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The Finite Element Method with Iterations for Calculating the
Shapes and the Frequencies of the Free Oscillations of
Naturally Twisted Propeller Blades

by 2. Ye. Shnurov

SUMMARY

The Method of Calculating the frequencies and the forms of the
free oscillations of a twisted rotating propeller blade with the
various methods of attaching a blade, encountered in real designs,
was worked out by the Finite Element Method with Iterations. Calcu-
lation by this method gives quick agreement, has high resolving
power and makes it possible to obtain the solution in cases when
it would not be possible to obtain it by other methods or it would
be accomplished with insufficient accuracy.

troduction
The emergence of vertical takeoff aircraft with rotating propellers
and of helicopters with rotors having rigid attachment of the blades to
hub has once agdin concentrated attention on the questions of the oscilla-

tions of twisted blades.

The increase in the flying speed of helicopters and the necessity of p
|

the operation of propellers (including aircraft propellers) under condie
tions very remote from axial flow requires the creation of such practical !

methods of calculating the frequ..cies of natural oscillations and stress- i
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es in these blades, which make it possible with a greater degree of accur-

acy to determine magnitudes which are of interest to the designers. From

the early works it is necessary to note [1,2]. 1In work [1] an approximate

method of calculation was developed, in which a twisted blade was simula=
ted by a twisted rod: the plane of its greatest rigidity was located at a
certain angle to the plane of rotation, which corresponds, as a rule, to
an angle on a relative radius r=0.75. In work [2] based on the theory
of thin rods of Kirchhoff and Clebsch accurate differential equations of
the oscillations of blades were obtained and approximate methods of sol-

ving these equations for a nonrotating blade were demonstrated.

The methods of calculating developed in works[3,4] have high accur=
acy in solving the blade model in question, however, its twistedness is
not taken into consideration, as a result of which the connection of the
oscillations in the planes of the greatest and least: rigidity is absent.
These works also cannot be used in the calculations of plane blades in
the case when inclination of the plane of the greatest rigidity in the
plane of rotation occurs, since the connection arising in this case be-
tween the oscillations in the planes of the greatest and least rigidity
is not taken into account. It is necessary to note, that in certain cases
this connection (attachment of the blade to the hub with the aid of a hor-
izontal and vertical hinge) has an insignificant effect on the frequen-
cies of the natural oscillations, in particular, in those cases when the
oscillations in the plane of the least rigidity predominate in the actual

form of oscillations.

Of the works, dedicated to the calculation of bending oscillations




5.

of slightly twisted baldes, it is necessary to not work [5], in which &
single~parameter integral equation was developed for determining the
forms and frequencies of bending oscillations of a rotating blade, which
ensures convergence of the method of successive approximations at any
angular velocities of rotation. But the case was examined in it, when
one of the main magnitudes of rigidity becomes infinite and, as a consee
quence of the slight twistedness, the connection of the oscillations in
the planes of the greatest and least rigidity disappears. An equation was
obtained in the work, which takes into consideration the twistedness of

the blade, but the programmed equation did not take this circumstance into

account.

The works developed in connection with the calculation of the fre-
quencies of the natural oscillations of compressor and turbine blades can
be used for calculating propeller blades, however, the different assump=-
tions in deriving the equations, completely acceptable for the purposes
of designing short and broad turbine blades, do not make it possible to
consider them sufficiently satisfactory for designing propeller blades.
Thus, for example, in work [6] it was assumed, that the curvature in the
direction of the greatest rigidity of the cross=-section was equal to zero.
This assumption is completely satisfactory for those cases, whan for a
plane blade, which differs from the one being investigated only by the
fact, thatthe twistedness of the cross sections relative to each other
is absent and the frequencies of the natural oscillations are greatly
different. Such is the situation for turbine blades. For propeller
blades (for example, see Fig. 11) these frequencies are sufficiently close

and a similar assumption would lead to a noticeable error.
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6.

In work [7] a system of differential equations was obtained, which
describe the oscillations of a blade taking into consideration the con=
nections, which arise with simultaneous bending in the planes of the great-
est and least rigidity and torsion. However, the method of initial para=
meters employed in this work in the presence of a field of centrifugal
forces requires very high accuracy and does not give certainty that the
system can be solved at all possible relationships of the lowest frequen=
ciesof natural oscillations and angular velocity of rotation of the

rotor.

It is necessary to mention one more important feature, which should
be taken into account in developing ¢.¢e¢.......(two sentences and part of
another are illegible)ccccocoocecccossscnseccsccscsncsocssosssnscsesosnsss
with aid of one so-called horizontal hinge, and its axis cannot coincide
with the plane of the greater rigidity of the blade : bothr at the site of
the location of the hinge and at any other cross section. This noncoinci-
dence leads to additional connections in the oscillations of a blade in
the direction of its least and greatest rigidity. Works [1-7] do not

take such a possibility into consideration.

In the present work a method has been worked out, which makes it
possible to calculate, for a naturally twisted blade, the frequencies
and forms of the natural oscillations simultaneously in the planes of the )
greatest and least rigidity with various combination methods of attach- =

ment to the hub.
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Derivation of the Equations

The method expounded below was obtained by employing the method of
three moments (well known in strength of materials), used earlier for
calculating the deformations of a blade in one plane in a field of centrie=
fugal forces [8] and revised by A. V. Nekrasov [3] for calculating the
frequencies and forms of natural oscillations also in a field of centri-
fugal forces of a plane untwisted blade, performing oscillations only in

the plane of the greatest and least rigidity.
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In accordance with the method the blade is represented as a beam,
in which the length greatly exceeds the dimensions in the two other dir-
ections; it is assumed, that the points of intersection of the main cen=~
tral axes of rigidity of the cross section lie one one straight line and

the connection between bending and torsion is absent. The blade in

accordance with work [3] 1is represented in the from of a weightless

~

S = Y




beam, in each cross section of which are known the directions of the
main central axes of inertia and accordingly of the greatest values of
bending rigidity. The blade is broken down into sections. At the junc~-
tion of the neighboring sections are located concentrated masses, which
correspond in magnitude to the mass of the halves of the neighboring
sections adjacent to the given point. The magnitude of the rigidities
and the angles of inclination of the planes of the greatest and least
rigidity within the limits of one section are constant (Fig. 1). Thus,
the centrifugal force being applied to the concentrated masses, remains
constant within the limits of one section and changes abruptly at the
boundary with the neighboring section. A zero mass is selected from the
conditions determined by the attachment of the blade to the hub. For
obtaining a fixed (jammed) or hinge-wise supported blade the zero mass
is selected necessarily large. If the blade is attached to an absolutely
rigid real body, then the zero mass can be selected in accordance with
the mass of this real body. If the blade is attached to an elastic real
body, the frequencies of the natural oscillations of which have the same
order as the frequencies of the natural oscillations of the blade, then
the zero mass can be determined from the condition of equality to zero
of the sum of the dynamic rigidities of the blade in the corresponding
direction at the zero point (Fig. 1) and of the dynamic rigidity in this
same direction of the attached body. Let us point out here, that for one
and the same value of frequency the values of the zero mass in the
examination of the oscillations of the blade in plane x0z and in plane

yOz will be different.
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Let us examine the two neighboring sections of the blade i~j and
J=k (Fig. 2). Here ¢, 1is the angle of inclination of the plane of the
greatest rigidity towards the plane of rotation in section i-j; %, is

the angle of inclination of the plane of the greatest rigidity towards the

plane of rotation in section j-k.

Plane x0z coincides with the plane of rotation; planes & 0z;
gn’ 0z; wy 0z; v, Oz are respectively the planes of the greatest and
the least rigidities in sections i-j and j~k. The concentrated masses

are located at points (ij) and (jk). Thus, only one mass is located with-

in the limits of one section.
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Let us explain more precisely, that the coordinate system xyz
rotates together with the rotor, in this case axis y is directed along
the rotor shaft in the direction of the lift, axis z is directed along

the blade axis, and axis x is perpendicular to the first two and is

oriented in the direction of the rotation of the rotor. This is a
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so-called general system of coordinates. Moreover, the so=called local

coordinate system 7i:: is located in the investigation;

the axes

and are located in the planes of the cross sections of the blade

perpendicular to axis z, are are directed respectively along the main

central axes of inertia of the cross sectionms.

Let us write out the equations of equilibrium for sections i-j and

j=k in the general coordinate system Xxyz:

M= V= Quujly— Nl = Uy
M=o~ Qupyly— Ny(Uy = U 3

; A Ut R " Sk
Mg o s Quplp by s — bt

M=M= Qulp—=Np(U = Us)
Although

Uyy=U,=Uy M j=21,=M;
Uyy=U,,;=Usi" M=M= M,

(la)

{1b)

(2)

let us retain for a certain time the double indexing system, since

Uorid Bt S5, T0GE |
L # Uys gt Mgy |

3)

and subsequently it will be necessary to carry out transformation emplcy=

ing (1)=(2).

Let us note here, that
2
" Q'll- = z m; Uyh
/

Quy=— 2“4 (ﬁ,, - _v'U.) ;tc.
i i

(4)
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Designated in the equations are:
Uy; Ux 1is the displacement in the direction of the axes of the general
coordinate system;
U,; Uy is the displacement in the direction of the local coordinate
system;
My; My are the flexural moments, the vectors of which are respectively
parallel to axes y and x;
Qy; Qx are shearing forces, the vectors of which are also parallel to
the axes of the general coordinate system y and x;
N is centrifugaliforce, the vector of which is parallel to axis z.
Having divided each of the expressions (la) and (lb) respectively

by Nijlij and Njkljk: introducing the designations

TEREE
o ", ikt

1 <3 4 (3
}9.""7‘7" ’ by.- ’ ,

Nplp Tn

we will obtain

fl/ M:u "'fuM:u - l’u (Uyu" yll) +W“=0. | (6)

leM.r/k_,}kA’.r}i—b/k(uyjk e yu)+ "‘AT=0' '

fil ‘M,vl! -.f:',f "”_\.'." b.,‘(u,n;‘ "‘U,.u" + Q".“ =0, ° L y

Ny
_ _ Qo
P R A R SRR Tt W, A,
o ‘JJ" -’,0 . el y "‘ll’+ AT]-' ; (7)

Subtracting in pairs (7) from (6), we will obtain after certain

transformations

g § S P T <t
o A / AN g AN L ey
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A
14
| ‘ )
| . o g -; . (8a)
' . ! )l Y

p

ol o mBl G f-] . (9

Then we will examine the deformations of sections i-j and j-k. We
wiil seek the deformations in the planes of the least and greatest
rigidity. The differential equations of equilibrium in the sectioms
respectively in the planes ‘ﬂOz and tO: are:

(ELUY)" — (NUY'=0; (ELUY" — (NUiY = 0. (10)

It is possible to write the solution of the equations of (10) in

the following manner:

‘\1i i A; sh N, 3 - B;Ch 4 2 M o= 2 - (11)

T &y

where (with the retaining of double indexing)

Mz My My i
AW-;,,—.—“'I-'W; A"’=§:T;'m‘ (12)
Bijm= Mii; Byy= My ;
Aﬁl-ﬂ‘f’@ﬂ' ,J.=_‘"_'J:___A_1‘_’_{_.
shagy -~ thag, ' shay  tha,, '
Biya = Myy; Bojp = My, (1%
Mt-E'lu;; “‘-EI’U.'; i
usum = Busunbisum Susum = sy unly g (14)

Haing substituted expression (12) in (11) and having twice integra-~

ted the corresponding expressions, we will obtain for section i-j the

equations connecting the deformations in the plane of the least rigidity

G g ST D -y PN "
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with the flexural moment, acting in the same plane:

by(Uyy— Uy ) = dy Muy + Iy Mu + By

= byy Unty — U)o — by, Muy = 3y Mus + B (15)

The expression for section j-k in the plane of the least rigidity
and the corresponding expressions for the plane of the greatest rigidity

are analogous. For example, for section j=k

bjn Wi — Unyj) =}y My L Moy + 8,
b,-. (U:ijp— L"i//?" —’l;, Moy — 4'}. -”v./{“‘"jg: 5 ) e
in this case
L -~ /‘\‘ﬂf"lu m o sl
Iu‘ Ug),"‘, -—Wm—. ’ ;
g ; i
2N (19 P . .
: [} s l
' ,E o : '
- AITNERT 1 -

is the tangent of the angle between the projection of the tangent
to the elastic line in plane i,. 0z and axis 0z with its apex at point
i3;

: 1s the tangent of the angle between the projection of the tangent
to the elastic line in plane : 0z and axis Oz with its apex at point
i1,

is the tangent of the angle between the projection of the tangent to

the elastic line in plane :, Oz and axis Oz with its apex at point jk.

Analogously Frs 852 i and ;' are tangents of the angles
o v, s oaarer SR i ol
i T i L
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between the projection of the tangent to the elastic line in the plane
:.;0: or v, 0: and axis Oz with their apices at points ij; ii; jk;
and jj or in other words, the components of the first derivative of the

displacements in the direction of axes V'and E.

Since in a general coordinate system the first derivative changes
monotonically, i.e., it does not have discontinuities, then for sections
ij and jk it is possible to write

W= = o
where §* and §* are respectively components of the first derivative

of displacements in the direction of axes x and y.

Let us employ the relation

It follows from (19), that

?}, cos 9, — B, sing, = ':/ €os ¢, — B}, sing,,; VAR
%y singy + B, cos v, =, sin 9, + B}, cos ¢,s. (21b)

We will obtain from (15) and (16)

By = by Uy = Uui) + B, Mu; + 4 Mus;
By = 0 Wyn = Uyyy) = d); Mipp — 1}, Myy;

(22)
ﬂ,-b,,(uw—'Uua)-i-'},Mw,-i"uﬂgu; b
By = o (Uin = Uyp) — &5, Mopn — 5, M.y, L
.
|
Having substituted in turn (22) in (2la) and (21b) and having ?T
carried out grouping, we will obtain:
|
— m« SR o x—w—-—:—r—j
' ARE o ke LN \
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for plane x0z

124; (f’w — Uui )c0s §y— b, (Uniy — U ) sing,)) + |8, M.y + d}, My )cos 5, —
— (l,l My + d,} My ) sin g }=]b,s (Ugsa—Uyyy) cos ¢ —bu(Uoje — Usy; ) sin 7[&"’"
H
1= () Muje + 5, Moyy) €08 o + (0 Mipn + L, Migg)sin 9):

(23)

for plane yOz

16 Wiy — Usidsin 2,5 4+ b, Uiy — Uyii Y cos 3.} + [(ff, My + di, Myi)sing, 4+
+ (1 Muy + di; Muii) cos 3,,) = b (Uipa — Uiyj) sing, +

T bptlin—=U,)cose,) + |-—(d}‘, Mo+ lj.’ M )sing, — (24)

= W Mg -+ Uy Migp)cos 2 ).
Having used the relationships

U =008 'é'-(.-_ S\ﬂ”é'. l!’ﬂ\'.';ii\'\';-—*'( RO (25)

we will obtain ...(illeéible)... transformation for the corresponding

sections:

for plane x0z

( v 1y b ;CO'{Y.A)' (,, '” s ' e T2
| of U, ! Mo cony,, - (“-':'_. Moy -+ [‘A VL Vst (26‘)
L
’
and analogously for plane yOz
byUy, = b, 40 U+ 0 Upp = (1, My a0l Y sing,; +
S, My + @ Mua ) o8y -4 (dyy Mo + 1, M) sing, =
! + ], M40, Mty)cos 5, -
“—'—w‘;»'ﬁ I i

aa

i b
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Expression (26a) connects the dis-
placements in plane x0z with the flex-
ural moments in the planes of the great=-
est and least rigidity in the four nei-

boring sections (ii, 1ij, jj, jk). Ex-

pression (26b) connects the displace-

ments in plane yOz with the same flex=
Fig. 3 ural moments in the planes of the least

and greatest plane in the same four neighboring sections (ii, ij, jj,

jk)o

These expressions are awkward because they contain values of flex-

ural moments in four sections, whereas the displacements are given in

three sections.

However, it is possible to reduce the right sides of (26a) and

(26b) to expressions containing flexural moments only in three sections.

Let us note that moments Mu,, Mys My and M, on the
boundary of the neighboring sections are connected with each other by

the following relationships (Fig. 3).

My =My cos(¢), — o) - My, sin (e, — )
Moy = Mu sin (30 — 91y) + Myjcos (9, — v,), g

whence

My, = My cos (9,4 — 9if) + Moy sin (e, —
vy (] n M) 70 :u:». } (27b)

My = — My 8in (9, — 74) + Moy COS (9

Il gt onam—

\_',

—
e

S S S——
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Introducing the designation

Az, =9~y
and having noted that equally

Mip = Murcos ey + My sin a9y, Myn = — Mussin 49, -+ Moa cos 33,,  (28)

let us substitute (27) and (28) in (26a) and we will obtain

0i) Usi = (bij— 0,0 Uy — by U,y = My d cosyy; + Moy (1, cos 83, c08 5, —
— I, sin 8¢, sing,; + 1}, 08 2,) + Moae (4, CO8 89, c08 ¢, —.d%, sin Az, sin 3,0) —
— Mud}, sin ¢, — My (I sin Bo, cos o, + [}, cos Ag sing,, =
+ 1y sin z,)— M (4] sin d9, €08 ¢, + d}, CO8 A%, sin",:,..t\i g9 (29a)

Having accomplished the analogous transformations for (26b), we

will obtain

byyUy— (b, — b VU, = bofUyym= Myad sing,, 4 M, (7 o8 dg.8im 5, =

i/
% ”)ﬂﬂAQAV:{ = MO e Mo GF 0 S 3in 3 TR Fupe s g8 2
L My cos : Vot indy $d 7 e B 0d. ? :
: i , 3 i if . ;
= N (- sin 3y sing 4+ @ cosds vosg ) (29b)

Thus, the expressions are obtained, which connect the displace-
ments of the three neighboring points with the flexural moments in the
planes of the least and greatest rigidity in the three neighboring

cross sections.

The first and the last sections are singular sections.
Let us write out the analogous expressions for these sections. The
equations of (15) for the first section are:

byl n=-0, m’)=d;'.IM.m v 03 Mow 4R (30a)

ey ———

o 3T
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b (U ny-lim)==d: Mo 1M, 5%, (30b)
Let us multiply the first equation by the negative value of sin :
and the second by cos = .. then let us add them, ~having used expres=
sions (20) and (25) for the transformation, and we will obtain
b (Ugy — U, ) = Moo, cos ¢y + My o d, o5 3, — My ol sin gy —

sy

- Mo d;" sin @y, + ﬁ, 0

and having substituted
Mom=— Minsin 89, + My1ncosdg,; Mia = M;11c0887 + M, sindg,,
we will obtain

by=WU,,—- U, o)"'Mqﬂﬁcm'u + Mv, n(lé, cos Ag, Cos ¢y, —
— d:" sin A’I sin ’")"‘ MC .l& sin '.‘—Ml " (d‘. sin A’. cos ’.l. +
+ d3, cos 89, 510 $02) +B,. 4. ' (31a)

In an analogous manner, the equation for the displacements in
plane y0Oz can be obtained, if we multiply (30a) by cos ¢,, and (30b)
by sin g, :
by (Uy, — Uy o) =M, wlk sin gy, + M, w (43, cos 83, sin ¢, + d3, sin A9, cos 9,,) +
+ Mol cos ¢y, + Mgy (—'d:‘ sin Ag, sin ¢, + dy, cos Ag, cou..)‘-r Bye (31b)

The equations for the displacements of the last two points of the
blade can be obtained in the exact sape manner. For this it is neces=-
sary only in contrast to the first section to employ the expressions

of (16) and an analogous expression for plane 1‘0:.

As a result we will obtain

bias, :(U,=Us, :=1, s-1) = =My, -, a-ld:_h $C08 Sa-1. t"'“',.‘p-l.. s ,.;,' ,C”- | WS

- Mi. =1, 2) d}

sin Fa—1. 2 + M‘. 2=, 3 ':_‘. 2 sin Pe=t 2 + "'; v (32.)

[S=-— % F—




19.

b:—y, = (U_\-g —Uy j-y)=— M o1 2 d':_,‘ :SINPemr. 2 — Mo cers l;‘_,_ $ SINGgmy, ¢ —
— Moo d)y ,€08%5m, s — Miacr, s i,y , COS Gamt s + Pype (32b)
It is necessary to note here, that the systems of equations for

the root and terminal (tip) sections differ somewhat from the remaining
equations, which is explained by the peculiarities of the extreme sec=

tions.

Let us introduce designations, which simplify the notation of
equations (29), (31) and (32):

dii=d} coszn dil=d" sins..
% vacene 16 we oz . . Fi s Ko s va B :
AP LI TN CLIE S S AN S 12 :-l;lf,-—'/;,.\':‘{":

=]

i

iy I osamar, - v gl R s :
35 cosy - Ilf,gu: Az sing, 7-/‘,-:511);“;

re
Swat L AF e ot 2SR i RIS IS Tk S s

2 cusdr stie s I sy, cos g+ B
/ b b

SR
Ti e S gl
B Ak

!{"':"—I-:-S. o TR ) 1 . g ot '
: SN dz,sing,; + [cos 3z coss ;4 1% cos @,
oo, o Qg sing -t A s 3y coss,

§of, aom e - . : v M
dlz= —d;, sin Az, sin ¢,y + dﬂcm A5, 008 3,

As a result we will obtain a system of (z+1) pairs written in
general form, containing (z+1) pairs of flexﬁral moments acting in the
plane of the least and greatest rigidity, and two pairs of components
of the first derivative of the elastic line in fixed coordinate system

xyz at the zero and last points of the blade.

The general expression of the j~th pair of equations is:
b, Uy = a,U,, + bjy Uy = My dij + M, I +

N

Ll

+ My df — My dff — My I} = M 07, (33)
by Uy +a,Uy + b Ups = My 1) + My, 1 +
+ My &8 + Mundl) + My, 1] + Mua
o ~m——— W’“ e 5 ﬁr et o e .
pogpratts —————————————]
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The first pair of equations (the root section) is

= baU, o+ 0, U, =M, lst + My a5 — Myoo I3} — M di* + B,;
=l Uyo+ b0y Uy s = Myso loi + My 1 d5* + Myl + Mey a4 B, .

The last pair of equations (the terminal (tip) section) is
b: o Usisar — b,y U,y =M, a=1; 21 v~ My sts sl s s~
= Misorianr iy s — M gy o 8215 — B
becsUypiscrbsr Uyy = My oy, 5 d, + Mg s Bra ¥
F Meamr e dilis + My o 1 U0, — B

(34a)

(34b)

This system, written in matrix form, has the form of (35) (see

the inset). It makes it possible from the known values of the flexural

moments and components of the first derivative of the elastic line to

find the magnitudes of the displacements.

For solving a problem on natural oscillations by the method

of successive approximations one more system of equations is needed,

from which it would be possible to obtain the values of the flexural

moments and components of the first derivative at the ends of the

blade.
For this let us employ system (8a) and (8b).

Let us write equation (8a) somewhat differently:
bylaii+a, Uy 0 Upyy = fiy My, — £y My, —

Qp _Q :
—fa M, - i
My, f/tMrI""K",T Ny'

since

(36)
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_l‘!_ .l."\ i = ',.,‘ (— AUQ;.:H] ’:') -r "l'.-i CQSS’«,”’.

L e il

fine AL, coey N0 T

g . .. 2 & -
byt BRLE et DRI e e M con skt | (37)
|

. | —_— v R sani y s
LMy =11 -u.,k.m,,»,-{-./Il.h,»,,ms;lk)'

then, having equated the right sides of equalities (26a) and (36), we

will obtain,after some transformations

Myiid,, — meos g, < Myl < m;)cos g, < /"-./4'(7;'} +mp) o8z, -

; § e
+ t"vJA ‘d/ﬁ - ”l’g) cos ?/. - J"';,'; (d,", o= mu) sin ;U - A':u(l"‘j ..f.. ”’i_i) sin ?‘I o

o A’L// (I/"l + ")j.) sin b 2 S 4’”5/‘, (d;“ - ml') sin = Qalk Q.u‘l

—— —

K™ Ny (38)
Let us again use the substitution of (27) and (28), simultaneous=

ly introducing the designations

i t'..)
.. Py @, : v, g
B Ay —nyy - — +ﬁh T my, Pt e Py cos Fise
t()
t o, (n) _ 2L % i€ (v, £ (v,
Fu® = dy" —my=— Shalm ™ Pi;™ = PiMsing,;
£ (39)
i =l myy - . my g™ = gh¥ cos i
, th 473 Y o ur

LJ
’}:"’5 5“9 + my, - K%up: ’5“‘-"}‘“. Yuy-

As a result we will obtain for plane x0z
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My Pf} + My (qﬁ +qf;‘ cos Aap,’-- gu'sin 4¢) +
+ Mope (P5 cos Ag, — Pisin A9,) — My, PD —
— M.y, (g + qij cos Ay, + qﬁ sin 8%,) — Mus (Pji cos A, + P}} sin Ap,) =
QJ[C Q Ul
e o o8 s

i

Analogous transformations will give for plane yOz

Miis PG+ Moy (@ + i cos g, — g} sin bg)) +
+ Mo (Pji cos dg, + Pi2sin Ag)) + Mu PR +
+ My, (955 + 97 cos Ag, — gijsin 89,) + M (P]2 cos Ag, — Plsin 89,) =

Q’.Il le; »
W—u _——NU . . (40b)

Thus, equations were obyained in general form, which connect
with each other the flexural moments acting at the three neighboring
in the planes of the least and greatest rigidity, with the shearing
forces at two neighboring sections of the blade (ij and jk} and direc-

ted along the axes of the fixed coordinate system.

In examining the special root and tip sections of the blade, it
is not difficult to obtain expressions connecting the flexural moments
at the two neighboring points with the shearing force acting in the

root and tip sections.

I e .“,I ’ e prTEARY) o s
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Let us introduce designations, which simplify the notation:

s o ot o~
Q= e g COSJ?,—Q},"ID A?IZ
’3::-_'-f"E fos Nz - P e bl B

G j s, Q0 de, =- g sin Az

Pi" - Pyj cos 334 + Phasin 33,
(41)

!:_ ai s =
9 = Yp - 4500835, 4 ¢'F sin 35 .

T TR 7 8 s
Py = Pjicos 35, + Pjisin A,

€Y . At fy, = v
9= G qu cos Bz, — glisin 3z ;

A— Vs H
P:' = I"‘COS az, — Pji sin A3,

As a result we obtain a system of (z+l) pairs of euations writ-
ten in the general form, which contain (z+l) pairs of flexural moments
acting in the planes of the greatest and least rigidity, and two pairs
of components of the first derivative of the elastic line in the
general coordinate system xyz for the zero and the last point of the
blade. The eguations for the first and the last sections, which
contain these components, differ somewhat in structure from the re-
maining equations and take the boundary conditions into account. These
equationg are written out below:

the general expression of the j-th pair of equations is

Mo Plj+ Moy @5 -+ Mups PR — Myi P} = Myyy g — My PP ==

Qx/l Q:u 2
. N
jk i

My Pl + Moys 95 + Mo Pt + Mu P} + My, 65 +

+Mmﬂ‘--%ﬁ'--——%%;

(42e)

the equations for the root section are

%3 gRMMER T
MY B el o R
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p:0+Mqu:§ + M‘llm—Mgnﬁ—M‘"Prg QA"!' .

p"_M""’.’ﬁ""M'» n Pl 4 Moo gl + M!|IP?=QNL:'; tA2h)

the equations for the terminal (tip) section are

07 p" i A"ﬂ""- =1 P:'f-l. s T Mr,:—l. z q:é-l. 2= Moy, sy P:ll.l -
- A’g‘_,., q:"_"_' B Q-l‘l—l, F3 ;
2=, 2
L :"'y: + /“v;— La=1 P:E.-l. i -Hv,z-l. z qﬁ.;, s+ M“_,' o P:"-l. e
Qye-1, (42¢)
—~ My, 1Grey, gom — SZEZV 2
: -1 2 }
Since
e~ s
Q.\'i] = - _\_. m; (L’,‘j —_—w? l..'.\"»); Q’U =5 - Z ”“ U“‘,"
7 y :

then these are differential equations. It is simple to convert them

into algebraic equations, representing the solution in the form

Un, (1) = Uxsinpt; N1, = M, sin pt;
Fe tv--'v sinne: AL e Mysinpr:

S T,

where T TS R g 3 T G and .. are amplitudes of the

value of the functions. Having differentiated twice we will obtain

X Lz (g7 et o SRR

d /"}_::.'. L,

Such a system is written in matrix form (43) (see the inset). It
makes it possible from the known values of the shearing forces to
find the magnitudes of the flexuralmoments in the planes of the
greatest and least rigidity and the components of the first deriva-

tive of the elastic line with respect to the ends of the blade in a

fixed coordinate system.
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The General Sequence of Calculation

The finite element method with iterations developed in the pre=
sent work is structured to a certain extent analogous to other methods
for the calculation of frequencies and forms of free oscillations.
However, due to a number of special features it is advisable to state

it in the most general form.
The approximations are accomplished in the following order.

The shape of the oscillations for the calculation of the first
approximation is assumed determined by the functions ld? an& lﬁ:ﬁ:
The form is selected in such a manner so that U me UN==].. It is
simultaneously assumed that the frequency of the natural oscillations
of the firstapppoximation is ‘ﬂ‘” =]. Then the shearing forces
located on the right side are determined respectively for the planes

x0z and yOz as
2 ) )
Qy=0+ -’)ZI: mU Qu=1Xmu,,
4 Wi

The flexural moments in the planes of the greatest and least
rigidity and the components of the first derivative of the elastic
line in the root (B,p and J,) are determined from the solution
of system (43).

Then the displacements U,, and UY) and the frequency of the
natural oscillations of the first approximation are determined from

system (35)
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2(1) 1 ) 1
=—— oFr p;V - il
Py U‘,',’ Px) —rru( L

x8

X e
The form of the natural oscillations is then determined after

the first approximation:

= (1 H
Uyl = Uil P50, 32ech Otm=1;
1 n 2 -
0Vw=U% (P5\1 + w?), D.‘v‘t’«h#'

or =i T -—
Uyiay = (':.':" P.r‘lg‘. 3xech L’_ﬁ«l}m £\

YF203 (1 2l
Uxiy= Uz (px'1) + «*), npuuen U, = 1.

Then functions Zﬂ? and (' are again substituted in sys=
tem (43) and the cycle of the second approximation is repeated. These

cycles are further repeated until the specified accuracy is obtained.

The method of successive approximations employed here leads to
the obtaining of the form of the natural oscillations with the lowest
frequency. Let us call it the frequency of the first tone, having

designated the final form and £frequency in the following manner

The determination of the form and the frequency of the natural
oscillations of the second tone is the next step. The process of
successive approximations is repeated as previously, with only one
difference, that it is necessary to fulfill the condition of ortho-
gonality of the form of the second tone to the form of the first.

This condition is written in the following manner:

=2 ing

~ 2 L " - ok 3
\_ m UG e X = :_m,l.'_‘\-. Wiy ™ 0,
sl . 1=0 4

- ——————— Ap— CLEEw ot
e e~ 0 : ﬁ««‘; LRt N 3T g AT g

e e e e e g

[ -
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where (.. (", are functions of the displacements of the k=th
approximation of the second tone. Hence, the functions of the dis-

placements are written as

U‘,".u)= D:”qm"' Ca'xi e Uﬂl":: Uyi'an = C3' 3 an
where Uiy, and Uy'un are functions ot the displacements obtained

from the solution of system (35); 2
i=2 i=g
X m U an xia) + 2 m, T iy
cg)al-. { 20

i=3 o

img
2 m,xig) + 2 m, yi

i w0 120
The constant Cr1 (the constant of the orthagonalization of the

second tone to the tirst) varies with each approximation.
: ~(h=1)

2 i 2 (4 Uy by

’. “h - F—-—T - .’ p’ “))s 5 $ %

2 — CY’ - L Ca ¥l

1f the form of the oscillations of the first:tone is such that

U.u(l) =1, and

oai

2(a }
prih= Tm ~wlor i) = TP —
Ussgny — Cy Xz rya@ —

if the form of the oscillations of the first tone is such that
Dn(!)' 1.

Generally speaking, the process of successive approximations
must be structured in such a manner that the form of the oscilla-
tions determined by the smallest of the two values of frequencies
obtained after each approximation was established in the next approx-
imation. This is necessary s‘; as not to omit any form of the oscilla=-
tions, since cases are possible, when

O =
0}':'4:1{- Y.

The form of the natural oscillations of the k-th approximation

or

of the second tone is d9efined by the expressions

~

.

e i i i

‘ SIS —— —
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‘- n ) =- (U.u . Roaa C“ Vol )U‘! |I1: - "'2):_

UV oy == (L'_:-f:u. —CE W) Pl

where pi means that normalization occurred with respect to the

function of the displacements in plane yOz

('" L i .'l-. . altt? %
i an e (Wi - 5 X adPs e
where , . means that normalization was carried out with respect to

the function of the displacements in plane x0z.

The form of the natural oscillations of the second tone obtained

with the specified accuracy is designated in this manner:
Uuu » = N,

l,n.ll = V.an -
Then the frequencies and the forms of the natural oscillations

of the next tones are determined.

The alternation of operations remains the same as in the cal-
culation of the second tone. The difference is, that for the N=th
tone the function of the displacement for the k-th approximation is

written as

Ma V=]

U‘-”m - 'll-":”m— 2 Cih xi0my ](h’r&'ﬁ- »?);
' v.'mm [‘Mﬂ_ Cﬂyum]’;m.

the constant of orthogonalization is
ing ing

M,U'lnxom'f %)'um }
Vb
;'ﬂo’m"' ;;l:)‘m

Citk =
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the frequency of the natural frequencies is

l _( ﬂ.—l
Prth = ———m——w'or P 5 -
1) () Y
o — 2 Clik Uy — 2 Co¥h Yo
M=] v M=l
if the forms of the oscillations are such that U,w = 1, or
i L g ¥
P,’r‘ci") - vu:"ﬁr 7 —ws;

lﬁ&mw* }E Cﬁhxuun

U=

2(k) 1
Py(N)y==--

~ M=8=1 i

~
ﬁkm-— :L Cﬁh
. M=1

if the forms of the oscillations are such that U,. ., = l.

We will point out below certain of the details in carrying out

the operations in determining the flexural moments and values of

g;:gﬁ néxigg; ve of the‘é astic Ligé
..OOOCOOOQ(First two l.ineﬂ are illegible).......0..0..0......'.....

1) rigid fastening with flexure in two mutually perpendicular
planes:

2) rigid fastening in the plane of rotation and hinged support
in the perpendicular plane:

3) hinged attachment in both planes (in this case the hinges
can be located at different distances from the site of the attach-

ment of the blade).

By analogy with a helicopter rotor we will call these hinges

g T -‘»'.5. v
- ‘ Ilm~ P WA AR Ay oy o faie ,
o QR 2 - iy b5 L

g e

=== - 3
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horizontal hinges and vertical hinges.

Naturally, the different conditions of attachment introduce
differences into system (43), which is written in general form so
that it would be possible to examine the case of simultaneous attach=
ment in two planes or simultaneous hinged attachment in these same

planes.

Let us first examine the simpler and more general case of a

blade completely fastened at the root.

The boundary conditions in the root are: 4 w0; ¥4 =0.
) ing
Z:;u.U.a-O:‘ g-au,.-().
Generally, system (43) represents on the left side four
three-band submatrices, joined by common unknowns. For the solution
we employed the Gauss method used by A. V. Nekrasov in [3] for sol-

ving a system representing one of the indicated submatrices.

The algorithm is shown below, by which the matrix is resolved, with

the necessary explanations prefaced to it.

Let us examine system of equations 1x and ly [see (43) in the

inset]. Since the blade is fastened (B,o=J,, = 0), it is possible

to write
Myoo g8l + My 1 P — Mo gl — Myyy PP o FS l (4h)
Mywgll + My PP 4 Mg} + My PP = FE,
D Ty S SRR ood T ;

——e—

| —
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where
j =2z
1
Fo= -(P’+"')£ te, Ui ‘o:-"‘a(— ‘E;) .
lus
Fg-‘—p’;‘.‘,u,'- .

Let us represent the flexural moments in the following manner:

My 00== 5y 0+ boM, =+ SoMin: ]

Miw=1i0 +tr,0 M. +iioM£u ’ (45)
where
Ptl n. 3 : Pd __Pr ‘
z,‘. - ;?+ o™ — —‘_!!_—-lg—.
onlm'l-t:'nla . 801 g1 on'l'lg'a.

. pa i i 1 i ; 46
IR M o (ORI R ﬁ_".;.‘.’__a_ 'y i

€188 - g g PP BT R

gl E e i P g

Then let us examine the system of equations:

LE O

Mo P e Mo 03 = b F e Vs Pl o My ¢ 88 8 e :
MoaPibui- Moy g e M o PR M PRS Mg gt A DL pr |(4)

where
! i
/|='—(//-w (\4"\, .S\) ‘,,8’,'\-\—'—-‘-|,.|=III—\]--
K YN ‘e
Fl.'"“"p.{vl”\"*'Sg )
fe=?

If we then substitute (45) in (47) and carry out grouping,
then it is possible to obtain an expression analogous to expression
(44) 3

A 4 Mo PE = Mg ‘—M...P;-tf’ 0

(48)
A"_ul' g Msl!#',? ﬁ"fu( +__Mxn r(r‘ ’
e e p—
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where

e =gft +Po,e.o—Pox°-.‘o. 3; =i —Polzso-i-POWo

ro -—g|+P"t‘.+K‘z., (“"-t"+P$2u+P0Q.. .>
Fi'o= F{ — Pgi 10+ P&t 0 ; Fr—ﬂ—P:nitg.ﬁ—m'f:o. '

(49)

These operations are sequentially repeated for each pair of equations.

For the j-th pair they are written in the following manner:

& =g+ Pl — Pl e Pl PRE ) (soy
e =+ Pl + PR, &7 =g+ P+ P
F‘}'—F}—M}T',;-G-Pf]"m: F}' =F} — Pty — P},

where -8.,‘, i, _ ;tg:"‘ + P}" g:'.‘ . 'E,, = P/ g;g- P;Eg
gii € J: gfv, ’ ( ci' :-vo g,n g,. =i
%=P“ F} ) ﬁ%‘—ﬂﬁﬂ
e e 9i" g™ +qf "’
1° - . g A
..”,___,q_f; i o i A s o ol e
AN AR AT ."‘ )] ‘05"‘.+01 "ol

The expressions for the flexural moments are:

‘” =% T zvl ”v,u > 5:’ ‘”(II: ¢"l" -‘ﬂl + iv'[ I".J,+ fu Ah//'.
1 ! 1

! J
4 ———— - — .
i, - ’”,‘ '\ —— ¢ S.’ == M' ———— ' '

(52)

! led Nt f Noay ¢

As a result we will obtain equations connecting in pairs the two flexural

moments in the plane of the greatest rigidity with the two flexural moments

in the plane of the least rigidity right up to ...(illegible)ececececcccencee

By carrying out a similar operation for the z=th pair of equations ...
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(illegible)...we will obtain

Mot 2o 8201 — By, i B =Fi: {
‘.‘L:" - f:é: X .]’.;_,‘ Y u‘:',:‘! o ,.-:". l (53)

since at the free end of the blade Af,,_) ;= Ali:y ;== V.

Employing the discussed algorithm, it is possible to write, that
Mgy, 2oy == Tie=1, 4":,:—l. 2=1 %= Trz-1s

where 7::-; and YV,:.-, are also determined according to the formulas of (51).

Having obtained from (53) the values of moments Al:._; .., and M., , . ,,
it is then possible in in reverse order, solving in turns the systems of
two equations of the type of (52), to obtain the values of the flexural

moments in all cross sections of the blade:

M"“ . (r'l" - MZ[/ P}"_.— l"'.l/ p!;#:;: —"-iF‘Z: __"‘.A’yl Pj". - MVLP"J ',,..‘i’} (54)
’ “’ “" T8 & &

There remains the task of determinign the values of % and §f.

It is possible to obtain tem from the solution of equations (z+1)x (z+1)y.
However, these values are not needed in the successive approximations for

a standard blade. The exception is the case when the end of the blade is
not free. In this case the penultimate pair of equations should be rear=
ranged depending on these conditions, and accordingly the moments on the

end of the blade and the components of the first derivative, of the elastic
line, determined from system (43) will participate in the successive approx-
imations. We will not dwell on this, since the corresponding operations

are analogous to those untertaken with different boundary conditions in the

root part of the blade; these operations are discussed belows

ale
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Another case is rigid attachment in the plane of rotation and hinged

attachment in the vertical plane.

In comparison with the first case the boundary conditions vary some-

what, notably
fo=0;, M,=0;

i=z i=g

E m‘U“-O; T‘_:J. m,U,,-O.

In consequence of hinged attachment
M0 cOS 9g, — My, 008in gy = 0. (55)

Hence, the following order of the resolution of system (43) follows:
in system (43) equation 1y is replaced by equality (55), and all the sub
sequence steps are retained unchanged in comparison with the case of total
attachment. The expressions of (46) are also retained, it is necessary as
soon as possible to place in them

L6" = oSty EF =106, P = P{=Ff==0.
The third case is the hinged attachment in both planes; the hinges

can be located at different distances from the zero point.

System (43) was obtained by assuming the equality of thg derivative
of the elastic line on the right end of the i=th section and on the left
end of the (j=k)=th section. The hinge at the j=th point violates this
condition and one of the equations of the (j+l)=-th system (43) should be
replaced by an equation which takes into account the presence of the hinge.
If the axis of the hinge is located in the vertical plane the following
condition should be fulfilled

R T TR T8 P XL (56)

If the axis of the hinge is located in the horizontal plane the fol-

lowing condition should be fulfilled
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Mosine 220 coe =

g 20,

Thus, in the sequential transition from the first pair of equations
to the last the (j+l1)=-th system should be solved (for example, in the
case of a vertical hinge):

My, &5 4 Mua Pé = Miyy g8 + Mua PR = FJ
M, cos g, — Mysing, =0

With this order of the resolution of system (43) all the expressions

of (51) are retained, it it is assumed that
g =cossu: g =ung, Fl=M=peq
In the case of the positioning of a horizontal hinge at any i=th

point the (i+l)th system is solved:
My gi +M.J,P“-—ng‘| - Mu(P"BF'

My sin g, + My cos g, =0,
and there will accordingly be obtained in the exprenliona of (51)

£ = cosqu: g =sing,; PlePP e Fi* =m0,

If hinges are combined at any point k (including at the zero point),

then .
Mpe=0; My, =0.

For conserving the algorithm it is necessary in the expressions of

(51) to assume
P"m-P‘.‘u-m.-m.;F{u-ﬂla-o.

The appearance of hinges imposes the requirement for one more opera-
tion in solving system (43) - this is the determination of the coﬁponent
of the first derivative of the elastic line in the plane perpendicular to
the axis of the hinge. The requirement can be fulfilled by solving the
special equation for the section, the left houndary of which is combined

with the hinge.
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A
In accordance with (15) and (16) we have
by WUy — Usp) = diy Muy + Uiy Mui + B1i;
b (Uuj— Uui) = d; Moy + Ui Moy =+ Biie
Having multiplied the first equation by the negative value of sins,, ,
and the second by cos 9y » let us add them, employing (28). We will obtain
b, U, —U) =M, If, cos9, + Mw(df_, cos A9, cos g, — sin A3, sin g, %) —
—M;; iy sin %1y — M;,,(df,sin 8%,co8 3, + djjcosAz sing )+ £,..  (57)
From (7) we will obtain
W W e LR VRS FIR VR 3\””
or il
boot” - U, Y ¥ (- My sineg, + Myrcosy, i —
1 l‘l )
™. - ..-, SR ) y
X,
After the transformations taking into account the substitutions of
(41) let us finally determine
: . Q..
D 13 ! A L T £ 18 L
- L R .‘.‘.4.. ' ‘\:‘." . (58a)
Carrying out analogous operations it is possible to find the expres-
sions for determining ,
4 )
2 s yi v, Q_\.j
Ba= = Mgl — My Py = AL, g — ALy, PP = o (58b)
B
% It is easy to see that equations (58a) and (58b) do not differ in
structure from analogous equations for the root section of the blade (42b).
For determining components £,, and 3, it is sufficient to use the ex-
pressions

'ho - Mv,u“‘i—sM‘“ﬂi -.-Af'{“ﬁ_q_un P|"+-%’-:'.'- .

o Mg P =M PO 2

If a combined hinge occurs somewhere, then
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buu = M P+ M PP+ S5 |

Y

" e -

H Q’U |
Byy=—MyP; -ﬂprf""'—n:’- . (59)
Determining the Displac

System (40) is used for determining the displacements; this system in
eéssence represents two unconnected systems, one for the plane x0z, the
other for plane yOz. Taking the boundary conditions into consideration

l=g is=g
; ‘gm,u,,_o; au,u’,_o,
For this the displacements at each point are represented in the form
of a binomial
-~ -~ . -~ =
Un=U,e+ U, U,l- y0+u: (60)
where .
= =
U‘.SL’,.-O.
In accordance with this the determination of the displacements breaks

down into two steps.

=
In the general case, in the first step the displacements U,y and

iz, are determined from simple reccurrence formulas:

6.‘. = -} (ﬁ”'.udf} - ."'v’i; ’;‘+ I".,..dr — My d:; e
L]

it o .. ‘.
—.1’;_-'- I - Snds =00 o0& UJ 4 (61‘)
Upem o= (Ve M 1 M B My ) -
} h‘_.
] : T 2
R P e X . gt e B LT Y (61b)
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Then U and U are determined
» x: Ny l;' :
Uy om e (v = B (62)
: il _\; "

With the presence of hinges in accordance with (57) the formulas

vary only for the point following after a hinge.

If a vertical hinge is located at point j, then

r ‘ £ 3 “« "8y : =
Uy += ‘5""(-“'./'/' G4+ Mo d = M 05— Mg d buU,,+8.)  (63a)

1k

If a horizontal hinge is located at point j, then

] v

. ] oy . e % 'I . g ™~
L h‘; (aviny I,-,‘ ‘.”.‘n & ~."(:_-‘,j.'-7-»_.’0’1,;;,.{1,‘--_- IJ;AL“,H *.”,‘ (63b)
The subsequent process occurs according tJ‘the same formulas (61la)

and (61b).

In the case of the placing of a hinge at the zero point formulas (63a)
and (63b) change accordingly. In the case of the placing of both hinges

at the zero pointthe formulas are simplified
z y
U,y =g (M dF — Mun 07 49, %
o . ‘
]

5,, -5 Mo @8 + My 5° + B, ).

Certain Results of Calculations

The possibilities of the method are not examined in the present sec=-

tion in detail, however, the figures presented below make it possible to

give it a certain evaluation.

——— ;—m____ s ;—A_m—-v-
: O 3 .l,\,‘ \ e ,"‘-\.“": %
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The most important characteristice of the method are the required
value of accuracy for obtaining a satisfactory solution and the calcu=
lation time. It appears that the method discussed above requires calcula-
tions with relatively low accuracy, and the number of approximations
1 needed is such, that for the purposes of calculation practically any
electronic computer can be used. The re¢sults of calculations presented

below were obtained on a M=-20 computer.

All the calculations were carried out with respect to a hypothetical
blade, the prototype of which was the blade of the tail rotor of the
Mi=6 helicopter. The diameter of the rotor was taken equal to 6.8 m and
its rate of rotation n = 680 r/min. The other characteristics of the blade
varied depending on the purposes of the calculation. These characteris=-
tics are shown in Fig. 4. Also show here are how these data were repre-

sented for calculation on the computer.

Fig. 5 shows the number of approximations n and the time T, re-
quired for accomplishing these approximations, depending on the accuracy
, which is defined as the greatest difference between the values
of the deformations at any point of the blade in two successive approxi=-
mations. It is possible to see, that the setting angle of the blade with
respect to the plane of rotation somewhat affects the number of approxi-

mations.

Fig. 6 shows the change in the frequency of the natural oscillations

of the blade depending on the accuracy of the solution.

_. — T ——TTT T TN
A . SRRy : . " Wik 4T vy’ L
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It turns out that beginning with an accuracy of
the value of the frequency ...(rest of sentence and next paragraph is

illegible)....

This characteristic becomes especially important when the actual
frequencies of the natural oscillations are close to each other. In this
case the values of the natural frequencies obtained by calculation appear
to be sensitive to the accuracy of the definitiondf functions employed in

the calculation.

This circumstance compels the calculators to somehow modify the
calculational methods, to increase the accuracy of the definition of
functions and the accuracy in the intermediate operations. And this in
its turn is frequently limited by the possibilities of computers or in

any case significantly increases the calculation time.

A certain amount of uncertainty in the reliability of the obtained
results does not favor the successful application of these methods.
ossibilit th
While not carrying out a systematic investigation of the|method
examined above, let us illustrate them by a comparison of it with the
Bubnov=Galerkin Method in the form in which it was employed in solving

analogous problems, for example, in work [1].

Fig. 7 shows the dependence of the frequency of the natural oscilla=
tions of a blade fastened to a hub with the aid of one horizontal hinge
on the angle of inclination of the plane of the greatest rigidity to the

o i
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= Calculation employing the —Calculation employing the
Bubnov=Galerkin Method [osc/min] Bubnov=Galerkin Method
==== Calculation by the Finite =====Calculation by the Finite

Element Method with Element Method with
Iterations Iterations
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to the plane of rotation. The flexural moments in the plane of the great=-
est and least rigidity were selected in such a manner, so that the fre=
quencies of the natural oscillations of the blade with regard to the

their and fourth tones were as close as possible to each other.

The graph shows that the Finite Element Method with Iterations makes
it possible to determine the frequencies of the natural oscillations with
medium accuracy (lg z, = — 7) over the entire range of the setting angle
values ih question. In this case the number of approximations at the sites
of the greatest convergence of frequencies, although it increases, it

remains moderate.

The methodology, which takes advantage of the Bubnov-Galerkin Method
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does not make it possible to find frequencies over a broad range of sat-
ting angle values (14°-A4°). Moreover, it is necessary to emphasize that
in a whole series of cases...(remainder of sentence is illegible).......
It is also necessary to consider that the Bubnov-Galerkin Method is
favored by its simplicity and by the fact that it makes it possible to
employ ready developed operation elements, from which a future methodol-
ogy can be compiled. For example, let us cite the results of the cal-
culation of the dependence of the frequencies of a plane untwisted blade

attached to a hub by a horizontal hinge on its setting angle.

The dependences obtairied employing the Bubnov-Galerkin Method and
the method of successive approximations (Fig. 8) very satisfactorily
agree for the first two tones of the natural oscillations of the tail

rotor of a helicopter. For higher tones their divergence attains 20%.

The calculations cited for blades with a different combination of
parameters make it possible to more nccﬁrntely define certain assump=-

tions and simplifications established in blade design practice.

Thus, it is usually assumed, that the frequencies and the forms of
the natural oscillations of blades with a typical construction (for
a helicopter rotor) of the attachment of the blades to the hub (horizon-
tal and vertical hinge) very slightly depend on the design twistedness of
the blade and the setting angle relative to the plane of rotation. It is
evident from Fig. 9 that both for a twisted as well as for a plane blade
the frequency of the natural oscillations with preferential deformations

in the plane of rotation rather noticeably depends on the setting angle
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within the usual limits for helicopter blades. It is obvious that this
sensitivity to setting angle depends on blade characteristics, in parti-
cular, on the relationship of the rigidities in the plane of the least

and greatest rigidity. The results, shown in Fig. 10, of the design of
a blade with the greatest rigidity reduced by 10 times as compared with

the blade, represented in Fig. 9, illustrate this fact.

In conclusion, let us illustrate the advisability of taking blade
twist into consideration for calculating the frequencies and the forms
of the natural oscillations with respect to the blades of one of the

aircraft propellers.

Fig. 11 shows the resonance diagram for such blades, obtained by
taking into account twist in the cetrifugal force field, and also pre=
sented here is a resonance diagram which does not consider the design
twist of the blade, i.e., because this is done in design practice. One
<o 2asily be convinced of the advisability of calcualting by a methodo-

logv, which takes blade twist into consideration.
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Flutter Analysis of a Helicopter Rotor in Flight

by V. V. Nazarov

§ummarz

Methods of flutter analysis of a helicopter rotor in flight
have been developed; these methods make it possible to consider
blade elasticity, the effect of air compressibility and the plia-
bility of the cyclic pitch control system. A description of the
methods, a block diagram of the program and certain results of
flutter analysis of rotors are presented.

Conventio

the number of rotor
blades;
rotational speed of

A:,-_‘:L_
EJ -

ons

dimensionless flying speed;
rigidity of blade in flex=-
ure;

the rotor [1/s]; b = blade chord;
¢(v) = moment of control rod GT - rigidity of blade in torsion;
relative to the fea= %x 7y = angles of inclination of the
thering (flapping) cyclic pitch control respec-
- hinge; tively during deformation of
» = =~ = gear ratio of the the cables of the pitch and
blade=flapping con= lateral control;
trol; “, =complete angle of turn of the
k, k,, &k, = coefficients of the transverse cross eection of
total rigidity of the the j-th blade due to the
of the elements of the kinematics of the blade-flap=-
check respectively of ping control and the elastic
the pitch and lateral deformations of the blade;
control and the col= = +es(Illegible)...
lective pitch control = .se(Illegible)...
from the control stick
to the cyclic pitch V.= 4= relative position of the
control axis of the feathering hinge.

.
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coefficient of total
rigidity of elements
of cables from the
blade to cyclic pitch
control;

relative distence from
transverse cross sec-
tion of the blade to
the rotor axis;
azimuth of the control
rod of the j=th blade
of the rotor;

flying speed of the
helicopter [m/s];
rotor blade number
(J=0,1, ...,N=1);
circular Mach number
of rotor;

azimuth of the j-th
blade;

The broken line designates the
derivative with respect to the radius,
the dotted line designates the deriva-
tive with respect to time.

Introduction

purpose of this work is the creation of a method of analyzing

a rotor for flutter in flight, which makes it possible to consider both

the elasticity of the rotor blades, as well as the pliability of the

control system, kinematically connecting the motion of all the rotor

blades.

This refinement of the analytical scheme, in comparison with the

analytical methods [3] developed earlier by other authors and in com=

parison with the analytical method discussed in [7] was evoked by the

following circumstances. First, the experiments with dynamically simie

lar models of rotors of large diameter showed, that the effective cen=-

tering of the blades (see [3]) for such rotors is not a comprehensive

characteristic of distributed antiflutter balancing. The balancer, which

changes the effective centering ly one and the same value, is mounted
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at different cross sections of the blade; it cahnges the critical num-
ber of revolutions of rotor flutter differently. This can be explained
only by the effect of blade elasticity, which, consequently, should be
taken into account in flutter analysis. Secondly, the pliability of

the control system cables, which is usually taken into account by
introducing an isolated blade of effective rigidity into the calculation,
cannot be taken into account in the case, wheﬁ the lateral control of

the helicopter is accomplished not by means of the cyclic pitch control,
which is characteristic for helicopters of transverse arrangement. In
this case the rigidity of the attachment of the cyclic pitch control with
respect to the 1atera1.inclinations is extremely great, and even in
the hovering mode the analysis of rotor flutter does not agree with
the calculation of the isolated blade [6]. Moreover, as is shown in
[7], the calculational set up , which makes it possible to calculate
rotors of high-speed helicopters and rotary-wing aircraft of different
arrangements in different modes, for example, in the mode of large s
it is necessary to include in it the calculation of the effect of the
compressibility of air on the aerodynamic characteristics of the air-
foils and to make it possible to take into account their periodic
change under flight conditions more accurately, than by simple aver-
aging. This becomes necessary in caloulations with large numbers.
Moreover, the purpose of this work was the achievement of a method with
all its variations in a single algorithm and in a single program for

a computer, of éufficiently fast-response for carrying out parametric

investigations.
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In the investigation of flutter it is necessary to take the fol-

lowing factors into consideration as a totality:
- the elasticity of the blades and the rotor control system,
= the high subsonic tip velocities of the blades,

= the large nonlinear forces, close in character to the forces of
eeo(Word illegible)... dry friction arising during oscillations

of the blades in the feathering hinge, loaded with centrifugal forces,

= the nonsteady-state nature of the flow around the blades, when

disturbances remain for a long time close to the spinning disk.

The following assumptions are introduced when developing a method

for analyzing rotor flutter.

1) the hypothesis of plane transverse cross sections is assumed
valid, in accordance with which the blade is replaced by a beam with
variable elasto-mas linear characteristics, to which is fastened

nondeformed transverse plate-sections;

2) the blade is considered untwisted; we disregard its static

flexural and torsional deformations;

3) the mass of the blade is assumed distributed in the plane of the

chord;

S ———
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4) before the appearance of the oscillations the plane of the blade

chord is assumed perpendicular to the rotor axis;

5) the flapping and drag hinges are assumed to be located at one
stationary point, at which the boundary conditions at the blade root

are assigned;

6) the hypothesis of stationariness is assumed valid in determining

the aerodynamic effects on an oscillating blade;

7) the assumption,approximately valid for the majority of blade
designs is introduced; this assumption states that before the appear=-
ance of oscillations the axis of rigidity of the blade is a straight

line, coinciding with the axis of the feathering hinge.

In the assumptions enumerated, the differential equations of the
movement of a blade element of unit length can be written in the fol=-

lowing form (see [2], [3])

8 T Sy
(Elu")* 4+-mu — moy — ? [v' f urdr] +ot [(w)‘ f’dr]

o'." ;
‘
ey

~(@TyY + ',i—uai+o’r{n’fn‘:‘dr.|‘+-'l§-l‘-lﬂ--0.:, SR Y

!
where P, and M; are a linear aerodynamic force and moment, acting on

an airfoil, oscillating in a plane=parallel flow.

L
The expressions for Py and M; » derived on the basis of the

hypothesis of stationariness [1] have the form
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P, = “""’bv"‘)[?'+'(-—""i)'%;' 17 “tr‘]
M, = Qpb V’c,(x.—x,)[q-— oy | ;
. o bu  a Vu ! 1, (2)
(5 =B ;(x.—x.))"V"T"V g

where

(Cam 0)im0

V-Uf+“;’cosz: V’-_W“nz; ;..--—c.!i—.; x’.s—-—éf“—.
. , %y

The differential equations of (1) are used for investigating the
oscillations of blades during flutter, which arise and develop near

steady=-state flywheel motion.

The aerodynamic coefficients of the profiles of the transverse
cross sections of a blade ¢i. X. and ¢,, which enter into the
equations of (1), essentially depend on the magnitude of the local
Mach number, i.é., on the normal velocity component of flow V, incident
on the blade. Since the velocity of the incident flow V varies periodi-
cally with time, then the aerodynamic coefficients are periodic func-
tions of time and at each given moment they are different for different
cross sections of the blade. Thus, the equations of (1) represent a
system of differential equations in partial derivatives with variable
coefficients, which are periodic functions of time. In forming the
boundary conditions for equation lyltem‘(l) a number of assumptions is
introduced, which schematize the rotor control system. In this case,

the usual type of rotor is examined with individual hinge attachment
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of each blade to the hub and with cyclic pitch control. It is assumed,
that all the elements of the control cables are weightless and the
elasticity of the control cable elements is taken into consideration by
introducing appropriate elastic elements. The friction forces (see [3])
are taken into account only in the feathering hinge, since the magnitude
of the moment of these forces is of approximately of the same order as
the magnitude of the moment of the external forces acting on the blade.
It is possible to show [5], that with these assumptions the boundary

conditions in the root of each blade take the form (see [5])
(EI“’)".B"[(’V'"I“" ‘_;’Lﬁ ¥ f 3)

(GTY)),ce = u[(,,-;. u)x) ~ T“'L ¥

where the magnitude of (, expresses the connection between the rotor
blades through the cyclic pitch control and is equal to the displacement
along the vertical of the lower point of attachmant of the control rod

of the j=th blade of the cyclic piteh control.

It is possible to show [5], after having compiled the equations of
equilibrium of the cyclic pitch control under the effect of all the

elastic forces, that

B
T‘-wz(?."" ‘)n.(o +20 ‘Il’,lh’.-}-w m’)c“’-’- (%)
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It is shown in work [7], how the equation of flutter by the Bubnov=
Galerkin Method reduces to a system of usual equations with periodic coef-
ficients. Taking the pliability of the cyclic pitch control into account

the equation of flutter for the j-th blade takes the form

' Cx, + wD(O)%, + & (B(f) + C*) X, +
N-\
4+ A I-,——‘}v-zﬂ(Q,+M,sm#,nnf,,-{-'JG,cow,-cos#,)f,,]==0
(=0.1.2,...: N=1) (5)

here xj is the vector of the generalized coorditates of blade motion;
G is the matrix of the inertial coefficients;
A is the matrix of rigidity;
C 1is the matrix of the centrifugal inertial coefficients;
D(2) is the matrix of aerodynamic damping;

B(t) is ﬁhe matrix of aerodynamic rigidity.

If k., ky, k, are infinitely great, which corresponds to the rigid
fastening of the cyclic pitch control, then | '= 0 and system (5) devel-

ops into a flutter equation system for an 1solnq¢d blade.

In those cases, when the coefficients of rigidity of the cables of
pitch and lateral control differ greatly from each other or the elastic
attachment of the nonrotating part of the cyclic pitch control is such,
that the center of rigidity of the attachment is located relatively far
from the axis of the rotor, it is necessary ‘to solve the flutter problem

of the rotor as a whole.

—
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In those cases, when the oscillations of a rotor with flutter have
the aspect of normal forms ( for example, in a hovering mode with identi-
cal rigidities ky and ky)’ it is possible to reduce a rotor flutter problem
as a whole to an examination of the oscillations of one isolated blade with
different values of equivalent rigidity of the control system, which cor=

respond to different normal forms of rotor oscillations.

Taking into Account Blade Elasticity and the Pliability of the

Control Cables of Cyclic Pitch Control

The method of analyzing the flutter in an isolated blade was discussed
in work [7], in which employing the Bubnov-Galerkin Method the separate
inherent forms of flexural and torsional oscillations of a nonrotating

blade as an absolutely rigid body were taken as natural forms of flexural

and torsional oscillations. A calculational method was proposed in this work,

which made it possible to take blade elasticity into account, which was
attained by introducing additional flexural forms of oscillations, obtained
beforehand from frequency calculation. In this casé, in order that it would
be possible to use the separate natural forms of the oscillations of a

beam a substitution of the variables of the following form is introduced

v e=i(r, O—ua), (6)
which made it possible to sepaeate the boundary conditions in the blade

root. :
(BN =

In this case, it is assumed that
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since the moment of the external forces relative to the flapping hinge

is much greater than the moment of reaction in the blade setting.

In analyzing the flutter of an elastic blade employing the Bubnov=
Galerkin Method the zero and the first natural form of the flexural and
the first natural form of the torsional oscillations of a nonrotating
beam in a vacuum are taken. The friction in the feathering hinge both for
an absolutely rigid, as well as for an elastic blade is taken into conscd=

eration in the form of additions to the forces of aerodynamic damping.

As was shown in a number of works (see, for example, [5,6]), the
pliability of the rotor cyclic pitch control, arising due to the flexi-
bility of the control cables, can have a considerable effect on rotor
flutter, and also the peculiarities, as the different rigidity of the
circuits of the pitch and lateral control, can even introduce qualitative
changes in the flutter pattern. An attemét at analyzing rotor flutter in
the flight mode taking into consideration the pliability of the control
cables of the cyclic pitch control leads to great computational difficul-
ties, mainly because in this case it is necessary to investigate a system
of differential equations with periodic coefficients of a higher order

than occurs for an isolated blade.

The lowering of the order of this system of equations by the method,
which is employed in investigating ground resonance, generally speaking,

is not possible. Work [5] substantiated the application of this calcula=
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tional scheme by analyzing the accurate solutions of flutter equations for

certain particular cases.

According to this work, in equation system (5) the susbtitution of

of variables &f the following form can be carried out

}/ =Y, + cos L+ Yy sin 15 %2

After this substitution an equivalent system of differential equations
is obtained relative to the functions of ;, which contains periodic coef~
ficients of the form sin KNt (K is a whole number and greater than unity).
Thus, the averaging of coefficients with this method leads to smaller
errors, than with the method of averaging discussed in [7]. Thus, substi-

tuting (7) in (5) and orthogonalizing the discrepancy to 1, cosy, siny,

in a set of values of discrete variable j, we will obtain an equation sys-
tem of n times higher order than for an isolated blade [ n is the number

of terms in representation (7)].

It is possible to show [5], that as a result of transformation only
periodic coefficients of the type sinKNt, cosKNt can témain in the new
equation system, where K is an integer, the average of which does not
affect the boundary of flutter, since the frequency of the oscillations
during flutter is close to the frequency of the revolutions. The main
difficulties in the transformation is the process of orthogonalizing to
functions (7). It was proposed in work [5] to represent the periodic
coefficients Dfy) and B(y) by trigonometric polynomials. With this ap=
proach it is possible to obtain & new equation system in closed form only

for an incompressible gas. The consideration of compressibility makes

————e————
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such a method of calculating analytical expressions for coefficients of

matrices D(y,) and B(y) unacceptably cumbersome.

However, in carrying out the indicated calculational method on an
electronic computer it is proceed in the following manner. Let us substi-

tute in (5)

MDY o 8 X
X - Ni(x)cosy, | _ | cosdy ¥
Fropung, | T\ sny,
l "' . 0' _-‘5"‘,,.
o cosyy |-,  f—osiny |- # "(8)

’l
sin ¢, T\ cosy,
1 1 ’ Q- * ¢ 0 ‘,’
- cosyy |=. | --2sing, |, -'.'os'{c,\- '

siny, |° 2¢osg, " |7 T\ —stny 1"
- ! s S, LI

t

i

Let us orthogonalize the obtained discrepancy

Ry B " { 0 ""f
FA oi B ‘(Y o ¢ E J - ‘_‘ . A-' ” g
g T 2 U T .f, S - :
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tol, cos %, , 8in 4, , ... in the set of values of discrete variables
7, J. « We will obtain a system of m x n equations [n is the order of the
matrices A, B, C, D, and m is the number of terms in substitution (8)]

with constant coefficients.

Thus, in analyzing an elastic blade for flutter taking cyclic pitch
control into consideration it is necessary to investigate the stability
of the solutions of a system of 18 differential equations of the first
order with constant coefficients. If in equation (9) we set G, =0,

Gx =0, Gy = 0, then the connection between the blades through the cyclic
pitch control disappears and system (9) now represents a system of dif-
ferential equations of an isolated blade, but which takes into considera-
tion a greater number of harmonics of oscillations, than in the simple

averaging of the'periodic coefficients in equation (5).

The question of the stability of the solutions of such approximate
equations reduces to an analysis of the roots of a characteristic equation
of this system. The order of the system of such equations, and consequent-
ly, also the accuracy of the caiculation of the boundary of flutter depends
on how many forms of natural oscillations we take for the isolated blade

and how many terms are taken in substitution (7).

An analogous procedure of approximate investigation of the stability

of a system of differential equations with periodic coefficients was used

in work [9] in investigating the ground resonance ' of a helicopter rotor.

The effect on the stability of the motion and the flutter of a heli-
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copter rotor of such factors, as blade elasticity and compressibility of

the flow incident on the blade was investigated in this work, in contrast
to the works indicated above. The maximum permissible order in such a

method of the investigation of stability, achieved on an BESM-3 computer,
is 12, i.e., mm £ 12, where n is the number of natural forms of oscilla-

tions of an isolated blade (m = 2 or 3), and m is the number of terms in

substitution (7).

Results of the Analysis

Fig. 1-7 show the results of the flutter analysis of an isolated

blade and a rotor in accordance with a program compiled for the BESM-3

computer.

The main parameter, which determines the margin of safety from flutter,
is the margin with respect to parameter ;n . The variation in the effec~-
tive centering of the blade to the assigned was attained by loading the
trailing and leading edge with a load corresponding in magnitude. Fig. 1
shows the results of the flutter analysis of a dynamically similar model
of a helicopter rotor blade of large diameter. The blade, having considerrs
able elasticity in the plane of the flap or stroke was tested for flutter

with different antiflutter balancers, which were located on the leading

edge at different sites over.the radius.

It was ascertained in the experiment, that the variation in revolutions
depends not only on the increase in the effective centering, but also on

the site at which the antiflutter balancer is located. The flutter analysis

% ¥

e — g
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-

of the model, carried out taking three degrees of freedom into account,

confirmed this dependence. The margin with respect to aerodynamic cen-

tering for an elastic blade is equel to ::e‘n (where : is the increase

\ |
in effective centering for a semi-rigid bilde in the i-th cross section;
is a coefficient, which depends on ;1 and is approximately equal to
;i). For a semi-rigid blade in accordance with the calculation, the criti- !
cal revolutions depend only on the the magnitude of the antiflutter bal-
ancer. Fig. 2 gives the results of the calculation of the critical revo=
lutions for an elastic blade depending on flying speed. It is evident,
that with an increase in M number from zero to 0.25, the critical revo-
lutions of the blade fall off by approximately 10%. Fig. 3 shows the
change in the decrements for elastic and rigid blades during transit of
the flutter zone boundary. As is evident from the graphs, the increase

in the oscillations in a blade, having considerable elasticity, during

transit of the flutter zone boundary, is an order greater, than for an

analogous rigid blade. -
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Key: (1) Calculation; (2) Exper- Fig. 2 "

iment; (3) Elastic blade.
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rees of freedom; (3) Compressible gas;
(4) 3 degrees of freedom; (5) Compres- f
sible gas; (6) 2 degrees of freedom. g
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Fig. 4 shows the results of the

flutter analyses obtained by different

5%":‘{: e ; approximate methods, which take into
{ 7 account the different number of harmon=
7
- ;ﬁ;j; LA ics of periodic coefficients and gives
ol ot
a comparison of the calculations with
o /
w an accurate solution. It is evident
from the results of the calculation,
i that '"simple'" averaging of thz periodic
4 2 coefficients* makes it possible with
L+
sufficient accuracy for practical pur=-
ﬁ:‘zﬂzﬂffg" poses to estimate the flutter boundary
gi. ¥ to a flying speed of Al, <« 0.25."Three-
i ’1 ] term" averaging after the introduction
gz : (24 "0
Fig. 3 of substitution (7) makes it possible to

Key: (1) Elastic blade; (2) Com-
pressible gas; (3) Rigid blade;
(4) Incompressible gas.

rather accurately carry out an estimation
of critical centering to a flight mode
of p =0.,7—-0.8.

It is also eveident from the figures shown, that the critical center=
ing, obtained by taking the periodically changing coefficients into con-
consideration, decreases more rapidly than the critical centering obtained
during calculation with averaging of the periodic coefficients. For each
averaging method there is a maximum value of the number ,L , for which

we will employ this calculational method. The greater the number of terms

-----.------—--------------------------------1--------- ----- SEmaEcccaon=onoe

* 121 is substitution of x = yo (simple averaging), 122 is substitution

of x = ;o + }'1 cos % , 123 is the substitution of X = ;o + ?1 cos r +

Y, sin 'x *
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in substitution (7), then for the greater it is possible to carry out
the calculation. However, beginning with 0.9 it is practically
impossible to carry out thelcalculation with the number of terms in
subatitution (7) m » 4, since here computer error begins to be ex=

pressed. The same pattern is also observed in analyzing rotor flutter.

.
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The practical range of numbers , in which it is possible to carry

out helicopter rotor flutter analysis is = 0 ~ 0.8,
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Fig. 7 presents the results of the flutter analysis of a helicopter
rotor, which hag different control cable rigidity. The caaculation was
carried out observing the condition that the total rigidity of the circuits
of pitch and lateral control remained constant. Changes in the margin
with respect to parameter k,* were obtained for compressible and incom-
pressible gases. It is evident from the figure, that calculation under
the assumption of incompressibility qualitatively reflects the pattern
of the variation in margins depending on the relationship of the rigidities
of the control cables for different flight speeds. A sharp change in the
increase in margin in the region kx/ky = 1 for flight speeds M, ¥ 0 is

accompanied by a variatioh in flutter frequency

Conclusions

1. For a blade, having considerable elasticity in the flapping plane,
the effectiveness of an antiflutter balancer depends not only on its

magnitude, but also on the site along the span, at which it is located.

2, The oscillations of an elastic blade during transit of the flutter
bbundary increase by an order more rapidly, than for an absolutely rigid

blade.

3. The method of simple averaging of the periodic coefficients of
flutter equations when p>> 0.25 leads to an exaggeration of the actual
margins with respect to the centering, which ensures safety from flutter

in flight.
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