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THEORY OF THIN WING IN A SUPERSONIC PLOW WITH CONSIDERATION OF THE
NON=-EQUILIBRIUM STATE OF EXCITATION OF OSCILLATING DEGREES OF
TREEDOM

Ye. P. Aksenov, Yu., N. Grigor'yev

Tn rapid gas flows we can observe chemical and thermodvnamic
non=eaquilibrium state, It is known that after the action of per-
turbation, the prorressive and rotarv components of energy rapidly
assume their eocuilibrium values, and the oscillating component of
enerey achleves 1ts enullibrium value manv times slower; and the
relaxation time, as we call thls time interwval, can prove to be
substantial, This nermits us to take the following scheme of exam-
ining the non=equilibrium state in our problem.

In a shock wave there occurs an initial excitation of the
progressive and rotary degrees of freedom under conditions of a
frozen state of the oscillating depgrees of freedom.

After the shoek wave we have non-eaquilibrium excitation of
oselllations under those conditions where there is a place for
the eaullibrium state between the progressive and rotary degrees

of freedom,




It is oroposed that total energy E, of active (i,e. nropgres-

sive and rotary) degrees of freedom, anvwhere in the gas, has an

eauilibrium value of EfsC?”; and oscillating energy E, satisfies

relationship [2]:

%"‘O(zv—' v): (1)

where Eb - eaquilibrium value of oscillating energy, and é: -
relaxation time,

The purpose of the present work 1is the calculation of the non-
enullibrium state in excitation of oscillating depreecs of freedom
in the problem of the steady flow=around of a thin wing of
infinite spran by a supersonic pas flow,

A system was taken as the initial svstem of ecuations, con-
taining the usual equations of gas dvnamics with the addition of
a relaxation enuation (1).

As applied to our problem, this system has the form:

v.;z-+.lr%=_+;g.
"o ts

y Al
_l’_P. s duy d(’y —
n sk + o g +e (G Ty)*o' (2)

v (VT E) + oy (W THE ) = £ (G 4+5).

oE, dE =
Ty = o (E, —E,),

P=RpT.

In these equations, v, vy are the components of macroscopic

v

gas rate, p - density, p - pressure, T - absolute temperature,
C!" - specific heat with a constant volume, relating to the active

derrees of freedom,




The desired hydrodynamic elements should satisfy the boundary
conditions on an unknown line of strong disturbance and the flow-
around conditions,

Let us propose an approximate analvtic sclution to this prob-
lem which glves prepared formulas for computing the desired func=-
tions in any point of the profile, With the solution to the prob-
lem in the first approximation, the acouired formulas are similar

to the known Akkeret Mormulas.

1, Linearized equations and boundary conditions of the problen,
Let us examine a thin slightlv-curved profile with sharp
edges at small attack angles,
We introduce into the system a coordinate, the beginning of
which we place in the front part of the wing; axis x we set along
the inflowing flow, and axls y above and perpendicular to axis x.

Since the thin profile barely disturbs the inflowing flow,

the desired hydrodynamic elements can be given in the form:

v,=V,+9/,

v, =9,/ (1.1)
P=p+p,
T=T,+1,

E, =Ev(r|)""£v'.
p=p+r,

where P1s Vl, pl, and T, = values of hyvdrodvnamic elements in the {

1
undisturbed flow =« constant values,
v o T E/S o and those produced along the coordinates =

smalls of the first order.
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Linearizing system (2), i.e. disregarding the terms above

of the first order of smallness, we obtain system:

'..%L.=_..'l‘_%‘ (1:2)
ov,’ 1
'g-a';"=_‘;:' y ’
A (0 -5 R N . S

v, 2ol — g (CV 1 —E)),

P=ReT +T/p),

where
- (4B, .

For finding the functions of v/, v/, ¢, T, E,. ¢’ which interest
us by integrating system (1.2), we must write down the boundary
conditions for these functions which interest us,

Let us begin from conditions on the surface of the nonremov-
able discontinuity, We agree to provide by subscript 1 the values
of hvdrodynamic elements up to the nonremovable discontinuity, and
by index 2 the values of hvdrodvnamic values after teh surface of
nonremovable discontinuity, Then the momentum theorem, the mass
conservation law, and the law of conservation of energy for gas
masses passing through the shock wave, are written down in the

form of a relationship:

=Pt Vot (Vasa = Vi) = (py — py) cos (n, x),
i | V--I(Vm—Vyn)=(Pa—P|)C°3(BJ)' (1.3)
Pz | V3,3 €OS (R, X) 4 Vy3€08 (1,y)] = p; Vpuy,
'] ] 2
—Plvnot(—l—li-v" : Z +Ea"-—‘-!—,-lv:‘ ok "El)='

= Py [Vaia €08 (R,X) + ¥y, €08 (1, y)| — p, Vipoy,'

s i




where V. , =V, Cos (n, x){+ Vy  Cos(n, y) Projection of speed Vl of an
]

undisturbed flow on a normal n of the surface of nonremovable dis-

continuity,

Since the x-axls is directed according to Vi of an undisturbed
flow, V -V, V = 0, If we designate through ¢ the angle be-

X,1 ¥yl

tween the tangent of breakdown and the x-axis, then Cos(n, x)=Sing,
Cos (n, y)= —Cos'¢ s and consequently V.= V,sing.

Then from (1.3) we find:

‘ 1 .t
Vlnl—vla-’-'_!'v‘.(h_Pl)o Vyoi--'rlvt-(’l—’l,o

= P2 Vidsinly il il
P NW““"‘—(h—h) v E—E —,;%;;%T— (1.4)

Let us propose 9 =a+ Ag, raesina = v: =1!'— . (1.5)

a, = sreed of sound in a disturbed flow,
Let us consider that A9 = value of the first order of small-

ness, Then with accuracy up to smalls of the first order, we have

LJrpe— 2 ’. l - @'.—l
sin? ¢ = sin?® (a 4 d¢) W T M de. (1.6)
cige=VMHr—1—M' .

Taking into account (illegible) and (1.6) from the relation-
ships (1l.4), we obtain for the desired functions the following

conditions on the line of noremovable discontinuityv:

o = —lp, (1.7) |
)

o V=T |
v,a—" 1 v, (1.8) '
P'=—n¢;"v (1.9) '

o p Mg, :
E=bvir (1.10) |
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Moreover, considering the frozen state of oscillating derrees of
freedom with the passing of pas through the shock wave, we have

one conditlon on the line of discontinuity

E’ =0 (2.11)

Let us direct our attention now to the condition on the Pro=-
file (to the flowearound condition),
WYe have
v, =0, 1gh, (1.12)
where g 1s the angle of inclination of the tangent to the profile
to the x-axis,
Let us linearize this condition on the profile. Let the equa-
tion of the profile be
y=c(x). (1.13)
Since the profile is thin and mildly curved, it means that value
igp=U"(x) can be considered small of the first order. Assuming in
(1.12) oy=9y, v, =V,+ 9’ and disreprardinr the value of the small-
ness of the second order, we obtain condition on the profile in

the form

9 = ¥ ¢ (x). (1.14)
Thus, we must Integrate the system of equations (1.2) with toundary
conditions (1.7)=(1,11) and (1.14),
2, General solution of the linearized system of enuations,
Let us reduce the system of eauations (1.2) to one ecuation
relative to function p', With this purpose, we will differentiate

the fifth equation of system (1.2) twice along the x-axis, We ob-
RE,’ ‘B’
tatn: = (G- 55 . (2.1)

6
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"rom teh fourth eauation of svstem (1.2) we find

9E, ov,’ ovy’ (3) o7

A (G S -0 - (2.2)
Differentiating (2.2) once with respect to X, we obtain

PE,’ RV, 0V, )T
e tEtER -

P1 P/ (203)

The third equation of system (1.2) with the use of the latter pro-
vides 3
= e v (S ). (2.4) :
Having differentlated (2.4) once with respect to x, we find
=k G (2.5)
Let us differentiate the first equation of system (1.2) with re-

spect to x, and the second with respect to v, We find

Sw' 1 »p (2.6) ‘
dx’ & ol P r 012 ° t

0% vy | adip

ox dy T m dy5 @7

Placing (2.5), (2.6), and (2.7) in (2.3), we obtain

’ ! C“) 2 '
NE, |1 o T P )_ v ]0 14
e .(Ct e Rp o T

y T, p\ 9'p
v (C¥ -+ B S

(2.8)

Differentiating (2.

8) once with respect to x and placing the ob-

tained equation, along with (2,

5) and (2,

8) in (2.1), ustng (2.6)

and (2.7), we obtain for function p',

after the transformations of

coefficlents, and equation with partial derivatives of the third

order in the forn: '

koat S — ks + 0 S Sh o,

where the following designations are introduced: {

(2.9) | §

(see followving pare)

i




-

?
5
§

P——

e N I

(U]
hr Rt
'R ReCHC,
&
. RT, (R'-’f(_ql') Vi—i=M'—1, (*)
[ v !

et

bt = 2 vVEi—l=M2~1.
RT, (R+?,:i+ ?,"; ; !

Equation (2.9) replaces, in the non-equilibrium case, the normally
used wave equation, This tie with the classic equation is aquite
apparent. When the relaxation time approaches null, from (2.9),
as in the particular case, an equation follows for an equilibrium
reriod, In the case whereky - o(infinitely larrer time of relaxae
tion), we obtaln a special case of the classic equation with the
Mach number of the "frozen" periocd. Tor some non-null finite value
of relaxatlion time the characteristics of equation (2.9) with the
form .;L- 2 N
x m
rlay the same role as the characteristics which are well known for

eqauilibrium periods.

We will search for a solution to the obtained equation (2.9)
in the form ¢f an exponential law, which is natural for the relax-
atlon process.

It 1s easy to see that the functions with the form e—pyand ee*x —
=p*y, where a anda®, 8 gnd p* are comnlex conturate numbers, are solu=-

tions to equation (2.9) with

’.n—..%:_._.l_ (2.10)




Mhen function

P = At L gt (2.11)

where A and B are the random constants, and will also be the solu-
tion to equation (2.9).
We propose
a=p+ql, B=8+Ai, {2.12)
Then (2,11) can be written in the form
pP=e™"Y |C cos (¢ x — Ay) + Dsin (¢gx — L y)], 2.13)
wnere C=A+B, D=1(A=B), Substituting (2.12) in (2.10) and separating

the real and imaginary parts, we obtain
8= F

280 =G, (2.14)

where F= ((.!+.°.!’)("_'l)_2.°.!p'll(| +k.p) &
i T+ kop) + k7 @2
4 o—Lkoa® ¢ (p? —4q?) + (82 + koa?p) 2 pg] kog
(1 + kop)? + ko? 3

O 8 g(p— ) + (B + koo p) 2pg) (1 + Rop) {2.15)
RN E3 1. £ 1L

@'+ koa?p) (p° — ¢*) — 2h0 a? p@?) hog.
"rom (2.,14) we find wrRrrNY

"=-§-(F+VF5+G‘), u--_-.;.(_p_,_]/m (2.16)

Having for function p' the expression (2.13), we find, proceeding
bv opposite means, the remaining hvdrodvnamic elements:e, v,.T, ¢’ E, .

Inteprating the first equation of system (1.2), we find

v = — 1 =¥ [Ccos (gx—Ly) +
+ Dsin (gx —Xy )] +C, (y),

where Cl(v) is the arbitrarv function.

9




"rom the second equation of svstem (1.2), placing, instead of

’

¢, 1ts equation (2.13), we obtain

%’;’- ""7,"17.‘ =% [(—3C —1D)cos (gx —y) +

+ (AC—3D)sin(gx —1Ly)].
Interrating (2.18) with respect to x, we find

—b
V' =~ ([C Op—3)—D (Ag+3p)] sin (gx—dy)+ (2.19)

+ [C (=3 —Ag) + D (3¢ 11p)] cos (¢ — L y)) + C, (y).

(2.18)

where Cz(v) - arbitrary function,
"rom the third eauation of system (1.2), placing, instread of v,’

v, s thelr expressions (2,17) and (2,19), we inteprate with re-

spect to x and find

XYy Hed _ bk
o' = —pz— [Ccos (gx —Ly) + Dsin (¢x — ky)] — G:Cy'(y)x+ b
px—ty *
+"VI:-(7,,—+W [(Cg + Df)sin (¢x —\y) +
+ (Cf — Dg) cos (¢x — Ay)] + Cy (),
where
g=2pgF+(¢"—p"G,
f=*—¢)F+2pqG, (2.21)
and C3(v) - arbitrary function,
"rom the last equation in system (1.2) we find
P Vlz—Rr 12PX—b =
r *Wf’ Y [Ccos (gx —y) +
+Dsin(qx—ly)l+%j—6‘:’(y)-x- (2.22)

r PX—by y
iy ml’f;iw [(Cg + Df) sin (gx —y) +

+ (Cf — Dg) cos (gx — hy)] — I C, (y).

T"rom the fourth equation of system (1.2), using the fifth, we find

‘M (V:- RTI) p' L il =
woRp Vi w7, eP* =% .[(—Cq+Dp) sin (gx
fiom™ oW
- Ay) + (Cp + Dg)las (gx — hy)} — (:'Tl'; +
14 ) X =By
w0 pi? ¥y P'+ir[

ES =

+

(Cm + Dn) sin (gx—)\y) +

10

B P s T P TESIRIam——



c“f.o"".'
+ (Cn — Dm) cos (9x — )| — Zyxray (C& + DN X

oy
X sin (gx—Ay) + (Cf — Dg) cos (g5 —Ay)| + (-'-';— +

; cm T, ) ;
wa_x+*%-Q(ﬂ+ (2.23)
(x)
+.5L_‘:".‘:;Fﬂ‘”-"[Cm(qx—&y) + Dsin (gx — Wy)] —
: c"n ‘ :
—-",-.—'co(!).
where
_m == gF — pG,
n = pF + ¢G. (2.24)
p" vl" V", p'o rv Bv'.
Tunctions o« given in formulas (2,13), (2.17), (2.19),

(2,20), and (2.23), satisfy the five equations of system (1.2).
Satisfying the fifth equation of system (1.2), we obtain one rela-
tionship between the random elements entering into the equation.,
S0, 1n the general solution to system (1.2) arbitrary functions
C1(v)y Cy(y), and C3(y) enter, as do the random constants C, D, p,
and a, which we must find from the boundary conditions.

3. Solution to the problem in linear approximation (search for ar=-
bitrary functions).

We find arbitrary functions which entered into the general so-

lution, Por this, we have six boundary conditions (1.,7)-(1,11), and
(1.14),
Conditions (1.7)=(1.,11) on the line of nonremovable discontinuity
will be written on characteristic x - ay = 0, and condition (1.14)
will be on the y-axis v = 0,

Satisfying condition (1.7), we see that

<, (—‘;"—)'-0'. (3.1)

11
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and from condition (1,8) we find
P

0.({-)- -n—;m-w “C("""""—"_M) + D%~
-Np)leo.-‘-'; (ag =N + [COw — V) + D(ag* + ap* — ¥p—
~Ag)) sin - (ag — ¥}
Satisfying condition (1.9), we find
= Cy(y) = (-p';r --,-'.r)c"""" ICcos y (ag—)) + Dsiny (ag—

Y (pa=8)
=N |y | € €+D)) sin(ag—) v+ (Cf~Dg) Cos ag-

y(pa—t)

- \)yl —m.l CM+DN)C0‘ (aq-—l)y-— (CN'—
- )sin (ag—Ny|ay,

where

i
M=aiph-¢" (ap— ) + pF + ¢,
Nw=a(p'+ ¢") (ag — ) — ¢F + pa.

Condition (1.11) leads to eacuation

&x
pr—d .

e [(AC + BD) cos (¢x — ) {-) + (AD — BC') sin (gx —
1)

N
where ™

ta)
ey T ey V!
A-’(a'-"(ﬁhil +P| " |)+p ﬁhh '. +
(w) :
¢ 0'-RT
. | t T-LR—;:]—’*- 2(!5.
(8) ()
ey T ey V,\?
B"""“"(T.‘.Ti?r"":r&'r.)""'—Jra‘vr"“*'

which will be asatisfiled 1 we aset
A-on B-o'

Using eondition (1.14), we obtain

7‘.— p V%' (x) = e?*(Ccos gz + Dsing ).

1.\

(3.2)

(3.3)

(3.4)

(3-“)

(3.6)

(3.7)

(3.8)
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Replacing in equation (3.8) ax by qx=Ay, we fjind

A
: —px+p-—-y £
Cco‘("-l)')'}‘alln “x—ly)-h-;’-‘:‘ 9 C'(x-—- (309)
o -
-1,
then
n(;-3)
p=tite "'(""":‘Y)' (3.10)

The obtained exnression for p' 1s a reneralization on the case
of movement of gas under conditions of the absence of thermodynamic
equilibrium of the known ARkeret formula for the thin wing and con-
curs with &‘0“ Ko+

Along the same lines, in the case x=0 from (2.1) it follows
that 2= pla® and, conseauently,

Lol ayYWI=T.
« (3.11)

=3

PY
So that multiple e ¢ 7 considering the non-equilibri-

um state in this case turns to a unit, we obtain the Akkeret for-

mula, In the case Ry— o
'L“-!'RV;‘II —i 0
q 4
from (3,10) we obtain the Akkeret formula with a lach number of
the "frozen" preriod,
Knowing p', we can compute the coefficlents of 1ift force and
drap resistance and determine in this manner the same contribution

to the values of these coefficients, which introduces the non-eaui-

librium state of excitation of oscillating derrees of freedon,

13
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