Direct Iteration Method is
its simplicity. However, there are several limitations. The method
may not converge if plastic region is extensive. Possible elastic
unloading of plastically deformed material is not accounted for. The
flow rules of plasticity are ignored by the assumption that the solution
is uniquely defined by whatever final load level is reached. It is
known that the final state of stress and strain depends on how the
stresses and strains develop during loading as well as how much load
is applied. Another approximation is introduced by the épplication
of deformation theory, which is exact only if all stresses increase
proportionally, that is, if in reality, at any point and throughout
loading, the resulting stress distribution does not depend on the
order of appl}ed loadings.

With the Direct Stiffness Method the strain energy in
each element is always underestimated, therefore a higher stiffness

-is assumed for each element. For most small strain (in the order of

10-3) problems this approximation is not critical as shall be demon-
strated in the examples.
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The elastic-plastic nonlinearity of a structural element
igs defined by the element material used. Any isotropic material
may be made nonlinear by including a stress-strain table defining .
its extension test characteristics. This stress~strain table must 1
define a nondecreasing sequence of both stresses and strains. Because
the stiffness matrix for the first iteration step uses the elastic
material coefficients, the initial slope should correspond to the
defined Young's Modulus, E.

The stress-strain curve can be purely elastic or elastic-
plastic. In the later case, the stress at which plastic yielding
begins has to be given. For this field criterion the hypothesis
of von Mises seems to be most widely accepted, i.e., that yielding
starts when the effective or equivalent stress - i

— | g -
T =j2=\/(0.-0:)+(cfz~<r.5)+(<rr 0i) (1)

reaches the yield point of the material. In the above equation
G, 0, and 03 are the principal stresses.

Once the stress~strain relationship is defined the

calculation may be described by the following steps:
1) After applying the full load to the structure the

elastic stresses and strains are obtained. Strain energies 1l¢ of

the individual elements are then computed. In NASTRAN version 16

or later versions, strain energy can be requested as part of the output.
2) The equivalent strains of each element can be calculated

i
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from the strain energy

2Ue
E: V (2)

where \/ is the volume of the element. To identify the nonlinear

€=

elements these strains are compared with respect to the stress-strain
curve.

3) Plastic elements are determined by calculating the
equivalent stress of the elements. In all but the simplest elements
the amount of plastic action is likely to vary from one point in the
element to another. It is therefore necessary to select a point
whose equivalent stress will represent the behavior of that element.
In simple elements, the centroid is a good sampling point. 1In
isoparametric elements the average of the Gauss points values may
be chosen. The general rule is that sampling point should be placed
where strains are likely to be computed most accurately.

4) For those elements that are nonlinear a different
modulus of elasticity has to be determined from the stress-strain
diagram. In a typical element, the first elastic soiution establishes
line OA. The corresponding strain E}
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Figure 1l: Direct Iteration in Stress~Strain Curve

is obtained from the strain energy. From the line OB a secant modulus
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can be computed.

5) With the new secant modulus Eg an elastic analysis
is again carried out to reach point C in the stress-strain diagram.
If this element is in the plastic range, the Poisson's ration V
is to be equal to 0.5 (for solid elements, setV= 0.499). This
is to take into account of the simplified flow rules.

6) Step 2 is repeated.

7) If there is plastic action step 3 is repeated

8) Step 4 is repeated, etc.

9) The calculation is continued until the stresses or strains
do not change beyond certain acceptable percentage points.
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3. Modifications

In step 5) of each iteration a complete reassembly and
reduction of the structure stiffness matrix is required. To avoid
this inefficiency, all nonlinearity may be imposed as additional

loadings. If [k] is the original stiffness matrix of an element,
the reduced element matrix is

(ke)= E(R)=(1-5E2) =(R)-(km) = @

where [ k. ) -"-'-'(l-— ‘E—s)[k] = q[h]

Thus the equilibrium equation at any iteration step n may be written
as )

(KHD), = (R} +ika) 0D, ()

where [k ) is the original assembled structure stiffness matrix
{D}, is the displacement at iteration step n
fR} is the total applied load

[k,,JM is the assembled structure stiffness matrix based on
at step n-1

{D}n_' is the displacement matrix at step n-1.




In structure stiffness matrix [Kml,., only the modified elements
are assembled.

Another advantage of this approach is that it offers
the possibility of under relaxation. Unrelaxation is accomplished
in the selection of previous nodal displacement {I)hr‘ at step

o

in the above equation. The displacement can be given as

{Dlu., = G-p) {D},., + B {D},, (5)

where o<p < . For B=1 there is no relaxation. Any other

B value the load due to modified secant modulus is reduced at each
iteration step. The purpose is to ensure that the resuliing stresses
converge after each iteration. Convergence is
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illustrated in the left hand figures. If there is divergence as

shown in the right hand figure, no solution can be obtained.

There is another way to avoid divergence of the solution.
This is to apply a fraction of the load first. After completing
the iteration process, modulus of elasticity are obtained for the
next increased loading. This will avoid reading a point far away
from the stress-strain curve at the first iteration step, and
yielding may occur in elements which later in the process must be
unloaded. It is assumed that with partial loading,.the equivalent
stresses in some elements do exceed the yield point.

Partial loading is often necessary for problems where

many elements are in the plastic range. However, satisfactory results

can be obtained even with rather coarse load steps. This point is
demonstrated in the examples given in this report. .
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4. Examples

Case I. Five~Rod Truss

This example was selected because Yang and Frederick had worked

out this problem using both their incremental approach and the pr
wise incremental option available in NASTRAN (Rigid-Format 6).

The truss is loaded with 100,000 pounds as shown in Figure 3

The elastic-plastic material properties for each member are given
Figure 4.

ice-

.

in

The forces in this truss are statically determinate, therefore

the stresses do not change with different modulus of elasticity.

In

order to plot the complete behavior of the members at different bad
level, two loads (80,000 and 100,000 1b.) were applied to the truss.

Numerical results for direct iteration analysis of the truss are
listed in Table 1.

Table 1:
Direct Iteration Analysis of Five-Rod Truss
Vertical Stresses
Displacement
MODULUS OF ELASTICITY of Node 5 01=02=a3=04
- o
Load El E2—E3-—E4
80,000 10(10)6 40(10)7 10(10)6 2.66(10)"2 5.657(10)4

80,000 4.88(10)% 21.3(10)7 10(10)® 5.39(10)-2 5.657(10)%
100,000 2.82(10)6 17.4¢10)7 10(10)6 1.12(20)-1 7.071(10)6

The vertical displacements of joints 2 and 5 are plotted in
\ Figure 5. The points used to determine the different modulus of
elasticity are indicated in Figure 6. Since the stresses do not
change for the same applied load there is no need for iteration in
this sample. There is no difference between the results obtained
by direct iteration and the results obtained by Yang & Frederick
using incremental approaches. The final iteration run on the
computer is listed at the back of this report.
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Case II. Three-Rod Truss
{ The simple Three-Rod Truss (see Figure 7) is statically
A indeterminate. This problem is worked out by Martin and Carey [3]
using a nine step incremental approach. The Ramberg-Osgood des-
cription of the uniaxial stress-strain curve was used to represent
. the elastic-plastic material behavior:
N
i —g— 2 Seld
[ E \Gp
where E = initial elastic modulus '
%yp = yield stress
n = integer specifying strain-hardening characteristics of
the material. For this truss problem, E= 11.6(10)6 psi, gyp= 43000
, psi, and n=11l. The stress-strain curve is plotted in Figure 8.
Applying the load of 120000 1b., six iterations were used to
approximate the solution. The secant modulus of elasticity of each
iteration step is indicated in Figure 8. The results are listed in
Table 2. It compares favorabilly with solutions given by the
incremental method. The final iteration run is listed at the hack
of this report.
| Table 2: Direct Iteration Method of Three-Rod Truss
SECANT MODULUS OF
ELASTICITY DISPLACEMENT STRESSES
. Iteration E;=E, E, v, 0,=04 0,
1l 1.16(10)7 1.16(10)7 ().606::].0"2 35147 70294
2 1.106(10) 7 7.59(10)6 0.779x10™2 43054 59113
3 1.04(10)7  6.26(10)% 0.818x10"2 45832 55184
, 4 9.24(10)® 5.53(10)6 0.995x10"2 45956 55008
5 8.55(10)6 4.98(10)6 1.088x10™2 46527 54200
6 8.42(10)6 4.63(10)6 1.134x10~2 47733 52495
Result from : -2
Incremental 1.42x10 47916 52192
Approach(2]
t /5) |
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"case III. Thick-Walled Cylinder

The thick-walled cylinder under constant internal pressure is
another numerical example calculated by Yang and Frederick [2]
using the manual incremental approach. With the direct iteration
method 80 axisymmetric rectangular solid elements were used to
model the cylinder (Fig. 9). The stress-strain relationship of
the material is given in Fig. 10. Starting with modulus of elasticity
equaling 30(10)6 psi the strain energies of the elements are
computed. Using the formula of equations (2) the equivalent strain
of each element was determined. With this strain energy, secant
modulus of elasticity was obtained from the stress-strain diagram.
(Fig. 10). If the strain was in the plastic range, Poisson's ratio
is set to be 0.49.

Two internal pressure loads 54,562 psi and 110,570 psi were
applied. For the lower pressure only one iteration step beyond the
original run was made. The results are shown in Figures 11, 12
and 13. Figures 14, 15 and 16 show the results of the higher pressure
case after three iteration runs. The theoretical solutions were
taken from Yang and Frederick. The agreement is good enough for
most engineering applications.
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5. Pressure due to Penetration

For this presentation of the theoretical approach, a two-
dimensional model is employed because of its simnlicity. The basic
idea is to determine the pressure distribution by matching the
disturbance profile with the profile of the deformed projectile.
Both these profiles are due to the interval pressure in the contact
surface. To compute this pressure distribution the effects of a
group of pressure element on both the projectile and the target area

-~
N DT e .

had to be determined.

The different pressure elements are

P
O
1. Aft. Seini - fnfinite Pressure Band.

2 Forwaid - Infinite Pressure Band.

—

.
—
\
>

3 C.omplel'é Tr{amj]e Pressuie Element,

R el

4. Ast Half - Triangle Fressure Elemei.

5 Forwavd Half - Triangle |
Ressure Elemeit.
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Pressure  Distribution Diagram

From the pressure distribution diagram the solution to the prob-
lem can be obtained by summing the disturbance profiles resultinag from
all the pressure elements, and equating this to the profile of the
deformed projectile:

n 3) A A 2
2303 N ol A 14) oy, - 2)
Pf(k:‘“ +_Z P ( S _“"&J )+ PS5 - )+ R % =0
E for (=1 ton .

Here the superscript A means that the variable has been made dimen-
sionless using € g and the pressure for that element. The double

-subscript ij refers to the influence at the ith field point due to

a scource element at station j. A single subscript i implies that
j=1, that is, the source element is located at the leading edge. The
superséripts (1) through (5) refer to the five pressure forms
considered. There are a set of n equations and n unknown pressure
points which can be solved by a standard matrix inversion technique.

The deformations Wy due to the five pressure forms have to be
computed. This is done by standard finite element analysis.

The target deformations due to the pressure forms are given by
i

L




r Lamb 1 . Results due to the five pressure forms are listed below:

Aft Semi-Infinite Band:

3= P35/p. = 1 SGRAFAL) + HE-AD]2 cos -1}

where Ao = xko and ko = g/c2

in which F is the density, g is the acceleration of gravity, S is

the target disturbance, c is the velocity of the travelllina pressure,
and x is measured forward form the point of discontinuity in the
pressure. Also H is the Heaviside step function and f ix one of the
two auxiliary functions for the sine-and cosine-integrals, which

are defined by

o Sul ‘
’L(A)-:J &s (1) 4y
g ) Art

Forward Semi-Infinite Band:

€ = PY S/p, = - % S ft m)-m—m)iz Co5 (R,) -1

Complete Triangular Element:

205 L) PHOAN 250 (1)1

& [T'L’}lt‘ﬂz)*H(”"l’){zsm M;)-’/’lzf]}
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with (j.“,wsjsﬁn(il))‘(/l)d'i\

/—L; ='(X_'v-)a )K,u
R, = (kr2a )k,

Aft Half-Triangular Element:
= G 80k = {[ L) THE=2) {250 (1)~ A5} ]
'['7’6 ?[('/12)1—H(—/11){25in(71:)'-l,}’]

t[ 5t Sqn A f(Ae) H(—;lo)fzcas(/\o)-l}]}

Forward Half-Triangular Element:
¢ = £38/p = ”a[ {L;- GL(As)+ H(- A»){Zm’:z(/h)"/lcf]
-[E LA tHC-AN {2 5 (A= A} ]

i Lﬁ, $gn(A.) f(A,)+ H( ’A”)zZCOS(A") —‘}J}

N - e R e R, SN

Besides the above listed deformation profiles of the target
area due to the five pressure elements the deformation w, of the
projectiles due to the same pressure elements have to be computed
too. For this purpose, standard finite element analysis is used with
the pressure elements as load to calculate the deformation profile.
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