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I INTRODUCTION

This report describes the MUSAC II computer simulation model; the
model can simulate an acoustic classification decision process using
passive sonar information available in scenarios involving multiple
targets. The study objective was to demonstrate the MUSAC II computer
program by analyzing a scenario in which a submarine uses Lofar and Demon
information to classify a pair of ships. The purpose of the demonstration
was to show the capabilities of the computer program. This study, the
fourth of a series, completes the acoustic classification modeling effort
that originated in SRI's evaluation of acoustic countermeasures concepts
and techniques for the Office of Naval Research (ONR) in the early
1970s.

A, MUSAC Background

In 1971, ONR initiated a long-term research effort with SRI under
Contract N0O0014-71-C-0119 to address modeling of the acoustic classifica-

tion process. The general objective was to explore alternative analytic

| methodologies and to recommend a methodology to represent passive sonar

‘ classification during a submarine operation against a surface ship group.
More specifically, the methodology was to be suitable for use in evaluating
tactical deception concepts, including deployment and employment of acous-

tic countermeasures in the protection of naval surface forces. After an

extensive investigation into ways to represent classification, a methodology
was created., It was called "MUSAC," an acronym for '"Multiple Source

Acoustic Classification'.

The objectives of a second ONR research task, started in 1973 under
Contract NOOOl4-71-C-0419, were to recommend modifications or extensions
for incorporating MUSAC routines into existing large-scale antisubmarine
and antisurface warfare engagement models, and to apply MUSAC independently

for evaluating classification problems. Although several large-scale




models, such as APSUB, APSURF, and SIM II, were investigated, the study

effort did not succeed in incorporating MUSAC into those models.,

The basic product of the second MUSAC task was a computer model that
was used on two occasions. The first application was the acoustic
deception examples prepared for the project report, The second application
was in a Harpoon targeting study and was the first true test of the MUSAC
methodology; unfortunately, methodological difficulties arose when the
model was used for convergence zone targets. In concluding the second
research effort on MUSAC, a draft report was submitted to ONR for review.
At the direction of the project scientific officer, the draft report was
also reviewed by several Navy laboratories and private companies. In
addition to giving valuable criticism, several respondents expressed a

need for a model like MUSAC to apply to acoustic classification problems.

A third MUSAC effort was started in 1975 under Contract N0O0l4-76-C-
0166, The objective was to enhance the MUSAC methodology by incorporating
the suggestions received from its review, and to solve several problems
encountered during the application of the model. The project objectives
were to generalize and modify the existing computer programs, to analyze
and resolve methodologic questions, and to revise and expand MUSAC
documentation. The third MUSAC effort was not completed, because the
study direction was changed by ONR about halfway through the project. As
part of an ONR reorganization, the MUSAC project was transferred from
Code 431 to Code 230. After the new scientific officer evaluated the
methodology's potential for his Fleet-oriented program, the project was
redirected to a tactical development task totally unrelated to the goals

of MUSAC. Even with only half the initial funds, good progress was made

toward achieving the objectives.

The MUSAC part of the third project produced a completely revised
and documented methodology. The MUSAC methodology was restructured
extensively enough that it was called '"MUSAC II" to distinguish it from
the early methodology. Major revisions included a new formulation of a
multifeature sonar detection model, different likelihood calculations,

and a more generalized decision-making procedure. Although the MUSAC II




methodology was well-documented} there were not enough funds to implement
the methodology by developing the computer program and demonstrating its
capabilities. Revising the original computer model was not feasible
because of the many basic changes in the methodology. Thus, MUSAC II

required a new computer program.

In 1976, SRI International supported an IR&D project to develop a
MUSAC II computer program. The program was coded, keypunched, and
corrected for compilation errors; but it was not demonstrated with specific

input parameters and functionms.

Demonstration of the computer program was the goal of the present
MUSAC project; the program and its capabilities are documented in this

report,

B. MUSAC II Application

The MUSAC II model may be (1) used as a component of a larger
Monte Carlo acoustic warfare engagement simulation, or (2) used by itself

as an analytical tool. In the first application, the model can provide

classification decisions for the selection of tactics in dynamic engage-
ments in which the simulated kinematics are not predetermined. In the
second application, the model can predict classification probabilities

and perform sensitivity analyses of acoustic parameters. MUSAC II employs
the standard acoustic parameters of classical sonar detection theory. By
using a physical=based approach, the model represents the inherent classi-
fication capability of a sonar system, particularly the sensitivity of

the classification decisions to signal-to-noise ratios.

Large, detailed computer simulations of the future are expected to
be an active research medium because of constant improvements in computer
capabilities and speed. Since the MUSAC II approach is much more
sophisticated than the ad hoc acoustic classification algorithms currently
used in engagement simulations, the model will be useful in future sonar

systems analyses using computer simulation.

l. J. R. Olmstead and T. R. Elfers, "MUSAC II, A Method for Modeling
Passive Sonar Classification in a Multiple Target Environment,"
NWRC-TN-62, SRI International, Menlo Park, California (February 1976),
UNCLASSIFIED, AD-A028-936.
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C. MUSAC II Methodology and Computer Program

The MUSAC II methodology is a ma.hematical representation of passive
sonar classification, and the principal attribute of the methodology is
its multiple-target capability. Almost without exception, other models
allow for only one target at a time. The methodology is based on the
detection of acoustic features; in this way, spectral and spatial
acoustic information is modeled so that the sonar system's bearing and
frequency resolution influences the classification outcome. The acoustic
features are defined by the analyst; the features can be narrowband,
broadband, or modulated broadband classification clues (for example,
Lofar or Demon lines). The acoustic features are represented by
Bernoulli random variables so that the stochastic structure of the model
provides for realistic random variations of acoustic data. A dynamic
encounter is represented by a time-step simulation. The MUSAC II
methodology is structured for sequential decision-making by the update
of classification information and the change in kinematic variables over
time. From Monte Carlo replications of the encounter, the probability

of making selected tactical and classification decisions can be estimated.

The MUSAC II methodology uses a Bayesian decision-making approach.
The analyst first formulates a set of multiple-target hypothesis that
will be used in the engagement simulation. The probability of detecting
specified acoustic features is calculated at each time step, for each
sonar look angle, and for each hypothesis (the true target configuration
is one of the hypotheses). These detection probabilities are then used,
in conjunction with the observed random features, to calculate the
likelihood that the data would be observed if the hypothesis were true.
The likelihoods and the prior probabilities are then combined to produce
the posterior probability that the Ith hypothesis is true, given the
observed data. The analyst defines tactical or classification decisions
that are to be simulated, the value of making the decision when each
hypothesis is true, and value thresholds. With this decision structure,

MUSAC 1I determines if a decision is to be made at the present time .

step; if not, another time step is simulated and more data collected.

AR T e




The computer p. ogram is coded in Fortran Extended .or SRI's CDC
6400 computer. The source deck is approximately 1,000 cards; and
with the currently programmed array dimensions, the program rejuires

about 32,800 words of memory. The running time is directly proportional

to the number of runs, number of

the running time is influenced to a lesser extent by the number of

target tracks, number of hypotheses, and number of features. For example,

with the parameters:

3 runs
20 replications
10 time steps
target tracks
9 hypotheses

7 features,

the running time was 121 seconds.

replications, and number of time steps;
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IT SINGLE-TARGET EXAMPLE

This chapter describes how the MUSAC II model can simulate a single-
target scenario; the next chapter deals with the double target case.
The input parameters are first explained, then the model output is
discussed, and finally variations on the single-target scenario are
investigated to show the sensitivity of classification probabilities to
various input parameters. Appendix A contains a listing of the computer
model. Appendix B contains (1) a listing of Subroutine INPUT, which
shows the input parameter values used in the example; and (2) a listing

of the output, which shows the results of the single-target simulation.

The single-target scenario involves classification of a single
surface ship by a submarine using Demon information from a hull-mounted
array and Lofar information from a towed array. The initial range
separation between the target ship and the submarine is about 40 nmi, and
the two units approach each other on a near collision course. The engage
ment lasts for about l.5 hours and ends when the units are 6 nmi apart.
During the l.5-hour period, the submarine must classify the target as one

of three classes of surface ships.

Ay Input Parameters and Functions

The model requires 50 parameters and six user-defined functions.
Many of the parameters are multivariate, meaning that they are arrays
using one or two subscripts, Table 1 lists the input parameters and
functions. The input list is subdivided into seven categories. The
following sections discuss what the parameters mean, how they are used,

and what value they assume in the single-target example computation.

The input parameters for the model are contained in Subroutine
INPUT in the form of DATA statements; this method of inputting parameters
was chosen because of the versatility of Fortran DATA statements, even

though a small price is paid in recompiling INPUT each time the program

PRECEDING PAGE ELANKeNOT FILMED
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Table 1

INPUT PARAMETERS AND FUNCTIONS

1. Scenario Parameters
GV Random number generative value
NREP Number of replications
NMAX Number of time steps
TS Time step duration (min)
IMAX Number of hypotheses
i MMAX Number of tracks
i ' KT(I,M) Hypothesized target type
: IR True hypothesis number
PRIOR(I) Prior probability of hypothesis
KDMAX Number of tactical decision alternatives
VAL(I,KD) Value of decision
FVAL Decision threshold of test ratio

2. Target Track Parameters

XT(M) Target initial x-position (nmi)
YT(M) Target initial y-position (nmi)
CT(N,M) Target course (deg)

ST(N,M) Target speed (kt)

DT(N,M) Target depth (ft)

3. Target Classification Parameters

JMAX Number of features

NF(J) Feature off/on (0 = off 1 = on)

KF(J) Feature type (1 = Lofar 2 = BBand 3 = Demon)

FRQ(J) Center frequency (Hz) 2

PLL(J,KT) Lofar line level (dB // uPa” at 1 yd) also
; PLL(J,KT) Demon modulation level (dB) ?

PBB{NB,KT) Broadband source spectrum (dB // uPa“/Hz at 1 yd)
s FQB(NB,KT) Frequency points for PBB (Hz)

8 !
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Table 1 (Continued)

4, Sonar Array Parameters

LAMAX
LA(J)
KA(LA)
DH(LA)
DV(LA)
HN(LA)
VN(LA)
SL(1A)
XO(LA)
YO(LA)
CO(N,LA)
SO(N,LA)
DO(N,LA)
NA(N,LA)
PNN(NF,LA)
FQN(NF,LA)

5, Signal Processing Parameters

Number of arrays

Array number

Array type (1 = circle, 2 = line)
Horizontal array size (ft)

Vertical array size (ft)

Horizontal number of hydrophones
Vertical number of hydrophones

Sidelobe level (ratio)

Array initial x-position (nmi)

Array initial y-position (nmi)

Array course (deg)

Array speed (kt)

Array depth (ft)

Array off/on (0 = off, 1 = on) 9
Broadband noise outside array (dB // uPa“/Hz)
Frequency points for PNN (Hz)

LP(J)

WTH(LP)
SCR(LP)
FCS(LP)
TOT(LP)
DET(LP)

6., Acoustic Fluctuation

Processor number

Bandwidth (Hz)

Scan rate (numter/min)

Number of feature cells per scan

Total time of feature integration (min)
Detection threshold (number of sigmas)

Parameters

MIX(KR) Mixing constant (0 = gauss, 1 = jump)
SDV(KR) Standard deviation of random process (dB)
TAU(KR) Relaxation time of random process (min)
KR: 1 = Lofar 4 = Noise
2 = BBand 5 = PLoss
3 = Demon
7. User-Defined Functions
FLL(J,KT,ST,DT,ASP) Lofar and Demon source level

FBB(KT,FRQ,ST,DT,ASP) Broadband source spectrum leve.
FNN(LA, FRQ, SO,DO,ANG) Noise spectrum level at array output

FAZ(FRQ, RNG, DO, DT)
FBM(J, FRQ, BRG,ANG)
FSL(LA, FRQ)

Propagation loss
Beam pattern ratio
Reference beam pattern ratio

9 |
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is run. The input functions are coded as individual Fortran functionms,

thus allowing for easy changes.

L. Scenario Parameters

GV is the generative value used in the library subroutine
RANSET(GV) to start a sequence of random numbers through use of the
function RANF. The value of GV can be set to any large positive number,
for example GV = 583, The model is programmed so that the random number
sequence in one replication is independent of the sequence in another
replication. However, the random number sequence is not independent from
run to run. By using the parameter GV, the same sequence of random
numbers is used from one run to another, providing that each run calls
the random number generator the same number of times. The purpose of

repeating the sequence is to allow for parameter sensitivity analyses

that reflect only the variation of the parameters, not the randomness

of the model.

NREP is the number of Monte Carlo replications used to compute
statistics of the engagement. The single-target example computation uses
20 replications, although 10 times as many would be preferred. Since the
purpose of the study was model demonstration rather than model accuracy,

a small number of replications was adequate; a small value of NREP allowed

for more model demonstration runs because the cost per run was less.

NMAX is the number of time steps in the engagement, and TS is
the duration of each time step. The example computation used 10 time
steps of 10 minutes each, for a total engagement time of 100 minutes.
Fairly large time steps were used to reduce computer costs. The duration
should be set so that (1) the target will not "jump over'" phenomena such
as convergence zones, (2) the total integration time is not shorter than
the time step, and (3) the geometry will not change significantly between
time steps. The last point relates to the problem of using the geometry
at a point in time as an approximation of an average geometry over the
time step. The model assumes that the geometry at the end of the time
step is adequate for simulating the integrative processes over the whole

time step.

10
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IMAX is the total number of hypothetical target configurations.
For the single-target example there are three hypotheses: (1) the target
is Type 1, (2) the target is Type 2, and (3) the target is Type 3. For
multiple target cases, the track number must also be specified in the
definition of the hypothesis. For example, a hypothesis might read:

The target on Track 2 is Type 3.

MMAX is the total number of target tracks in the simulation;
MMAX = 1 for the single-target example. Tracks are thought of as
entities unto themselves; when different types of targets are placed on
the tracks, different hypotheses are generated. The computer model is
simplified by allowing only the tracks of the true target configuration
to be used in forming the hypotheses. Thus there is an underlying
assumption that the geometry of the engagement situation is known. This
simulated knowledge may have an actual basis as objective knowledge (a
tracking solution) or subjective knowledge (long-range targets imply
low signals and frequency attenuation). The simulation methodology must
use reasonable geometries for computations; since the computations were
already overburdened with replication, time-step, and feature calculations,

the inclusion of pseudo-tracks was not attempted.

KT(I,M) is an array that defines, for the I-th hypothesis, what
type of target is on the M-th track. In the single-target example
KT(1,1) = 1,2,3 for I = 1,2,3. Thus for the first hypothesis, target
Type 1 is on Track l; for the second hypothesis, target Type 2 is on
Track 1; and so on. As currently programmed, up to 10 hypotheses can be
defined over two tracks; however, these array dimensions can easily be
changed. There is no computer restriction on the number of target types,
since "type" is the value of the array, but many types implies many
hypotheses, so in effect the number of target types is limited to the
number of hypotheses (or less, in the case of multiple target configura-

tions).

IR is the hypothesis that represents the real configuration. In
the single-target example IR = 1 for the first run; thus a target of
Type 1 is actually present, and it may be classified as Type 1, 2, or 3

by choosing Hypothesis 1, 2, or 3. The single-target example makes
11




three separate runs for IR = 1,2,3 so that a 3-by-3 classification matrix
can be formed., The MUSAC II methodology does not require that the real
configuration be present as one of the hypothetical configurations;
however, the computer model was simplified by designating one of the
hypotheses as true. Also, the interpretation of '"correct" classification

is more clear when one of the hypotheses is true.

PRIOR(I) is proportional to the a priori probability that the
I-th hypothesis is true. In the single-target example, the priors are
equal to 0.1 for all three hypotheses (the priors do not have to add to
1.0, since they are used as weights in the calculations). A priori
knowledge, such as order-of-battle estimates or historical track records,

can be modeled by appropriately chosen priors.

KDMAX is the total number of tactical decisions alternatives,
In the first part of the example calculation, KDMAX = 3 to correspond
with the three possible target types. For this case the ''tactical
alternatives'" are decisions to classify the target as Type 1, 2, or 3.
Later examples have KDMAX = 2, and the tactical alternatives are (1) to
attack, or (2) to break off the approach. As currently programmed, up

to 10 decision alternatives can be defined.

VAL(I,KD) is an array that specifies the value of decision
alternative KD, given that the I=-th hypothesis is true. When the

decision alternatives are to classify the target, the VAL(I,KD) matrix is:

KD

In other words, a value of 1 is assigned to a correct classification and
a value of zero to an incorrect classification decision. When the

decision is to attack or not, the VAL(I,KD) matrix is:

12
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KD

300 -500
I | -100 100
-500 100

where the first column is the "attack'" decision. The values imply that a
high penalty is paid for attacking Type 2 and 3 targets; however, a high
penalty is also paid for not attacking a Type 1 target.

FVAL is the threshold against which a computed ratio is tested.
The ratio is the '"maximum expected value'" divided by the "expected
maximum value.'" '"Value" refers to the decision alternative values
VAL(I,KD), and "expected" means that the values are averaged by using
the posterior probability distribution POST(I). The test ratio is

defined as:

Max [ZI POST(I) VAL(I,KD)]

F =
Z; POST(I) Max[VAL(I,KD)]

where the maximizing operation is over the decision alternatives KD. The
F ratio is between 0 and 1, and for the example calculation FVAL = 0,95.
When F is less than FVAL, the decision is deferred and more information

is collected by letting the model advance another time step; when F is

equal to or greater than FVAL, a decision is made. The chosen decision

alternative is the one that corresponds to the maximum expected value:

1 1
Select alternative KD* such that: ‘
E(KD*) = Max E(KD) . ‘
E(KD) is defined as the expected value:

E(KD) = zI POST(I) VAL(I,KD) .

The above decision-making method is slightly different from that described

in the MUSAC II methodology report;1 there, the difference of numerator




and demonimator was tested instead of the ratio., OUne way works as well
as the other, and the present method has the advantage of using a
dimensionless input parameter, FVAL, that does not have to be changed

when the VAL matrix is changed.

2. Target Track Parameters

XT(M) and YT(M) specify the initial position of target Track M.
The trajectory through time is defined by CT(N,M) and ST(N,M), the course

and speed values during the N-th time step. The model accepts target
depth, DT(N,M), as an input parameter, but does not currently use it in
any calculations. The primary use of depth would be in the calculation
of propagation loss; however, a depth-independent propagation model is
used for model demonstration. The single-target example uses a straight-

running target and has the following input parameters:

XT(l) = O nmi

YT(1l) = 40 nmi
CT(1,N) = 155 deg N
ST(1,N) = 25 kt N

Je Target Classification Parameters

JMAX is the total number of classification features that are
used to classify targets. The example uses seven features: three Lofar
lines, and two Demon lines in two bands (a total of four Demon features).
As currently programmed, up to 12 features may be used. Any combination
of Lofar lines, Demon lines in various bands, and broadband noise may
be defined.

NF(J) is an array that singles out classification features to
be used or ignored. When NF(J) = 1 the J-th feature is used, and when
NF(J) = O the J-th feature is treated as though it did not exist. NF
used to study the importance of individual features by turning them off

and then on in successive runs,
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KF(J) tells the model what kind of classification feature

J 133

KF = 1 Lofar line
2 Broadband noise

3 Demon line .

In the example run:

KF(J)
KF(J)

1 for J =1,2,3
3 for J = 4,5,6,7 .

Broadband noise is included as a feature in case the analyst desires

the "loudness'" of the target to convey classification information.

FRQ(J) is the center frequency of the J-th classification
feature. For example, the three Lofar lines are at 50 Hz, 100 Hz, and

400 Hz, and the two Demon lines are in two bands centered at 2,828 Hz
and 5,656 Hz (the geometric mean of the 2 to 4 kHz band and the 4 to 8 kHz
band). The frequency parameter is used primarily in the attenuation
calculation associated with propagation loss and in the beam pattern

calculation.

PLL(J,KT) is the line level of classification feature, J, for
target type, KT. For example, the Lofar line levels for Type 1, 2, and

3 targets are:

Feature Lofar Target Line Levels (dB)

J Line KT =1 2 3
1 50 Hz 155 155 0
2 100 Hz 0 150 150
3 400 Hz 150 0 150

where the Lofar line levels are in units of dB relative to 1 pPa2 at
1 yard. The very small value of O dB represents a missing line; for
example, Type 1 target has lines at 50 Hz and 400 Hz, but none at

100 Hz. The Demon line levels are also defined in the PLL matrix for
Type 1, 2, and 3 targets; for example:
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Feature Demon Band Target Modulation Levels (dB)

J Line (kHz) KT = 1 2 3

4 A 2 to 4 = 3 ~20 -20
5 B 2 to &4 -3 -3 -20
6 A 4 to 8 -3 ~-20 - 2
7 B 4 to 8 -20 ~3 -2

where the Demon line levels are decibel values of the square of the
modulation index. The large negative modulation levels represent

missing Demon lines.

PBB(NB,KT) is the broadband source spectrum level at frequency
points, FQB(NB,KT) for target type, KT. The spectrum is described by a
piecewise linear function with breakpoints NB; a maximum of six points
hay be specified. In the example calculation, the spectrum is assumed
to be identical for all three target types (for KT = 1,2,3) and is
described by:

NB  FQB(NB,KT)  PBB(NB,KT)

1 10 Hz 153 dB
2 100 Hz 155 dB
3 1,000 Hz 145 dB
é 4 10,000 Hz 125 dB

where the spectrum is in units of dB relative to 1 pPaz/Hz at 1 yard.
Figure 1 shows the broadband spectrum levels and Lofar lines for the

Type 1 target.

4, Sonar Array Parameters

b LAMAX is the number of sonar arrays in the model. As currently
: programmed, there can be a maximum of two arrays, and the example calcula-
tion uses both of them (LAMAX = 2),
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LA(J) specifies from which array Feature J is derived, 1In the

example:

2 for J

LA(J) =1,2
1 for J = 4,5

LA(J)

Thus the Lofar features come from Array 2, and the Demon features come

from Array 1.

KA(LA) specifies the type of Array LA, There are two types
currently programmed: KA =1 (circle) represents a cylindrical or
spherical array, and KA = 2 (line) represents a towed array. In the
example the first array is circular and the second is linear:

1
2 .

KA(L)
KA(2)

Thus the Lofar features are derived from the towed array, and the Demon
features from the hull-mounted cylindrical array. The difference between
the two types of arrays is in the way the beam pattern is calculated, as
described in the section on Function FBM.
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DH(LA) is the horizontal dimension, and DV(LA) is the

vertical dimension of Array LA, In the example calculations:

LA DH(LA) DV(LA)

1 7 ft 5 fE
2 60 ft 0 ft .

Thus the cylindrical array is 7 ft in diameter and 5 ft high, and the
towed array is 60 ft long (the vertical dimension for a line array is

ignored).

HN(LA) is the number of hydrophones in the horizontal direction,
and VN(LA) is the number of hydrophones in the vertical direction for
Array LA, In the example:

LA HN(LA) VN(LA)

1 15 30
2 11 1

Thus, the cylindrical array has 15 x 11 hydrophones that can receive
in any one direction, and the towed array has 30 hydrophones. The
number-of -hydrophones parameter is used in function FNN to calculate the

directivity index.

SL(LA) is the sidelode level of Array LA; it is input as a
ratio rather than as a negative decibel value. The example uses
SL = 0,01 for both arrays; this corresponds to a maximum sidelode level
of -20 dB, The function that calculates the beam pattern uses SL as a
limiting value so that the beam response is at least 20 dB below the

main beam response whenever the signal arrives outside the main beam.

XO(LA) and YO(LA) specify the initial position of Array LA. The
array's track is defined by CO(N,LA) and SO(N,LA), the course and speed

of Array LA during time step N. The model accpets the array depth
DO(N,LA) as an input parameter, but does not currently use it in any
calculation., As with target depth, array depth could be used in propaga-
tion-loss calculations. The tracks of the two arrays in the model

demonstration are given by:

18




P S P S P T P SN ey ey

Parameter LA =1 LA = 2

X0o(LA) 0 nmi -0.5 nmi

YO(LA) 0 nmi 0 nmi
CO(N,LA) 90 deg 90 deg
SO(N,LA) 10 kt 10 kt

The towed array follows 1/2 nmi behind the cylindrical array; both

move east at 10 kt.

NA(N,LA) specifies whether or not Array LA is operating during
time step N: NA = 0 means that the array is off, and NA = 1 means that
the array is on. The NA(N,LA) matrix can be used to turn off a towed
array during a course change, or to investigate classification informa-
tion on one array versus that on another. The example calculation leaves

both arrays on during the entire encounter.

PNN(NF,LA) is the broadband noise spectrum level outside
Array LA at frequency points FQN(NF,LA). The spectrum is described
by a piecewise linear function with breakpoints NF; a maximum of six
points may be specified., In the example calculation, the noise spectra

outside the two arrays are described by:

FQN(NF,1)  PNN(NF,1) FQN(NF,2)  PNN(NF,2)

10 Hz 120 dB 10 Hz 75 dB

300 Hz 65 dB 1,000 Hz 65 dB

1,000 Hz 65 dB 10,000 Hz 45 dB
10,000 Hz 45 dB

where the noise spectra are in units of dB relative to 1 HPaZ/Hz.

5. Signal Processing Parameters

LP(J) is the signal processor that produces Feature J; as
currently programmed, LP may range from 1 to 5. The example uses three
processors to correspond to the different signal processing parameters

for Lofar signals (LP = 1), and Demon signals in two bands (LP = 2,3),

WTH(LP) is the bandwidth of processor LP. The bandwidth should
be set to the natural width of the signal being processed; the model does
not have a mechanism to decrease the Lofar line level when the bandwidth
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is too narrow. A bandwidth larger than necessary will allow more noise
into the system and degrade detection performance. The example Lofar

lines are assumed to be 1 Hz wide, and the Demon bands are 2 kHz and 4 kHz

wide:
LP  WITH(LP)
1 1 Hz
2 2,000 Hz

3 4,000 Hz .

SCR(LP) is the scan rate of the processor; it is the number of
times per minute that a particular frequency or bearing region is
processed, For example, the Lofar lines are assumed to lie in a 0 to
600 Hz frequency region that is scanned once per minute, and the Demon
lines are assumed to lie in a 0 to 60 Hz modulated frequency region that

is also scanned once per minute:

LP  SCR(LP)

1 1 scan/min
2 1 scan/min

3 1 scan/min .

The number of times a feature is scanned in one time step is calculated

by:
NUM = SCR * TS .,

In the example, there are 10 independent observations (scans)

during each time step.

FSC(LP) is the number of feature cells in one scan for Processor
LP. In the Lofar case, one scan covers 600 Hz and the cell size is 1 Hz,
therefore, FCS = 600. For the Demon case, it is assumed that the
resolution is 1 Hz of modulated frequency, and a 60-Hz scan implies 60

feature cells:
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FSC(LP)

600 cells
60 cells
60 cells

By using the scan rate and number of features per scan, the averaging

time per scan for a given feature is:

TAV = 60/(SCR * FCS) seconds.

This is the averaging time in the time-bandwidth product used in calcula-
ting the standard deviation of the output of the signal processor. In
the example, the integration time per scan for a Lofar feature is 0.l s,

and the integration time per scan for Demon feature is 1 s.

TOT(LP) is the total amount of integration time. For example,

the Lofar signals are assumed to be traced on a moving paper recorder and
about 30 min worth of visual integration is available., The Demon signals

are assumed to have 1 mnin of integration:

LP  TOT(LP)

1
Z
3 10 min

30 min

10 min

The model allows for information to be accumulated over several time
steps. The number of time steps that are remembered past the current

time step is:

MEM = (TOT - TS)/TS

The memory for Lofar features is two time steps, and the Demon features

have zero memory.

The signal processor input parameters are in terms of scan
rate, features per scan, and total integration time because these are

systems parameters, The MUSAC II methodology, however, uses averaging
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time per observation, number of independent observations per time step,
and number of time steps to be remembered; these are the NUM, TAV, and MEM

parameters calculated using the model inputs SCR, FCS, and TOT.

DET(LP) the number of sigmas above the mean reference output
where the feature detection threshold is set. The example calculation
uses DET = 2 sigmas for all three processors. The processor output of the
data channel is the simulated average square pressure. The random output
is drawn from a normal distribution and compared to the threshold value;
if larger than the threshold, then the feature is detected. The mean
and sigma values used to set the threshold value are based on the statis-
tics of the reference channel; these reference statistics are usually
different from the statistics of the data channel. The feature detection

model is described in the MUSAC II methodology report.l

6. Acoustic Fluctuation Parameters

MIX(KR) is a parameter that determines the amount of Gaussian
fluctuation versus lambda-sigma jump fluctuations for acoustic

phenomenon KR:

KR Fluctuation in
1 Lofar line level
2 Broadband source spectrum level
3 Demon modulation level
4 Broadband noise spectrum level
5. Propagation loss

These five phenomena are simulated by random variables that are
correlated from one time step to another. When MIX = 0 the process is
pure Gaussian, and when MIX = 1 the process is pure lambda-sigma jump.
The example calculations use MIX = 0.5 which causes a mixture of the

two random processes.

SDV(KR) is the standard deviation of fluctuation phenomenon KR.
This parameter is the primary method for introducing '"modeling noise" into

the simulation. The classification performance can be degraded by
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increasing SDV. A value of SDV = 3 dB is used for four of the five

random processes; SDV = 1 dB is used for the modulation levels.

TAU(KR) is the relaxation time of the Gaussian process, and

TAU is also the mean time between jumps in the lambda-sigma jump process.

The example uses TAU = 3 min for all five random processes.

7. User-Defined Function

FLL(J,KT,ST,DT,ASP) is a function that calculates the Lofar and
Demon line levels. As currently programmed, it is a dummy function that
sets FLL equal to the input parameter PLL(J,KT). A more sophisticated
routine would include an empirically derived equation that functionally

relates line level to target speed ST, depth DT, and aspect angle ASP.

FBB(KT,FRQ,ST,DT,ASP) is a function that calculates the broad-

band source spectrum level for target Type KT at center frequency FRQ.
As currently programmed, the function simply interpolates the level/
frequency table, PBB(NB,KT)/FQB(NB,KT), to derive the spectrum level at
an arbitrary center frequency. A more sophisticated routine would make
the spectrum level a function of target speed ST, depth DT, and aspect
angle ASP, in addition to frequency and target type.

FNN(LA, FRQ,S0,D0,ANG) is a function that calculates the broadband

noise spectrum level at a center frequency, FRQ, at the output of Array
LA. The function first interpolates the level/frequency table, PNN(NF,LA)/
FQN(NF,LA), to derive the spectrum level outside the array. Then the
directivity index is calculated for either circle or line arrays by using
the array dimensions DH(LA) and DV(LA), and numbers of hydrophones HN(LA)
and VN(LA). (See the source listing of Function FNN in Appendix A for
the exact method.) The noise level at the array output is then computed
by subtracting the directivity index from the interpolated noise level.

A more sophisticated routine would make the output noise level a function
of array speed SO, array depth DO, and the point angle of the sonar
beam ANG.
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FAZ(FRQ,RNG,DO,DT) is a function that calculates the propagation

loss at a center frequency, FRQ, and range, RNG. The currently programmed

function has a spreading term:
66 + 17 log(RNG)
and a frequency attenuation term:
lL.4
0.08 * RNG * (FRQ/1,000) .

A more sophisticated routine would contain a table look-up that included

the effects of array depth, DO, and target depth, DT, in addition to

frequency and range. In the description of the MUSAC II methodology, two
propagation loss functions are possible: one a simulation of the real
propagation loss, the other a simulation of the sonarman's expectation of

the propagation loss. The real function would be used to calculate the

hypothesized signal level statistics. The computer model was simplified

by using FAZ for both the real and expected propagation loss functions.

} FBM(J,FRQ,BRG,ANG) is a function that calculates the beam
pattern ratio for Array LA(J) at center frequency FRQ when the target is

on bearing BRG and the beam is pointed at angle ANG (both angles are

measured from the course vector associated with the array). As a way of
limiting the computations, the pointing angle, ANG, is restricted to
equal the target bearings. Thus if there are two target tracks, Sub-
routine FBM is used four times each time step: the beam is pointed at
Track 1 and the response from Tracks 1 and 2 is calculated; the beam

is then pointed at Track 2 and the response from Tracks 1 and 2 is again !
calculated. The FBM routine contains four algorithms, one for each
combination of two types of arrays (circle, line) and two types of signals
(narrowband, broadband). The beamwidth of a circle array remains constant

over pointing angle, where as the beamwidth of a line array increases when

the beam pointing angle approaches the direction angle of the line array
(endfire). The narrowband algorithm calculates the nulls in the beam

pattern. The broadband algorithm uses a flat response; it simulates the

24

e e —

> -
3 oa ot ot o R, -




process of averaging over frequency, a process that blends the single-
frequency beam pattern structure into a smooth response function over
angle. The basic beam pattern in all four cases is a simple (sin(x)/x)2
response function. Details of the function are found in the source

listing of Appendix A.

FSL(LA,FRQ) is a function that calculates the beam pattern ratio
for the reference channel of Array LA at center frequency FRQ. The value
of the function is usually the sidelobe ratio, SL(LA); however, if the
mainlobe of an array is very large, then the reference ratio may be larger

i than the sidelobe input parameter. The reference beam pattern is used in
; calculating the statistics of the reference channel. Because target
; ! signals are included in the reference calculations, the model properly

simulates sidelobe masking of signals in the mainbeam.

B. Qutput

The results of the MUSAC II model are (1) range and bearing lists,
(2) average values of posterior probabilities, and (3) probabilities of
preference, classification, and tactical decision. Probabilities are

estimated by computing percentage of Monte Carlo replicatioms.

I Range and Bearing

The first page of the output lists the range, RNG(LA,M,N), and
F relative bearing, BRG(LA,M,N), from each array, LA, to each target track,

M, for each time step, N. As shown in Appendix B, the first column is

the range from Array 1 (hull-mounted array) to Track l; and the second ;
column is the range from Array 2 (towed away) to Track 1. Since the
single-target example uses only one track, the next two columns do not
contain values; these columns are used if there is a second target track.

The rows of the range and bearing list represent time steps; the first

row is at time 10 min, the second row is at time 20 min, and so on.

& Average Posterior Probability

At each time step, the model calculates the posterior probability,
POST(I,N), that Hypothesis I is true, given that the data have accumulated
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through time step N. These probabilities are saved and averaged over the

replications; the average posterior probability, EPOST(I,N), is listed
in columns that represent the hypotheses, and rows that represent the
time steps. In Appendix B, there are three columns for the hypotheses
of the single-target example (Type 1, Type 2, and Type 3 target) and 10
rows for the time steps from 10 min to 100 min. Figure 2 is a graph of

the average posterior as a function of time.
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The calculation of posterior probability includes effects of

(1) the true probabilities of feature detection, (2) the hypothesized
probabilities of feature detection, (3) multiple tracks, (4) multiple
features on the same and different arrays, (5) memory over time, and

(6) a priori probabilities. The MUSAC II methodology description must

be consulted to understand how these effects are combined., The computer
implementation is similar to the referenced methodology except that

(1) sums of logarithms of likelihoods were used instead of products of
likelihoods, and (2) the total likelihood was scaled from 1 to 1,000--
thus no hypothesis could be more than 1,000 times more likely than
another. These computer implementation steps were taken to avoid certain

numeric problems in the calculation of posterior probabilities.

The average posterior probability is included as a simulation
result because the values can give an indication of feature detection
status. Average posteriors that are nearly equal arise because dis-
tinguishing features are not detected; dissimilar average posteriors
indicate that combinations of distinguishing features were detected.
Posterior probabilities are not probabilities of classification, and are

only indicative of the classification results.,

e Probability of Preference

The probability of preference, POP(I,N), is the percent of

replications for which Hypothesis I was the preferred answer at Time
Step N. If a classification decision must be made at Time Step N (not
before N, not after N), then the probability of preference would equal 1
the probability of classification. But the model allows for only one
classification decision, which can occur at any time step; therefore,
a different name was coined for the concept of step-to-step classifica-
tion probabilities. In determining the probability of preference, the
I-th hypothesis is preferred if POST(I,N) is larger than all the other
posterior probabilities at time step N.

o
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The example output in Appendix B lists the probabilities of
preference in columns that represent hypotheses, and rows that represent
time steps (the values are in increments of 0.05 because 20 replications
were used). Figure 3 shows the example probabilities of preference as

a function of time.
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&, Probability of Classification

The probability of classification, PLC(I), is the percent of
replications for which the I-th hypothesis was was chosen. Since the
probability of classification does not contain any information about when
the decision was made, the time distribution for each decision, DISTR(I,N),
is also calculated. Under the condition that the decision was ultimately
Hypothesis I, DISTR(I,N) is the probability that the decision was made at

or before Time Step N. The probabilities of classification and the time

distribution are on page 3 of the output. In the single target example,
55 percent were correctly classified, 15 percent were classified as Type
2 target, and 30 percent were classified as Type 3 target. Figure 4 shows
how the 55 percent correct classification decisions were distributed in

time.

The first three pages of the output in Appendix B show the
results of Run 1, and the next six pages are the results of two additional
runs of the simulation., The three runs differ in the value of the

parameter IR which is the true hypothesis index:

Run Real Target

1 Type 1
2 Type 2
3 Type 3

When the results of the three runs are combined, a matrix of the classi-

fication probabilities (in units of percent) can be constructed:

Real Classified as
Target 1 2 3

1 55 15 30
2 10 65 25
3 3 10 .8
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For example, when the real target was Type 3, 5 percent of the replica-
tions (1 out of 20) were classified as Type 1. In the remainder of this
report, the above matrix is called the 'classification matrix,'" and only

the essential information is displayed:

585 15 30
10 65 25
5 10 85 .

e Probability of Tactical Decision

The probability of tactical decision, PKD(KD), is the percent
of replications for which the KD-th tactical alternative was chosen.,
Tactical alternatives are related to hypotheses through the value matrix,
VAL(I,KD). For the output shown in Appendix B, the value matrix was a
3-by-3 identity matrix, and thus the tactical alternatives were the same
as the hypotheses. This is the reason that the probability of tactical

decision output is identical to the probability of classification output.

To see the effect of a different value structure, the value

matrix was changed to:

" Tactical
Hypothesis Alternative
1 2
1 300 =500
2 -100 100
3 =500 100 .

By making three runs of the simulation, a '"tactical alternative matrix"
was computed; it shows the percent of replications for which Alternative

1 or 2 was chosen for each of three real-target conditions:

; Real Tactical
1 Target | Alternative ]
1 2 | 9
- 1 55 45
2 0 100 '
3 0 100 . 1
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The tactical decision is based on maximizing engagement value,

determined from the value matrix and the posterior probabilities. A
classification decision on the best hypothesis is also made by choosing
the highest posterior probability at the time of the tactical decision.
Therefore, a classification matrix was produced using the new value
structure, and this matrix is compared to the classification matrix of the

original simulation:

New Value Base
Structure Case
50 15 35 55 15 30
0 70 30 10 65 25
0 0 100 5 10 85 .

Changing the value matrix from an identity matrix to a matrix representing
tactical tradeoffs changes the classification probabilities, sometimes for

the better and sometimes for the worse.

The timing of the tactical decision is also a simulation output.
Figure 5 shows the time distribution of tactical decisions for the case
where the real target was Type 1. Both decision alternatives are shown
on the figure; Alternative 1 is defined as an "attack' decision and Alter-
native 2 is a '""mo-attack' decision. For a Type 1 target, the attack
decisions were more likely than the no attack decisions (55 percent
versus 45 percent) and they occurred at shorter ranges (longer times) than

the no-attack decisions.

6, Engagement Measure-of-Effectiveness

The final output statistic is a single number called the
engagement measure~of-effectiveness (MOE)., It is the average value of the
final tactical decision based on the true hypothesis; it is averaged

over all the replications:

MOE = (£ VAL(IR,KDF)]/NREP ,
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where IR is the true hypothesis, KDF is the final tactical decision,
and NREP is the number of replications. When the value matrix is the

identity matrix, the MOE is just the probability of correct classification.
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With the altered value structure of the previous section, the engagement

MOEs for the three runs were:

Real
Target MOE
1 -60
2 100
3 100

Even though the correct classification probabilities for Type 2 and
Type 3 targets were different (70 percent versus 100 percent) the MOEs
were the same, and thus engagements with either of these targets types

is equally ''valuable'".

G Variations on the Base Case

The following sections describe the sensitivity of single-target
simulation results when selected parameters are varied from their base-

case values,

Le Lofar and Demon

The model was run with only Lofar features and then run again
with only Demon features. These two cases were then compared to the

base case classification matrix in which both Lofar and Demon were used:

Both Lofar

Lofar Only Demon Only and Demon

70 10 20 65 20 15 5 1> 350
15 85 0 290 - D0 20 10 65 25
10 25 65 15 15 0 3 10 85

When the real target was Type 1 or 2, the use of both Lofar and Demon

features degraded the correct classification probabilities relative to

the Lofar-only or Demon-only cases. However, when the target was Type 3,
the use of both sets of features increased the probability of correct
classification., Adding more features to aid in classifying a target does
not necessarily improve the classification performance; in fact, adding

more features may degrade the performance. B
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2. Decision Threshold

When the decision threshold, FVAL, was varied, the classifica-
tion matrices changed and the time distribution of classification
decisions also changed. For example, the classification matrices were

computed for three value: of the threshold:

FVAL = 0.8 FVAL = 0.95 FVAL = 0.99

35 25 40 55 15 30 5@ 15 35
10 60 30 10 65 25 0 80 20
5 200 S 5 10 80 10 10 80

In general, by reducing the threshold, there are fewer correct
classification decisions but they are made sooner. The time distribution
of the correct classification decisions for the three FVAL runs is shown

in Figure 6.

3. Standard Deviation

The random process standard deviation vector, SDV(KR), was

varied from the base case value by subtracting and adding 1 dB:

Variation 1: SDV = 2, 2, 0, 2, 2
Base case: Spv =3, 3, 1, 3, 3
Variation 2: SDV = 4, &4, 2, 4, 4

’ ’

The SDV components are Lofar, BBand, Demon, PLoss, and Noise, respectively.

The resulting classification matrices were:

Variation 1 Base Case Veriation 2

60 15 25 25 Iy 30 50 20 30
5 70 25 10 65 25 15 65 20
10 5 85 5 L0 85 15 20 65

When SDV became larger, more classification mistakes were made. Within

limits, the SDV parameter may be used to adjust the model results to

correspond with experimental data points. Then the model can predict

classification results for cases not covered in the experiment.
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III DOUBLE-TARGET EXAMPLE

This chapter describes how MUSAC II can simulate a scenario in
which there are two targets. Many of the input parameters used in the
single-target example are used again in the double-target example; only
the changes to the single-target example are discussed. Appendix C con-
tains: (1) a listing of the double-target base-case input parameters

and (2) a listing of the base-case output.

The double-target scenario involves the passive acoustic classifi-
cation of two surface ships by a submarine using Demon information from
a hull-mounted array and Lofar information from a towed array. The sce-
nario geometry is shown in Figure 7. 1Initial range separation between
the submarine and the two target ships is about 40 nmi. The surface
ships are 5 nmi apart and travel on a near-collision course with the
submarine. During the 1.5-hour engagement the submarine must classify
the targets as one of nine possible target configurations. Figure 8
shows the relative bearing to the two target tracks as a function of
time. The initial target separation is about 6 degrees and the final

separation about 36 degrees.

A. Base Case

The double-target base case example is used to demonstrate the
multitarget capability of MUSAC II and to provide results for comparison

with cases in which selected input parameters are varied.

X Input

Only five input parameters need to be changed to turn the

single-target example into a double-target example.

IMAX is increased from three hypotheses to nine hypotheses,
which are detailed below.
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NMAX is increased from 1 track to 2 tracks; in this way, two

targets can be simulated.

KT(I,M) is increased from a 3-by-1 array to a 9-by-2 array.

The nine hypotheses are defined by the KT array as follows:

Target Type
on Track
Hypothesis 1 2
1 1 1
2 1 2
3 1 3
4 2 i
5 2 Z
6 2 3
7 3 il
8 3 2
9 3 5

For example, Hypothesis 8 states that: ''Target Type 3 is on Track 1 and

Target Type 2 is on Track 2." For small numbers of target types and 2
tracks, the above combinational method of constructing hypotheses can be

used. However, when the scenario is complex, the analyst must reduce

the number of hypotheses by excluding the ones with very low a priori

probability.

IR is the hypothesis number that represents the real target
configuration. Hypothesis 3 was chosen as reality for the base case
(IR = 3). Therefore, a target of Type 1 is on Track 1 and a target of
Type 3 is on Track 2.

KDMAX is changed from a total of 3 to 9 tactical alternatives

so that the tactical alternatives remain the same as the nine classifi-~-

g

cation alternatives. As a variation on the base case, an engagement

value structure that is not an identity matrix is used.




2 Output

Appendix C shows the results of the double~target base case.
The range and relative bearing versus time are listed for four columns

of array/track combinations.

Column Array Track
1 i 1
2 2 1
3 i 2
4 2 2

The relative target bearing from Array 1 to Tracks 1 and 2 (Columns 1

and 3) were previously shown in Figure 8.

The average posterior probability and the probability of a
preference are listed in 9 columns and 10 rows, which relate to the 9
hypotheses and 10 time steps. Figure 9 shows the probability of prefer-
ence for Hypothesis 3 (the correct hypothesis) plotted as a function of
time on the lowest curve. Two other curves are shown for comparison.
The middle curve is the sum of the preference probabilities for Hypothe-
ses 1, 2, and 3; it is the probability that target Type 1 is on Track 1
and that any target type was on Track 2. The top curve is the sum of the
preference probabilities for Hypotheses 1, 2, 3, 4, and 7; it is the
probability that target Type 1 was present. Figure 9 demonstrates that
probabilities may be added together to construct higher-order hypotheses

using the elemental hypotheses of the model.

The probability of classification (in percent) for the double-

target base case was computed as:

? Real

| Classified Configuration
| Configuration | 1,1 1,2 led 2.0 2,2 2.3 Ik a2 33
153 l 35 ) 20 5 0 5 10 0 20
Correct classification occurred for only 20 percent of the replicationms, i

and classifying the correct target type on Track 1 (1,1 1,2 1,3) occurred :
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for 60 percent of the replications. A classification matrix could have
been computed by performing nine runs and changing the true configuration

each run. The above result is one row of the classification matrix.

Only two double-target classification decisions were made be-
fore the last time step, whereas all 20 single-target decisions were made
before the last time step. Classifying multiple target configurations is

harder than single targets when the same decision threshold is used.

B. Variations on the Base Case

The tactical value structure was varied and compared to the base

case; then the decision threshold was varied to demonstrate the use of

the engagement MOE output.

Ko Tactical Value

The tactical value matrix, VAL (I,KD), was altered to see the

effect of a new value structure; the new value matrix was:

Tactical Alternative
Hypothesis 1 = Attack 2 = No
1 600 -1,000
2 200 -400
3 -200 -400
4 200 -400
5 -200 200
6 -600 200
7 =200 =400
8 -600 200
9 ~-1,000 200

The values were obtained from the previous example by adding single-

target values to produce double-target values. For example, Hypothesis 3
involved target Types 1 and 3. Attacking a Type 1 target was worth 300
points and not attacking was worth -500 points; whereas not attacking a
Type 3 target was worth ~500 points and not attacking was worth 100 points.
Therefore the attack alternative for the third hypothesis was worth

(300) + (=500) = (=200) and the no-~attack alternative was worth
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(-500) + (100) = (-400). Of course, other methods can be devised to
produce a value matrix that reflects the value of a tactical action taken

against a multitarget group.

The computed probabilities of classification (in percent) for

the two cases were:

New
Classified Base Value
Configuration Case Structure
3.1 35 40
1,2 5 5
1,3 (true) 20 35
2,1 5 0
2y 2 0 0
253 5 0
3,1 10 10
352 0 0
3,3 20 10

The result of using the new value structure was an increase in correct

classifications.

The probability of tactical decisions was 65 percent for the
attack alternative and 35 percent for the no-attack alternative. The
median time for an attack decision was about 40 min and the median time
for a no-attack decision was about 15 min. The time distribution of
decision-making under the new value structure was sharply different from
the distribution for the base case, where almost all decisions were de-

layed until the end of the engagement.

2% Decision Threshold

Figure 10 shows how the engagement MOE changed as a function
of the decision threshold when the tactical value matrix of the last sec-
tion was used. The maximum engagement value is attained when the deci-
sion is to attack, and the minimum when the decision is not to attack.
This graph of engagement MOE versus a system parameter demonstrates how

system analyses may be performed with the MUSAC II simulation model.
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Appendix A

MUSAC II SOURCE CODE




(s NoNoNoNeNoNeNoNoNoNoNeNoNoNoNo o NoNo o No NoNoNoNoNo No o No o No NeNoNo No o No o NoNeo NoNoNoNo o Ne o No No No e Neo Ne N o]

PROGRAM MUSAC2(OUTPUT, TAPE6=0UTPUT)

INPUT

XX
XX
X X
XX
XX
X X
X X
XX
x %
X X
X x
x X
x X
X X
x X
X X
x X
X X
X X
x %
X X
X X
X X
X X
XX
x X
X X
X X
X X
X X
X X
x X
X X
X X
X X
x X
x X
x X
x X
x X
X X
x X
X X
x X
X x
X X
X X
X X
x %
X X

GV

NREP
NMAX

TS

IMAX
MMAX
KTC(I,M)
IR
PRIORC(I)
KDMAX
VAL (I ,KD)
FVAL
XT(M)
YT(M)
CT(N,M)
ST(N,M)
DT(N,M)
JMAX

NF (J)
KF(J)
FRQ(J)
PLL(J,KT)
PLL(J,KT)
PBB(NB,KT)
FQB(NB,KT)
LAMAX
LACJ)
KA(LA)
DH(LA)
DV(LA)
HN(LA)
VN(LA)
SL(LA)
XO(LA)
YO(LA)
CO(N, LA)
SO(N, LA)
DO(N, LA)
NA(N, LA)
PNN(NF,LA)
FQN(NF, LA)
LP(J)
WTH(LP)
SCR(LP)
FCS(LP)
TOT(LP)
DET(LP)
MIX(KR)
SDV(KR)
TAU(KR)

RANDOM NUMBER GENERATIVE VALUE
NUMBER OF REPLICATIONS
NUMBER OF TIME STEPS

TIME STEP DURATION (MIN)
NUMBER OF HYPOTHESES

NUMBER OF TRACKS
HYPOTHESIZED TARGET TYPE
TRUE HYPOTHESIS NUMBER

PRIOR PROBABILITY OF HYPOTHESIS
NUMBER OF TACTICAL DECISION ALTERNATIVES
VALUE OF DECISION

DECISIGN THRESHOGLD OF RATIO (MAX.EXP.VALUE)/(EXP.MAX.VALUE)
TARGET INITIAL POSITION (NMI)

TARGET INITIAL POSITION (NMI)

TARGET COURSE (DEG)

TARGET SPEED (KT)

TARGET DEPTH (FT)

NUMBER OF FEATURES

FEATURE OFF/CGN (O=0FF 1=0N)

FEATURE TYPE (1=LGFAR 2=BBAND 3=DEMON)

CENTER FREQUENCY (H2)

LOGFAR LINE LEVEL (DB UPA2 1YD) ALSO

DEMON MODULATION LEVEL (DB)

BROADBAND SOURCE SPECTRUM OF TARGET (DB UPA2/HZ 1YD)
FREQUENCY POINTS FOR PBB (HZ)

NUMBER OF ARRAYS

ARRAY NUMBER

ARRAY TYPE (1=CIRCLE 2=LINE)

HORIZONTAL ARRAY SIZE (FT)

VERTICAL ARRAY SIZE (FT)

HORIZONTAL NUMBER OF HYDROPHONES

VERTICAL NUMBER OF HYDROPHONES

SIDELOBE RATIO

ARRAY INITIAL POSITION (NMI)

ARRAY INITIAL POSITION (NMI)

ARRAY COURSE (DEG)

ARRAY SPEED (KT)

ARRAY DEPTH (FT)

ARRAY OFF/ON (0=OFF 1=0N)

BROADBAND NO!SE OUTSIDE ARRAY (DB UPA2/HZ)

FREQUENCY POINTS FOR PNN (HZ)

PROCESSOR NUMBER

BANDWIDTH (H2)

SCAN RATE (NUMBER/MIN)

NUMBER OF FEATURE CELLS PER SCAN

TOTAL TIME OF FEATURE INTEGRATION (MIN)

DETECTION THRESHOLD (NUMBER OF SIGMAS)

MIXING CONSTANT (0.=GAUSS 1.=JUMP) KR 1=LOFAR 4=NOISE
STD DEV OF RANDOM PROCESS (DB) 2=BBAND 5=PLOSS
RELAXATION TIME OF RANDOM PROCESS (MIN) 3=DEMON
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x X
xx
X X
X X
X X
XX

X %
X X
X X
X x
x X
x X
x X
xR
x X
X X
XX
x X
* X
x x
L3
xx
xx
XX
X %
X X
X X
* X
X%
X X
X X
X X
X %
X X
X X
X X
X X
X X
X X
X X
X X
* X
x X

x X
x x
X X
x X
x X

s XeNeNoNoNoNoNeNoNoNoNoNoNoNoNoNoNo NoNoNe NeNoNe Ne o NeNoReNeNeNoNeReNeNeNeNeReNeNeReNe Ne e Ne Ne o Re Ne e No e N o N e

FLL(J,KT,ST,DT,ASP)
FBB(KT,FRQ, ST, DT, ASP)
FNN(LA,FRQ, SO, DG, ANG)
FAZ(FRQ, RNG, DO, DT)
FBM(J, FRQ, BRG, ANG)

FSL(LA,FRQ)

INTERNAL

1
J
K
M
N
NN
KR

KD

TAV(LP)
NUM(LP)
MEM(LP)
RNG(LA,M,N)
BRG(LA,M,N)
ASP(LA,M,N)
ANG(LA,K,N)
TLL(J,M,N)
TBB(J,M,ID
TNN(J, K, N)
TAZ(J,M,N)
TBM(JKMN)
TSL(J)

XS (1JKN)
XV(IJKN)
XSP (1 JKN)
XDSP (1 JKN)
JUMP (KR, J, M)
GAUSS (KR, J, M)
BIAS(KR)
PDETZ(J,K)
PDET(1,J,K)
LIKEC(I,N)
POSTC(I,N)
IB(N)

VMAX (1)

KDF

NSTOP

FLBC(N,K)

PROB (MU, S1G, THRESH)

RNORM(O. )

RANDOM(MI X, SDV, TAU, TS,
JUMP, GAUSS, DELTA)

LOFAR AND DEMON SOURCE LEVEL
BROADBAND SOURCE SPECTRUM LEVEL
NOISE SPECTRUM LEVEL AT ARRAY OUTPUT
REAL PROPAGATIGN LGSS (DB)
BEAMPATTERN RATIO

REFERENCE BEAMPATTERN RATIO

HYPOTHESIS NUMBER

FEATURE NUMBER

LOGK ANGLE NUMBER

TRACK NUMBER

TIME STEP NUMBER

REPLICATION NUMBER

KIND OF RAMDGM PROCESS 1=LINE 2=BROADBAND
3=MODULATION 4=NOISE S=PROP LOSS

TACTICAL DECISIGN NUMBER

AVERAGING TIME PER FEATURE CELL (SEC)

NUMBER OF SCANS PER TIME STEP

NUMBER OF TIME STEPS IN LIKELIHOOD CALCULATIGN

RANGE (NMI)

RELATIVE BEARING (DEG)

TARGET ASPECT (DEG)

SONAR LOOK ANGLE (DEG)

LINE LEVEL TABLE (DB)

BROADBAND SPECTRUM TABLE (DB)

NOISE TABLE (DB)

REAL PROP LOSS TABLE (DB)

BEAM PATTERN TABLE (RATIO)

SIDE LOBE TABLE (RATIO)

HYPOTHET1CAL LOFAR SIGNAL

HYPGTHETICAL LOFAR SIGNAL SQUARED

HYPOGTHETICAL BROADBAND SIGNAL

HYPGTHETICAL DEMON SIGNAL

LAST VALUE OF JUMP PROCESS RANDOM VARIABLE

LAST VALUE OF GAUSSIAN PROCESS RANDOM VARIABLE

BIAS ADDED TG COMPENSATE FOR RANDOM PROCESS (DB)

PROBABILITY OF DETECTION OF TRUE DATA
PROBABILITY OF DETECTION OF HYPGTHETICAL DATA
LIKELIHOOD OF DATA

POSTERIGR PROBABILITY OF HYPOTHESIS

MAXIMUM POGSTERIGR HYPOTHESIS

MAXIMUM OF VAL(I,KD) OGVER KD

FINAL TACTICAL DECISION

TIME STEP OF FINAL DECISION

INTERNAL FUNCTIONS

LOG OF BINOMIAL COEFFICIENT
PROB NORMAL RAN.VAR. GE THRESHOLD
RANDOM NORMAL DEVIATE (MU=0 SIG=1)
CALCULATES ZERO-MEAN RANDGM

DEVIATE FROM MIXED PROCESS
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CUTPUT

x X
X X
X X
x X
X X
x X
X x
X X
X X

12

RNG(LA,M, N}

RANGE (NMI)

BRG(LA,M,N) RELATIVE BEARING (DEG)
EPGST(1,N)

PGP(I,N

PCL(I)

)

DISTR(I,N)

PKD(KD)
HISTO(KD, N)

VMOE

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

DIMENSIGN EPOST(10,20),DISTR(10,20), TOTAL(10),PCL(10),

+ HISTO(10,20),SUM(10),PKD(10),POP(10,20)

/A/
/B/
/C/
/D/
/E/
/F/
/G/
/H/
/17
/37
/K/
/L/
/M/
/N/
/6/
/P/
/Q/
/R/
/8/
avs
/U/
/N/

REAL MIX

CALL INPUT
DO 90 IR=1,3
CALL TABLE
CALL SAVE
DO 12 1=1,IMAX

TOTAL(1)=0.

AVERAGE POSTERIOR PROBABILITY
PROBABILITY OF PREFERENCE
PROBABILITY OF CLASSIFICATION

DISTRIBUTION OF CLASSIFICATION DECISION

PROBABILITY OF TACTICAL DECISIGN
DISTRIBUTION OF TACTICAL DECISION
ENGAGMENT MEASURE OF EFFECTIVENESS

GV, NREP, NMAX

IMAX, MMAX, JMAX

LAMAX, KDMAX, IR
LP(12),LA(12),NA(20,2),KA(2)
KF(12),NF(12),KT(10,2),TS
Xo(2),Y06(2),C0(20,2),80(20,2),D0(20,2)
XT(2),YT(2),CT(20,2),8T(20,2),DT(20,2)
WTH(S), TAV(S),NUM(5) ,DET(5), MEM(S)
DH(2),DV(2),HN(2),VN(2),8SL(2)
FRQ(12),PLL(12,3)

PBB(6,3),FQB(6, 3)

PNN(6,2),FQN(6, 2)
MIX(S),SDV(5), TAU(S) ,BIAS(S)
PRIOR(10),VAL(10,10),FVAL,VMAX(10)
RNG(2,2,20),BRG(2,2,20),ASP(2,2,20)
TLL(12,2,20),TBB(12,2,20),TNN(12,2,20)
TAZ(12,2,20),TBM(960),TSL(12)
JUMP(5,12,2),6AUSS(5,12,2)
PDETZ2(12,2),PBET(10,12,2)
POST(10,20),1B(20)

NSTOP, KDF
XS(4800),XV(4800), XSP(4800), XDSP(4800)

DO 12 N=1,NMAX
EPOGST(1,N)=0,

POP(1,N)=0.

DISTR(1,N)=0,
DO 14 KD=1,KDMAX
SUM(KD)=0.
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14

X X

10

X %

25

30

40

45
S0

60

65
70

DO 14 N=1,NMAX
HISTO(KD,N)=0.
VMOE=0.

REPLICATION NN-LOOP

CALL RANSET(GV)

DO SO0 NN=1,NREP

INITIALIZE RANDOM PROCESSES

DO 10 KR=1,5

D3 10 J=1,JIMAX

DG 10 M=1,MMAX

JUMP (KR, J, M) =RNORM(O0. ) xSDV (KR)
GAUSS (KR, J, M) =RNGRM(O0. ) xSDV (KR)

TIME STEP N-LOOP

DG 30 N=1,NMAX

CALL DETECT(N)

CALL BAYES(N)

DO 25 1=1, IMAX
EPOST(1,N)=EPOST(I,N)+POST(I,N)
IBN=1B(N)
POP(IBN,N)=POP(IBN,N)+1.
CONTINUE

CALL DECIDE

[1=IB(NSTOP)
TOTAL(IT)=TOTAL(II1)+1.

DO 40 N=NSTOP, NMAX
DISTR(II,N)=DISTR(II,N)+1.
SUM(KDF ) =SUM(KDF) +1.

DO 45 N=NSTGP, NMAX
HISTO(KDF,N)=HISTO(KDF,N)+1.
VMOE=VMOE+VAL (IR, KDF)
CONT I NUE

DO 60 1=1, IMAX
PCL(1)=TOGTAL(I)/NREP

DO 60 N=1,NMAX
EPOST(1,N)=EPOST(I,N)/NREP
POP(I,N)=POGP(I,N)/NREP
IF(TOTAL(I).EQ.O0.) GO TO 60
DISTR(I,N)=DISTR(I,N)/TOGTAL(1)
CONTINUE

DO 70 KD=1,KDMAX
PKD(KD)=SUM(KD) /NREP
IF(SUM(KD) .EQ.0.) GO TGO 70
DG 65 N=1,NMAX

HISTG (KD, N)=HISTO (KD, N) /SUM(KD)
CONTINUE

VMOE=VMOE/NREP

WRITE(6,100)

WRITZ(6,150) RNG

WRITE(6,120)

WRITE(6,150) BRG

WRITE(6, 200)
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90

100
120
200
270
300
400
500
600
700
150
250

WRITE(6,250) EPOST
WRITE(6,270)
WRITE(6,250) POP
WRITE(6, 300)
WRITE(6,250) PCL
WRITE(6,400)
WRITE(6,250) DISTR
WRITE(6,500)
WRITE(6,250) PKD
WRITE(6, 600)
WRITE(6,250) HISTO
WRITE(6,700) VMOE
CONTINUE

FORMAT(1H1, xRANGEx)

FORMAT(//x BEARINGx)

FORMAT(1H1, xAVERAGE POSTERIGR PROBABILITYx)
FORMAT(//x PROBABILITY OF PREFERENCEx)
FORMAT(1H1, xPROBABILITY OF CLASSIFICATIONX)
FORMAT(/x DISTRIBUTION OF CLASSIFICATION DECISIGNx)
FORMAT(//x PROBABILITY OF TACTICAL DECISIONx)
FORMAT(/x DISTRIBUTION OF TACTICAL DECISIONx)
FORMAT(//x ENGAGMENT MOE =x,F7.3)
FORMAT(S5X,4F10.2)

FORMAT(SX, 10F10.2)

END




?
5
|
'

SUBROUTINE INPUT

COMMOGN /A/ GV, NREP, NMAX

COMMON /B/ I[IMAX,MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)

COMMON /E/ KF(12),NF(12),KT(10,2),TS

COMMON /F/ X0(2),Y8(2),C0(20,2),80(20,2),D0(20,2)
COMMON /G/ XT(2),YT(2),CT(20,2),8T(20,2),DT(20,2)
COMMON /H/ WTH(S), TAV(S),NUM(S),DET(S) ,MEM(S)
COMMON /1/ DH(2),DV(2),HN(2),VN(2),8L(2)

COMMON /J/ FRQ(12),PLL(12,3)

COMMGN /K/ PBB(6,3),FQB(6, 3)

COMMON /L/ PNN(6,2),FQN(6,2)

COMMON /M/ MIX(S),SDV(S), TAU(S) ,BIAS(S)

COMMON /N/ PRIOR(10),VAL(10,10),FVAL,VMAX(10)

DIMENSION SCR(S5),FCS(5),TOT(S)

REAL

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

MIX

GV /808./

NREP /20/

NMAX 710/

TS /10./

IMAX /3/

MMAX /1/

KT 71,2,3, 17x0/

IR /1/

PRIOR/10x.1/

KDMAX 73/

vAaL /9x(t1.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.),1./
FVAL /.95/

XT /0.,5./

YT /40.,40./

CT /40%x155./

ST /40%x25./

DT /40x30./

JMAX /7/

NF 71,1,1,1,1,1,1, 5x0/
KF /1,1,1,8,3,3,3, 5x0/
FRQ /50.,100.,400.,2x2828.,2x5656., 5x0./

PLL /155., 0., 150., -8.,-8.,-3.,-20., 5x0.,
155.,180., 0., -20.,-83.,-20.,-3., 5x0.,
0., 150.,150., -20.,-20.,-2.,-2., 5x0./

PBB /3x( 153.,155.,145.,125.,0.,0.)/
FQB /3x( 10.,100.,1000.,10000.,0.,0.)/
LAMAX /2/

LA /2,2,2,1,1,1,1, 5x0/

KA 71,2/

OH /7.,60./

bV /5.,0./

HN /15.,30./

VN /711.,1./

sL /.01,.01/

X6 /0.,-.5/
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30
XX
40

XX

50

DATA YO /0.,0./

DATA CO /40x90./

DATA SO /40x10./

DATA DO /40%100./

DATA NA /40x1/

DATA PNN /120.,65.,65.,45., 2x0.,

+ 75.,65.,45.,3x0./
DATA FGN /10.,300.,1000.,10000.,2x0.,
+ 10.,1000.,10000.,3%0./

DATA LP /1,1,1,2,2,3,3, 5x0/
DATA WTH /1.,2000.,4000., 2x0./
DATA SCR /1.,1.,1., 2x0./

DATA FCS /600.,60.,60., 2x0./
DATA TOT /30.,10.,10., 2x0./
DATA DET /2.,2.,2., 2x0./

DATA MIX /5x0.5/

DATA SDV /3.,3.,1.,8.,3./

DATA TAU /S5x3./

CALCULATE TAV, NUM, MEM

DO 30 LL=1,5
TAV(LL)=60./(SCR(LL)XFCS(LL))
NUM(LL)=SCR(LL)*xTS+.5
MEM(LL)=TOT(LL)/TS-.5
CONTINUE

CALCULATE BIAS
DO 40 KR=1,5
BIAS(KR)=(SDV(KR)*x2)/8.68

FIND MAXIMUM VALUE

DG S0 1=1, IMAX

VMAX(1)=-1.E99

DO 50 KD=1,KDMAX

IF(VAL(!,KD).GT.VMAX(1)) VMAX(I)=VAL(I,KD)
CONTINUE

RETURN

END

53

5 B




X%
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SUBROUTINE TABLE

COMMON /A/ GV, NREP, NMAX

COMMON /B/ IMAX,MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)

COMMON /E/ KF(12),NF(12),KT(10,2),TS

CGMMON /F/ X06(2),Y0(2),C0(20,2),80(20,2),D0(20,2)
COMMON /G/ XT(2),YT(2),CT(20,2),8T(20,2),DT(20,2)
COMMON /J/ FRQ(12),PLL(12,3)

COMMON /K/ PBB(6,3),FQB(6,3)

COMMON /L/ PNN(6,2),FQN(6,2)

COMMON /0/ RNG(2,2,20),BRG(2,2,20),ASP(2,2,20)
COMMON /P/ TLL(12,2,20),TBB(12,2,20),TNN(12,2,20)
COMMON /Q/ TAZ(12,2,20),TBM(960),TSL(12)

CALCULATE RANGE, RELATIVE BEARING, AND ASPECT ANGLE
U=3.1416/180.

DO SO L=1,LAMAX

DG SO0 M=1,MMAX

XOL=XO(L) $YOL=YO(L)
XTM=XT(M) SYTM=YT(M)

DO SO N=1, NMAX

X=XTM-XOL

Y=YTM-YOL

R=SQRT (XxX+YxY)

SINB=X/R

cosB=Y/R

CCOG2CO(N, L) xU
CCT=(CT(N,M)-180.)xU
SINO=SIN(CCO)

COS0=COS (CCO)

SINT=SIN(CCT)

COST=COS(CCT)
SBRG=SINB*COSGC-COSBxS|NO
CBRG=COSBXxCOUSO+SINBxSINO
SASP=SINBxCOST-COSBxSINT
CASP=COSB*xCOST+SINBXxSINT
RNG(L,M,N)=R
BRG(L,M,N)=ATAN2(SBRG, CBRG) /U
ASP(L,M,N)=ATAN2(SASP, CASP) /U
[F(BRG(L,M,N).LT.0.) BRG(L,M,N)=360.+BRG(L,M,N)
XOL=XOL+SO(N,L)*xTSxSING/60.
YOL=YOL+SO(N,L)*xTSxCOSO/60.
XTM=XTM-ST(N,M}xTSxSINT/60.
YTM=YTM-ST(N,M)xTSxCOST/60.
CONTINUE

GENERATE TABLES

DO 100 J=1, JMAX
[F(NF(J).EQ.0) GO TG 100
KR=KF (J)

L=LA(J)
TSL(J)=FSL(L,FRQ(J))

DO 90 N=1,NMAX
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IF(NA(N,L) .EQ.0) GO TO S0
DO 70 M=1,MMAX
TAZ(J,M,N)=FAZ(FRQ(J),RNG(L,M,N) ,DO(N,L),DT(N,M))
IF(KT(IR,M).EQ.0) GO TO 70
TLL(J,M,N)=FLL(J,KT(IR,M),ST(N,M),DT(N,M),ASP(L,M,N))
TBB(J,M,N)=FEB(KT(IR,M),FRQ(J),ST(N,M),DT(N,M),ASP(L,M,N))
70 CONTINUE
DO 80 K=1,MMAX
ANG=BRG(L,K,N)
TNN(J,K,N)=FNN(L,FRQ(J),SO(N,L),DO(N,L),ANG)
DO 80 M=1,MMAX
JKMN=1+(J-1+JMAXX (K-1+MMAXXx (M-1+MMAXXx(N=-1))))
TBM(JKMN) =FBM(J,FRQ(J),BRG(L,M, N),ANG)
80 CONTINUE
90 CONTINUE
100 CONTINUE
RETURN
END
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SUBROUTINE SAVE

COMMON /A/ GV, NREP, NMAX

COMMON /B/ IMAX,MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)

COMMON /E/ KF(12),NF(12) ,KT(10,2),TS

COMMON /G/ XT(2),YT(2),CT(20,2),8T(20,2),DT(20,2)
COMMGON /J/ FRQ(12),PLL(12,3)

COMMON /M/ MIX(5),SDV(5),TAU(S5),BIAS(S)

COMMON /0/ RNG(2,2,20),BRG(2,2,20),ASP(2,2,20)
COMMON /P/ TLL(12,2,20),TBB(12,2,20),TNN(12,2,20)
COMMON /Q/ TAZ(12,2,20),TBM(960),TSL(12)

COMMON /V/ XS$(4800),XV(4800),XSP(4800), XDSP(4800)

DIMENSION AH(2),P(10,2),PP(10,2),8(10),V(10),SP(10),DSP(10) I

FEATURE J-LOOP !
DG 160 J=1, JMAX i
IF(NF(J).EQ.0) GO TG 160

KR=KF (J)

L=LA(J)

TIME STEP N-LGOP

DG 150 N=1,NMAX

IF(NA(N,L).EQ.0) GO TG 150

TRACK M-LOSP

D& 50 M=1,MMAX

CALCULATE PROPAGATIGN LOSS

AH(M)=10.xx((TAZ(J,M,N)+BIAS(5))/10.)

HYPOTHESIS I-LOOP

DO 50 =1, IMAX

IF(KT(I,M).EQ.0) GO TO S0

CALCULATE HYPGTHETICAL SGURCE LEVELS

PIM = FBB(KT(1,M),FRA(J),STIN,M),DT(N,M),ASP(L,M,N))

IF(KR-2)41,42, 41

PP(1,M)=10.xx((PIM+BIAS(2))/10.)

P(I,M)= FLL(J,KT(I,M),ST(N,M),DT(N,M),ASP(L,M,N)) $6GO TO 43
P(I,M)= PIM

PC(I,M)=10.xx((P(l,M)+BIAS(KR))/10.)

CONTINUE

LOOK ANGLE K-LOOP

DO 120 K=1,MMAX

DO 60 1=1, IMAX

S(1)=0. $V(I1)=0. $SP(1)=0. $DSP(1)=0.
CONTINUE

SUM OF SOURCES

TRACK M-LOGP

DO 80 M=1,MMAX
JKMN=1+(J-1+JMAX* (K- 1+MMAXX (M- 1+MMAXXx(N=1))))
B=TBM({JKMN)

CALCULATE HYPOTHETICAL SIGNALS AND SOURCE NOISE
HYPGTHESIS [ -LOGP

DG 80 1=1, 1MAX

IF(KT(I,M).EQ.0) GO TO 80

IF(KR-2)74,75,76

g \
e |
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C xx LOFAR
74 Q=P(1,M)xB/AH(M)
S(1)=8(1)+Q
VD) =V(I1)+QxQ
SP(1)=SP(1)+PP(1,M)xB/AH(M)
GO TO 80
C xx BROADBAND
75 SP(1)=SP(1)+P(1,M)xB/AH(M)
GO TO 80
C xx DEMON
76 IF(P(I,M).GT.1.)P(I,M)=1,
Q=PP(1,M)xB/AH(M)
DSP(1)=DSP(1)+0.5xQxP(1,M)
SP(1)=SP(1)+Q
80 CONTINUE
C xx SAVE VALUES
DO 90 I=1, IMAX
TJKN=1+(1=1+IMAXX (J-1+IJMAXX (K-1+MMAXX*(N-1))))
XS(IJKN)=S(1)
XV(IJKN) =V (1)
XSP(1JKN)=SP(I1)
XDSP(1JKN)=DSP(1)
90 CONTINUE

120 CONTINUE

150 CONTINUE

160 CONTINUE
RETURN
END
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E SUBROUTINE DETECT(N)

COMMON /A/ GV, NREP, NMAX

COMMON /B/ IMAX,MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)

; COMMON /E/ KF(12),NF(12),KT(10,2),TS

COMMON /H/ WTH(S), TAV(S5),NUM(S),DET(S),MEM(S)
COMMON /M/ MIX(5),SDV(S5),TAU(S),BIAS(S)

COMMON /P/ TLL(12,2,20),TBB(12,2,20),TNN(12,2,20)
COMMGN /Q/ TAZ(12,2,20),TBM(960),TSL(12)

COMMGN /R/ JUMP(5,12,2),6AUSS(5,12,2)

COMMON /S/ PDETZ(12,2),PDET(10,12,2)

COMMON /V/ XS(4800),XV(4800),XSP(4800), XDSP(4800)

DIMENSION PZ(2),PPZ2(2),AZ(2),
+ $(10),V(10),8SP(10),DSP(10),MU(10),S86(10)
REAL JUMP,NPZ,MUZ,MUZS, MU, MIX

SRR TLORea——
[¢]

C xx FEATURE J-LOOP
DO 150 J=1, JMAX
IF(NF(J).EQ.0) GO TG 150
L=LA(J)
IF(NA(N,L).EQ.0) GO TO 150
LPJ=LP(J)
W=WTH(LPJ)
T=TAV(LPJ)
WT=WxT
SWT=SQRT(WT)
KR=KF (J)
BS=TSL(J)

C xx TRACK M-LOGP
DO S50 M=1,MMAX
IF(KT(IR,M) .EQ.0) GO TO SO

C xx CALCULATE REAL SOURCE LEVELS
IF(KR-2)31, 32,31
31 CALL RANDOM(MIX(2),SDV(2),TAU(2),TS,

+ JUMP(2,J,M),BAUSS(2,J,M),DELTA)
PPZ(M)=10.xx((TBB(J,M,N)+DELTA)/10.)
PZ(M)=TLL(J,M,N) $GO TGO 33

32 PZ(M)=TBB(J,M,N)
33 CALL RANDOM(MIX(KR),SDV(KR), TAU(KR), TS,

+ JUMP (KR, J, M), GAUSS (KR, J, M), DELTA)
PZ(M)=10.xx((PZ(M)+DELTA)/10.)

C xx CALCULATE PROPAGATIGN LOSS
CALL RANDOM(MIX(S),SDV(5), TAU(S),TS,
+ JUMP (5, J,M),BAUSS(S,J,M),DELTA}
AZ(M)=10.xx((TAZ(J,M,N)+DELTA)/10.)
S50 CONTINUE

b

00

*x LOOK ANGLE K-LOOP
DO 120 K=1,MMAX

i
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x*x INITIALIZE SUMS
§Z=0. $VZ2=0. $ SPZ=0. $SPZS=0. $DSPZ=0.
xx SUM OF SOURCES
xx TRACK M-LOGP
DO 80 M=1,MMAX
IF(KT(IR,M) . EQ.0) GO TO 80
JKMN=1+(J-1+IMAXX (K- 1+MMAXX (M-1+MMAXX*(N-1))))
B=TBM(JKMN)
xx CALCULATE REAL SIGNALS AND SOURCE NOISE
IF(KR-2)64,65, 66
xx LOFAR
64 Q=PZ(M)*B/AZ(M)
$Z=8SZ+Q
VZ=vZ+QxQ
SPZ=SPZ+PPZ(M)*xB/AZ(M)
GO TO 80
xx BROADBAND
65 Q=PZ(M)/AZ(M)
SPZ=SPZ+Qx8
SP2S=SPZS+QxBS
GO TO 80
xx DEMON
66 IF(PZ(M).GT.1.)P2(M)=1.
Q=PPZ(M)xB/AZ(M)
DSPZ=DSPZ+0.5xQxPZ(M)
SPZ=SPZ+Q
80 CONTINUE

xx CALCULATE NOISE
CALL RANDOM(MIX(4),SDV(4),TAU(4),TS,
+ JUMP(4,J,1), GAUSS(4,J,1), DELTA)
NPZ=10.xx ((TNN(J,K,N)+DELTA)/10.)

xx CALCULATE MEAN AND STD DEV FOR REAL DATA AND REFERENCE CHANNELS
IF(KR-2)94,95,96

xx LOFAR

94 RZ=(SPZ+NPZ)xW
MUZ=SZ+RZ
SGZ=SQRT(SZ*xSZ-VZ+2. xSZxRZ/WT+RZXRZ/WT)
MUZS=R2Z
SGZS=MUZS/SWT
GO TG 100

xx BROADBAND

95 RPZ=SPZ+NPZ
MUZ=RPZxW
SBGZ=MUZ/SWT
RPZS=SPZS+NP2Z
MUZS=RPZSxW
SGZS=MUZS/SWT
GO0 TG 100

xx DEMON

96 RPZ=SPZ+NPZ
MUZ=(DSPZ+RPZ) xW
SBZ=MUZ/SWT
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MUZS=RPZxW
SGZS=MUZS/SWT
100 CONTINUE

xx CALCULATE MEAN AND STD DEV OF HYPOTHETICAL DATA CHANNEL
xx HYPOTHESIS 1-LOOP
DG 110 [=1, IMAX
TJKN=1+C1 - 1+IMAXX (J=1+JMAXX (K- 1+MMAXX (N=1))))
S(1)=XS(1JKN)
V(1)=XV(1JKN)
SP(1)=XSP(1JKN)
DSP (1) =XDSP (1 JKN)
IF(KR-2)104, 105, 106
[ C xx LOFAR
: 104 RI=(SP(1)+NPZ)xW
MUC1)=S(1)+RI
SG(1)=SQRT(S(1)*xx2-V(1)+2,*S(1)*xRI/WT+RI xRI/WT)
66 TG 110
C xx BROADBAND
105 RP1=SP(1)+NPZ
MUC1)=RPIxW
SG(1)=MU(I)/SWT
GO TG 110
C xx DEMON
106 RP1=SP(1)+NPZ
MU(1)=(DSP(1)+RPI)xW
SG(1)=MUCI)/SWT
110 CONTINUE

o000

b
(¢]

C xx CALCULATE PROBABILITY OF DETECTION
f A=MUZS+DET(LPJ) xSGZS
PDETZ(J,K)=PROB(MUZ, SGZ,A)
DO 115 1=1, IMAX
PDET(1,J,K)=PROB(MU(I),SG(1),A)
115 CONTINUE

120 CONTINUE

150 CONTINUE
RETURN
END
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SUBROUTINE BAYES(N)

COMMON /A/ GV, NREP, NMAX

COMMON /B/ [MAX, MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)
COMMON /E/ KF(12),NF(12),KT(10,2),TS

COMMGN /H/ WTH(S), TAV(S),NUM(S),DET(S),MEM(5)
COMMON /N/ PRIOR(10),VAL(10,10),FVAL,VMAX(10)
COMMON /S/ PDETZ(12,2),PDET(10,12,2)

COMMON /T/ PGST(10,20),1B(20)

DIMENSION PLIKE(10),LIKE(10,12,20)
REAL LIKE

CALCULATE LOG LIKELIHOGDS
DO S I=1, IMAX

DG S5 J=1,JMAX
LIKE(1,J,N)=0.

CONTINUE

FEATURE J-LOOP

DO 20 J=1,JMAX
IF(NF(J).EQ.0) GO TG 20
LAJ=LA(J)

IF(NA(N,LAJ) .EQ.0) GO TG 20
LPJ=LP(J)

LMAX=NUM(LPJ)

LOGOK ANGLE K-LOGP

DO 15 K=1,MMAX

CALCULATE NUMBER OF DETECTIONS DURING N-TH TIME STEP
IF(LMAX.GE.S0) GO TO 11
LX=0

DO 10 L=1,LMAX

X=RANF(0.)
IF(X.LE.PDETZ(J,K))LX=LX+1
CONTINUE

GO 70 12
LX=LMAXxPDETZ(J,K)+.5
C=FLBC(LMAX, LX)
HYPOTHESIS [ -LOGP

DO 15 1=1,1MAX
PD=ALOGG(PDET(I,J,K))
PE=ALOG(1.-PDET(I,J,K))
Z2=C+ LXxPD+ (LMAX-LX)x*PE
LIKECI,J,N)=Z+LIKEC(I,J,N)
CONTINUE

CONTINUE

SUM OVER FEATURES AND MEMORABLE TIME STEPS
DG 30 1=1,1MAX

PLIKE(1)=0.

DO 30 J=1, JMAX

LPJ=LP(J)

MO=N-MEM(LPJ)

IF(MO,LT. 1)MO=1

DG 30 M=MO,N
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30

xx

32

34

40

S50

60

PLIKE(1) =PLIKE(I)+ LIKE(I,J,M)
CONTINUE

SCALE PRODUCT FROM 1. TO 1000. (MAXIMUM)
PMAX=-~1.E99

PMIN=0.

DO 32 1=1, IMAX

IF(PLIKE(]I).GT.PMAX) PMAX=PLIKE(I)
IF(PLIKECI).LT.PMIN) PMIN=PLIKEC(I)
CONTINUE

PP=PMAX-PMIN

IF(PP.LT.6.908) PP=6.908

DO 34 1=1,1MAX
PLIKE(1)=EXP(6.908x(PLIKE(1)-PMIN)/PP)

CALCULATE POSTERIOR PROBABILIES
SUM=0.

DO 40 1=1, 1MAX

SUM=SUM+PLIKE(1) *PRIOR(I)
CONTINUE

DG 50 1=1, IMAX
POST(I,N)=PLIKE(I) xPRIOR(I)/SUM
CONTINUE

FIND 1 OF MAXIMUM POSTERIOR
PMAX=0.

DO 60 1=1, IMAX
IF(PMAX.GE.POST(I,N)) GO TO 60
PMAX=POST(I,N)

IB(N)=1

CONT I NUE

RETURN

END
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SUBROUTINE DECIDE

COMMON /A/ GV, NREP, NMAX

COMMON /B/ IMAX,MMAX, JMAX

COMMON /C/ LAMAX,KDMAX, IR

COMMON /N/ PRIOR(10),VAL(10,10),FVAL,VMAX(10)
COMMON /T/ POST(10,20),1B(20)

COMMON /U/ NSTOP, KDF

DIMENSIOGN EVAL(10)

DG SO N=1,NMAX

CALCULATE EXP VALUE OF DECISION
DECISION ALTERNATIVE K-LOGOP

DO 10 K=1,KDMAX

EVAL(K)=0.

HYPOGTHESIS [ ~LOGP

D& 10 1=1, IMAX

EVAL (K)=EVAL(K)+VAL(I,K)xPOST(I,N)
CONTINUE

CALCULATE MAX EXP VALUE AND BAYES DECISIGN
DECISION ALTERNATIVE K-LGOP

EMAX=-1.E99

DG 30 K=1,KDMAX

[F(EVAL(K) .LE.EMAX)GO TG 30

EMAX=EVAL (K)

KDF=K

CONTINUE

CALCULATE EXP VALUE OF PERFECT NFOGRMATIGN
HYPOTHESIS [ -LOGP

EVPI1=0.

DG 40 1=1, IMAX

EVPI=EVPI+VMAX(1)xPOST(I,N)

CONTINUE

TEST IF DECISION IS MADE
IF(EMAX/EVPI .GE.FVAL) GO TG 60
CONTINUE

NSTOP=NMAX

RETURN

NSTOP=N

RETURN

END
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FUNCTION FNN(L,FRQ, SO, DG, ANG)

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)
COMMON /1/ DH(2),DV(2),HN(2),VN(2),SL(2)
COMMON /L/ PNN(6,2),FQN(6,2)

D@ 10 NF=1,6

IF(FQN(NF,L)-FRQ) 10,15,20
CONTINUE

FNN=PNN(NF,L) $60 TO 25
F=FQN(NF-1,L)
R=ALOG10(FRQ/F)/ALOG10(FQN(NF,L)/F)
P=PNN(NF-1,L)

FNN=P+Rx (PNN(NF, L) -P)

COGNTINUE

DIRECTIVITY CALCULATION
W=5000. /FRQ
IF(KA(L).EQ.2) GO TGO 30
A=SQRT(4.%3.1416)
H=AXDH(L) /W
IF(H.LT.1.)H=1,
IF(H.GT.HN(L)) H=HN(L)
V=AxDV (L) /W
IF(V.LT.1.)V=1,
IF(V.GT.VN(L)) V=VN(L)
DI=HxV $GO TOC 40
DI=2.xDH(L) /W
IF(DI.LT.1.)DI=1.
[F(DL.GT.HN(L)) DI=HN(L)

FNN=FNN-10. xALGG10(DI)
RETURN
END
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FUNCTIOGN FLL(J,KT,ST,DT, ASP)
COMMGN /J/ FRQ(12),PLL(12,3)
FLL=PLL(J,KT)

RETURN

END

FUNCTION FBB(KT,FRQ,ST,DT,ASP)
COMMON /K/ PBB(6,3),FQB(6, 3)
DO 10 NB=1,6
IF(FQB(NB,KT)-FRQ)10, 15,20

10 CONTINUE

15 FBB=PBB(NB,KT) S$RETURN

20 F=FQB(NB-1,KT)
R=ALGG10(FRQ/F)/ALGG10(FQB(NB,KT)/F)
P=PBB(NB-1,KT)
FBB=P+Rx (PBB(NB,KT)~-P)
RETURN
END

FUNCTION FSL(LA,FRQ)

COMMON /1/ DH(2),DV(2),HN(2),VN(2),8L(2)
P1=3.1416

X=PIxDH(LA)*FRQ/5000.

FSL=SL(LA)
IF(X.GT.PIl) RETURN
B=1.

IF(X.GT..001) B=(SIN(X)/X)xx2
IF(B.GT.SL(LA)) FSL=B

RETURN

END

FUNCTION FAZ(FRQ,RNG, DO, DT)
FAZ=66,+17.*ALOG10(RNG)
FAZ=FAZ+.08%((FRQ/1000.)xx1.4)%xRNG
RETURN

END
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FUNCTION FBM(J, FRQ, BRG, ANG)

COMMON /D/ LP(12),LA(12),NA(20,2),KA(2)
COMMON /E/ KF(12),NF(12),KT(10,2),TS
COMMON /1/ DH(2),DV(2),HN(2),VN(2),SL(2)

P1=3.1416 $U=P1/180.
L=LA(J)
C=PIxDH(L)*xFRQ/5000.
IF(KA(L) .EQ.2) GO TO 30

CIRCLE ARRAY

Y=BRG-~ANG

IF(Y.LT.0.) Y=360.+Y

FBM=0.

IF(Y.GT.20. .AND. Y.LT.270.) RETURN
X=ABS(CxSIN(YxU))

IF(KF(J).NE.1) GO TO 20

NARROWBAND

FBM=1.

IF(X.BGT..001) FBM=(SIN(X)/X)xx2
IF(X.GT.PI .AND. FBM.GT.SL(L)) FBM=SL(L)
RETURN

BROADBAND

FBM=SL (L)

IF(X.GT.P1) RETURN

B=1.

IF(X.GT..001) B=(SIN(X)/X)xx2
IF(B.GT.SL(L)) FBM=B

RETURN

LINE ARRAY

X=ABS(Cx (COS(BRGxU) -COS (ANGxU) ) )
IF(KF(J,) . EQ.1) GO TO 10

GO TO 20

END
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FUNCTION FLBC(N,K)
LOG OF BINGMIAL COEFFICENT
DATA MM /50/

L=N-K

IF(K.EQ.0.6R.L.EQ.0) GO TO 30
IF(K.EQ.1.0R.L.EQ.1) GO TO 40
IF(K.GE.MM.AND.L.GE.MM) GO TO 50
IF(K.GE.MM) GO TO 70
IF(L.GE.MM) GO TO 90

A=1.

LPO=L+1

DG 10 1=LPO,N

A=Ax]

B=1,

DO 20 1=1,K

B=Bx1

FLBC=ALOG(A/B)

RETURN

FLBC=0.

RETURN

FLBC=ALOG(FLOAT(N))

RETURN

*STIRLING N.=SQRT(2PI)x (Nxx(N+.5))*EXP(~-N)

EN=N S$EK=K SEL=L
A=.9189385332
B=(N+.5)xALOG(EN)
C=(K+.5)xALOG(EK)
D=(L+.5)*ALGG(EL)
FLBC=-A+B-C-D
RETURN Y

EN=N $EK=K

A= (N+.5) xALOG(EN)
B=(K+.5)xALOG(EK)
c=1.

DO 80 1=2, L

C=Cx1
FLBC=A-N-B+K-ALOG(C)
IF(L.GE.MM) K=L
RETURN

KK=K $K=L $L=KK

GO TO 70
END




FUNCTION PROB(MU,SI1G, THRESH)

C xx PROB THAT NORMAL RANDOM VARIABLE 1S GREATER THAN THRESHOLD
REAL MU
DATA D1
DATA D2 .
DATA D3
DATA D4
DATA DS
DATA D&

.0498673470
.0211410061
.0032776263
. 0000380036
. 0000488906
. 0000053830

NNNNNN
000000
NNNNNN

A=ABS (THRESH-MU)
[F(A.EQ.0.) GO TO S0
IF(SIG.LE.A/3.08) GO TG 40
X=A/SIG $X2=XxX $X3=X2xX
G=1.+D1xX+D2xX2+D3%xX2xX+D4*X2xX2+D5¥xX3IxX2+D6*X3I*xX3
PROB=.5/Gxx16

30 IF(THRESH.LT.MU) PROB=1, -PROB
RETURN

40 PROB=.001 $60 TO 30

S0 PROB=.5
RETURN
END

SUBROUTINE RANDGM(MIX,SDV, TAU, TS, JUMP, GAUSS, DELTA)
REAL MIX, JUMP

X=RANF(0.)

RHO=EXP(-TS/TAU)

1F(X.B6T.RHO) JUMP=SDV*RNOGRM(O. )
BGAUSS=RHOXGAUSS+SDV*SQRT (1. ~-RHOXRHG) *RNORM(O. )
DELTA=MI XxJUMP+SQRT (1. -MIXxMIX) xGAUSS

RETURN

END

FUNCTION RNORM(V)
SUM=0.
DO 10 I=1,12

10 SUM=SUM+RANF (0. )
RNORM=SUM-6.
RETURN
END
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Appendix B

INPUT AND OUTPUT OF THE SINGLE-TARGET EXAMPLE
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Appendix C
INPUT AND OUTPUT OF THE DOUBLE-TARGET EXAMPLE
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