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| INTRODUC TION 1

. During the requirements definition phase of a project for the development
of an operating system called EASY (Emulation Aid System),l'2 the need for an
effective and efficient program loading facility was noted. A loader was re-

- quired that supported linking, libraries, overlays, and, if possible, dynamic
allocation and delocation of code modules. There was a serious time and man-
power constraint that made minimal implementation mandatory. Since this need
became apparent early in the operating system project, it was possible to in-
fluence the design of the operating system and the underlying control structure t
of the machine architecture. The high-level language SiMPL3/4 was chosen as
the language for implementing system and user routines. Also, the implementor
of the compiler for the SIMPL computer programming language was available to
generate the object code in the structure specified.

v

e T

A search of the literature revealed only meager information on loaders .28 i
Very little information on the subject stating useful general principles with
respect to microprogrammable computer loading was found.

"m-g;”-f*“-;:an‘
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The goal of the design then became to develop a loader facility that was
flexible and powerful enough to support the end use in an effective and efficient
manner but not to encumber the end user or implementor with unneeded complexity. ]
Mr. Charles W. Flink II and Mr. John G. Perry, Jr., helped refine the design
leading to implementation. The micro implemented loader (MIL) design was com-
pleted in May 1976 and, except for some minor enhancements, implemented by
December 1976.

i ol

FUNCTIONAL DESCRIPTION J

OVERVIEW

e aia

25w

The MIL represents an advance in program loading technology for micropro-
grammable computer architectures. The effective use of data structures” and
firmware accounts for the efficiency of the MIL. Its design supports all of
the standard functions associated with traditional computer subsystems, which f
B use camplicated linkers, loaders, and library facilities requiring many thou- '
é sands of instructions to complete their tasks. MIL accomplishes loading of
i code, linking of global data, binding of externals to entry points, and code
; . relocation without the expected complexity. The more advanced loader functions

such as libraries and bound object code modules (i.e., sometimes referred to

as overlays or segments) are also supported. These bound object modules are
dynamically loaded and freed.
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Finally, there is the almost unique feature of delaying binding until

the actual time of first execution of the instruction that references the external

or global data. The Burroughs Corporation B7000/B6000 computer user loader
has this characteristic.l® This feature makes for a more efficient utilization
of computer resources. It also saves on computer processor utilization and

camputer memory space, since only those references actually used in the particular

run need be resolved and reside in main store.

Traditionally, loaders with this type of capability require a large amount
of code to perform their function. The MIL system has no high-level code; all
of the coding was done in microcode. The operating system or user program acti-
vates the loader indirectly by any instruction whose reference is unresolved or
explicitly by two machine instructions (i.e., PSLOAD, PSFREE)._ The entire
loader is implemented in microcode on a Nanodata QM-1 computer™ ' in less than
200 words. True ease of implementation, reliability, and efficient operations
can be obtained when system functions are reduced to a module of this size.

RELOCATION

One of the fundamental functions of any loader facility is the handling of
relocation of machine addresses. A conventional approach by a loader facility
might require all machine instruction modules to generate the code as if the
module was going to execute at memory address zero. The loader would also re-
quire the generator of the machine module to supply the relocator with a mapping
of what instruction addresses would have to be changed if the module was exe-
cuted at some other address in the machine. This procedure is generally neces-
sary since most conventional machines require machine instructions to contain
absolute memory address. The computer needs to know exactly what location to
reference. 1In traditional loader facilities this binding of instructions to
memory address occurs at load time.

However, the EASY operating system resolves this problem by defining in
microcode a machine where instruction addresses needing relocation are replaced
with displacements between instruction location and the memory word referenced.
In order for the firmware to compute the real computer memory address pointed
to by the machine instructions, the microcode adds the displacement given in

."the machine instruction to the location of the instructions. This sum is the

absolute memory address needed to be referenced. This form of addressing is
sometimes referred to as relative addressing.

Since all code generated for this micro machine is done by one translator,
the computation of this displacement is handled transparently to the end user.
Implementation of this design feature eliminates a large part of the overhead
performed by the loader.

LINKING

Another fundamental function of any loader is the linking together of
separately generated load modules. It is very useful for a routine generated
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at one time to reference another routine or data location generated at some
other time. The traditional method is to modify the instructions address of
all references to the external location with absolute address of the location
before execution starts. This approach requires much overhead in table space
and central processor time for externals possibly not used. This process is
generally known as resolution of external references, binding, or linking.

The MIL design takes a different approach. No resolution of externals
takes place until the actual instruction referencing the external is executed.
The firmware is aware of a link list of entry points running through the machine
code modules. The firmware makes use of this data structure to resolve the ad-

dress dynamically. MIL may load a module into core to satisfy the external re-
quired.

DETAILED DESCRIPTION

THE OBJECT MODULE DATA STRUCTURE

A detailed description of the data structures of the object modules and
their relation to other parts of the system is presented in this section. Each
object/load module can consist of up to seven separate tables. The format and
relation of each table are illustrated in Figure 1. The labelis associated with

the first word address of each table are given on the left of the figure. The
tables are

MHDR * Module Header Table
MID* Module ID Table

EXTM External Name Table
GLOBALS Globals Table

ENTM* Entry Point Name Table
TEXT Text Table

ENDM * End Module Table

* Required as part of any object module

It should be noted that, in this particular implementation, program space
started at high memory addresses and grew towards low memory addresses. So the
"top" or oldest module is found at the foot of the diagram, and the most newly
loaded module or "bottom" is dt the head of the diagram. Two pointers, Bottom
of Program Space (BPS) and Top of Program Space (TPS), are also given in Fig-

ure 1. The function of TPS is to indicate the start of the program space, where-

as BPS indicates the end of the currently used memory. As more space is needed,
BPS is decremented.

The purpose and structure (Figures 2 through 8) of each table illustrated
in Figure 1 are presented in the following pages. In the implementation de-
cribed, the tables were reconstructed in 18-bit QM-1 computer words. However,

.
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Figure 1. MIL Load Module with 2 Externals EXT1, EXT2

and 2 Entry Points ENT1,
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the EASY user is only aware of the machine as a 36-bit machine. Transparent to

the user two QM-1 words were used to make a SIMPL-Q word. dowever, 18-bit
fields are efficiently implemented in this application so most of the fields
are half EASY words.

. Module Header Table (MHDR)

Purpose
1. To identify start of a legitimate module
2. To function as a dummy external 1link

3. To allow location of other tables within the module to be defined

T
MHDR 0 777777 ¢g LENGTH OF MODULE
|
i
2 FIRST EXT POINTER 0
|
.
4 MID POINTER LENGTH OF MID
|
I
6 GLOBALS POINTER LENGTH OF GLOBALS
]

Figure 2. Module Header Table
Description of Entries

Word 0

All sevens to flag start of module
- Used with word 1 to form a dummy external name

1 - Length of module, binary number
- A relative pointer to start of next higher module

2 - Relative pointer to first external item in module or,
if none, to ENDM + 4 (i.e., the next MHDR)

3 - Zero
4 - Relative pointer to module ID table
5 - Length of module ID table

6 - Relative pointer to globals table

7 - Length of globals table

T
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Note
If other tables are needed in the future, a relative pointer should be

inserted at the end of the header table along with a word containing the length
of the table.

Module ID Table (MID)

Purpose

To allow human identification of the module

MID 0 MODULE NAME
|
2 VERSION # ENDM + 4 — X%
Il
|
4 JULIAN DATE TIME
|

Figure 3. Module ID Table
Description of Entries
Word 0 and 1 used to contain name of module as defined in SIMPL-Q

2 - Version number of SIMPL-Q compiler being used to generate
module (binary number)

3 - Relative pointer to start of next higher module in core (1.e.,
next MHDR)

4 - Julian date (binary number representing YYDDD)
5 - Time of compilation (binary integer representing HHMMSS)
Note

This table contains human identification information. For this table and
all other loader tables, names are 1-6 characters represented with 6-bit ASCII
characters. All names start with an alpha character (01-33 octal) and are left-
justified within the word and zero-filled. If the name is used for external or
entry data (as opposed to external or entry PROC/FUNC), then the leftmost bit
is set to 1. This guarantees that external linkages can only be made to the
correct type of links.
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External Module Table (EXTM)

Purpose

To allow an external reference to be satisfied dynamically

EXTM 0 EXTERNAL NAME
2 LINK TO I EXTERNAL ADDRESS
NEXT EXTERNAL | OR ZERO

Figure 4. External Module Table

Description of Entries

This table consists of zero or more quadruples of words of the following
format linked together.

Word 0 and 1 - Name of external, up to six.6-bit coded characters
2 - Relative pointer to next external quadruple

3 - Initially zero; when resolved, the relative address
corresponding to the external name

Note

All references to this external within a module normally refer to the same
quadruple. ;

In large modules where a reference to this table may be greater than 10000
locations, a second table for the same external name will be generated. Caution !
must be used in dynamically redefining such multiple external tables, since the
table could be redefined and another table used in the call statement executed.

The names of all external data references are coded so a distinction between
transfer (call) and a data reference can be achieved. Data references have the
high-order bit of the first character set.




Globals Table

Purpose
To group all global variables together

GLOBALS CONSTANT
T
POINTER TO
4 NEXT ENTRY : MHOR — * ENTRY POINT TABLE
IN GLOBALS
[ ENTRY NAME TABLE
CONSTANT
OTHER GLOBALS

Figure 5. Globals Table Containing an Entry Point Table

Description:
The globals table consists of zero or more locations for global variables.

If it is an entry global variable, then an entry table (with the global name
coded as a data item) precedes the location of the global variable.

Entry Table (ENTM)

Purpose :
To allow reference of data or PROC/FUNC from another module

R M‘mﬂ 3 d\wﬁﬂm

ENTM 0 LINKTO ' POINTERTO
NEXT ENTRY A MODULE HEADER TABLE
=
2 ENTRY NAME

Figure 6. Entry Table
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Description
An entry table may occur in one of two places--either in the globals table
(as shown in Figure 5) for a data item or in the text table (EASY code) for
ENTRY PROC or FUNC (Figure 6). 1In either case, the item (code or data) being
referenced immediately follows the entry table. Regardless of the location
of an entry point, the format is:
Word 0 - Relative pointer to the preceding entry point in the module;
if none, then relative pointer to 2 words before module (i.e.,
ENDM + 2 of preceding module)
1 =~ Relative pointer to module header table

2 & 3 - Name of the global or entry point

Note
Data names for globals and PROC/FUNC must follow the convention discussed
under the module ID table.
Text Table
Purpose

To provide an area for executable code

/\/

TEXT
POINTER TO X PR
NEXT ENTRY > ENTRY POINT
o TABLE IN ',
ENTRY NAME TEXT TABLE |
|
|
|
TEXT FOR -
PROC A

Figure 7. Text Table Containing an Entry Point Table
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Description
This area of the object module contains the EASY machine language code

for the program. It also may contain entry tables if there are entry points
for PROC/FUNC in the module.

End Table (ENDM)

Purpose
1. To identify the end of a module

2. To function as a dummy-entry link into a module

LINK TO |
END ‘o LAST ENTRY POINT MHDR — x
IN MODULE |
2 : 707070707070g

Figure 8. End Table

Description of Entries
Word 0 - Relative pointer to last entry point in the module
1l - Relative pointer to MHDR

2 & 3 - 707070707070 Octal. Dummy name for pseudo entry point in module

Note

Entry links point toward low memory, and external links point in the other
direction. This choice was made so that the most often referenced entry points
would be found the quickest.

LINKING ALGORITHM

During execution when a program addresses some procedure or data outside
of its own module, a special microaddressing method is invoked. The machine
instruction referencing the external does so indirectly through a two-word ex-
ternal table (see Figure 4). The machine instruction also causes the speciai
microaddressing method to be invoked. This microaddressing method examines
the external table address field for a non-zero value. If non-zero, it wilil
use this value as the relative memory address for the memory reference or jump

10
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instruction being executed. If the micro instruction finds a zero address
value, the firmware will search all entry point tables (see Figure 6) for a
name matching the external name. On finding a match it uses the memory loca-
tion of the next address after the entry point name for the external address.
This address is made relative to the external table and is written into the ex-
ternal table address field and the machine instruction proceeds.

If the micro instruction cannot find an entry point to match this name in
memory and the external was a PROC or FUNC reference (CALL), then the ioader
can search its directories (libraries) for an entry point name matching the ex-
ternal name. If the external was a data reference, then the program is aborted.
The reasoning is that the user should have data in memory before accessing it
(this restriction may be debatable). Once found, the loader firmware loads
this routine into memory, which writes (i.e., a block copy) the module directly
into memory starting at the next available location by the BPS pointer. BPS
is then set to be the first location of the module loaded. Therefore, the
chain of external tables always starts at a fixed offset from the BPS and ends
at TPS. Likewise, the chain of entry tables always starts in a fixed relation
to the TPS and ends at BPS. Module loading in this manner allows the modules
to be linked into the existing chains without any modification (e.g., relocation,
resolution). .

If the loader routine cannot resolve the external, then the name is un-
satisfiable and the user program is aborted.* If the module has been found
and loaded into memory, then the instruction which referenced the external
is reexecuted. This time the micro instruction finds the entry point and
normal execution continues.

As part of this load function the system routine (PSLOAD) must validate
that the module is valid and there is enough field length between TPS and Top
of Working Storage before loading programs. The PSLOAD function can be exe-
cuted explicitly from the high-level language and load a module.

LIBRARY FUNCTIONS

The storage of routines on a file with a directory is referred to as a
library. Loaders traditionally reference a file with a directory to place in-
to core frequently accessed routines needed by other load modules. SORT and
input/output (I/O) routines are examples of routines frequently needed by other
modules. It is very desirable to have this type of routine accessible to other
modules in a transparent (as possible) method. :

MIL supports this feature by using the operating systems' file directory ,
features. The names of the different files in a particular file library are |
the entry point names of the modules referenced. Thus the standard file mech- |
anism of the operation system is converted into a list of entry points and the

* Unless the user has previously informed the operating system to return
control with (or without) an informative message.

11
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location of the modules containing them. The firmware uses the file directory
mechanism to locate the module and then issues an I/O to transfer the required
module into memory.

e 1
T

BOUND OBJECT CODE MODULES

1 Segment loading capability can be accomplished (as explained above) by

{ making a call to an entry PROC/FUNC not residing in memory. Overlay loading can

! be accomplished with the aid of a simple copy utility which forms a single mod-

4 y ule of all modules common to one overlay. This overlay is then stored in the

E file directory for MIL with its primary entry point as file name. Any external
reference to this entry point name will cause the entire overlay to be loaded.

Execution of the overlay will start if it is a procedure entry point name.

DYNAMIC LOADING AND FREEING OF OBJECT MODULES

To load an overlay, a call is made to its external reference name. An
entire overlay program space can be released by delinking any entry point in
that overlay. Module delinking (freeing program space) is accomplished by
the high-level statement PSFREE that translates into a micro instruction. The
operand for this instruction is the address of any entry point in the module
that is to be deallocated.

I S s i

{ All modules with lower addresses than this module will also be deallocated
i at the same time. The micro algorithm uses the pointer which links to the
beginning of a module to find the length of the module and therefore its last
word address. Once this address is known, the algorthim then checks the stack
used by SIMPL-Q. This is to insure that deallocation of the module(s) will

not leave an activated stack entry for a module but no module to return control
to. When this check is satisfied, pointers are adjusted for freeing of object
modules. This is accamplished by setting the BPS to the location before the
module being delinked. Also, the external address fields of the remaining
external tabies that reference the module just delinked are zeroed. This is
performed by checking the addresses in the external chain against the new BPS.
If the address is less than the current BPS, then the address is set to zero.

If the PSFREE request cannot be accomplished because of active modules with
lower address than the current module requesting being freed, then the request

[ is modified to deallocate as much of the program space as possible or the re-
‘ quest becomes a no operation (NOOP).

|
A




CONCLUSIONS

The functions performed by the micro implemented loader allow for a wide
range of capabilities without undue complexity. The design relies on a micropro-
grammable processor's ability to redefine the machine's apparent architecture
and data structures to develop a relatively small comprehensible approach. The
‘ implementation has shown that this approach is easily produced, efficient, and
I ' ; adequate for the needs of the users.
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