
_____
_

_ _ 
m

I 
_ _  

C__non_Iii
II j



I.O~~ L L~
_ _ _  

L L 1U0 2.2

Lg m2.OL I  L
111111.8

11111’ .25 
~~~ IIIII~

6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU or $TANDAROS-1963-A



• ~--~r w

(

FTD—ID(RS)T— 1685—78

FOREIGN TECHNOLOGY DIVISION

‘4) ___ /

4LM~
TRANSACTIONS OF THE CENTRAL AERO-HYDRODYNAMICS INSTITUTE

(SELECTED ARTICLES )

D D C

Approve d for public releue;..
distribution unlimited.

78 12 27 231
— 

— — 
— 

— - —F 
~ 

— 

I:: , 
~~~~~~~~~~~~~~~~~~~~~~~~



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFI CANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY .

i V



• —-
~~
- w -‘  - •  —

• FTD ID(RS)T 1685 78

EDITED TRANSLATION

FTD—ID(RS)T—l685—78 13 October 1978

MICROFICHE NR: 2~~ ‘~~~W/ ~ 95
TRANSACTIONS OF THE CENTRAL AERO-HYDRODYNAMICS
INSTITUTE (SELECTED ARTICLES )

English pages: 67

Source: Trudy Tsentral ’nogo Aero—Gidrodinamicheskogo
Instituta im. N. E. Zhukovskogo, Issue 1~I3O ,
Moscow , 1972,
pp. 1—37

Country of Origin: USSR
Translated by: Joseph E. Pearson
Requester: FTD/TQTA
Approved for public release; distribution unlimited.

Its
‘as
“4~MI1NCEI
iU~7~F jC4TlIp 0

II 
_•••~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  ~T~~iA~ ia7~—

PR EPAPED SY: inI~T~i ~ADVOCA T EDOR IMPLIED ARE THOSE oc THE SOURCE - - -.

AND DO NOT NECESSARILY REFLECT THE POSITION TRA NS4. ATION DIVISION
OR OPINION OF THE FOREIGN TECHNOLOGY DI. FOREIGN TECHNOLOGY DIVISION
VISION. WP.APS. OHIO.

4

FTD—ID(Rs)T— 1685—7 8 Date~ p
~~ 

19y~

7W fr 

:~i~



• 
~~~~~~~ w

I~. 1

Transactions
Of the Central Aero—Rydrodynamics Institute im. Prof. N. Ye. Zhukov8kiy

Issue 1430

The Finite Element Method with Iterations for Calculating the
Shapes and Frequencies of the Free Oscillations of Naturally

Twisted Propeller Blades

by Z. Ye. Shnurov

Calculating the Flutter of a Helicopter Rotor in Flight

by V. V. Nazarov

The Publishing Dsp*T~~ent of TsACI
Moscow 1972

• 
• .

•

~~~ • ~~ •~~~~~~ • ~~~~~~~~~ ~~~~~~~~~~~~~~ 

•
. 

~ ____



2

Tab le of Contents

U. S~ Board on Geographic Names Transliteration System 2a

The Finite Element Method with Iterations for Calculating
the Shapes and the Frequencies of the Free Oscillat ions
of Naturally Twisted Propeller Blades, by Z. Ye. Shnurov 3

Flutter Analysis of a Helicopter Rotor in Flight , by
V. V. Nazarov 149

•.— •~~~~~ ; 
, — •

• 
• •_ _•.t-~

•-- • _ 

.
~•

• - -.
~ - ,

- .. •.



• - -  - •  - •

2a

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block Italic Transliteration Block Italic Transliteration

A a  A a A , a P p p p R, r
5 4  B, b C c  C c  S, s

B B  B .  V, v I T  T m  T, t
r r j~ a G , g Y y y y U ,

f l D  D, d
E e B a Ye , ye; E, e~ X x X x Kb , kh

~~ H Zh , zh Lj L~ LI i~ Ts, ts

3~~ 3 ,  Z , z Ch , ch

M M  1, 1 W w  Sh , sh

R a? Y , y Lj u.~ LII iq Shch , shch

R H  X x  K, k b b  I!

JI n 17 A L, 1 H M Y , y

I M N M , m b b b o
H H  H N N, n 3~~ ~~~~~ , E , e

O o  0 o 0, o lU ic Yu ,yu

f l n  u n  P, p  Ya,ya

*~~~~~ initially , after vowels, and after ~~~ , ~; 
e elsewhere .

When written as ë in Russian , transliterate as ye or ~~~~.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English RussLc~n English j
sin sin sh sinh arc sh sinh~~
cos cos • ch cos h arc ch cosh 1
tg tan th tanh arc th tanh 1
ctg cot cth coth arc cth coth 1
sec sec sch sech arc sch sech_1
cosec csc csch csch arc csch csch

Russian English

rot curl
ig log

——  
~~~~~ - .



3. -

The Finite Element Method with Iterations for Calculating the
Shapes and the Frequencies of the Free Oscillations of

Naturally Twisted Propeller Blades

by Z. Ye. Shnurov

SUMMA~Y

The Method of Calculating the frequencies and the forms of the
free oscillations of a twisted rotating propeller bla de with the
various methods of attaching a blade, encountered in real designs ,
was worked out by the Finite Element Method with Iterations. Calcu-
lation by this method gives quick agreement, has high resolving
power and makes it possible to obtain the solution in cases when
it would not be possible to obtain it by other methods or it would
be accomplished with insufficient accuracy.

Introd uction

The emergence of vertical takeoff aircraft with rotating propellers

and of helicopters with rotors having rigid attachment of the blades to

hub has once again concentrated attention on the questions of the oscilla-

tions of twisted blades.

The increase in the flying speed of helicopters and the necessity of i’

the operation of propellers (including aircraft propellers) under condi~

tions very remote from axial flow requires the creation of such practical

method s of calculat ing the frequ~~~~~ of natural oscillations and stress-

• • 1. - - .. —
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4.

es in these blades, which make it possible with a greater degree of accur-

acy to determine magnitudes which are of interest to the designers . From

the early works it is necessary to note [1,2]. In work [1] an approximate

method of calculation was developed , in which a twisted blade was simula-

ted by a twisted rod: the plane of its greatest rigidity was located at a

certain angle to the plane of rotation, which corresponds, as a rule, to

an angle on a relative radius .O.75. In work [2) based on the theory

of thin rods of Kirchhoff and Clebsch accurate differential equations of

the oscillations of blades were obtained and approximate methods of sol-

ving these equations for a nonrotating blade were demonstrated.

The methods of calculating developed in works[3,4] have high accur-

acy in solving the blade model in question, however, its twistedness is

not taken into consideration, as a result of which the connection of the

oscillations in the planes of the greatest and least: rigidity is absent.

These works also cannot be used in the calculations of plane blades in

the case when inclination of the plane of the greatest rigidity in the

plane of rotation occurs, since the connection arising in this case be-

tween the oscillations in the planes of the greatest and least rigidity

is not taken into account.. It is necessary to note, that in certain cases

this connection (attachment of the blade to the hub with the aid of a hor-

•
I-.

izontal and vertical hinge) has an insignificant effect on the frequen-

cies of the natural oscillations, in particular, in those cases when the

oscillations in the plane of the least rigidity predominate in the actual

form of oscillations.

Of the works, dedicated to the calculation of bending oscillations
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5.

of slightly twisted baldes, it is necessary to not work [5], in which a
single—parameter integral equation was developed for determining the

forms and frequencies of bending oscillations of a rotating blade, which

ensures convergence of the method of successive approximations at any

angular velocities of rotation. But the case was examined in it, when

one of the main magnitudes of rigidity becomes infinite and , as a conse.

quence of the slight twistedness, the connection of the oscillations in

the planes of the greatest and least rigidity disappears. An equation was

obtained in the work, which takes into consideration the twistedness of

the blade, but the programed equation did not take this circumstance into

account.

The works developed in connection with the calculation of the fre-

quencies of the natural oscillations of compressor and turbine blades can

be used for calculating propeller blades, however, the different assump-

tions in deriving the equations, completely acceptable for the purposes

of designing short and broad turbine blades, do not make it possible to

consider them sufficiently satisfactory for designing propeller blades.

Thus, for example , in work (6] it was assumed, that the curvature in the

direction of the greatest rigidity of the cross-section was equal to zero.

This assumption is completely satisfactory for those cases, when for a

plane blade, which differs from the one being investigated only by the

fact, thatthe twistedness of the cross sections relative to each other

is absent and the frequencies of the natural oscillations are greatly

different. Such is the situation for turbine blades. For propeller

blades (for example, see Fig. 11) these frequencies are sufficiently close

and a similar assumption would lead to a noticeable error.

w— / - • — —•- 
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In work [7] a system of differential equations was obtained , which

describe the oscillations of a blade taking into consideration the con-

nections, which arise with simultaneous bending in the planes of the great-

est and least rigidity and torsion. However, the method of initial para-

meters emp loyed in this work in the presence of a f ield of centrifugal

forces requires very h~gh accuracy and does not give certainty that the

system can be solved at all possible relationships of the lowest frequen

ciesof natural oscillations and angular velocity of rotation of the

rotor.

It is necessary to mention one more important feature, which should

be taken into account in developing (two Sentences and part of

another are illegible) 

with aid of one so-called horizontal hinge, and its axis cannot coincide

‘with the plane of the greater rigidity of the blade • both~ at the site of

the location of the hinge and at any other cross section. This noncoinci-

dence leads to additional connections in the oscillations of a blade in

the direction of its least and greatest rigidity. Works [1—7] do not

take such a possibility into consideration.

In the present work a method haa been worked out, which makes it

possible to calculate, for a naturally twisted blade, the frequencies

and form. of the natural oscillations simultaneously in the planes of the

greatest and least rigidity with various combination methods of attach- - -

inent to the hub.

-4-
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Derivation of the Equations

The method expounded below was obtained by employing the method of

three momenta (well known in strength of materials), used earlier for

calculating the deformations of a blade in one plane in a field of centri-

fugal forces (83 and revised by A. V. Nekrasov (33 for calculating the

frequencies and forms of natural oscillations also in a field of centri-

fugal forces of a plane untwisted blade, performing oscillations only in

the plane of the greatest and least rigidity.

-Dm4 NO~ 0
‘?,‘~~~~~~~ #?~~ - m ~~~~~~4m~

i 
‘
~~[~~-mft~~~

~~ / 2 .1 2-1 2 2
k F!

I,

U ‘ : ~~~~~~ __ 1_t I
I / 2 .1 z-1 z z

• 

• _

Fig. 1

In accordance with the method the blade is represented as a beam,

in which the length greatly exceeds the dimensions in the two other dir-

ections; it is assumed, that the points of intersection of the main cen-

tral axes of rigidity of the cross section lie one one straight line and

the connection between bending and torsion is absent. The blade in

accordance with work (3] is represented in the from of a weightless

~ ~~~~
.
‘ - . 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ,~~~~. •
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beam, in each cross section of which are known the directions of the

main central axes of inertia and accordingly of the greatest values of

bending rigidity. The blade is broken down into sections. At the junc-

tion of the neighboring sections are located concentrated masses, which

correspond in magnitude to the mass of the halves of the~ neighboring

sections adjacent to the given point. The magnitude of the rigidities

and the angles of inclination of the planes of the greatest and least

rigidity within the limits of one section are constant (Fig. 1). Thus,

the centrifugal force being applied to the concentrated masses, remains

constant within the limits of one section and changes abruptly at the

boundary with the neighboring section. A zero mass is selected from the

conditions determined by the attachment of the blade to the hub. For

obtaining a fixed (jammed) or hinge—wise supported blade the zero mass

is selected necessarily large. If the blade is attached to an absolutely

rigid real body, then the zero mass can be selected in accordance with

L 
the mass of this real body. If the blade is attached to an elestic real

body, the frequencies of the natural oscillations of which have the same

order as the frequencies of the natural oscillations of the blade, then

the zero mass can be determined from the condition of equality to zero

of the sum of the dynamic rigidities of the blade in the corresponding

direction at the zero point (Fig. 1) and of the dynamic rigidity in this

same direction of the attached body. Let us point out here, that for one

and the same value of frequency the values of the zero mass in the

examination of the osc illations of the blade in plane xOz and in plane

yOz will be different.

- - -

~~ 

— - •- — -—— —• -•- 
• 

~~~~~
-.

~~~~
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Let us examine the two neighboring sections of the blade i-j and

j-k (Fig. 2). Here ç.~ is the angle of inclination of the plane of the

greatest rigidity towards the plane of rotation in section i-j; 
~~~ is

the angle of inclination of the plane of the greatest rigidity towards the

p lane of rotation ~n section j-k.

Plane xOz coincides with the plane of rotation ; planes 
~ 

Oz;

tJh 
Oz; ~rj4~ Oz; ~~ Oz are respectively the planes of the greatest and

the least rigidities in sections i-i and j—k. The concentrated masses

are located at points (ij) and (jk). Thus, only one mass is located with-

in the limits of one section.

• • • - - - - . •• ~
•:- •~~ • eli

S 
• ,  

.
•

-

• 1I •/

~ T~J 
_ _ _ _ _

V
i t ) : :  ~~~~~~ \ \ : - - I.~~I~/ # ?~j  ? ej ,

‘
~~ : ‘ • •

.~

• _

Let us explain more precisely, that the coordinate system xyz

rotates together with the rotor, in this ease axis y is directed along

the rotor shaft in the direction of the li f t , axis z is directed along

the blade axis, and axis x is perpendicular to the first two and is

oriantad in the direction of the rotation of the rotor. This is a

if- —J— —•— 
~. — •$,i, .— ~, ~~~~~~~~ 

—
. ~~~~~ 

,
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so—called general system of coordinates. Moreover, the so-called local

coordinate system i
~~~~ 

is located in the investigation; the axes

and are located in the planes of the cross sections of the blade

perpendicular to axis a, are are directed respectively along the main

central axes of inertia of the cross sections.

Let us write out the equations of equilibrium for sections i—i and

i-k in the general coordinate system xyz:

I, — Qy a, 1;, — .\ 
~, 

iU,~, — U, ~4 ).• ~ (la)
~~~ .%J .~~ — -  Q4• ,, I••, — ~‘~j (t’,: ‘

~~~~~~

‘
.i

- • . - I • / — ~ ? • 
— ( 

~
- •

~~~~ /6 “j L I. )~~~. 4 • J .  -

• 11~. ; %i~ ) 
~~~~~ A’ft (L’I1~ — L’ r~j). : ~lb)

Although

~ U 1 . — U f .i ~~ •~
• • j~~~~~ ~

4 rjJ ~‘,• ;

= - V,,j; ~~~~ = 
~t’j ~‘aj’ -

• 

(2)

let us retain for a certain time the double indexing system , since

/ ~~~

~ ~~~ .~i. j  (3)

and subsequently it will be necessary to carry out transformation empl .y—

ing (l)—(2).

Let us note here, that

Q.e,’ Zmi (LI,, — ,‘U,) etc.

-4-

• r—~— ~ ~~~~~~_ _ _ _ _ _ _ _ _  • 
, _ _._ •w?-~~ 

•• •
~~ - :  ~~~~~~~~~~~~~~~~~~~~
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Designated in the equations are:

U~ ; U,~ is the d isplacement in the direction of the axes of the general

coordinate system;

U,~; U1 is the iisplacement in the direction of the local coordinate

system;

M~ ; M
~ are the flexural moments, the vectors of which are respectively

parallel to axes y and x;

Qy Q~ 
are shearing forces, the vectors of which are also parallel to

the axes of the general coordinate system y and x;

N is centrifugal force, the vector of which is parallel to axis z.

Having divided each of the expressions (la) and (lb) respectively

by Njjljj and Njkljk, introducing the designations

N41 1jj  b11~~ -•i;;-.
1’ (5)

f I h~~~~ Al ; bft — —J——. 
,

we will obtain

f ,,M ,41 f ,,M,41 b,, (L,’,41_L/7~) ÷~~ f L 01 (6)

1,, M.,1~ —— f i, i~f1~, — b
,~ (UVJh — U,11) + = 0;

•i,, .%i~ ••• • • - :  ~~~ ~~~~~~~~ ,, i+-
~~~~: ~~ (7)

Subtracting in pairs (7) from (6), we will obtain after certain

transformations

- 

- - 

~~~~ ~~~~~~~~~~~~~ 

•-~~~; ~~~~~~~~~~~ ~~•;~~~~ T ,~~~~~~~~~~~~~~~~ .
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- 

- - • 
• - - 1; - ~~~ -r 

~~~~~ 

-- - (8a)

~- , + ti~~~~~~ 1~ • 1 
• •~~~ - - f ••~.~ • - -

~~~~~ 
•-- • (8b)

-- • • 

— — :‘ .: — f~, 
._.- f - (9)

Then we will examine the deformations of sections i-j and j-k. We

wiil seek the deformations in the planes of the least and greatest

rigidity. The differential equations of equilibrium in the sections

respectively in the planes ~~Dz and to: are :

(EI~V ,Y — (N U} = 0;  (E/, L’J -— (.V1J)’ 0. (10)

It is possible to write the solution of the equations of (10) in

the following manner:

A : ~h :~. — Rich :~:z: il ~~ - • :, (11)

where (with the retaining of double indexing)

ii1~i, Mw .~
I..i,Au, — 

sh ‘isj 
— 

~ shs,~ 
— tha,11 

(12

— M~,1; B,~, = M~~
/4v* M~, ~1~rn ~~~
sha~~~~ths~1 ’ A~Je= h

_
th ;

. M~~; 8
~.rn IWijj~ 

• 

• (13)
M1 E11U; M~~~i1~U~; •

~~ IU*, PW II*)I41Us~ ‘PI ~~~~ ’WU$
IU 4ea,. (14)

Haing 8ubstituted expression (12) in (11) and having twice integra-

ted the corresponding expressions, we will obtain for section i-j the

equations connecting the deforma tions in the plane of the least r igidity

~~~~~~ ~~~~~~~~~~~~~~~~~ ‘ T ~~~~~~ •~~~~~~

‘

~ ~ : 
- 

- : ~~~ 
- - 

-
~~~~~~~~

•-
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with the flexural moment, acting in the same plane:

b,~ (LI~.j — tj’d’ ) — ~ M~j + l~, Mw + 
~or 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j (15)

The expression for section j-k in the plane of the least rigidity

and the corresponding expressions for the plane of the greatest rigidity

are analogous. For example , for section j—k

bj*(U~* Vu,) — j
~ 
M~j -f~ ~~~~ + ~,, ; - •  I

b11(Li~,1.— V111)  ~~~~~~ — ~~~~~~~~~ - (16)

in thfs case

~ ~~~~~~~ - . (17)

- 

Sj~~jh)

— 
- 

j — ;

— : • (18)

- 
is the tangent of the angle between the projection of the tangent

to the elastic line in plane ~~~. Os and axis Os with its apex at point

ij;

is the tangent of the angle between the projection of the tangent

to the elastic line in plan. Os and axis Os with its apex at point

ii;

is the tangent of the angle between the projection of the tangent to

the elastic line in plane ~~., Os and axis Os with ita apex at point jk.

Analogously 
~~~,; ~~: ~~~~~ 

and ~~~~~ are tangents of the angles

~~~ ,
— ~~.‘ 4~ , ~- — 

~ ~~~~~~~~ “~f~
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between the projection of the tangent to the elastic line in the plane

or and axis Os with their apices at points ij; ii; jk;

and jj or in other words , the components of the f irst  derivative of the

disp lacements in the direction of axes Y) and E .

Since in a general coordinate system the first derivative changes

monotonically, i.e., it does not have discontinuities, then for sections

ij and jk it is possible to write

(19)

where ~~
‘ and ~ Y are respectively components of the first derivative

of displacements in the direction of axes x and y.

Let us employ the relation

xi” ~jCO$ ~g, — p; 1, sine,,. (20)

It follows from (19) , that

COS 
~~~j  -

— P~,sin tij — P~~~ COS ?~ 
— P),sln ~~ 

(2la)

~ j  
Slfl ?1j +~~~~ COI 1~ gj~~~~Pjj1iR tgs+ P,COs c,1.

We will obtain from (15) and (16)

— b~1, (L 1,~ — U11.) + I~. M.,~ + d~ Mw;

•~~~bj*(U~rn .U~j) d M us—I~~Mi,,; (22)
• 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
p~,—b,.(LIi,e --.Uu,)—4 A~,s— P,5M~,.

Having substituted in turn (22) in (21a) and (21b) and having

carried out grouping, we will obtain:

— 
—— -  

~~~~~~
—

~~~~~~
- -—

— .;p• • - 
• .~ -~~~ • 

, .-~~ 
_
~~~~~

•
~~

• _-~~~~~~~
. . - - , . —.

~ 
_•I
~1•~

_— -

I ~~4 ;~~~~~~~~5 -
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for plane xOz

(b,, (Vu, — Up4 )cos ~, — b,1 (U~,, — U~i,) sin ?;j) + I(l~, A1~,1 + d;j A1,aa )cos 
~ 

— (23)
— ((,‘~j  Mu, + dj M~, ) sin ~~~~~~ (U~a —Uij,) cos — b, ( Uq11 — U~j1) ~~

+ — (d~ M,.rn + l~ M j~) cOs f~ + (d~ M~. ± ~, i%f;11) ~Jn

for plane yOz

fb 11 (Uli/ — U~1 ) sin 
~~, ÷ b41 (U ,41 — Uy~ ) COS~?1j~ + )(I~, Au :: -~~ d~, M,,, ) 5~fl ~~ +

-4- d~,M i1i ) cos 1 g 1) =) b,,(U~5 — U~,,) sin ~ +
+b ,,~U, ,k — L1.j,) cos~1~ + ~~~~~~~~~~~~~~~~~~~~~ 

— . 
- (24)

— ( J ,~~~M~ j ~~ -~~ !;~i~I:ii)t~o~ ~- i 6 J -

Having used the relationships

~: ~~~~~~~~~~~~~~~~~~ ,
-‘•

~~~~ -
‘ ‘ . - ~~~~~ • :~

-
~~~ - . (25)

we will obtain ...(illegible).. - transformation for the corresponding

sec tions:

for plane xOz

- ~~~~~~ 

., :~~~~~ 
- • — 

j ; -~~ / - 

(26a)

and analogously for plane yOz

—. i”., “4*)  U,, + b,~ U (l;~ j~~ 4 4 j  ÷ ‘:~ 
.;:~ • ~~ II ~~~ 

+
ii;- , •H .4, + d:; :%1~~I ) cos~ 1 -~ (d~ •41

~..rn + /~ iti,.,I stn ç-~ 
—

-4. (d~ Mij, -4- M~,,)cos~ 16. 
(26b)

_ _ _ _ _  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r~~~~ 
- 

~~~~~~~~~~~~~~~~ 
,

-

•- 

-
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4- Expression (26a) connects the dis—
MI. S

placements in plane xOz with the flex-

‘4jw
ural moments in the planes of the great—

in the f our n:i-

pression (26b) connects the displace-

ments in plane yOz with the same flex-

Fig. 3 ural moments in the planes of the least

and greatest plane in the same four neighboring sections (ii , if, jj,

Jk).

These expressions are awkward because they contain values of flex-

ural moments in four sections, whereas the displacements are given in

three sections.

However, it is possible to reduce the right sides of (26a) and

(26b) to expressions containing flexural moments only in three sections .

Let us note that moments Me, . A~~1, M~~ and M~1, on the

boundary of the neighboring sections are connected with each other by

the following relationships (Fig. 3).

MI,/~~M~jJcos (~,~ — 

~~ ~~~~~~~~~~~~~ I
M~, Mpj sfn (~~ — tq) 4- Mw cos 

~~ 
— ,~~. I (27a)

whence

M~, — M~1, cos — ~~~ AL,1 sic — t
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J •  (27b)

g 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— 
_______
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Introducing the designation 
-

—

and having noted that equally— Ma,, cos Ac~ + M,M sin £~~; M ,js — M1** s~n ~9* + Mi,~&a cos ,. (28)

let us substitute (27) and (28) in (26a) and we will obtain

b41 U14 — (b41 — b~ ) Uaj — b~, U,, — M,,u d~, cos~41 + M.d, (1j , cos .
~j ’1 CQ* 

~
,j —

— sin 1j~ sin 9~j ± 
I~, cos ?,,) + ~~~ (d~, cos A~,-cos 

~~~
, — d~ sin ~p,s1n f,,) —

— M~,1 d~’,. sin ~~~~ 
— M j j j  (1, Sin COs 

~ + ~ COS ~~~ $ifl ?s~. ÷
+ 1;;, Sifl ~ ‘1ht, (di, sin I~~ COS p,~ + o~ ~~ •

~ (29a)

Having accomplished the analogous transformations for (26b), ‘we

will obtain

b 41 1J~, — (h~ —- 1’ •~~ 
-- / ‘~~L~ , .‘I1.•,4 d11~.in~,1 ~~~~~ ( /  

~~~~ ~~~~~

— -
- 

~ ? : — ~~~~
-
~~~~-.:; : • ‘ • . 

-

~~ ‘ — - !~~~~~~~ :i . :  nil : ~~~~~~~~ •
• . . . :  -

I, - - 
• 

- • • -, • • - • -

— 
~~~~~~~~ ~~— d . ~~~~~ !~iI l  ~~ + a;, C ’ s  -~~~-- ~~~~~~ •)- (29b)

Thus , the expressions are obtained, which connect the displace-

ments of the three neighboring points with the flexural moments in the

planes of the least and greatest rigidity in the three neighboring

cross sections.

4.

The first and the last sections are singular sections.

Let us write out the analogous expressions for these sections. The

equations of (15) for the first section are:

• ~ ( 4 . . ~ — I .. ~ = d~ Al . m •1 A1 m + .  (30a)

• 

— — ---- —•--- - - --. ~~~~ 
- 

-
~
. ‘ .*-:~~~

- * • - —-k -
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1), (Ll~ !, --- L :In ):~
_
~I 4 I ~’L I,l :- ~~~~~~~~~~~~~ (30b)

Let us multiply the first equation by the negative value of sin

and the second by cos -
~ 

then let us add them , having used expres-

sions (20) and (25) for the transformation, and we will obtain

b(.l (U , — U,0) = / I1~o’~I~ COS ‘~~~ + M,01 d~,3 cos ~~• .  — AI~ ~~~ sin ~~~i 
—

— Mt o~ d,~1 sin 

~~~~ 

+ 
~~
,Q,

and having substituted

M 1~,=—M 1 11 sIn .6~1 + M ,s1 cosA ,3; M tn—M i si cosA~ + ~~~~~~~~

we will obtain

— U,,~~~M~m4 cos~~, +M 5ii (4cos &~3 cos~,3 —
— d~ sin A~, sin ~,3)—M1 .,1~ sin ~ 1—M1 u(4 sIn ~ p, cos ~~ +

(3la)

In an analogous manner, the equation for the displacements in

plane yOz can be obtained, if we multiply (30a) by cos ~~~~, and (30b)

by sin

bb, (U,3 — U, .)= M% ~~~ sin 
~rn - •  M~ ~(4 c~~a~3 sin 

~~ + 4 sin £~ , cos p,) +
Cos 

~~~~ + M1 n(—4 sin £~1 sin t.~ + 4~cos £, cost,3) -i- P,.. (31b)

The equations for the displacements of the last two points of the

blade can be obtained in the exact s~~e manner. For this it is neces—

sary only in contrast to the first section to employ the expressions

of (16) and an analogous expression for plane lOs.

As a result we will obtain

~~~ LI,, i—I. ,..1) M~ i_ s. a4d~.4. ,C05 ~,_s ~~~~~~ aii~11. ,C4 ~~~ .+
+ Mt. ,_ ~~. 

,_, d,’I_ 3 , sic 
~~~~~~~~~ + ML :—s. .l~~~,$IP 

~~~~~~~~~ + F,, ’ (32a)

- 
— ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

- - . ‘
‘
.-

~~~~~~~~~

- 

*- •-4
~~ •

- • 
-
~~~
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b;_i, (U,, ‘U, z_ 3)  — — M1. z I .  a— I  d~_ 1~ £ 
sin 

~~~~~~~~ i ~~ z 1 .  £ 
~~~~~~~ ~ 

Mn 
~~~~~~~ . —

— ~~~~~~~~~~~~~~~~~~ a — Alt.a_.i. ,1_3.,C05~a_i. 
‘ + ~yr (32b)

It is necessary to note here, that the systems of equations for

the root and terininai(tip) sections differ somewhat from the remaining

equations, which is explained by the peculiarities of the extreme sec-

tions.

Let us introduce designations, which simplify the notation of

equations (29), (31) and (32):

t/ , 4’/ C’t’~~ .,, i / d ~~tfl~~,
_‘ ~~~~~~~~~ ( C . — .~~ ‘-Il. ~‘ (r ~.

- -- -
4 - - -  — • ‘ 4 —  ~~., —— l,•_ ~~~ ~~~~ ~~T1 -

~ T~ /‘~ sifl ~j k:

- - - .- • -  ‘~~~ — - - • : .“ ~~~~
- 4~~’~~• -- / 

~~~~~~~~~

_ 5
’ 

‘ - • ~ - -~~~ ~~ • • I’~~1~t - ~., ~
-
‘- ‘~~

/~ 1
Sif1 .~~~~, SlU 

~~,j ± l~ cos cc~ -
~~

- !~ cos 
-

~?: (ic, , s ( ” ~~-~~ , btIl~~ ,, - -  . /‘ - , ‘~~~! ~~~ ~~~~~~~~~~~ 

•

d~’. — d;L sin ~~ Sill ~~~ CO~ ~~~~~~ ~OS 
~~

,.

As a result we will obtain a system of ( z+l) pairs written in

general form , containing (z+l) pairs of flexural moments acting in the

plane of the least and greatest rigidity, and two pairs of components

of the first derivative of the elastic line in fixed coordinate system

xyz at the zero and last points of the blade.

The general expression of the f-tb pair of equations is:

— a,U,, + b,, U,, =M,,~ d~)+M.~,l~’ +
(33)

b,~ LI,4 +a, U,, + b1V,5 — M~a. 44- ~A., I~ +
+M +Mm d

~~
+M w iP +Msa.

~~
’.

—

__________ — — — •-~ ,~~~~~~~~ ~~ 
41 

~

‘

-— - .••
r, . - ••- ‘- •

~~ 
- ‘~“• ~~~~~~~~ 4 4
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The first pair of equations (the root section) is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
— I o, U,.+b,,U,, r. M~.I ~j + Miii d~’ +Mi is I~i’+M: si di1+~,.. J (34a)

The last pair of equations (the terminal (tip) section) i8

b~..1 U, z — , — b,...1 U , ‘%1.~ a—i~ ,—i a — Mr; g_ i~ a ~~ ,~~~~

— M1, a_h ,—i d~.1,, — M1 .—i. a 1~~.t:: — 
~,a; 

-

b,~~ U,, a—~ b,_1 U~ M~,,_1, ,_i d~..1,, + M~ I—I: i l ’~I~S + (34b)

- +M :;,_, : .z_ i d i;, + M:; ._z; a I~’!_,,: .—~,3.
This system, written in matrix form, has the form of (35) (see

the inset). It makes it poss ible from the known values of the flexural

moments and components of the first derivative of the elastic line to

find the magnitudes of the displacements.

For solving a problem on natural oscillations by the method

of successive approximations one more system of equations is needed ,

from which it would be possible to obtain the values of the flexural

moments and components of the first derivative at the ends of the

blade.

For this let us employ system (8a) and (8b).

Let us write equation (8a) somewhat differently:

• b11 U,~, ÷ a1 I.’~ —r b1, ~~~~~~ M,,, —f e, M,,1 —
(36)

since

4 
_  

_,~~~~~~~~~~ 
T~~~ ’ ., ’ -~~~~
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.1, ~, -—— .1j~ 4 ~,i, ~~~~ 

—
~

— .11,., Cus~j .,,)
‘ - ‘ ‘~~~~~~‘~~~ -

~
-
~~~~~~~~~~~ 5’ ’5,~~

’ .’: 

-

~~

— -  - - . .  •: ‘ i  ~~~~ .11 -~ i: ‘ (37)
J~ ~~~~ t—  .~1:~k iii, 

~~
, -

~
- A-1.,~, COS

then, having equated the right sides of equalities (26a) and (36), we

will obtain,after some transformations

~~~~~~~~ ~~~ “1~~) C O S 
~ 

- Mv,. i / ,i m~1) cos —i,, . - -  AI.~ (i;~ .- #iz~~ co~ — -

+ ,i1,~,, (d i’, —— ns,,) cos — M~ ,, (d~1 — rn,1) sin ~~ -— M~j ( I~ + rn~~ sin — .
— ~~~ (Ije ± rn11) sin — M~ (dj ~. — rn~,) sin 

~~~~ A — 

.\~, (38)

Let us again use the substitution of (27) and (28), simultaneous—

ly introducing the designations

,~.
••. 

_~
lI

~’ ‘_
~ — — - Sfl g~; P~(~” —

S

— — 

~~~~~~~~~~~~~~~ 
rn1,; P~J ”~ sin 

~~
‘( Vt) ( )

I7~ + rn ,1 — -
~u:~U~

J n,j ; q
~j ( Vt) 

q~~~~~) cos

q~~~~
’

~~~~~~~ 4j~~~ + j s — _ _ _ _ _  -

As a result we will obtain for p lane x0z

I 
—-.  _w’-,. • 

— 
- 

- .  w —;---- - - 
~ 

,
, 

-
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Inset

I~~~~~~~~~~ __ J . .

~ I
;z ‘

~,‘t d~
t

Uj  “C ~ C

-w -
~~~

- — - - - - — —
~~~ 13.., O~, ~2!’ 

~~Z~~t

~~ k1 ?r - - - - ‘~ ?~ 
.i ’~ 7~- — ~~&!-‘ ~~L - - - - - — l-,-~~ 2~~~~~ —• c $ ‘

~~~~~

— — L~~ Lf.i. — — — — — — — -~~~~~~ ~~~ — (35)
, 7 C5 ~~~~
, i-Il U,

-
~~ ,/ Ct_ ,C2 ~ t

Ug, (. , U,

V 3 &~~ &~

j$
~ 1

S
~ 

;;.:ii— C1~
~~~ i

j4 

d tt 1 (1 ~~1-1,1 1-1,2 11,Z 11,Z

tç, U,~. L~ f . .  U,,,, (J~ 1~, 14,[ U~,, ~~~ . * . kg,,,.., 
~ ,,= ~i--wX0, ~

O
~~
L))t,,z (/‘J)~ ~~~~~~~~ IT_ I _____ _____ _____

-
~.
‘•d)s, t ( d)4, V”~.’ _____ _____ _____ _____ _____ _____

_____ ~~~ ~~~~~ _____ 

* - ~~~
)t 

_____ _____ __________ ______ _____ _____ _____ ______ — — — , 
_____ _____• -V-!;t,, -~~i~ ,,~ 
‘.4

_ _  i _ I 
_ _  

I i  
_ _  _ _  _ _

- - -- - . : . • . .~~~~~~_ _  _ _  
(4 :)

--
‘
-

~~~~~
‘
~~~~

-- —
~~~

--
~~~~~~~~~~ ‘Y~

_ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _  

,~i; ~~~~~~~~~ F/’1.7-1 ~~
L L__! —- ~~~~~~~~~~~~ ~~~~• 7..’

- — 

. 

—  •_____ ~~, 
,
_~ ~ ________

• 
2 2

______________ _______ ______ ______ ______ ______ 

.,hj .
,., ~fl /,.~ ,~~~I 
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.
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Inset

I I  
_ _  ~1i &JL ~~

1&

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ _ _ _ __ _ __ _ _±.~~i_ f

~~~
(i-i),

(1’!) b -b._
~~
__ _ _ __ _ . i

~~~~.~
1_ _ __ _ __ ._ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 
U0, U.,

1111 111 ,
~~Iii IiiI I~~

r
~J £ ., A

S 
Uja Uz L~~j  -

b~~~u2 b34

-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~(Z ’14 b~-~~ ~~~~~~~~~

~~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~/, / g0, P, , go, , 
—-, D

C~ C~ 9
C~ - ~t _n’tr., g, ‘, 3I 9i ‘2

S p C~ Ct 9 C~ • .It _p’t
tl~ ,
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• ‘ - ;
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• :,: ,~: - ,  

~~~~
- ‘. 2 ~~fl-I f?-~ -I, ~~~~~~~ 

I
LcL~ L IILIL~ G1~i[~ f = ~~~~

1 1  
-_ , - - I 147 I P ’  f
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— —I— -

~~
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~~~~~~~~~~ 
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-
~~~~
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— - 
/~~‘~ ? 

— — 
W~~ - ‘~~‘ 44~~~ a’



• 
~~~~~~~ w — -

24,

M~,1 P7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+M u ( P~~cos A~,—P ~ stn d ,,) Mu,P7—

—M~,,(q~ + qt)cos A~1~~ q~5 sin L~~) _  Mus (P,~2 cos A,, + P~ sin A~,)...

(40a)

Analogous transformations will give for plane y0z

M,,,4 PfJ + M,j, (q
~
’,±q,’5 cos A~1 — q~7 sin Ap1) ÷

+M ~,,(P tcos A,, +P2sin Lv,) +MwP t~’ +
+ Mijj (q7

~ + q,7 cos A,1 — qr5sin A,,) + M51, (P~~co$ Li, — Pjsjn 
~i,) —

- _Q,;* Q,.; (40b)

Thus, equations were obyained in general form, which connect

with each other the flexural moments acting at the three neighboring

in the planes of the least and greatest rigidity, with the shearing

forces at two neighboring sections of the blade (if and jk)~ and direc-

ted along the axes of the fixed coordinate system.

In examining the special root and tip sections of the ’ blade, it

is not difficult to obtain expressions connecting the flexural moments

at the two neighboring points with the shearing force acting in the

root and tip sections.

4 , 

-

, : ‘UU~~~!J 4 ~ ::~ 
r~~~~ , - 

~~~~~~~~~~~~~~~~~~~ 
-
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~5

Let us introduce designations, which simplify the notation:

= - 
~~~~ — q

~) 
sin

P~~~~~ri ,c .~

~ ~ ‘ ~~~~~ ~~~
PA ~~

- 1 COS ~~ ± P~ sj Il ~
(41)

~i ,  4?0 5 .~~ . • —i- ,

/-‘~ ~~ - P1k. C J S  .1~~~~ -f- / ‘~~S iI )  ~~~q2~= ~r- Qq cos h~~j  —

CO S ~~ -
~
- P~ sin .~~~~ ,.

As a result we obtain a system of (z+1) pairs of euations writ-

ten in the general form, which contain (a+l) pairs of flexural moments

acting in the planes of the greatest and least rigidity, and two pairs

of components of the first derivative of the elastic line in the

general coordinate system xyz for the zero and the last point of the

blade. The equations for the first and the last sections, which

contain these components, differ somewhat in structure from the re-

maining equations and take the boundary conditions into account. These

equations are written out below:

the general expression of the j-th pair of equations is

• QJ1, Q,I~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
- - 

— - (42.)

the equations for the root sec tion are

-‘I- -

- ..~~~~~~~ ., “? j 1 • ‘, ‘i. ‘ . 
• 

- - ~~~~~~~~~~~~~ 
- ‘ ~ .‘e
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(42b)

the equations for the terminal (tip) section are

— P,3 + ‘iL~—,. ,—~ ~~~~ .+: M.,,_,. , Q~~-i. ~ 
— M~_15 3—I fl~.l., —

AA Q~ —,. a -
15a..5 a ga—s.-, — —

— 

~
,a + 1~1u~ s. a—i ~~~~~ S + .~~v,z—I., q.. ,, + Mis_i. a—I 1~..i. a —

— ~~~~ ~ q~— . , — — 
I~~ 3~•I~ I

• - a—I. ; I

Since

Q~., — m 1 (L’x4 iut’U.r,); Q,,J = z — X r n ~L~)’,,
then these are differential equations. It is simple to convert them

into algebraic equations, representing the solution in the form

L ‘.v4 (1) Lix sin p1; .~L.! ,,
~ 
= M,, sin p1:

-~ : - .~ ‘— .11.j ir .f ’~:

where ‘
. . - . • : . :. . ; and • .. are amplitudes of the

value of the functions. Having differentiated twice we will obtain

(~~~~~~• •  1 / -  ~
. • ~~~~~~~~~~ / 5 , ” :: . t.

Such a system is written in matrix form (43) (see the inset). It

makes it possible from the known values of the shearing forces to

find the magnitudes of the flexuralmoments in the planes of the

greatest and least rigidity and the components of the f i rs t  deriva-

tive of the elastic line with respect to the ends of the blade in a

fixed coordinate system.

- ~~~J•~~ 
~~ • , ; 

- • , 
~~~~ ~~~~~~~~~~~~~ ,I,.5t ~ 

‘ ‘-  

~~~~~~~~~~~~ 

•
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The General Sequence of Calculation

The finite element method with iterations developed in the pre

sent work is structured to a certain extent analogous to other methods

for the calculation of frequencies and forms of free oscillations.

However , due to a number of special features it is advisable to state

it in the most general form.

The approximations are accomplished in the following order.

The shape of the oscillations for the calculation of the first

approximation is assumed determined by the functions L4!1 and L1~ ,,

The form is selected in such a manner so that L 4 ’3—LI~~...I.. It is

simultaneously assumed that the frequency of the natural oscillations

of the firstapppoxlanation is p2
~~ 

1. Then the shearing forces

located on the righ t side are determined respectively for the p lanes

xOz and yOs as

Q3~~~
(
~ + e’Z,s,U,a; Q3,1 ~~~~~~~~~~

The flexural moments in the planes of the greatest and least

rigidity and the components of the first deriva tive of the elastic

line in the root (Pip and ~~~ are determined from the solution

of system (43) .

Then the displacements U,,, and L4~1 and the frequency of the

natural oscillations of the first approxtaation are determined from

system (35)

-~“1- - -- •’ 
— , - .._ .w,~~ 

- 
~~~~

‘ -  
- ‘

~~~~~~~
‘ - •,- , .• - ,

— - -,~
-‘-- ~ ‘ - - ‘ ‘ 1 ’., ~

‘ I - - • - - ‘  ‘
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The form of the natural oscillations is then determined after

the first approximation:

L4j (I) — U~j’0) p~’~8. 3leCb — I;

- 

U~?/,1, = U~ (‘~~ + .~ , 
~~~~~

)
(l) I

or a( I) ~ ~~(II —,(i~ — L ’ .! 
~~~ 3.~Ccb (4su, -I- 1:

npnwe~ I.

Then functions (./~~
‘ and L ,” are again substituted in sys-

tem (43) and the cycle of the second approximation is repeated . These

cycles are further repeated until the specified. accuracy is obtained.

The method of successive approximations employed hsre leads to

the obtaining of the form of the natural oscillations with the lowest

frequency. Let us call it the frequency of the first tone, having

designated the final form and frequency ’ in the following manner

The determination of the form and the frequency of the natural

~~~~~~~~~~~~~~~~~ oscillations of the second tone is the next step. The process of

successive approximations, is repeated as previously, with only one

difference, that it is necessary to fulfill the condition of ortho—

gonality of the form of the second tone to the form of the f irst .

This condition is written in the following manner:

‘I.’ ~~ ‘ & ‘  ~~
•I “•

~~~~ i

“i L s ,~ SIS fl~ ti ll .lft ~~i IF) 0,
S.’ - l~~~~~ -

- -  —~~~~~~-
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where LI ’..Y~., , ~~~~~ are functions of the displacements of the k—tb

approximation of the second tone. Hence , the functions of the dim-

placements are written as
U.’511, = D~I~

’,II, — C3, ’.x~ ,t, ; (.~~i ~ll~ Li~1 ~,i, —- C.~’y, Sib

where D~SV~I I I  and are functions ot the displacements obtained

from the solution of system (35);
— 

i_a,,,
~ U~/~U~ .Xi Ø~ 

4- ~~ m~f,4h) 1.5 1.5
~-51 = I_a

a, XI(J) + Z s Y~II)1.5 9.5
The constant C21 (the constant of the orthagonalization of the

second tone to the first) varies with each approximation.

/ (*1 — 1 • 

— I (*~ ~ pa (U)u(I~ o~
)(~~_ cg1 ~~ Py 11 t$,’),,1,~~c,334,’j,, 

I

if th. form of the o.cillaeions of the first -tone is such that

i7Ia(~) — 1, and

p~~l = 7,4,) 
U.15 

~~~~ or p~~ , —
II £~~fl~

if the form of the oscillations of the first tone is such that

‘~“~!) ‘ ~

Generally speaking, the process of successive approximations

must be structured in such a manner that the form of the oscilla-

tions determined by the smallest of the two values of frequencies

obtained after each approximation was established in the next approx-

imation. This is necessary so as not to omit any form of the oscilla-

tions, since cases are possible , when

— c~or
QW s,— c4:V.

The f orm of the natural oscillations of the k-tb approximation

of the second tone is defined by the .~cpresaions

-
- 

_ _;~
—

_ - •

-- 
‘ 

• •~~~~~~~~~~~~~~~~ —‘ “ ‘ - I ~~~~~~~~~~ 
- - - •.

‘

•
~~~

•
~~~~~~~~-
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— (1J~.~ : — ~~~~~~ ~~~~ — -  
~~~~~

1 11 SIb 

~~~~~~~~~~~~~~ 

~~~~~~ P1- 1u. .

where p
~ means that normalization occurred with respect to the

function of the displacements in plane yoz

I • •~~ •
• •

~ • - t_
. %  

• -

~ ~~~~~~~ 
- - (L’ 7 :i 1’ v1 ij ;  ~~~,.

where 
• ~, means that normalization was carried out with respect to

the function of the displacements in p lane xOz .

The form of the natural oscillations of the second tone obtained

with the specified accuracy is designated in this manner :
•~ . 5 1 1 s .

— :.~ ~~
Then the frequencies and the forms of the natural oscillations

of the next tones are determined .

- The alternation of operations remains the same as in the cal-

culation of the second tone. The difference is, that for the N ’th

tone the function of the displacement for the k-tb approximation is

written as

— 

~~~ 
C~,&i,*.ai,

— — 

~~~~~~~~~~~ 

•

the constant of orthogonalization is
I_s 1.5

~~ 
,~~~t~~~m+~~~u’,U~m ,,a

~~~~~~~~ Z”s3~im• I. 1.5

¶
-

• - 

— •
~~~
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the frequency of the natural frequencies is

..... ‘or 
- 

- ~~
~~~~ 

- —  

~~~~~ 
C~5jr( - 

L4, — 
~~.5_I • .5_s

if the forms of the oscillations are such that U,:~w~ — 1, or

- ,
~~~~h-I) • •

I(S) za(N~Pg SN) — , — —

- ,4h) #4*)
“IS (A) ‘~~~ ‘X M  ~~~~~~~~

- - u_ i
2 (5) 

______ ________- _____ ______ -

v
.~ ‘- v.

if the forms of the oscillations are such that (J ~. ~~ — 1.

We will point out below certain of the details in carrying out

the operations in determining the flexural moments and values of

!‘
~ and : ,

Determinina the Flexura]. Moments and Comoonents of the
First Derivative of the Elastic line

....... ...(First two lines are illegible)....... .............. .....

1) rigid fastening with flexure in two mutually perpendicular
planes:

2) rigid fastening in the plane of rotation and hinged support

in the perpendicular plane:

3) hinged attachment in both planes (in this case the hinges

can be located at different distances from the site of the attach-

ment of the blade) . 4

By ana logy with a helicopter rotor we will call these hinges

~~ I 
_________________________~~ ~~~ 

~~~~~~~ ~
- -

~~
--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • - 

~~- ~~~~~~~~~~~~ ‘ 

~ ~~~~~~~~~~~~~ 

- 

- 

-

-~
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• horizontal hinges and vertical hinges.

Naturally, the different conditions of attachment introduce

differences into system (43), which is written in general form so

that it would be possible to examine the case of simultaneous attach-

ment in two planes or simultaneous hinged attachment in these same

planes.

Let us f irst examine the simpler and more genera l case of a

blade completely fastened at the root.

The boundary conditions in the root are: ~~.O ~~- -.O.

I.i I.,

E I S ,U.,—% Ea.,U,,..i O.
I.. 4 a..

Generally, system (43) represents on the left side four

three-band subinatrices, joined by c~emon unknowns. For the solution

we employed the Gauss method used by A. V. Nekrasov in (3] for sol

ving a system representing one of the indicated subinatrices.

The,,aigorithm is ahown b low, by which the matrix is resolved, with

the necessary explanations prefaced to it.
I

,-

Let us examine system of equations ~~ and 1~ (see (43) in the

inset]. Since the blade is fastened (P,.~~~~~~~P,, — 0), it is possible

to write

M~.~~ +M ,,,P ’-M t -M~uP~i.,F ; I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I (44)

_________ — --

‘ •1• 

— — — — ._&
~
‘- £5, ~~~~~ 

_
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where
• - I_a

f — (p 3+..’)~~~t,g U~9; t.._ iii.(_~~~);

1.a

.2

Let us represent the flexural moments in the following manner:

~ o +1,M~ ,+Ii.Mj ,,;

~~~~~~~ +ti~. M % n+I j .A I L H ,

where

L. — — 
j
~ — ~Ci~.- -

* gg~g~~+g~ g~~’ 
0

_ 
P~’g~~— P~ g-~ z P~’-g ’~ P~ - 

(46)
- •  ,~ :; - “3 ~ 

— 
rS~~~

-
~ ‘. •. - -g~~ - - g ~~

— 
P~’

_ L c~~P, ~~~~~~~~~

Then let us examine the system of equations:

.‘ ;•  J ’ .~ •~ !- - •~~~~- •.  - . iI~,. P~ - — . - ,. •- . 
• 

•
- 

4

.i1. u. .J~I ; g ’ - .U• ~~~~~ •. ..P.’ -. • ‘/~ -p~~— .lI; ,~z~
’ .U • i-’ .— F~’

.. j (47)

where

- •  • • I/ i (p ; M 1 1  

~,

__
l , ~~~~ ,S, .v 1 : , t:!~ — 

~~

, ~~ =‘t:

— -S _ P
~k i 1s x

~
+S1 x1) .

If we then substitute (45) in (47 ) and carry out grouping,

then it is possible to obtain an expression analogous to expression

( 44) ;

(48)
M,,,~~

9 r tN~1~ ‘i ~~~~~~ +‘~ft - • 
4

4

5. • f  ‘4  - 

— p

— —

~~~ 4 ‘4
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where

£(~ —g~ - — —  

49)gi~— g r + .+~~~.; -g~
’—tr + .-,-~u~ •

~~~~~~~~~~~~~~~~~~~~~~~~ Fr — P q — P~,~.—- p
~’.~..,

These operations are sequentially repeated for each pair of equations.

For the j-th pair they are written in the following manner:

g ?=g~ +P ~~,,—P tiL.,; ,
~‘— s r — Pz~1s.— P~s,; (50)

g~~~~~~~~+P~ i,,,-f P~~~~ ; g?’-g?+P~~v+Pfj~~,;

~~~~~
1
~~— F45iv.s+Pt’hu; ~~~~~~~~~~~~~~~~~

where P~ gf” + ~57 gr . — — 
P~~ g~

1• 
— P,t g~

E•

g~~g~~ + g~~g~
’ ‘ “ — 

gr’gr’ ± gf~ g~~
’

— P7 g~
’ — P~ g~~ 

- p r g~ + P? g~— 

g~ gf’~ + g~
t
~ g 

* 
- 

~ ‘ — — 

q~
’ qf” + qr q~

• — 
q7’Ff+ q ” Fr ~r Fr — q~ ‘r - 

(51) 
4

— 
q~:I• q~

• g~~~~~
’ •~‘ q~ q~

’ + ~r ,c’~
1

The expressions for the flexural moments are:

- . = .;I ,; .1.. 
~
vi ~~~ — ‘~3i .1Jtj ~~: .115,, nI + ~‘s A1,~~+ £~, 1i1,11.

S~
_ IPt

~ ~~ -
. 

. 
(52)

As a result we will obtain equations connecting in pairs the two flexural

moments in the plane of the greatest rigidity with the two flexural moments
a

in the plane of the least rigidity right up to ...(illegible)............... 
S

By carrying out a similar operation for the z-th pair of equations

- 4 -
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(illegible)...we will obtain

— Fl: 
~

g;~~- — •~1,:— ,:— ~ J.~: !  ‘~~~~- i (53)

since at the free end of the blade ~~~~~~~~~~~~ “O. -

~nploying the discussed algor ithm, it is possible to write, that

a — i  ‘
~~:—I . ,W,.:_ i. a_ i ‘

~~~~~~
- I.

where v:,-, and ~~~~~~~~~ are also determined according to the formulas of (51).

Having obtained from (53) the values of moments i%1::,..i ~~~
, and A1 .,_5 .,

it is then possible in in reverse order, solving in turns the systems of

two equations of the type of (52), to obtain the values of the flexural

moments in all cross sections of the blade:

M;ai — ~~~i
’ --

~~ M31, 
~~~~~~~~~~~~~~ 

F 7—M 1,, P~ u,Pbgf -’ (54)

There remains the task of deterininign the values of ~~ and ~~~~.

It is possible to obtain tern from the solution of equations (z+l)

However, these values are not needed in the successive approximations for

a standard blade. The exception is the case when the end of the blade is

not free. In this case the penultimate pair of equations should be rear—

ranged depend ing on these cond itions , and accordingly the moments on the

end of the blade and the components of the first derivat ive , of the elastic

line, determined from system (43) will participate in the successive approx—

imations. We will not dwell on this, since the corresponding operations a
are analogous to those untertaken with different boundary conditions in the

root part of the blade; these operations are discussed below.
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Another case is rigid attachment in the plane of rotation and hinged

attachment in the vertical plane.

In comparison with the first case the boundary conditions vary some-

what, notably
- 

~~—0; M ,~~0;
1_a I—a
~ rn1!).,1 —0; .~~~~ rn,U,, —0.

In consequence of hinged attachment

A1,socos V., — ,i1~,~s~n~51=U. (55)

Hence, the following order of the resolution of system (43) follows:

in system (43) equation 1
y 

is replaced by equality (55), and all the sub

sequence steps are retained unchanged in comparison with the case of total

attachment. The expressions of (46) are also retained, it is necessary as

soon as pose4ble to place in them

g~’ — cos~~~- g~ = sin~~~; P~~—P ~ =F ~~~O.

The third case is the hinged attachment in both planes; the hinges

can be located at different distances from the zero point.

System (43) was obtained by assuming the equality of the derivative

of the elastic line on the right end of the i—th section and on the left

S 
end of the (j—k)-th section. The hinge at the j—th point violates this

condition and one of the equations of the (j+l)-th system (43) should be

rep laced by an equation which takes into account the presence of the hinge.

If the axis of the hinge is located in the vertical p lane the following

condition should be fulfilled

- - • -  - _ • • ~~~~ — - -  (56)

If the axis of the hinge is located in the horizontal p lane the fol—

lowing condition should be fulfilled

~
.u-. ______________________

•-~~~
-i- , 

~
- - - S 

I 
, 4*~4~
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.~1’ - * - , r( * C _

Thus, in the sequential transition from the first pair of equations

to the last the (j+l)—th system should be solved (for example, in the

case of a vertical hinge):

A1,~ g~ ± M.~~ P1 -r .11.,, g7 -+ A’1~~ P~’ —
•~1~JJ CDI — A1~., StIt 0 -

With this order of the resolution of system (43) all the expressions

of (51) are retained , it it is assumed that

= CC~$ ~~ g~
T =$tn~.,5

; 1 —  1~ = 
__

In the case of the positioning of a horizontal hinge at any ith

point the (i+l)th system is solved:

M~i, g~~ + M~~ P~ — sr — M~ P7’ = Fr;
Mr,5 sin ?~j + Miii CO$ 

~~~ 
...-d, -

and there will accordingly be obtained in the expressions of (5].)

gr — cos ,,,; g~~— sin~ ,1; P~
I=pI .,. flh~_~~ ,

If binges are combined at any point k (including at the zero point),

then 
-

M~~~~~ M~~-O.

For conserving the algorithm it is necessary in the expressions of

(51) to assume

The appearance of hinges impose. the requirement for one snore opera-

tion in solving system (43) - this is the determination of the component

of the first derivative of the elastic line in the plane perpendicular to

the axis of the hinge. The requirement can be fulf illed by solv ing the

specia l equation for the section , the lef t  boundary of which is combined

with the hinge.

_ _  

-

_ _ _ _ _ _  - 

~i T~ 
- _ 

• 

‘ :  -

~~~~

- -

~~~~~~~~~~~ 
‘—

~~~~ 

-
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In accordance with (15) and (16) we have

bu (U~jj — U,g,) =d?iMjj , + ~~~~ + ~,;
b51 (U~j — Uu~) = 4 AL~1 + L~g Mip~j 1 +- I.

Having multiplied the first equation by the negative value of sf~ -c~,

and the aecond by cos p.,, let us add them, employing (28). We will obtain

b,1 (LI2~ — = M,,4 I~, cos ~,, + M,1, (d1 COO £?j COS *,~ — sin ~~?j sin ~~,j 
d,~ —

—M~,L’, sin — .i1~jj (d~j sIn âc.,cos p,~ + db coo ~ j.1 sin c,,l + ~~~~~ (57)

From (7) we will obtain

Il ~ --- c •)—f ~i ~i• V- 
- . .~ ,pJJ / t ’~ 

1
~ çj •~~

,

~~ 1’or 2

1- 
~ L , — =~ ~ ~~~~~~~~~ —;—

S • - 
- •~~~- :.-

~ - . .~~

• After the transformations taking into account the substitutions of

(41) let us finally determine

• - -  ‘ - -  • 

-

. 
~~~~~~ 4 4

- . * ~~~~~~~ • : ,~~~, - .1... : j ’ -’ ~~~~ (58a)

Carrying out analogous operations it is possible to find the expres-

sions for determining ~

•iJS • 4~ ~~I. — -  •~~1~~I~’ t ~ , ~~
‘ .11444 g~

’
~ 
— .4l~,., P7 —~- ~~~~~~~~~~ - (58b)

It is easy to see that equations (58e) and (58b) do not differ in

structure from analogous equations for the root section of the blade (42b).

For determining components ~~~~~ ,, and it is sufficient to use the ex-

pressions 
-

- •,,m — M g Msss Fl rMtss~2+Mss Ps”±

- A ., g-M ~. M’~~~~~~~~~~~~4 !1~~~~ ~~‘ 
t,.

If a combined hinge occurs somewhere, then

~~~~~~~~ - 
..

~
. ‘~~~~~~~~~

-
~~~~

- - — - 5 — - -
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- M,~ P5’ + M~ F? + ~~ U; 
- -

,,,=_ M ~,P~
_ M1,,P?+_ ~j !L . I (59)

Determining the Disn4cenents

System (40) is used for determining the displacements; this system in

essence represents two unconnected systems, one for the plane x0z, the

other for plane yOz. Taking the boundary conditions into consideration

• m,LJ4~—0~,

For this the disp lacements at each point are represented in the form

of a binomial

LJ:i~~Ug.+L/;j; u,,—ij ,,÷ri,~ (60)

where

~ * -

= L1,• —0.

In accordance with this the determination of the disp lacements breaks

down into two steps.

In the general case , in the first step the displacements L/~, and

are determined from simple reccurrence formulas :

— ~L. (M~, d~ -~
- ~~~ ,:;!.I~ A1~51 4’ — Af t,, d,- -

— .u. • t ~~~~4 • •2  — 

~~~,f ’ 
~/ 

U,~ .): (6la)

~~~ ii-; .—- .~~~ . — - iI,*t d~ — d ’
~ 

- .

- -‘i’ ‘ -
.

-‘ -
- — “ (~ (61b)

— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~~~~~~~~ - 

• • 4 ~~~~ •~~~~~~~
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Then U and U are determined

~~~ .-‘:~~~ ~~~~~~~~~~~~

—
~~~ ~

-

‘• -
— - —- ~

±
•
-
~~

-
~~ - . (62)

With the presence of hinges in accordance with (57) the formulas

vary only for the point following after a hinge .

If a vertical hinge is located at point j ,  then

- ----~.ii,.11 ‘~ + ~~~ d~ - -  .i~ . !~ •il~~ d~ ~ !‘,~ U,, ± ~ ,) - (63a)

If a horizontal hinge is located at point j ,  then

~ 
2 4  

~~~~~~~~ I., - 11 ~ : 
- 

~~~~~~~~~ ~ 
-
~
. I? .~ ~~~~~~~~~ ~~~~ (63b)

The subsequent process occurs according to the same formulas (61a)

and (6lb) .

In the case of the placing of a hinge at the zero point formulas (63a)

and (63b) change accordingly. In the case of the placing of both hinges

at the zero pointthe formulas are simplified

~ (M~ud’~ ~~M1iid?+P, i~ 
4

SI .

j

Certain Results of Calculation s

The possibilities of the method are not examined in the present sec—

tion in detail , however, the figures presented below make it possible to

- 

- give it a certain evaluation.

I
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The most important characteristics of the method are the requ ired

value of accuracy for obtaining a satisfactory solution and the calcu-

lation time. It appears that the method discussed above requires calcula-

tions with relatively low accuracy, and the number of approximations

needed is such , that for the purposes of calculation practically any

electronic computer can be used . The r.ssults of calculations presented

below were obtained on a M-20 computer.

All the calculations were carried out with respect to a hypothetical

blade, the prototype of which was the blade of the tail rotor of the

Mi-6 helicopter. The diameter of the rotor was taken equal to 6.8 m and

its rate of rotation n = 680 r/min. The other characteristics of the blade

varied depending on the purposes of the calculation. These characteris-

tics are shown in Fig. 4. Also show here are how these data were repre-

sented for calculation on the computer.

Fig. 5 shows the number of approximations n and the time t , re-

quired for accomplishing these approximations, depending on the accuracy

, which is defined as the greatest difference between the valu es

of the deformations at any point of the blade in two successive approxi—

mations. It is possible to see, that the setting angle of the blade with

respect to the plane of rotation somewhat affects  the number of approx i-

mations.

Fig. 6 shows the change in the frequency of the natural oscillations

of the blade depending on the accuracy of the solution .

____J
_ 

- 
- - - -~ - - 

-
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It turns out that beginning with an accuracy of

the value of the frequency . . (rest of sentence and next paragraph is

illegible)....

This characteristic becomes especially important when the actual

frequencies of the natural oscillations are close to each other. In this

case the values of the natural frequencies obtained by calculation appear

to be sensitive to the accuracy of the definition i functions employed in

the calculation.

This circumstance compels the calculators to somehow modify the

calculational methods, to increase the accuracy of the definition of

functions and the accuracy in the intermediate operations. And this in

its turn is frequently limited by the possibilities of computers or in

any case significantly increases the calculation time.

A certain amount of uncertainty in the reliability of the obtained

results does not favor the successful application of these methods.

ossibiljt th
While not carrying out a systematic investigation of the method

examined above , let us illustrate them by a comparison of it with the

Bubnov-Galerkin Method in the form in which it was employed in solving

analogous problems, for example, in work (1).

Fig. 7 shows the dependence of the frequency of the natural oscilla—

tions of a blade fastened to a hub with the aid of one horizontal hinge

on the angle of inclination of the plane of the greatest rigidity to the

— 

~~~~
w_ - , ~~~~~~-- - 

- - - — —-5-- 

-
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/zIq
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actu*l dependence
,i~ ~ ————de pendence, represented in the

calculation
ci f i_ra ~~_ I!
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~~ 
Calculation employing the ____Ca1

~

ulation employing the
Bubnov—Galerkin Method [osc/minj Bubnov—Galerkin Method
Calculation by the Finite Calculation by the Finite
Element Method with Element Method with
Iterations Iterations

- 
- • _;_~ ~~ -; —-:~~~~~:~~ 

- -- 
.‘raJi*~~ 4.M M(~~~~~

• - .. 
- - ~~~~~~ / . , b,I’ .‘-/i-1g~~~’p~~ g

H - - - - ‘ - ,t t~~~:~~~~ 7~~~ _______: ...~ ~._ =

~~ ff~f~E1~ ~
~~~~~~~~~~~~~~~ 

JK .. .. f E
~~~~~~

_ E _
~E E E E

Fig. 7 Fig. 8

to the plane of rotation. The flexural moments in the plane of the great-

est and least rigidity were selected in such a manner, so that the fre-

quencies of the natural oscillations of the blade with regard to the

their and fourth tones were as close as possible to each other.

The graph shows that the Finite Element Method with Iterations makes

it possible to determine the frequencies of the natural oscillations with

medium accuracy (ig s, — — 7) over the entire range of the setting angle

values in question. In this case the number of approximations at the sites 1’
I,

of the greatest convergence of frequencies, although it increases , it

remains moderate.

The methodology, which takes advantage of the Bubnov-Galerkin Method

‘—--U -__- S — 
J —5 —

4
-- 

-. 5 . ~~~
— 
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does not make it possible to find frequencies over a broad range of set-

ting angle values (140_.440). Moreover, it is necessary to emphasize that

in a whole series of cases...(resnainder of sentence is illegible) 

It is also necessary to consider that the Bubnov-Galerkin Method is

favored by its simplicity and by the fact that it makes it possible to

employ ready developed operation elements, from which a future tuethodol-

ogy can be compiled. For example, let us cite the results of the cal-

culation of the dependence of the frequencies of a plane untwisted blade

attached to a hub by a horizontal hinge on its setting angle.

The dependences obtained employing the Bubnov-Galerkin Method and

the method of successive approximations (Fig. 8) very satisfactorily

agree for the first two tones of the natural oscillations of the tail

rotor of a helicopter. For higher tones their divergence attains 207..

The calculations cited for blades with a different combination of

parameters make it possible to more ac urately define certain assump-

tions and simplifications established in blade design practice.

Thus , it is usually assumed , that the frequencies and the forms of

the natural oscillations of blades with a typical construction (for

a helicopter rotor) of the attachment of the blades to the hub (horizon-

tal and vertical hinge) very slightly depend on the design tvistedness of

the blade and the setting angle relative to the plane of rotation. It is S - -

evident from Fig . 9 that both for a twisted as well as for a plane blade

the frequency of the natural oscillations with preferential deformations

in the plane of rotation rather noticeably depends on the setting angle

_ _ _  

_ ¶
- 2 - - ‘~~~U —
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within the usual limits for helicopter blades. It is obvious that this

sensitivity to sett ing angle depends on blade characteristics, in parti-

cular , on the rela tionship of the rigidities in the plane of the least

and greatest rigidity. The results, shown in Fig. 10, of the des ign of

a blade with the greatest rigidity reduced by 10 times as compared with

the blade, represented in Fig. 9, illustrate this fact.

In conclusion, let us illustrate the advisability of taking blade

twist into consideration for calculating the frequencies and the forms

of the natural oscillations with respect to the blades of one of the

aircraft propellers.

Fig. 11 shows the resonance diagram for such blades , obtained by

taking into account twist in the cetrifugal force field, and also pre-

sented here is a resonance diagram which does not consider the design

twist of the blade , i.e., because this is done in design practice. One

~ ‘asily be convinced of the advisability of calcualting by a methodo-

S lo~’- , ihich takes blade twist into consideration.
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Flutter Analysis of a Helicopter Rotor in Flight

by V. V. Nazarov

Summary

Methods of flutter analysis of a helicopter rotor in flight
have been developed ; these methods make it possible to consider
blade elasticity, the effect of air compressibility and the plia-
bility of the cyclic pitch control system. A description of the
methods, a block diagram of the program and certain results of
f lut ter  analysis of rotors are presented .

Convent iona].~ Dssianat ions

.‘v — the number of rotor A10 uii ._~~._ dimensionless flying speed;
blades; Li — rigidity of blade in flex—

— rotational speed of ure;
the rotor (I f s ] ;  b — blade chord;

L() — moment of control rod GT — rigidity of blade in torsion;relative to the Lea— 
~~~

. Vy — angles of inclination of the
thering (flapping) cyclic pitch control respec-

, hinge; tively during def ormation of
~ — -+ — gear ratio of the the cables of the pitch and

blade—flapp ing con— lateral control ;
trol ; —complete angle of turn of the

~~~~• ~,. *. — coefficients of the transverse cross section of
total rigidity of the the j-th blade due to the
of the elements of the kinematics of the blade-flap-
check respectively of ping control and the elastic
the pitch and lateral deformations of the blade;
control and the col— — ...(Illegible)...
lective pitch control — ...(Illegible)...
from the control stick 

S 
-

to the cyclic pitch •~~u.4,—- relative position of the —control axis of the feathering hinge.
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S 

- coefficient of total 
- 

The broken line designates the
rigidity of elements derivative with respect to the radius,

S of cables from the the dotted line designates the deriva—
blade to cyclic pitch tive with respect to time.
control;

- - - — relative distance from
~ transverse cross sec-

tion of the blade to
the rotor axis;

- azimuth of the control
rod of the j-th blade
of the rotor;

W — f lying speed of the
helicopter (m/s];

j - rotor blade number
R (j— O ,l , ...,N—l);

- circular Mach number
of rotor;

— azimuth of the j—th
blade;

Introduction

The purpose of this work is the creation of a method of analyzing

a rotor for f lut ter  in flight , which makes it possible to consider both

the 4asticity of the rotor blades, as well as the pliability of the

control system, kinematically connecting the motion of all the rotor

blades.

This refinement of the analytical scheme, in comparison with the

analytical methods (3] developed earlier by other authors and in com-

parison with the analytical method discussed in [7] was evoked by the

following circumstances. First, the experiments with dynamically simi-

lar models of rotors of large diameter showed, that the effective cen-

tering of the blades (see (3]) for such rotors is not a comprehensive

characteristic of distributed antiflutter balancing. The balancer, which

changes the effective centering -y one and the same value, is mounted
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at d i f f e ren t  cross sections of the blade; it cahnges the critical num-

ber of revolutions of rotor flutter differently. This can be explained

only by the effect of blade elasticity, which, consequently, should be

taken into account in flutter analysis. Secondly, the pliability of

the control system cables, which is usually taken into account by

introducing an isolated blade of effective rigidity into the calculation ,

cannot be taken into account in the case, when the lateral control of

the helicopter is accomplished not by means of the cyclic pitch control ,

which is characteristic for helicopters of transverse arrangement. In

this case the rigidity of the attachment of the cyclic pitch control with

respect to the lateral inclinations is extremely great, and even in

the hovering mode the analysis of rotor flutter does not agree with

the calculation of the isolated blade [6]. Moreover, as is shown in

(7], the calculational set up , which makes it possible to calculate

rotors of high-speed helicopters and rotary-wing aircraft of different

arrangements in different modes, for example, in the mode of large

it is necessary to include in it the calculation of the effect of the

compressibility of air on the aerodynamic characteristics of the air-

foils and to make it possible to take into account their periodic

change under flight conditions more accurately, than by simple aver-

aging. This becomes necessary in caloulations with large numbers.

Moreover , the purpose of this work was the achievement of a method with

all its variations in a single algorithm and in a single program for

a computer, of sufficiently fast-response for carrying out parametric - -

4

investigations.

AssumDtionp, General E iuatipns
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In the investigation of flutter it is necessary to take the fol-

lowing factors into consideration as a totality:

- the elasticity of the blades and the rotor control system,

- the high subsonic tip velocities of the blades,

- the large nonlinear forces, close in character to the forces of

•..(Word illegible)... dry friction arising during oscillations

of the blades in the feathering hinge, loaded with centrifugal forces,

- the nonsteady-state nature of the flow around the blades, when

disturbances remain for a long time close to the spinning disk.

The following assumptions are introduced when developing a method

for analyzing rotor flutter.

1) the hypothesis of p lane transverse cross sections is assumed

valid, in accordance with which the blade is replaced by a beam with

variable elasto—mas linear characteristics, to which is fastened

nondeformed transverse plate—sections;

2) the blade is considered untwisted ; we disregard its static

flexural and torsional deformations; 
-

3) the mass of the blade is assumed distributed in the plane of the

chord;

- 5 - - - ;•
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4) before the appearance of the oscillations the plane of the blade

chord is assumed perpendicular to the rotor axis;

5) the flapping and drag hinges are assumed to be located at one

stationary point, at which the boundary conditions at the blade root

are assigned;

6) the hypothesis of stationariness is assumed valid in determining

the aerodynamic effects on an oscillating blade;

7) the asaumption,approximately valid for the majority of blade

designs is introduced; this assumption states that before the appear-

ance of oscillations the axis of rigidity of the blade is a straight

line, coinciding with the axis of the feathering hinge.

In the assumptions enumerated, the differential equations of the

movement of a blade element of unit length can be written in the fol-

lowing form (see [2], [3])

(ElM’)’ +~~11~ 
— — ~~1 [a,’/mrdr} ~~~~ ~~~~ ~~~ ,, — ~

— (oT~’y + ~~~~~~ + .‘r{N;f a~sdrj+.sl~ ÷ w-..o,
’
~ 

- (1)

where P~ and are a linear aerodynanic force and moment, acting on

an airfoil, oscillating in a plane p.rallel flow.

The expressions for Pr and M , derived on the basis of the

hypothesi. of stationariness (1] have the f orm
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~~ %‘,“l 
- 

- (2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where

V~~wr+Wcasy; I’—— W sIn~ ; c..— —
~~~
‘
~~ A~,z— ~~~lS (c ,5~y,.

The differential equation8 of (1) are used for investigating the

oscillations of blades during flutter, which arise and develop near

steady—state flywheel motion.

The aerodynamic coefficients of the profiles of the transverse

cross sections of a blade (~~. 
V. and 

~~~~
. which enter into the

equations of (1), essentially depend on the magnitude of the local

Mach number, i.e., on the normal velocity component of flow V, incident

on the blade. Since the velocity of the incident flow V varies period i-

cally with time, then the aerodynamic coefficients are periodic func—

tions of time and at each given moment they are different for different

cross sections of the blade. Thus, the equations of (1) represent a

system of differential equations in partial derivatives with variable

coeffic ients, which are periodic functions of time. In forming the

boundary conditions for equation system (1) a number of assumptions is

introduced , which schematize the rotor control system. In this case,

the usual type of rotor is examined with individual- hinge attachment
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of each blade to the hub and with cyclic pitch control. It is assumed,

that all the elements of the control cables are weightless and the

elasticity of the control cable elements is taken into consideration by

introducing appropriate elastic elements. The friction forces (see (3])

are taken into account only in the feathering hinge, since the magnitude

of the moment of these forces is of approximately of the same order as

the magnitude of the moment of tl-ie external forces acting on the blade.

It is possible to show (5], that with these assumptions the boundary

conditions in the root of each blade take the form (see [53)

j~e,~fOj ~ 5
, ‘4 ~

(3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~

where the magnitude of (~ expresses the connection between the rotor

blades through the cyclic pitch control and is equal to the displacement

along the vertical of the lower point of attachment of the control rOd

of the i—tb blade of the cyclic pitch control.

It is possible to show (5], after having compiled the equations of

equilibrium of the cyclic pitch control under the effect of all the

elastic forces, that

+~~~1~ ~~~~~~ * + ii,,*),,, •(O, + 20,~~~~,Mfl% +20,tOl$,C0.tJ. (4)

where

I ‘ - I  .
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It is shown in work (73, how the equation of flutter by the Bubnov-

Galerkin Method reduces to a system of usual equations with periodic coef-

ficients. Taking the pliability of the cyclic pitch control into account

the equation of f lut ter  for the j—th blade takes the form

Ci1 + + ~~(S(O+ C’J~ , +
-‘i- A — -4,~-- ~ (G , + 2G~ sin sin 1~ + 2G, cot j .~ cot $~

,) = 0

(j.~ O. 1. 2. . . . ; N— 1); (5)

here xj is the vector of the generalized coorditates of blade motion;

G is the matrix of the inertial coefficients;

A is the matrix of rigidity;

C is the matrix of the centrifugal inertial coefficients;

D(g) iø the matrix of aerodynamic damping;

B(t) is the matrix of aerodynamic rigidity.

If k
~, 

k~, k5 are infinitely great, which correspond s to the rigid S

fastening of the cyclic pitch control, then 0 and system (5) devel—

ops into a flutter equation system for an isolated blade.

In those cases, when the coefficients of rigidity of the cables of

pitch and lateral control differ greatly from each other or the elastic

attachment of the nonrotating part of the cyclic pitch control is such,

that the center of rigidity of the attachment is located relatively far

from the axis of the rotor , it is necessary to solve the flutter problem

of the rotor as a whole.
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In those cases , when the oscillations of a rotor with flutter have

the aspect of normal forms ( for example, in a hovering mode with identi-

cal rigidities k1 and k?, it is possible to reduce a rotor flutter problem

as a whole to an examination of the oscillations of one isolated blade with

different values of equivalent rigidity of the control system, which cor-

respond to different normal forms of rotor oscillations.

Taking into Account Blade Elasticity and the Pliability of the

Control Cables of Cyclic Pitch Control

The method of analyzing the flutter in an isolated blade was discussed

in work [7], in which employing the Bubnov-Galerkiri Method the separate

inherent forms of flexural and torsional oscillations of a nonrotating

blade as an absolutely rigid body were taken as natural forms of flexural

and torsional oscillations. A calculational method was proposed in this work,

which made it. possible to take blade elasticity into account, which was

attained by introducing additional flexural forms of oscillations, obtained

beforehand from frequency calculation. In this case, in order that it would

be possible to use the separate natural forms of the oscillations of a

beain a substitution of the variables of the following form is introduced

S 

v(r . t)em
~ fr, i)—.s.~ (6)

which made it possible to separate the boundary conditions in the blade

root.

In this case, it is assumed that
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since the moment of the external forces relative to the flapping hinge

is much greater than the moment of reaction in the blade setting.

In analyzing the flutter of an elastic blade employing the Bubnov-

Galerkin Method the zero and the first natural form of the flexural and

the first natural form of the torsional oscillations of a nonrotating

beam in a vacuum are taken. The friction in the feathering hinge both for

an absolutely rigid, as well as for an elastic blade is taken into cons d—

eration in the form of additions to the forces of aerodynamic damping.

As was shown in a number of works (see, for example, [5,6]) , the

pliability of the rotor cyclic pitch control, arising due to the flexi-

bility of the control cables , can have a considerable effect on rotor

flutter, and also the peculiarities, as the different rigidity of the

circuits of the pitch and lateral control, can even introduce qualitative 
S

changes in the flutter pattern. Mi attempt at analyzing rotor flutter in

the flight mode taking into consideration the pliability of the control

cables of the cyclic pitch control leads to great computational difficul-

ties, mainly because in this case it is necessary to investigate a system

of differential equations with periodic coefficients of a higher order

than occurs for an isolated blade.

5,

The lowering of the order of this system of equations by the method ,

which is employed in investigating ground resonance, generally speaking,

is not possible. Work (5] substantiated the application of this calcula—
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tional scheme by analyzing the accurate solutions of flutter equations for

certain particular cases.

According to this work, in equation system (5) the susbtitution of

of variables èf the following form can be carried out

—Y~ +)-~ 
COS .(j 1- )‘,SIfl /~~

. 
(7)

After this substitution an equivalent system of differential equations

is obtained relative to the functions of y, which contains periodic coef-

ficients of the form sin KNt (K is a whole number and greater than unity).

Thus, the averaging of coefficients with this method leads to smaller

errors, than with the method of averaging discussed in [7]. Thus, substi-

tuting (7) in (5) and orthogonalizing the discrepancy to 1, cos~~, sLn~ 1

in a set of values of discrete variable j, we will obtain an equation sys-

tem of n times higher order than for an isolated blade ( n is the number

of terms in representation (7)].

It is possible to show (5], that as a result of transformation only

periodic coefficients of the type sinKNt, cosKNt can remain in the new S

equation system, where K is an integer the average of which does not 
S

affect the boundary of flutter, since the frequency of the oscillations

during f lu t te r  is close to the frequency of the revolutions. The main

diff icult ies  in the transformation is the process of orthogonalizing to

functions (7). It was proposed in work [5] to represent the periodic

coefficients D(vJ; and I(~~~,) by trigonometric polynomials. With this ap-

proach it is possible to obtain a new equation system in closed form only

for an incompressible gas. The consideration of compressibility makes
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such a method of calculating analytical express ions for coeff icients of

matrices D(~ ) and B(y~) unacceptably cumbersome.

However, in carrying out the indicated calculational method on an

electronic computer it is proceed in the following manner. Let us substi-

tute in (5)

1_ ;(z) i : I
- S

S 

‘~~~‘~~“ j  \‘~“i 
• 

S

0 ~~~~~~~ - S

~~~~~~~~~~~~~~~ 

S (8)

~~~ 
;.. ( - ,. (: ~

Let us orthogonalize the obtained discrepancy
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to 1, cos ~~~, , sin -
~ , 

, ... in the set of values of discrete variables

~~. j . We will obtain a system of in x n equations (n is the order of the

matrices A, B, C, D, and m is the number of terms in substitution (8)]

with constant coefficients.

Thus, in analyzing an- elastic blade for flutter taking cyclic pitch

control into consideration it is necessary to investigate the stability

of the solutions of a system of 18 differential  equations of the first

order with constant coefficients. If in equation (9) we set G5 — 0,

— 0, C — 0, then the connection between the blades through the cyclic

pitch control disappears and system (9) now represents a system of dif-

ferential equations of an isolated blade, but which takes into considera-

tion a greater number of harmonics of osc illations, than in the simple

S averaging of the periodic coefficients in equation (5).

The question o-f the stability of the solutions of such approximate

equations reduces to an analysis of the roots of a characteristic equation

of this system. The order of the system of such equations, and consequent-

ly, also the accuracy of the calculation of the boundary of flutter depends

on how many forms of natural oscillations we take for the isolated blade

and how many terms are taken in substitution (7) .

An analogou s procedure of approx imate investigation of the stability S

of a system of differential equations with periodic coefficients was used S_ s

in work (9] in investigating the ground reaonsac. of a helicopter rotor. 
S

The effect on the stability of the motion an~ he flutter of a helL—
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copter rotor of such factors , as blade elasticity and compressibility of

the flow incident on the blade was investigated in this work, in contrast

to the works indicated above. The maximum permissible order in such a

method of the investigation of stability, achieved on an BESM-3 computer,

is 12, i.e., mu ~< 12, where n is the number of natural forms of oscilla-

tions of an isolated blade (in 2 or 3), and m is the number of terms in

substitution (7).

Results of the Analysis

Fig . 1—7 show the results of the f lut ter  analysis of an isolated

blade and a rotor in accordance with a program compiled for the BESM-3

computer. S

The main parameter, which determines the margin of safety from flutter,

is the margin with respect to parameter x~ . The variation in the effec-

tive centering of the blade to the assigned was attained by loading the

trailing and leading edge with a load corresponding in magnitude. Fig. 1

shows the results of the flutter analysis of a dynamically similar model

of a helicopter rotor blade of large diameter . The blade , having considerr

able elasticity in the plane of the flap or stroke was tested for flutter

with different antiflutter balancers , which were located on the leading S

edge at different sites over the radius. S

It was ascertained in the experiment, that the variation in revolutions

depends not only on the increase in the effective centering, but also on

the site at which the antiflutter balancer is located . The flutter analysis
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of the model, carried out taking three degrees of freedom into account ,

confirmed this dependence. The margin with respect to aerodynamic cen-

tering for an elastic blade is equel to ~~~~~ (where is the increase

in effective centering for a semi-rigid blade in the i—th cross section;

is a coefficient, which depends on r~ and is approximately equal to

r~). For a semi—rigid blade in accordance with the calculation, the criti-

cal revolutions depend only on the the magnitude of the antiflutter bal-

ancer. Fig. 2 gives the results of the calculation of the critical revo-

lutions for an elastic blade depending on flying speed. It is evident,

th.t with an increase in M number from zero to 0.25, the critical revo-

lutions of the blade fall off by approximately 10%. Fig. 3 shows the

change in the decrements for elastic and rigid blades during transit of

the flutter zone boundary. As is evident from the graphs, the increase

in the oscillations in a blade, having considerable elasticity, during

transit of the flutter zone boundary, is an order greater , than for an

analogous rigid blade. r I
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Key: (1) Calculation; (2) Exper- Fig. 2
itnent ; (3) Elastic blade.

Key: (1) Incompressible gas; (2) 2 deg-
rees of freedom; (3) Compressible gas;
(4) 3 degrees of freedom; (5) Compres-
sible gas; (6) 2 degrees of freedom.
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Fig. 4 shows the results of the

flutter analyses obtained by different

~ r ~~~~~~~~~~~ T : : : approximate methods, which take into

~ ~, account the different number of harmon-

- ~~~~~~~ ,~~~~

‘ 

- - ics of periodic coefficients and gives 

a comparison of the calculations with

- an accurate solution. It is ev iden t

S from the results of the calculation,

that “simple” averaging of th3 periodic

: : : : : : : : : : : = coeff icients* makes it possible with
~1 

- — -
--  - - — sufficient accuracy for practical pur—

~~~~~~ + 
._J_- - — poses to estimate the flutter boundary

L [EEI I j ~L~j 1- - to a flying speed of ~~ O.25.”Three-

/ j
~
) IJ~: 

term” averaging after the introduction

Fig 3 of substitution (7) makes it possible to

Key: (1) Elastic blade (2) Corn-
rather accurately carry out an estimationpressible gas; (3) Rigid blade;

(4’~ Incompressible gas. of critical centering to a flight mode

of ~i — 0.7— 0.8.

It is also eveident from the figures shown, that the critical center-

ing , obtained by taking the periodically changing coefficients into con-

consideration , decreases more rapidly than the critical centering obtained

during calculation with averaging of the periodic coefficients. For each

averaging method there is a maximum value of the number ~ , for which

we will employ this calculational method. The greater the number of terms

* 121 is substitution of ~ • y- (simple averaging) , 122 is substitution

of x — + cos , 123 is the substitution of — 
~o 

+ COB +

+ sin

T 5 -  • —~‘-~~ 
S S



S--
~~ ~~~

-5

65.

in substitution (7), then for the greater it is possible to carry out

the caicu]stion. However, beginning with 0.9 it Is practically

impossible to carry out the calculation with the number of terms in

subatitution (7) in )‘ 4, since here computer error begins to be ex-

pressed. The same pattern is also observed in analyzing rotor flutter.

~~I~va~
g S.Ngaj

~~~ 
- - Jg,a

L ‘{ ~ kgiiwi’r

:::~~T:?~I - - :  /

.1 Key: (1) Rotor; (2) Flutter.
Fig. 4
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ter; (3) Accurate solution

Key: (1) Rotor; (2) Compressible flow;
(3) Incompressible flow.

The practical range of numbers , in which it is possible to carry

out helicopter rotor flutter analysis is — 0 ~ - 0.8.
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Fig. 7 presents the results of the flutter analysis of a helicopter

rotor , which hae different control cable rigidity. The caaculation was

carried out observing the condition that the total rigidity of the circuits

of pitch and lateral control remained constant. Changes in the margin

with respect to parameter x~ . were obtained for compressible and incom-

pressible gases. It is evident from the figure, that calculation under

the assumption of incompressibility qualitatively reflects the pattern

of the variation in margins depending on the relationship of the rigidities

of the control cables for different flight speeds. A sharp change in the

increase in margin in the region k
~
/k
~ 

— 1 for flight speeds M~, ~ 0 is

accompanied by a variation in flutter frequency

Concluei~ns

1. For a blade , having considerable elasticity in the flapp ing p lane ,

the effectiveness of an antiflutter balancer depends not only on its

magnitude, but also on the site along the span , at which it is located .

2. The oscillations of an elastic blade during transit of the flutter
S 

bbundary increase by an order more rap idly, than for an absolutely rigid

blade.

3. The method of simple averaging of the periodic coefficients of

S flutter equations when p) 0.25 leads to an exaggeration of the actual

margins with respect to the cent.ring, which ensures safety from flutter

S 

in flight. 
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