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: ABSTRACT

\

“)This article is an expanded version of an invited address presented
at a symposium celebrating the Tenth Anniversary of IRIA (Institute de
Recherche d' Informatique et d'Automatique), Paris, June 1978. It discusses

the influence of procedural 1aeas on mathematics, science and applied

science, and education.
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I will talk about the influence of procedural ideas on various fields.

This influence, although already important, is still in its infancy. I believe
that during our lifetimes this influence will become pervasive. Here, [ will
limit myself to the impact of procedural ideas on three areas: mathematics,
science and applied science, and education. Although my examples will be
primarily drawn from research done in the United States, similar work is being
done in many countries.

I will often use the words algorithm and heuristic. I will define these
concepts only intuitively. An algorithm is a recipe and if I follow the recipe
a certain result will be achieved. On the other hand, a heuristic is a rule of
thumb. A result is not guaranteed for a heuristic. Instead results are obtain-
ed which are good enough most of the time. See (1), (2) for more extensive
discussion.

It is sometimes useful to view an algorithm as being an extreme point of
a continuum of methods. As knowledge about a domain becomes formalized, heuristic
; methods are often replaced by algorithms. When I choose not to distinguish be-

tween algorithm and heuristic I shall refer to a procedure, a term which encom-
passes the entire continuum.

I will not try to survey the impact of procedural ideas; that would take
a book. I want to give the reader a taste of some current research focusing

primarily on work much of whose impact lies in the future.

X Mathematics

Logicians have long been interested whether certain problems are solvable.
More recently there has been interest in answering the question: If a problem
is solvable, how hard is it to solve? Given a problem, is there an algorithm

which is faster than known algorithms? These questions have led to a major

i
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new area of research: algorithms and complexity. See for example (3), (4)
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to get the flavor of some of the recent research in the area. The addition

of the question of how hard to the question of is it solvable has been very

fruitful.

As an example, consider the problem of determining whether a given sen-
tence is a theorem in Presburger arithmetic. (Presburger arithmetic is the
system of natural numbers with the operation of addition. It is therefore an
exceptionally "simple" system.) Presburger showed there is an algorithm for
solving this problem. Fischer and Rabin (5) proved that the cost of solution
is super-exponential. The implications for both automatic and human theorem-
proving are controversial; see for example the panel discussion (6).

The difficulty (usually called the complexity) of many important problems
is an open question. It is widely believed that all the problems in a certain
set of problems have exponential complexity but this has not been established.
It is of great interest to resolve whether "P = NP", which would provide an
answer to this question (7). Rivest, Shamir, and Adleman have proposed a sur-
prising application of a problem with high complexity to cryptography and
cryptoanalysis (8).

As a contrast to the hard problems discussed above, astonishingly fast
algorithms have been discovered in many areas including graph theory, operations
research, geometry, statistics, and manipulation of power series. To be specific
I will mention some recent results concerning the manipulation of power series.

Among the most common operations performed by scientists, applied mathema-
ticians, and engineers is the manipulation of polynomials and power series.
Basic manipulations include multiplication and division. More advanced mani-
pulations include powering, reversion, composition, repeated composition, or
computing certain transcendental functions of a power series.

The invention of the Fast Fourier Transform implied that polynomial
multiplication could be done faster than by the classical method. Do fast
algorithms exist for other polynomial and power series manipulations? This




question has been affirmatively answered for the manipulations 1isted above
as well as many others. The new algorithms are often astonishingly faster
than those previously known. Some of the results are highly counter-intuitive. 1
For example, any power of a polynomial can be computed as quickly as simply
squaring the polynomial (9). Moreover, any number of compositions can be com-
puted as fast as a single composition (10). Another surprising result is

that the first N terms of the expansion of any algebraic function can be
computed as fast as the product of two Nth degree polynomials (11).

What will be the influence of the work on algorithms and complexity on
mathematics? | believe we will see a major resurgence of interest in answering
questions in constructive mathematics. Until the nineteenth century much of i
mathematics was constructive. Consider the great mathematicians who worked on
such problems: Newton, Euler, Gauss, Chebyshev, Lagrange, Fourier, and so on.
Then a major change took place and mathematicians became primarily interested

in existence and structure. I believe we will see a paradigm shift. Mathema-

ticians will ask new kinds of questions -- not just whether something exists
but how it may be constructed and the cost of the optimal algorithm for its
construction. The new constructive mathematics will have a very different
flavor from the old. The questions will concern the complexity of classes of
algorithms and the complexity of problems rather than of only a single algorithm.

[ must add ['ve expected for some twenty years that there would be a2 great
new wave of work in constructive mathematics, although it has not occurred to
the degree that I expected. Recently I've seen some signs that this may be
changing. I must stress that [ don't believe that only constructive questions
are of interest -- merely that we will see additional kinds of questions being
asked by mathematicians.

I'1Y now discuss a different use of procedural ideas in mathematics. As

you know one of the greatest mathematical problems of the last hundred years

has been the four color conjecture. A proof eluded some of the best mathe-




matical minds for a century. Recently Professors Appel and Haken of the
University of I11inois announced they had proven the theorem (12) using well
over 1000 hours of computer time.

They used a computer to deal with the many special cases that occur after
the four color problem was reduced to a problem in graph theory. This was
certainly a major feat but it is not the only possible use of the computer in
this connection. An interesting question is to what extent the computer can
in the future assist in such mathematical discoveries as the reduction of the
four color problem to a graph theoretic problem.

More generally, to what extent can a computer serve as a mathematician's
assistant in the proving of theorems? Furthermore, can a computer serve as a
mathematician's assistaﬁt in conjecturing interesting theorems to prove? Research
on the latter question is being done by Professor Lenat (13) who is trying to
understand mathematical discovery. Unlike earlier work in mathematical theorem
proving, Lenat's program chooses for itself which concepts to define and which
theorems to prove. It is creating concepts and proving theorems in set theory and
elementary number theory. To quote Lenat: "There has been very little published
thought about discovery from the algorithmic point of view; even Polya and Poincare
treat mathematical ability as a sacred, almost mystic quantity, tied to the uncon-
scious. It may be possible to learn from theorem finding programs how to
tackle the general task of automating scientific research."

What will be the effect on mathematics of Lenat's work on discovery -- that
is not clear. It will be interesting to see what happens. This research has the

potential for profound changes in how mathematicians work in the future.
Science and Applied Science

Computers and procedural ideas have transformed large segments of science.

In keeping with the objective of this paper, I will confine myself to one area

where [ believe procedural ideas will have pervasive and profound future impact.
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In a number of areas, researchers have been working on programs which will
be intelligent assistants for scientists. These assistants work in narrow but
difficult task domains and help human experts do some of the taxing but essen-
tial parts of a particular job.

The first such intelligent assistant was called DENDRAL. DENDRAL is a
chemist's assistant.. Others include a scientist's and engineer's assistant
called MACSYMA, a doctor's assistant called MYCIN, and a geologist's assistant .
called PROSPECTOR. I want to discuss each of these in a bit more detail.

I'11 begin with DENDRAL which is due to Professors Feigenbaum, Lederberg,
and Buchanan. Its task is to enumerate plausible structures for organic molecules 1
given two kinds of information: [1] data from mass spectrometers, [2] user
supplied constraints on the answer, derived from any other form of knowledge ;
available to the user. How was DENDRAL built? Feigenbaum and his colleagues
discovered that chemists who do this kind of analysis use a large amount of

specialized knowledge without which the analysis would be impossible. So the

computer scientists observed and studied the chemists, asking them questions
about how they conducted their analyses. They organized the algorithmic know-
ledge about connectivity and valences, and also the heuristic knowledge about how
such a scientist makes particular kinds of decisions when he is not really sure,
when there is a variety of evidence, and much ambiguity.

What are the results of this work? As described by Professor Feigenbaum (14),
in those areas where the program has been given specialist's knowledge, DENDRAL's
performance is usually not only much faster but also much more accurate than
expert human performance. To date some 25 papers have been published in major
journals of chemistry, reporting results and the knowledge that had to be given
to DENDRAL to obtain them. The DENDRAL system is in everyday use by Stanford
chemists, their collaborators at other universities and also by chemists in

industry. The British government is currently supporting work at Edinburgh aimed !
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at transferring DENDRAL to industrial user communities in the United Kingdom.

Before leaving DENDRAL, I mention a related effort in automatic theory
formation, the META-DENDRAL project (15), which tries to bypass the time-consuming
and difficult process of obtaining knowledge of mass spectral fragmentation rules
from a human expert, instead extracting the regularities automatically (i.e. by
computer program) from collected instrument data.

MACSYMA is a scientist's and engineer's assistant built by Professor Moses
and his co-workers. MACSYMA does manipulative mathematics such as manipulation
of rational functions and symbolic integration. Much time is spent by applied
mathematicians, scientists and engineers on such manipulations. The question of
how to do this efficiently has led to significant advances in algorithms and
complexity. As one example, consider the problem of exact symbolic integration.
Although the theory of symbolic integration was initiated by Liouville, it wasn't
until quite recently that Risch (16) obtained a theory of when integrals can be l
computed in closed form as well as algorithms for obtaining these integrals. l

1'11 merely mention the remaining two examples. MYCIN (17) was started by
Shortliffe (who, incidentally, is both a Ph.D. and a M.D.). It aids medical
doctors in the diagnosis of blood infections and meningitis infections and in the
recommendation of an antibiotic drug treatment. PROSPECTOR (18) is a geologist's
assistant. It can serve as a consultant to aid exploration geologists in their

search for ore deposits.
Education

Recall that DENDRAL is a chemist's assistant while MYCIN is a medical doctor's
assistant. Yet these programs represent knowledge of their domains in such clear
ways that they are also helpful to students. Thus DENDRAL rules have been used to

teach organic structure elucidation; MYCIN's rules will soon be used (19) to teach

diagnosis. [ believe this view of teaching as procedure will prove valuable and

will occur in many fields.




I'm going to describe some work of Professor Papert on the teaching of
children. The following is based on material from P. McCorduck's forthcoming

book (20). Papert believes that children learn by doing and by thinking

about what they do. Although he does not see eye to eye with Piaget on all

aspects he was profoundly influenced by Piaget. Both Piaget and Papert have

made extensive inquiries into what children believe about learning and why
they believe it. Among common theories that children hold is that learning
consists of getting it, in a flash, all at once. Children who believe in
this theory of learning lack or even resist a model which allows understanding
gradually through a process of additions, refinements, debugging, and so on.
As Papert says: "These children's ways of thinking is antithetical to learn-
ing any concept that cannot be acquired in one bite."

Papert is trying to teach children mathematics by having them learn to
instruct a computer to do things. One of the ways he achieves this is
through what his group calls Turtle Geometry. The name Turtle Geometry comes
from the fact that there are small mechanisms at Papert's project with humped
backs which resemble turtles. They crawl on the floor, manipulated by a child
at the terminal. The child draws geometrical figures by manipulating the
turtle. As the figures the children wish the turtles to make become more com-
plex, the children receive instructions which go something like this: If you
can't solve a problem as it stands, try simplifying it; if you cannot find a
complete solution, find a partial one. No doubt, everyone else gives similar
advice. The'difference here is that the advice is concrete enough to be fol-
lowed by children who seem quite impervious to the usual mathematics.

Many of you are no doubt familiar with the work on Turtle Geometry.
What 1 find particularly interesting is that Papert and his co-workers also
try to teach such activities as walking on stilts, riding a unicycle, and

| Juggling. They do this by constructing people procedures analogous to the

% computer procedures we've been discussing.
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Next I want to discuss a technological advance which will have
major implications for education. I'm referring to the widespread introduc-
tion of pocket calculators. In the United States the price of such calcula-
tors has dropped to a few dollars. This means school children can afford
to have one, just as at one time all engineering students had slide rules.
What is the implication of this technological advance for the teaching of
arithmetic to young children?

When I went to school we spent a significant amount of time learning
multiplication tables and the manipulative skills of arithmetic. We Tearned
to do multiplication, division, etc., by rote with no understanding of
the algorithm.

1 believe that too much time is now spent teaching manipulation of
numbers. Arithmetic is not an intellectual activity;
for most children it is drudgery. With calculators they have a chance to '
experiment with and enjoy numbers. Then it might be an intellectual activity
to learn the algorithms of arithmetic and for more advanced students, the
analysis of these algorithms. It might also be useful for students to Tearn
to do approximate arithmetic calculations or to be able to estimate the order
of magnitude of a result. However this does not seem to be taught.

But pocket calculators that do arithmetic and statistical calculations,
and that evaluate elementary functions are only the beginning. What will the
pocket calculators and home computers of the future be able to do? And what
will they imply for education in the future? I suggest we should be thinking
hard about that now.

I said earlier that we should not be teaching arithmetic. What should
we be teaching? The New Mathematics focused on teaching children set theory.

It seems to me that if one wanted to create a Ngw New Math it might be based
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on the algorithmic and heuristic point of view. It would teach paradigms
for problem solving, both in gen-ral, and for specific domains.

My own experience is that I learn algorithmically. Furthermore I find
that students learn best when they are taught paradigms. Finally, I feel
that the algorithmic viewpoint is so general that I can understand at least
some of the issues in a broad array of discipiines; D. Knuth says it very
well (21):

“A person well-trained in computer science knows how to deal with
algorithms: how to construct them, manipulate them, understand them, analyze
them. This knowledge prepares him for much more than writing good computer
programs; it is a general-purpose mental tool which will be a definite aid
to his understanding of other subjects, whether they be chemistry, linguistics,
or music, etc. The reason for this may be understood in the following way:
It has often been said that a person does not really understand something
until he teaches it to someone else. Actually a person does not really
understand something until he can teach it to a computer, i.e., express it as

an algorithm.

For three years I taught a sophomore course in abstract algebra, for
mathematics majors at Caltech, and the most difficult topic was always the
study of "Jordan canonical form" for matrices. The third year I tried a new
approach, by looking at the subject algorithmically, and suddenly it became
quite clear. The same thing happened with the discussion of finite groups
defined by generators and relations; and in another course, with the reduction
theory of binary quadratic forms. By presenting the subject in terms of al-
gorithms, the purpose and meaning of the mathematical theorems became trans-

parent.

These examples and many more have convinced me of the pedagogic value of
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an algorithmic approach; it aids in the understanding of concepts of all
kinds. I believe that a student who is properly trained in computer science ;

! is learning something which will implicitly help him cope with many other 1

r—

subjects."
Concluding Thoughts

I have presented examples of the use of algorithmic and heuristic pro-
cedures in mathematics, science and applied science, and education. These 4
procedures range from completely analyzed algorithms to heuristic procedures
which work most of the time.

We are interested in how to use knowledge to solve problems. Reddy (22) 1

distinguishes among four types of knowledge: algorithmic, formal, informal, and

new knowledge. Problems for which we have well defined step by step operations ‘

such as the FFT or a business payroll procedure are examples of algorithmic

knowledge. Formal knowledge in text books is routinely taught and applied but

is not readily expressed in algorithmic form. Such knowledge can, nevertheless,

be used by machines in which knowledge rules are activated when their

preconditions are satisfied. All of us routinely use a great deal of informal

knowledge which is not taught but learned from observation and example. Much

of the human sensory and motor activity is of this form. Use of knowledge to

create new knowledge (as in all research) is perhaps the most challenging form

of problem solving activity. Lenat's work on discovery is an example of this

type activity. One of the strong influences of computers on society will be the

development of procedural and constructive forms of formal and informal knowledge.
Although the procedural point of view was forced on us by the computer,

I believe it will turn out to be a very fruitful direction for us. A naive

view of procedure is that it's rigid. In fact, the domain of procedures is

very rich and as computer and languages become more complex we will be able
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to achieve flexibility and creativity of a degree that would once have seemed
mysterious.

What view of the world is the procedure oriented view replacing? Partially,
it is replacing a mystical view of creativity. It may be possible for us to
use our creativity and imagination in the coming years to really understand

the heretofore elusive nature of human creativity and imagination.
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