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ON APPROACHES TO ROBUST DETECTION FOR HF COMMUNICATIONS

INTRODUCTION

Simply stated, robust detection capitalizes on all the, a priori, noise
model information available to the designer and guarantees a detector performance
level against all noise models described by that information. It is suboptimal
for each noise model allowed by the a priori information, but generally
insensitive to changes from model to model. Suppose you have substantial, but
incomplete, knowledge of the additive noise process. Optimal detection would
be impossible since it requires complete specification of the noise probability
density == you probably would design for a noise that occurs occasionally or
not at all. Nonparametric detection would be too conservative since it assumes
insufficient knowledge for 1imiting the noise probability density functions to
a class characterizable by a finite number of parameters —— you would protect
against noise that you know will not occur. For example, a robust detector for
nearly-Gaussian noise ([16]) would out-perform a nonparametric detector (e.g.,

a sign detector) in that noise environment and would be slightly out-performed
by the optimal detector in Gaussian noise. Conceptually, robust detection is
a game-theoretic ([10], [20]), yet pragmatic, approach to detecting and
distinguishing signals in an incompletely-known noise environment.

Consider the robust detection problem as a minimax or game theory problem:
Interpret the robust (minimax) detector as the best detector strategy (player 1)
against any of nature's (player 2) possible noise model choices within the a

priori class of choices. More abstractly, consider the following:
Note: Manuscript submitted November 2, 1978.
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PROBLEM: Determine the detector ¢° and least-favorable interference
probability density vector ° = (f3, 7, . . . . , fﬁ_l) for the M-ary
hypothesis testing problem,

Hyt sy(t) + wy(t) 1 o8, .o o681, 0227,
such that

C(¢°, T°) = min max C(¢, )
¢eD feF

where C(¢, ) is the cost incurred by the detector ¢ when the
interference is defined by ¥, D is the class of admissible detectors,
and F is the class of interference probability density vectors.

The robust (minimax) detector can be interpreted as the best (with respect
to C) choice from D for a class of possible descriptions F. Thus, the optimal
({11}, [21}, [24), [28]) and the nonparametric ([4], [27]) detection problems
are the opposite extremes (F contains one vector and F contains all possible
density vectors, respectively) of the robust detection problem and can, in fact,
be encompassed by it.

This report proposes robust detection approaches to HF signal reception.
Most of these approaches require modifying recent robust detection theory
results to the specifics of the HF communication problem. Qne approach
recommended is direct and avoids this modification; however, it demands more
original effort. The report contains a survey of recent robust detection theory
research and discusses the applicability of the research results to HF additive
interference sources and models; it concentrates on the known-signal case to
highlight the additive interference problem. Remember, the unknown-signal case,

which would be appropriate for treating fading and multipath effects, is

essentially the known-signal case either appropriately conditioned (probabilistically)

on a random signal variable or assigned to some least favorable known-signal value.

A subsequent report will treat the unknown-signal case using this probabilistic

conditioning technique.
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RECENT RESULTS IN ROBUST DETECTION THEORY

General Contaminated Noise Model — Hypothesis Dependent

The current interest in robust detection began with the work by
Huber ([13]) on robust probability yatio tests. He was searching for ratio
tests that were insensitive to a few bad observations (extremity data points):
so that those few bad observations could not override the majority decision.
A general binary-hypothesis independent-measurements model was assumed with
different contaminated-nominal sample distributions for each hypothesis;
in other words, the actual distributions were known up to some neighborhood
of the nominals. The class of possible distribution measures for each
hypothesis was given by

P'i {0”01 » (l - C\)P‘ + E‘Hi, H‘EH} i=0,1

where 0 < €5 < 1 are fixed numbers, and H denotes the class of all probability

measures on some given measurable space. This formulation allowed hypothesis-
dependent contamination and, consequently, permits interference generated
by an intelligent adversary.
Huber obtained the worst-case distribution functions and robust

(minimax) ratio tests with respect to three standard performance measures.
The performance measures are based on a risk function (R(Qj, ¢) and given as

i) qu R(019 )

1) R(Qy, ¢) subject to R(Qp, ¢) < a (Neyman-Pearson)

i11) AR(Qps ) + AR(Qy, ¢) (Bayes)
His results, which are valid for both fixed sample size and sequential
problems, require €4 small enough to prevent overlapping of the distribution
classes (preventing one distribution for both hypotheses). The worst-case
(1east-favorable) distribution pairs (Qp, Q;) generate probability ratios
that are censored versions of the nominal probability ratios:
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be” Py (x)/pglx) < ¢~
a,(x)/ag(x) = {bp; (x)/py(x) ¢ < p(x)/pylx) < e

be ** Pr(x)/pylx) > e~

where 0 < ¢ < ¢c”” < = are chosen so that q; and q( are probability densities,
and b = (1-¢1)/(1-c). Robust ratio tests ¢° are acquired via the Neyman-
Pearson Lemma, and the above probability ratios. Thus the robust

ratio tests for these performance measures are censored versions of the

optimal ratio tests for the nominal densities — an asymmetrical soft-

limiter is placed within the optimal detector for the nominal densities.
Huber also obtains equivalent results for the class of possibie distribution
measures described by

Py = (Q4] 11Qq - Pyl] < €} i=0,1
where || - || denotes total variation.

Contaminated Gaussian Noise Model - Hypothesis Independent

Martin and Schwartz ([16]) modified Huber's results and applied
them to the contaminated-normal distribution model for the fixed-sample size,
signal detection problem. They sought robust detectors of known
signals (possibly time-varying) in nearly-Gaussian i.i.d. noise. The £
possible noise distributions were assumed to be of the mixture model form

F(x) = (1-€)®(x) + eH(x)

where ¢ is the unit normal distribution, H is an arbitrary distribution, and

for0<e<1,

€ is small. Both regular and small-signal cases were treated. Some atten-
tion was given to the incoherent signal detection uroblem.

For the nearly-Gaussian noise model x; = 6sj + nj, 1 =1, 2, . . , N,
Martin and Schwartz found a time-varying correlator-limiter as the

robust (minimax) solution for given € and 6 > 6_/miny|s;| with respect to
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the Neyman-Pearson performance measure. Explicit expressions for the worst-
case (least favorable) densities were obtained. Table 1 displays representative

values of ¢ and 6. Note, the minimum received signal-to-noise ratio

(SNR) can be derived from 6. via the equation (SNR)yin = 20 log(szie). For
a constant signal (s; = c), the minimax solution is a limiter-detector since
correlation is unnecessary.

For the small-signal problem with nearly-Gaussian white noise, the
limiter-correlator was found the asymptotically-robust solution to
the local (small-signal) Neyman-Pearson problem. Explicit expressions for
the worst-case symmetric densities were obtained. This result is valid for
false-alarm probability a > a(e), depending on given ¢, and for symmetric contamina-
tion densities satisfying a regularity condition. It is valid also for a
sample size N = 1 and all 0 < a < 0.5. The authors conjectured the validity
of this result for a restricted range of o, which depends on N. Table 2
gives typical values of € and a(e). The limiter in this case is a
symmetrical soft-limiter with break points K (see table 2). Again with
constant signal, the resulting robust detector is the limiter detector.

Martin and Schwartz applied the soft limiter to the envelope sum
detector which is the optimal small-signal detector for an incoherent detection
of a pulse train. The resulting 1imiter-envelope sum detector was shown to

exhibit (for the examples chosen) the same degree of robustness in terms of

asymptotic relative efficiency (ARE) as does the limiter-correlator.
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Table 1 Table 2
o401 = %(1-¢)”!
€ 0, 20 log 6, € a(e) K
0.01 0.025 -32.04 (dB) 0.01 0.163 1.95
0.012 0.03  -30.46 0.02 0.166 1.72
0.02 0.05 -26.02 0.05 0.174 1.40
0.04 0.10 -20.0 0.10 0.184 1.14

0.055 0.15 -16.49
0.06 0.16 -15.92
0.10 0.28 -11.06
0.138 0.40 -7.96
Contaminated Non-Gaussian Noise Model — Hypothesis Independent

Kassam and Thomas ([14]) generalized the results of Martin and Schwartz
for asymptotically-robust local detection of a known time-varying signal by
using a contaminated i.i.d. noise model with a non-Gaussian nominal. The
results are shown valid for: nominal density functions that are symmetric,
strongly unimodal on its support, and have an absolutely continuous derivative
within its support; contamination density functions that are bounded and
symmetric; and false alarm probabilities o > a(rm). where P is a parameter
depending on €. Kassam and Thomas used the methods of Martin and Schwart:
and Huber to obtain the worst-case noise density and the asymptotically-
robust local detector that is the optimal local detector for that density.

The parameter r, depends also on the nonlinearity function (ZNL) of the
optimal local detector.
The results were applied explicitly to zero-mean, generalized-Gaussian

nominal densities that are parameterized by their rates of exponential decay.

-6-

-

S WS ———




-

For this class of nominal densities, a(r;), for a Gaussian nominal, is a
lower bound on o than the lower bound obtained by Martin and Schwartz (see
table 3). The general asymptotically-robust local detector solution for
this class of nominal densities corroborates the 1imiter-correlator
detector for contaminated Gaussian noise and implies the robustness of
the sign detector for contaminated double-exponential noise. For weaker
assumptions on the contamination densities (zero median and continuous
at the origin), the authors show the sign detector to be the asymptotically
robust local detector for all 0 < a < 1.

Table 3

(Gaussian nominal)

€ alry)

0.02 0.103

0.04 0.093

0.06 0.086

0.08 0.081
0.10 0.076

Non-Contaminated-Noise Model — Hypothesis Independent

E1-Sawy and Vandelinde ([8], [9]) used a non-contamination (mixture)
model for the noise: to eliminate the limitations of earlier work caused by
small €. They used also a restricted class of detectors to reduce the number
of detectors considered for their asymptotically-robust detection problem,

The binary hypothesis model for this problem takes the form:

Ho: X = w4
3 Hl:x1'6151+w1,1=1,....N
2%' where {x;} is the sequence of observations, 8] > 0, {sj} is a sequence of

known constants with |s{| < =,
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and {“i} is a sequence of i.i.d. random variables with a symmetric density f.
A generalized version of Huber's ([12]) M-estimate of location was introduced
via a class of functions Qsatisfying certain smoothness assumptions. The
generalized M-estimates by — the admissible test statistics — are defined

as the values of 6 which minimize

N
Y Lxj-e6sy).LEG
i=1

The restricted class of detectors d€D considered are just the threshold
tests obtained from the generalized M-estimate 6, test statistics. The
authors solved a constrained asymptotic (in N) maximin problem with respect
to the power function Bd(e,lf). They derived the saddle-point pair

(d| +» f*), where f* is the minimum Fisher-information symmetric

density and d ., is a threshold-test detector for the generalized

L*
M-estimate tes; statistic derived from L* = -log f*. The threshold is
chosen to yield the desired false alarm rate o = 84(0[f). Equivalent
results are obtained for the local detection problem
(subject to alowerbound on o) and for the detection problem (derived with
{sj} constant) with a class of p-point noise distributions defined as

(f: 0.8 f(x)dx = p, f symetric}.
E1-Sawy and VandeLinde claimed also that the results may be used also to solve
other hypothesis testing problems, e.g., detection problems for the minimum
probability-of-error criterion.

A Robust Detection Problem for HF Communications

The robust detection problem for HF communications is derived
from the general robust detection problem by being more specific about the
cost function and the HF-nature of the model variables. Using a generalized

-8.
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binary hypothesis model with the probability-of-error cost function, the
robust detection problem for HF communications becomes one of des.gning a
robust test for:
Hy: x(t) = sj(t) + wi(t), i=0,1;0<t<T

where si(t), with [s;(t)| < =, is the transmitted waveform after the channel
filtering effects (front-end filters, channel attenuation, multipath, etc.)
and wi(t) is the additive interference process, with |wj(t)| < =, generated
by an additive combination of atmospheric noise, thermal noise, man-made
noise, other-user interference, and intelligent-adversary interference. In
characterizing the additive interference process wi(t) as an element from a

class of possible stochastic processes at the minimum, we must admit the

common factors of the accepted (proposed) models for the different types
of interference.

Atmospheric noise has been modeled in several ways as an impulsive,
non-stationary, correlated random process ([5]1-{7], [23], [26]) usually as
a combination of a low-level, high probability component whose envelope is
Rayleigh distributed and of a high-level, low probability component whose
envelope is log-normal distributed. The most recent models ([23], [26])
assume the impulsive interference waveforms are emitted according to the
Poisson distribution in time and are superimposed on an additive, independent
Gaussian background -noise process. These impulsive waveforms may be modeled
as the output of time-varying, possibly stochastically described, 1inear
systems excited by Poisson-distributed impulses. A general atmospheric

e noise model results described as

WA(t) = VIB(t) + Wl(t)




where wp(t) is zero-mean, independent Gaussian process, and

N(t)

t
wy(t) “21 uy Jo ng(t0)seety)de

-

with h1 a possible impulse response, uj @ finite, amplitude random variable,

ty the point process variable, and M(t) a counting process ([25]). Thermal

noise that is white Gaussian and man-made noise that is impulsive are of

secondary concern for HF communications (/6!): nevertheless, they can be '
adequately handled by this atmospheric noise model. Hence, no further

reference will be made to these two sources of interference.

Other-user interference is attributed to randomly-occuring
modulated waveforms of various durations and strengtns. These waveforms |
are generally confined to a 3 kHz bandwidth ([6]) — there are some exceptions
such as spread-spectrum modulation and coding. The other-user interference
waveform wou(t) also can be modeled as a random process, possibly in the
frequency domain, since most available information is from spectra
measurements. For example, consider the random point-process model of

figure 1.

U116(f-f11)-————“H1(f)‘

uizs(f-f12)-—--* Ho(f) wou(f)

| R

) |
ug(F-f4 M)_--'

BN A8
Hy(f) |

Figure 1
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This is a frequency domain description of other-user interference given by

Mo N(F) 3
w (f) = u H (F-2)6(2-F )da,
TR S SN S ens0-ty)

which implies,
Mo N (f)
K jonfy t

wult) =X T ugh(tle Tk

k=1 ik=l

Hk(f) is one of the M possible transmitted transforms, uj is the
finite, signal-amplitude random variable for the i th carrier, fik is the
ikth c;rrier-frequency point-process variable, and Nk(f) is a counting process.
Intelligent-adversary interference (jamming) can take any form
within the physical constraints imposed by the interference generating
equipment. These constraints usually are just upper bounds on peak and
average power, and bounds on bandwidth. This characterization admits
stochastic (e.g., wideband Gaussian noise) or purely deterministic (e.g., CW)
interference that is ideally signal-waveform dependent for maximum effectiveness.
For signal-waveform dependence, the interferer requires knowledge of the wave-
form transmitted; therefore, we assume the interferer knows, a priori, the set
of waveforms transmitted, but not the particular waveform transmitted. With
these assumptions, the intelligent-adversary interference can be modeled as a
stochastic process WIA(t) described by some probability density function (pdf),
f(wIA(t)’ t)e F, where fe F inplies:

(a) f is a first-order pdf
(b) E {wh(t)} <c) < Dsts?
(¢) f(xt)=0 for x| >cp,0<t<T

e, e
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APPLICABILITY OF RECENT RESULTS

The recent results on robust detection theory, all using discrete-time
models, are applicable in only a limited sense to the robust detection problem
for HF communications as discussed earlier. The main difficulty is the assumption
of i.i.d. interference random variables which is necessary to achieve the
results primarily based on asymptotic normality or multiplicative probability-
ratio test-statistics. The mixture model used in several treatments also
presents some difficulty. It assumes a time-sharing of statistical descriptions:
one required to occur only a small percentage of (e) of the time and the other
a nominal required to be completely known statistically. Finally, the require-
ment of symmetrical interference densities for validity of some results is
possibly a very restrictive constraint on interference characterization for
this problem.

This assumption of 1.1.d. interference random variables certainly is not

met by sampled values of interference from atmospheric noise or other-user

interference; and it may be a costly limitation for intelligent-adversary
interference. although that has to be determined. Although techniques for
accommodating the non-1.1.d. nature (primarily the dependence) of the HF
interference are desirable th2 independence assumption may be used to determine
bounds on detector performance. The general argument is that dependence
(correlation) among samples provides additional information for designing
counter-strategies, thus, the assumption of independence leads to bounds on
performance for the dependent case. In addition, the identically-distributed
assumption may not be required for validity results previously mentioned since
it is not necessary for asumptotic normality ([1], ch. 8) nor required for

the canonical form of the probability ratio tests ([20]).

~12-~
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The mixture models assumed for the interference density require complete
statistical knowledge of the nominal density; yet for the HF interference
discussed, all of the components = atmospheric noise, other-user interference,
and intelligent-adversary interference (when applied) — are not known exactly.
Thus, the reported results for this mixture model could not be applied directly
to the general HF communication problem as formulated here. You could interpret
the mixture model, with its time-sharing implication, as: (1) a high probability
(1-¢) nominal density describing all but the impulsive noise, and a low
probability (e) contaminated density describing the nominal plus the impulsive
noise ([17]); or, (2) a high probability nominal including all but the intelligent-
adversary interference ([26]) and a low probability contaminated density
describing the nominal plus intelligent-adversary interference. In other words,
the contaminating interference component and the other noise components would
be assumed to occur with an average rate of ¢. The mixture-model results may
be applied to several typical nominal components; the outcome may be instructive.
typical densities for atmospheric noise, other-user interference, intelligent-
adversary interference, or any combination would be the candidates for the
nominals. The robust detectors obtained from the different nominals could
then be compared for similarities that could be exploited later. Another
difficulty in applying Huber's mixture-model results to the HF problem is the
assumption of a signal-dependent interference capability that is not assumed
in the HF communication problem formulated here. If possible, it may be
instructive to consider detectors for signal-independent, contaminating
interference derived from a random or non-ramdom convex combination of the
least-favorable signal-dependent densities.

In the problem formulated here for HF communications, the cost function

prescribed {s the probability of error (Bayes) performance measure. However,

side
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only Huber ([13]) considered this cost function explicitly. E1-Sawy and
VandeLinde indicated their techniques are applicable to the probability of
error cost function. The cost function considered in all of the research
discussed is the one appropriate to radar problems, namely, the probability
of detection failure (miss probability 1-g). However, since the detectors
chosen with respect to this radar cost function are generally required to
satisfy a probability of false-alarm (a) constraint (the Neyman-Pearson
problem), the solution for the communication (Bayes) problem can be arrived
at by solving a series of radar problems. This follows from the fact that
the probability of error is a weighted sum of the miss and false-alarm
probabilities and, consequently, the minimum probability-of-error detector is
also a minimum probability-of-miss detector achieving a particular o ([11],
sec. 3.2). Unfortunately, the results reviewed above for the interference-
mixture-model Neyman-Pearson problem are valid only for false-alarm probabilities
larger than a given lower bound a(e) and, therefore, may not be applicable to
the HF communication problem formulated above. Unless the Bayes detector can
be found among those Neyman-Pearson detectors satisfying the lower bound
constraint «(e), the results for the mixture model problems cannot be applied.
A1l attention must then be given either to applying the results of Huber and
of E1-Sawy and VandeLinde or to solving directly the robust detection problem
for HF communications.

The requirement of symmetry for the interference densities may be a
very restrictive limitation for this HF problem. This symmetry of densities
implies zero-mean interference and certainly eliminates other-user inter-
ference. Moreover, it is not known at the outset if restricting intelligent-

adversary interference to being zero-mean {is severly 1imiting or not

for this problem. For example; Blachman ((2], (3] ch. 9) has shown that H
-14-
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zero-mean, white Gaussian noise is the best intelligent-adversary interference
for minimizing the channel capacity seen by a communicator; and, it can be
shown ([19], [20]) that deterministic signals are the best interference for
minimizing the correlation in correlator receivers. Thus, it appears the
symmetry requirement possibly eliminates or sharply curtails the two main
components of the interference characterized in the HF problem formulated above.
RECOMMENDATIONS FOR APPROACHES

From the review of the recent results on robust detection and the discussion
of their applicability to the robust detection for HF communications problem,
recommendations can be made for approaching this problem.* The first approach
recommended is based on Huber's ([13]) formulation and results. For the second
approach, a direct solution attempt is recommended. In both cases, the concern
is for the binary detection problem where both signal values are non-zero. In
addition, both approaches are based on a discrete-time model in anticipation
of digital processing.

Approach 1 ,

In the first approach; the mixture model, the lack of symmetry in the
interference densities, and the treatment of the finite sample problem — instead
of the asymptotic problem — are the motivating factors for utilizing Huber's results.
The mixture model for the interference densities will be used to describe the
interference random variables {w(ty)} when impulsive noise (from atmospheric
noise or man-made noise) or intelligent-adversary interference are present or
absent. (Note, these are two separate problems.) The nominal density will
describe an arbitrary density for the interference random variables without
either the impulsive noise or intelligent-adversary interference component.

The contaminated density, occurring with probability ¢, will describe the

*#We recognize the inappropriateness of the known-signal detection problem model
for the complete HF problem ([18], [21], [22], [248. [28]). However, by
treating the easier robust detection problem for known signals first, we gain
valuable insight as well as possible solutions to the robust detection problem
for unknown signals.
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interference random variables containing the impulsive noise or the intelligent-
adversary interference component. The interference random variables will be
assumed independent, but not identically distributed.

For this formulation, Huber's results extended to time-varying
signals ([16]) and non-identically-distributed random variables
can be applied directly. The minimax detector obtained in this first step and
based on a probability ratio test will be dependent on the arbitrary
nominal specification. The next step will be to optimize this minimax
detector over the class or appropriate subclasses of possible nominal densities.
The resulting minimax detector obtained in the second step will have the
robust properties desired for the HF communication problem. Steps 1 and 2
can be abstractly stated as:

Step 1: Find the detector 4)2 and least-favorable mixture

interference-density fg = (1-€)fy + sf?. for a given ¢ and nominal f,, satisfying

0 = min max
CLog(fy). folfe)] = My (g Clouf]
where C[¢.f€] is the probability of error using detector ¢ and mixture
interference density f_, D is the class of detectors based on probability
ratio tests, and F_ = {felfe = (1-e)f, + efys f any density}.
Step 2: Find the detector ¢2° and least-favorable mixture
interference-density fgo, for a given € and class of possible nominal

densities Fy, satisfying

in max
00 2007 . M 0
C[OC 'fe ] ¢g¢l)g fgs Fg C[¢€,fg]
where C[¢g.fg]15 the probability of error using detector ¢g (minimax for
given € and some f,&F,) and mixture interference density fg (1east favorable
for given ¢ and some f,eF,), D2 = {42[¢2 is a minimax detector with respect to

Fe for given c and some f,&F,}, and FO = (fO[f0 = (1-¢)f, + FliVf,eF,).

-16-
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After evaluation of this robust detector, additional methods for

e e =

improving performance may become apparent. For example, including ;
an adaptivity capability for following the time occurrence of }
the contaminated density would be advantageous presumably since the
detector design depends explicitly on the occurence rate ¢. As an
alternative, keeping the detector non-adaptive and seeking a detector j
that would be robust also on a range of ¢ may be desirable. This

alternative method could constitute step three, abstractly stated as:

Step 3: Find the detector ¢°§, and least-favorable mixture i
€
interference-density fgg, for a given class of possible nominal densities
Fo and given range 0 < € < epay Satisfying 1
min max 00 00
C[4°%,F%°] = o0_ no 0_ o0 clo. .f. ]
_ e € ¢gl‘Dmax fzz"Fmax o {
where C[¢g?,f2:] is the probability of error using detector ¢Z? (robust for

some Fg, with 0 < €, < ena,) and mixture interference density fgg (Teast
favorable for some DY, with 0 < e, i . D;ax = {¢2?|0 <€) < egyts and
K {fggm [ e e £ |
This first approach should produce promising results to apply
to the HF communication problem. A major weakness is assuming
independence for the interference random variables. Consequently, the
performance of this detector for dependent interference random variables
should be evaluated, probably by appropriate tests and simulations;
analysis may be possible, however, for some forms of independency, e.g.,

state variable models or Markovian requirements.
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Approach 2
For the second approach, an attempt should be made to solve directly the

formulated problem using generalized Lagrange-multiplier theory on normed
linear spaces ([15]). By modeling the possible, interference random-sequence 1
densities as members of a subset of a space of myltivariate functions, the
property of dependency among the random Sequences components can be treated

in a convenient manner: you are not required to specify a dependency relation-

ship for the subset of multivariate functions. Characterizing this subset

Ao

will, however, require the statistical descriptions of the interference
components "A(tk)' "w(tk)' and wu(tk) discussed in the HF communication
problem formulation. This approach can be expressed more concisely as: :

Step 1: Find the detector ¢° and least-favorable multivariate
density f° satisfying

Clo®, 1°) = 410 ToF Cle, £

where C(¢, f] is the probability of error using detector ¢ and interference
multivariate density f, D is the class of detectors based on probability ratio
tests, and F is the subset of admissible multivariate functions for which
f=f(w) F implies f is a probability density for the interference random
sequence w = 'v'iA + ;OU + FIA i) o0 v w(tN)).

Characterizing the subset of admissible densities F will probably
be the most difficult aspect of this approach since f(w)eF results from
convolving the individual probability densities for the background noise '—'-B’
impulsive noise Wx. other-user Ww. and intelligent-adversary ;IA interference
components. The noise model of Spaulding and Middieton [26] may be applicable :

| here. In choosing the normed 1inear space F , for which FCZ, the most likely choice
is L;[anl. the normed linear space of absolutely integrable functions on the
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domain nN ([15]1). In this space, all non-negative functions that have a norm p
of one represent probability densities. ‘
Another difficult aspect of this approach may be in specifying

exactly the least-favorable density after applying the Lagrange multiplier

theory. The theory provides necessary — but generally not sufficient —
specifications defining the class of least-favorable density candidates; also it
provides the validation method for identifying the least-favorable density. In
many instances the class of density candidates are infinite and the least-favorable
density may be quite time-consuming to find without some assistance from

helpful hints and luck. One technique for gaining this investigative assistance
(and other insights) for multistage problems is to solve a simpler corresponding
single-stage problem. Another technique is to solve a more general problem for 1
which the desired problem is a special or restricted case. These techniques will
be used in this second approach.

This second approach is more ambitious than the first approach and
should yield more realistic results. The performance of the derived robust
detectors in the actual HF environment depends on how closely the description
of the subset of admissible densities F models the actual environment. If the | {
direct approach appears too formidable in this regard, this closeness of the
model to the actual environment may be accomplished in successive steps. The
first step (Step 1a) could be equivalent to Step 1 above with F- defined as a
larger subset ofér: for example, the subset containing all probability densities.
A valid corresponding second step (Step 1b) could be a sensitivity investigation
of the Step la robust detector subjected to deviations from the corresponding

least-favorable density. These deviations would be typical densities from the

§

{

\ class F defined in Step 1 above. Hopefully, some least-favorable deviation
*T".

could be found in this step. Another valid corresponding second step (Step 1b~)
-19-
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would be equivalent to Step la with F' replaced with a proper subset F'cF’,
where F=F"“. This series of nested problems (Step 1la, Step 1b', . . .) can
continue in principle until the problem Step 1 is reached or approximated
closely enough for practical purposes. An advantage of this nested problem
approach, hopefully for 1ittle effort in characterizing F*, F**, . . . , is the
considerable insight 1ikely gained as to how the corresponding robust

detectors ¢°,6°”, . . . , approach the robust detector ¢° of Step 1.
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