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ON APPROACHES TO ROBUST DETECTION FOR HF COMM UN ICAT IOH S

INTRODUCTION

Simply stated, robust detection capitalizes on all the, a priori , noise

model Information available to the designer and guarantees a detec tor performance

level against all noise models described by tha t information. It is suboptimal

for each noise model allowed by the a priori information, but generally

insensitive to changes from model to model . Suppose you have substantial , but

Inc omplete, knowledge of the additive noise process. Optima) detection would

be impossible since it requires complete specification of the noise probability

density — you probably would design for a noise that occurs occasionally or

not at all. Nonparametric detection would be too conservative since It assumes

insufficient knowledge for l imiting the noise probability density functions to

a class characterizable by a finite ntanber of parameters — you would protect

agai nst noi se that you know wi l l not occur. For example , a robust detector for

nearly-Gaussian noise ([16]) would out-perform a nonparametric detector (e.g.,

a sign detector) in that noise envirorinent and would be slightly out-performed

by the optimal detector in Gaussian noise. Conceptually, robust detection is

a game-theoretIc ([10], [20]), yet pra~natic , approach to detecting and

distinguishing signals in an Incompletely-known noise enviromnent.

Consider the robust detection problem as a minimax or game theory problem:

Interpret the robust (minimax) detector as the best detector strategy (player 1)

against any of nature’s (player 2) possIble noise model choices within the a

priori class of choices. More abstractly, consider the followi ng:
Not.; Manuscript .ubmltt.d Nov.mb.r 2, 1978.
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PROBLEM: Determine the detector ,O and least-favorable interference

probability density vector ?° (f~, ~? . . . .  , f~_1) for the M-ary

hypothesis testing problem,

H1: s1(t) + w1(t) j = 0 , tI—i, 0 < t < 1,

such that

C(~°, ~°) mm max C(~, ?)
%D f~F

where C(s , T) is the cost incurred by the detector • when the

interference is defined by T, D is the class of admissibl e detectors,

and F Is the class of interference probability density vectors.

The robust (minimax) detector can be interpreted as the best (with respect

to C) choice from D for a class of possible descriptions F. Thus, the optima)

([11), [21), [24] , 128)) and the nonparametrlc ([4), [27]) detection problems

are the opposite extremes (F contains one vector and F contains all possible

density vectors , respectively) of the robust detection problem and can, in fact ,

be encompassed by it.

This report proposes robust detection approaches to HF signal reception.

Most of these approaches require modifying recent robust detection theory

results to the specifics of the HF conninicatlon problem. One approach

reconsnended Is di rect and avoids this modification; however, it demands more

original effort . The report contains a survey of recent robust detection theory

research and discusses the appl icability of the research results to HF additive

interference sources and models; It concentrates on the known-signal case to

highlight the additive Interferenc e problem. Remember, the unknown-signal case,

which would be appropriate for treating fading and multipath effects, Is

essentially the known-signal case either appropriately conditioned (probabilistically)

on a random signal variable or assigned to some least favorable known—signal value.

A subsequent report will treat the unknown-signal case using this probabilistic

conditioning technique.
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RECENT RESULTS IN ROBUST DETECTION THEORY

Genera) Contaminated Noise Model—I~ypothesIs Dependent

The current interest in robust detection began with the work by

Huber ( [13~) on robust probability ratio tests . He was searching for ratio

tests that were insensitive to a few bad observations (extremity data points):

so that those few bad observations could not override the majority decision.

A general binary-hypothesis Independent-measurements model was assumed with

different contaminated-nominal sample distributions for each hypothesis;

in other words , the actual distributions were known up to some neighborhood

of the nominals. The class of possible distribution measures for each

hypothesis was given by
P1 { Q 1I Q 1 = (1 - c 1)P 1 + c1Hj , H1cH} 1 0, 1

where 0 < < I are fixed numbers , and H denotes the class of all probability

measures on some given measurable space. This formulation allowed hypothesis-

dependent contamination and , consequently, permits interference generated

by an i ntelligent adversary .

Huber obtained the worst-case distribution functions and robust

(minimax) ratio tests wIth respect to three standard performance measures.

The performance measures are based on a risk function (R(Qj , •) and given as

1) m~x R(Q1, •)
11) R( Q1, q) subject to R(Q0, •) < c z  (Neyman-Pearson)

i l l )  X0R(Q0, •) + A 1R(Q1, •) (Bayes)

His results , which are valid for both fixed sample size and sequential

problems, require c
~ 

small enough to prevent overlapping of the distribution

classes (preventing one distribution for both hypotheses). The worst-case

(least-favorable) distribution pairs (Q0, Q~) generate probability ratios
tha t are censored versions of the nominal probability ratios :
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bc p1(x)/p0(x) < c

q1(x) /q0(x) = bp1(x) /p0(x) c ’< p1(x) /p 0(x)  < c~~
bc~~ p1(x ) 1p 0(x )  > c ~~

where 0 < c < c < are chosen so that q1 and q0 are probability densities ,
and b ( 1— c 1)/ ( 1— c 0). Robust ra t io  tests •° are acquired via the Neyma n-

Pearson Lenina , and the above probability ratios. Thus the robust

ratio tests for these performance measures are censored versions of the

optima l ratio tests for the nominal densities — an asynmietrica l soft-
limi ter is placed within the optimal detector for the nominal densities .

Huber also obtains equivalent results for the class of possibl e distribution

measures described by

Pj (Q j l II Q 1 — Pill < c }  I = 0, 1

where II II denotes total variation.

Contaminated Gaussian Noise Mode) - Hypothesis Independent

Martin and Schwartz ([16]) modified Huber ’s results and applied

them to the contaminated- normal distribution model for the fixed-sample size ,

signa l detection problem. They sought robust detectors of known - -
signals (possibly time—varying) in nearly—Gaussian 1.i.d. noise. The

possible noise distributions were assumed to be of the mixture model form

F(x) = (1—c)O(x) + cH(x) for 0 < c 1,

where 0 is the unit normal distribution , H is an arbitrary distribution , and

~ is small. Both regular and smal l —signal cases were treated. Some atten—

tion was given to the incoherent signal detection uroblein.

For the nearly—Gaussian noise model x~ esj + nj, i = 1, 2, . . , N ,
Martin and Schwartz found a time-varying correlator-l imiter as the

robust (minimax ) solution for given c and 0 > 0
~
/miniIs i I with respect to

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the Neyman-Pearson performance measure . Explicit expressions for the wo rst-
case (least favorable) densities were obta ined . Table 1 displays representative

values of c and 0 .  Note, the minimum received signal-to-noise ratio

(SNR) can be derived from via the equation (SNR) min 20 ~~~~~~~~ For

a constant signal (S j = c), the minimax solution is a limiter-detector since

correlation is unnecessary .

For the small-signal problem with nearl y—Gaussian white noise , the

limiter-correlator was found the asymptotically—robust solution to

the local ( small -signal) Neyman-Pearson problem . Explicit expressions for

the worst—case symnetric densities were obtained . This result is valid for

false—alarm probability a > a(c) , depending on g iven  c ,. and for syimietric contamina-

tion densities satisfying a regularity condition. It is valid also for a

sample size N = 1 and all 0 < a < 0.5. The authors conjectured the validity

of this result for a restricted range of a, which depends on N. Table 2

gives typical values of c and a(c). The limiter in this case is a

symetrical soft—limiter with break points K (see table 2). Again with

constant signal . the resulting robust detector is the l imiter detector.

Martin and Schwartz applied the soft limiter to the envelope sum

detector which is the optimal small-signal detector for an i ncoherent detection

of a pulse train. The resulting limiter-envelope sum detector was shown to

exhibit (for the examples chosen) the same degree of robustness in terms of

asymptotic relative efficiency (ARE) as does the limiter-correlator .
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Table 1 Table 2

s[3Soc] ½ (1—c)4

£ °c 20 log o
~ 

c a(c) K

0.01 0.025 -32.04 (dB) 0.01 0.163 1.95

0.012 0.03 -30.46 0.02 0.166 1.72

0.02 0.05 -26.02 0.05 0.174 1.40

0.04 0.10 -20.0 0.10 0.184 1.14

0.055 0.15 -16.49

0.06 0.16 -15.92

0.10 0.28 -11.06

0.138 0.40 -7.96

Contaminated Non-Gaussian Noise Model—Hypothesis Independent

Kassam and Thomas ([14]) generalIzed the results of Martin and Schwartz

for asymptotically-robust local detection of a known time-varying signal by

using a contaminated 1.i.d. noise model with a non—Gaussian nominal. The

results are shown valid for : nominal density functions that are syiiinetric,

strongly unimodal on its support , and have an absolutely continuous derivative

within its support; contamination density functions that are bounded and

syninetric; and false alarm probabilities a > a(rm), where rm is a parameter

depending on c. Kassam and Thomas used the methods of Martin and Schwartz

and Huber to obtain the worst-case noise density and the asymptotically—

robust local detector that is the optimal local detector for that density.

The parameter rm depends also on the nonlinearity function (ZNL) of the

optimal local detector.

The results were appl ied explicitly to zero-mean, generalized-Gaussian

nominal densities that are parameterized by their rates of exponential decay.

-6-
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For this class of nominal densities , ci(rm), for a Gaussian nominal , Is a

lower bound on a than the lower bound obtained by Martin and Schwartz (see

table 3). The general asymptotically- robust local detector solution for

this class of nominal densities corroborates the limiter-correlator

detector for contaminated Gaussian noise and Implies the robustness of

the sign detector for contaminated double-exponential noise. For weaker

assumptions on the contamination densities (zero median and continuous

at the origin), the authors show the sign detector to be the asymptotically

robust local detector for all 0 < a < 1.

Table 3

(Gaussian nominal)

c aC m )

0.02 0.103

0.04 0.093

0.06 0.086

0.08 0.081

P 0.10 0.076

Non-Contaminated-Noise Model — Hypothesis Independent

El-Sawy and VandeLinde ( [8], [9]) used a non-contamination (mixture)

model for the noise: to elimi nate the limitations of earlier work caused by

small c. They used also a restricted class of detectors to reduce the number

of detectors considered for their asymptotically- robust detection problem.

The binary hypothesis model for this probl em takes the form:

H0: x1 w1

H1: x1 8
~
s
~ 

+ w1, I 1, . . . , N

where (x1) is the sequence of observations, e1 ~ 0, ~~~ Is a sequence of
known constants with 15 11 <

-7-
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u r n  N 1 s~ = c,

and {w 11 is a sequence of i.i.d. random variables with a syninetric density f.
A general ized version of Huber ’s ([12)) M-estimate of location was Introduced

via a class of functions ~~satisfying certain smoothness assumptions . The

generalized M-estimates 0N — the admissible test statistics — are defined

as the values of 8 which minimize
N
~ L(x~ — Os1), ~~~~
1*1

The restricted class of detectors d€D considered are just the threshold

tests obtained from the generalized M—est lmate 0n test statistics. The

authors solved a constrained asymptotic (in N) niaxlmin problem with respec t

to the power function Bd(0 ,(f ). They derived the saddle-point pair

(d L*, f*), where f* is the minimum Fisher -information syninetric

density and dL* Is a threshold-test detector for the generalized

M-estimate test statistic derived from L = -log f . The threshold Is

chosen to yield the desired false alarm rate a = Bd(01f). Equivalent

results are obtained for the local detection problem

(subject toalowerbound on a) and for the detection problem (derived with

(sj} constant) with a class of p—point noise distributions defined as

{f:f ~ f(x)dx = p, f syninetric}.

El—Sawy and VandeLinde claimed also tha t the results may be used also to solve

other hypothesis testing problems, e.g., detection problems for the minimum

probability-of—error criterion.

A Robust Detection Problem for HF Conununications

The robust detection problem for HF coimiunications is derived

from the general robust detection problem by being more specific about the

cost function and the HF-nature of the model variabl es. Using a generalized

-8-
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binary hypothesis model with the probability - of-error cost function , the

robust detection problem for HF coninunications becomes one of des .gning a

robust test for:

H1 : x(t) = sj ( t )  + w1(t), I = 0 , 1; 0 < t < T

where s1(t), with fs~(t)f < ~~~, is the transmitted waveform after the channel

filtering effects (front-end filters , channel attenuation , multipath , etc.)

and w1(t) is the additive Interference process , with lw i( t ) l < =~ , generated

by an additive combination of atmospheric noise , thermal noise , man-made

noise , other-user Interference, and intelligent -adversary interference . In

characterizing the additive interference process w 1 (t) as an element from a

class of possible stochastic processes at the minimum , we must admit the

coninon factors of the accepted (proposed ) models for the different types

of interference.

Atmospheric noise has been modeled in several ways as an impulsive ,

non-stationary , correlated- random process ([5]-[7], [23], [26]) usually as

a combination of a low-level , high probability component whose envelope is

Rayleigh distributed and of a high-level , low probability component whose

envelope is log-normal distributed . The most recent model s ([23) , [26] )

assume the Impulsive Interference waveforms are emitted according to the

Poisson distribution In time and are superimposed on an additive , independent

Gaussian background -noise process. These Impulsive waveforms may be modeled

as the output of time—varying , possibly stochastically described , linea r

systems excited by Poisson—distributed impulses. A genera l a tmospheric

noise model results described as

WA ( t )  = WB ( t )  + w1(t)

H-i ~12L.. ~~~~~ 
- 

- -  - -
•1 , -—  

~~~~~~~~~~ ~
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where WB(t) is zero-mean , i ndependent Gaussian process , and

N( t )
w1(t) = ~ u1 f  h 1 (t,T)ó(t—T j)d-r

i= 1

with h 1 a possible impulse response, u • a finite , amplitude random variabl e ,

the point process variable , and 11(t) a counting process ([25]). Therma l

noise that is white Gaussian and man-made noise that is impulsive are of

secondary concern for HF coninunications (:6 ); nevertheless , they can be

adequately handled by this atmospheric noise model. Hence , no further

reference will be made to these two sources of interference.

Other-user Interference is attributed to randomly- occuring

modulated waveforms of various durations and strengths . These waveforms

are generally confined to a 3 kHz bandwidth (6~) — there are some exceptions

such as spread-spectrum modulation and coding . The other-user i nterference

waveform wou( t )  also can be modeled as a random process , possibly In the

frequency domain , since most available information is from spectra

measurements. For example , consider the random point—process model of

figure 1.

u 1 6 (f-f 11 
) —

~~~~~~~~~~~~~~~~
_-— 

~~~~~~~~~~

u 1 6(f—f 12
) H2(f) ~

u1M
6 (f=f iM

) 
~ 

HM(f)

Figur e 1
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This is a frequency domain description of other-user interference given by
M 1

~k(fl
w0 (f) 

~
j l 

~~~~~~ U1~~ f Hk(f_A)6(~
_fj~)dA .

which implies ,

N Nk(f) j2 irf tw0~
(t )  = 

~ 
u~~h~( t)e i k

k- i 1k 1
Hk(f) is one of the N possible transmitted transforms, u~ is the

k
finite , signal-amplitude random variable for the i kth carrier , Is the

ik th carrier-frequency point-process variable , and Nk(f) is a counting process.

Intelligent—adversary interference (janin ing ) can take any form

w i t h i n  the physical constraints imposed by the interference generating

equipment. These cons t r a in t s  u s u a l l y  are just upper bounds on peak and

average power, and bounds on bandwidth. This characterization admits

stochastic (e.g., w ideband Gaussian noise) or purely deterministic (e.g., CW)

interference that is ideally signa l-waveform dependent for maximum effectiveness.

For signa l -waveform dependence , the interferer requires knowled ge of the wave-

form transmitted ; therefore, we assume the interferer knows , a priori , the set

of wavefor ms transmi tted , but not the particular waveform transmitted . With

these assumptions, the Intelligent -adversary interference can L~e modele d as a

stochastic process w IA (t) described by some prob~ib 1ll ty dens ity function (pdf),

f ( w ;A (t), t)EF, where f€c Implie s :

- 

(a) f is a first-order pdf

(b) E 
~w
2(t)) < c1 < 0 < t < T

(c) f(x ,t) 0 for xl > c2 , 0 t I

-11-
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I
APPLICABILITY OF RECENT RESULTS

The recent results on robust detection theory, all using discrete-time

models , are applicable in only a limited sense to the robust detection problem

for HF coninunications as discussed earlier . The main difficulty Is the assumption

of i.i.d. Interference random variables which is necessary to achieve the

results primarily based on asymptotic normality or multiplicative probability-

ratio test-statistics. The mixture model used in several treatments also

presents some difficulty . It assumes a time-sharing of statistical descriptions:

one required to occur only a small percentage of Ce) of the time and the other

a nominal required to be completely known statistically. Finally, the requ ire-

ment of synhnetrical interference densities for validity of some results is

possibly a very restrictive constraint on interference characterization for

this problem.

This assumption of i.i.d. interference random variables certainly Is not

met by sampled values of Interference from atmospheric noise or other-user

Interference; and it may be a costly limi tation for intelligent-adversary

interference, although that has to be determined. Although techniques for

acconinodating the non-i.i.d. nature (primarily the dependence) of the HF

interference are desirable th’~ independence assumption may be used to determine

bounds on detector performance. The general argument is that dependence

(correlation) among samples provides additiona l Information for designing

counter-strategies, thus, the assumption of Independence leads to bounds on
performance for the dependent case. In addition, the identically-distributed

assumption may not be required for validity results previously mentioned since

It Is not necessary for asumptotic normality ((1], ch. 8) nor required for

the canonical form of the probability ratio tests ((20]).

r 
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The mIxture models assumed for the interference density require complete

statistical knowledge of the nominal density ; yet for the HF interference

discussed, all of the components — atmospheric noise, other-user interference,

and intellIgent-adversary interference (when applied)— are not known exactly.

Thus , the reported results for this mixture model could not be appl ied directly

to the general HF coninunication problem as formulated here. You could interpret

the mixture model , with Its time-sharing implication , as: (1) a high probability

(1-c) nomi nal density describing all but the impulsive noise, and a low

probability (c) contaminated density describing the nominal piy~ 
the impulsive

noise ([17]); or, (2) a high probability nominal Including all but the intelligent-

adversary Interference ([26]) and a low probability contaminated density

describing the nominal 2i~~ 
i ntelligent-adversary interference. In other words,

the contaminating Interference component and the other noise components would

be assumed to occur with an average rate of c. The mixture-model results may

be applied to several typical nominal components; the outcome may be instructive .

typical densities for atmospheric noise, other-user interference, intelligent-

adversary interference, or any combination would be the candidates for the

nominals. The robust detectors obtained from the different nominals could

then be compared for similarities that could be exploited later. Another

difficulty In applying Huber ’s mixture-model results to the HF problem Is the

assumption of a signal-dependent interference capabIlity tha t is not assumed

in the HF conmtunlcatlon problem formulated here. If possible , it may be

instructive to consider detectors for signal-independent, contaminating

Interference der ived from a random or non-ramdcm convex combination of the

least-favorable signal-dependent densities .

In the problem formulated here for HF con~nunications, the cost function
prescribed Is the probability of error (Bayes ) performance measure. However ,
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only Huber ([13]) considered this cost function explicitly. El-Sawy and

Vandelinde indicated theIr techniques are applicabl e to the probability of

error cost function. The cost function considered In all of the research

discussed is the one appropriate to radar problems, namely, the probability

of detection failure (miss probability 1-s). However, since the detectors

chosen with respect to this radar cost function are generally required to

satisfy a probability of false-alarm (ci) constraint (the Neyman-Pearson

problem), the solution for the coninunication (Bayes) problem can be arrived

at by solving a series of radar problems. This follows from the fact that

the probability of error is a weighted sum of the miss and false-alarm

probabilities and , consequently, the minimum probability-of-error detector is

also a minimum probability-of-miss detector achieving a particular ci ((11],

sec. 3.2). Unfortunately, the results reviewed above for the interference-

mixture-model Neynian-Pearson problem are valid only for false-alarm probabilities

larger than a given lower bound u(c) and , therefore, may not be applicable to

the HF coninunication problem formulated above. Unless the Bayes detector can

be found among those Neyman-Pearson detectors satisfying the lower bound

constra int ~~(c ) ,  the results for the mixture model problems cannot be applied.

All attention must then be given either to applying the results ol Huber and

of El-Sawy and VandeLinde or to solving dIrectly the robust detection problem

for HF connunications.

The requirement of syninetry for the interference densities may be a

very restrictive limitation for this HF problem. This syimnetry of densities

implies zero-mean interference and certainly eliminates other-user inter-

ference. Moreover , It is not known at the outset if restricting intelligent-

adversary interference to being zero-mean Is severly limiting or not

for this problem. For example; Blaclinan ((2], (3] ch. 9) has shown tha t
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zero-mean, white Gaussian noise Is the best intelligent-adversary interference

• 
. for minimizing the channel capacity seen by a coninunicator; and, i t  can be

shown ((19), (20]) that deterministic signals are the best Interference for

minimizing the correlation in correlator receivers. Thus, it appears the

synunetry requirement possibly el iminates or sharply curtails the two main

components of the interference characterized in the HF problem formulated above.

RECO14IENDAT IONS FOR APPROACHES

From the review of the recent results on robust detection and the discussion

Of their applicability to the robust detection for HF cocmnunlcatlons problem,

reconinendations can be made for approaching this probl en.* The first approach

reconmiended is based on Huber ’s ([13]) formulatIon and results. For the second

approach, a direct solution attempt is reconinended . In both cases, the concern

Is for the binary detection problem where both signal values are non-zero. In

addition , both approaches are based on a discrete-time model in anticipation

of digita l processing.

Approach 1

In the first approach; the mixture model , the lack of synmietry in the 
-

interference densities , and the treatment of the finite sampl e problem — instead

of the asymptotic problem — are the motivating factors for utilizing Huber ’s results.

The mixture model for the interference densities will be used to describe the

• interference random variabl es {w(tk)} when impulsive noise (from atmospheric

noise or man—made noise) or intelligent-adversary interference are present or

absent. (Note, these are two separate problems.) The nominal density will

describe an arbitrary density for the interference random variables without

either the impulsive noise or Intelligent—adversary interference component.

The contaminated density, occurring with probability e, will describe the

* We recognize the inappropriateness of the known-signal detection problem model
for the complete HF probl em ((18], (21], (22], (24], (28]). However, by
treating the easier robust detection problem for known signals first , we gain
valuable insight as wel l as possible solutions to the robust detection problem
for unknown signals.
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interference random variables containing the impulsive noise or the intelligent-

adversary interference component. The interference random variables will be

assumed independent, but not identically distributed .

For this formulation , Hu ber ’s results extended to time-varying

signals ((16]) and non—identica lly-distributed random variables

can be applied directly. The minimax detector obtained in this first step and

based on a probability ratio test wil l be dependent on the arbitrary

nominal specification. The next step will be to optimize this minima x

detector over the class or appropriate subclasses of possible nominal densities.

The resulting minimax detector obtained in the second step will have the

robust properties desired for the HF coninunication probl em. Steps 1 and 2

can be abstractly stated as:

Step 1: Find the detector and least-favorable mixture

interference-density f~ = (1-c)f0 + cff, for a given c and nominal f0, satisfying

C[q~(f,), f~(f ~)] = 
4~
€D f~~ F~ 

C[$,f
~
]

where C[,,f~] is the probability of error using detector $ and mixture

interference density 
~~ 

0 is the class of detectors based on probability

ratio tests, and F
~ 

= {
~~~C

If
C 

= (1-c)f0 + cf1 ; f1 any density}.

Step 2: Find the detector •~° and least-favorable mixture

interference-density f~
0, for a given c and class of possible nominal

densities F0, satisfying

mm max
C($~~,f~°] $~tD~ ~~~~~ 

C(~~,f~]

r where C(4~,f~]is the probability of error using detector $~ (m inima x for

given c and some f~~F0) and mixture i nterference density f~ (least favorable

for given c and some 1~eF~), D~ {
~~I*~ 

is a minim ax detector with respect to

for given c and some f~~F•}, and F~ — {f
~lf~ 

(1-c)f~ + F?;Vf.mF.}.
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After evaluation of this robust detector, additional methods for

Imp rov ing performance may become apparent. For example, incl uding

an adaptivity capability for following the time occurrence of

the contaminated density would be advantageous presumably since the

detector design depends explicitly on the occurence rate e. As an

alternative, keeping the detector non-adaptive and seeking a detector

that would be robust also on a range of c may be desirable. This

alternative method could constitute step three, abstractly stated as:

Step 3: Find the detector $°
~~

, and least-favorable mixture

interference-density f0~, for a gi ven class of possibl e nominal densities

F0 and given range 0 c < Cinax satisfying

mm max 00 00
C[s°

~
,f°
~
] = 

$°°~~D~~ f00E.F0 C[$
~~

,f
~~
]

where C[$~°,f~°] Is the probability of error using detector $~
° (robust for

some F~1 wi th crn~,c and mixture Interference density f~° (least

favorable for some D~ with 0 < £ 2 
~~. 

cmax)~ D,nax 
= {$~~ 0 ~~. ~~~ ~~. ~~~~ and

F
~~x = 

~ . c2 I C
~a~

}.

This first approach should produce promising results to apply

to the HF coninunication problem. A major weakness is assuming

independence for the interference random variables. Consequently, the

performance of this detector for dependent i nterference random variables

shoul d be evalua ted , probably by appropriate tests and simulations ;

analysis may be possibl e, however, for some forms of independency, e.g.,

state variable models or Markovian requirements.
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Aflproach 2

For the second approach, an attempt should be made to solve directly the

formulated problem using generalized Lagrange-multiplier theory on nonned

linear spaces ([15]). By modeling the possible, interference random-sequence

densities as members of a subset of a space of multivarlate functions, the

property of dependency among the random sequences components can be treated

in a convenient manner: you are not required to specify a dependency relation-

ship for ,the subset of multivariate functions. Characterizing this subset

w ill, however , require the statistical descriptions of the interference

components wA(tk), w~,(tk), and wIA(tk) discussed in the HF coimiunication
problem formulation. This approach can be expressed more concisely as:

Step 1: Find the detector •
0 and least-favorable multivar late

density f° satisfying

o ~~ mm nix
seD f~F ‘~~~‘

where C(+, fJ is the probability of error usIng detector • and interference
multivariate density f, D is the class of detectors based on probability ratio

tests, and F is the subset of admissible nultivariate functions for which

f — f() F Implies f is a probability density for the interference random

sequence ~~ 
- + + ‘~IA - (w(t 1) , w(t~)).

- 

CharacterIzing the subset of admissible densities F will probably

be the most difficult aspect of this approach since f(1).F results from

convolving the individual probability densities for the background noise

impulsive noise 
~~~~~

, other-user ~~~, and intelligent-adversary IA interference

components. The noise model of Spaulding and Middleton (26] may be applicable

here. In choosing the normed linear specej., for which Fc3’, the most likely choice

is Li(caNi, the nonned linear space of absolutely Integrable functions on the
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domain 0N ([15]). In this space, all non-negative functions that have a norm

of one represent probability densities.

Another difficult aspect of this approach may be in specifying

exactly the least-favorable density after applying the Lagrange multiplier

theory. The theory provides necessary — but generally not sufficient —
specifications defining the class of least-favorable density candidates; also it

provides the validation method for identifying the least-favorable density . In

many instances the class of density candidates are infinite and the least-favorable

density may be quite time-consuming to find without some assistance from

helpful hints and luck. One technique for gaining this investigative assista nce

(and other Insights) for multistage problems is to solve a simpler corresponding

single-stage problem. Another technique is to solve a more general problem for

which the desired problem is a special or restricted case. These technIques will

be used In this second approach.

This second approach is more ambitious than the f i r s t  approach and

should yield more realistic results. The performance of the derived robust

detectors in the actual HF environment depends on how closely the description

of the subset of admissible densities F models the actual environment. If the

direct approach appears foo formidable in this regard, this closeness of the

model to the actual envIronment may be accomplished in success ive steps . The
first step (Step la) could be equivalent to Step 1 above with F defined as a

larger subset off: for example, the subset containing all probability densities.

A valId corresponding second step (Step ib) could be a sensitivity investigation

of the Step la robust detector subjected to deviations from the corresponding

least-favorable density. These deviations would be typical densities from the

class F defined in Step 1 above. Hopefully, some least-favorable deviation

could be found In this step. Another val id corresponding second step (Step 1b)

-19-
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would be equivalent to Step la wi th F’ replaced with a proper subset F”c F ’,

where FcF ”. Thi s ser ies of nested problems (Step la, Step lb1 
, . . .) can

continue in pr inc ip le  un t i l  the problem Step 1 is reached or approximated

closely enough for practical purposes. An advantage of this nested problem

approach, hopefully for little effort In characterizing F , F”, . . . , Is the

considerable insight likely gained as to how the corresponding robust

detectors $°‘,$°“, . . . , approach the robust detector •° of Step 1.
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