
r - - ____- -

~~~ 

___

I AD—A O 6 S 931 NAVAL SISPACE WEAPONS CENTER DAIILSREN LAS VA F/S 9/2
MICRO IeI2MENTED LOADEReSAN ADVANCED LOADER FACILITY FOR A M IC—— ETCIW
NOV 71 A P S A SSI UNCLASSIFIED td*C/DL/Tft-319S NI.

I
, 

nj  

____

UI
II



1.0
_ _ _ _  

L. 0m2.2
L ~~~

Ow I.’ 
~

11111’ .25 IIIHi~ IOH~•~
M~CRUCOI~Y F~FSOLUIION lIST CHART

~~~ AU II AN IJAtAJ~ 1~A A


)

H

~ LLJ

— _ _ _ _ _ _ _

I - -

—

‘ -

Description

L

w —
~

-
~ - - — — —

UNCLASSIFIED
%ECU~~ITY CLAS SIPICATIO N OF Tifi S PAGE (1Th.n Data Enta..d)

~~~~ DI~~flT I i L I J 1 ATI f l~I DA I
~~ 

READ INSTRUCTION S
~~~~~~~~~~~ a,,~~vRI~~n I ~~ I I~’~’~ ‘ ~~~ BEFORE COMPLETING FORM

,-~~~~“ L_ss rBnT1.uu ..n 2. GOVT ACCESSIO N NO. 3. RECIPIENT’S CATAL OG NUMB ER(
~

NSWC/DI
7
/TR-389~~~J I __________________________

~~~~ii:i (aid f - bf j ~~-) — —  T”~~ ~ O~~t 
& 1 1n1-sg-COVERED(

~ 
MICRO IMPLEM N ED ~~OADER~~~~~~~pVANCED~~ OADER 

~~ ~~~~~l~~~~~~/~~Z)~~ /
— 

* ~~~ P ERFORMING 0 G. RL~QWT UMBER

~~~~ 
~~~~~~~~~~~~~ 

CONT RACT OR GRANT NUMSER(a)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMENT. PROJ ECT , TASK

Naval Surface Weapons Center (K74 )
Dahigren , VA 22448 

Computer Program Support

It . CONTROLLING OFFICE NAME AND ADDRESS

Naval Surf ace Weapons Center (K74) / No~.~~xx ~~78 /
Dahlgren , VA 22448 ~~ ~~~~~~~E~eAii~~

23
iT Mo G AGENCY NAME & ADDRESS(II dtU.r.nt Iron, Controllln~ OWe.) IL SECURITY CLASS. (of hi. r.po rf)

~ / 
UNCLASSIFIED

ISa. DICLASSIFICATION/DOWHGRAOING

fr
IS. DISTRIBUTION STATEM ENT (of tlila R.port)

Distribution unlimited; approved for public release.

Il. DISTRIBUTION STATEMENT (of I?,. abaI,act .rgt.,. d in hock 20, if dtff.r~ ,t Ira., R.p or t)

11. SUPPLEMENTARY NOTES

19. KEY WOR D S (Continua on ,. v.,.. .id • ii n.c•.aa,y ,d ldlntUy &~ block ns b.r)

Computer, Loader, Linker, Binder, Object Code, Segments, Overlays, Linkage
Editor , Operating System, Firmware Microprogrammed , SIMPL—Q, Emulation Aid
System - EASY , Nanodata QM-l, Micro Implemented Loader (MIL)

20?”~~~~RACT (Coniinu. an r.v•t.• aid. if n•c.aa~~y ,d idiniIi ~’ by block m1b 1)

The micro implemented loader (MIL) represents an advance in computer
program loading technology for microprogrammable computer architecture.
The MI L  facility replaces, with a simpler approach , the complex system
software traditionally associated with this function. It provides dynamic
loading , linking , and delinking of computer nodules and supports object
library functions with a minimum of user and implementor effort. MIL takes
advsntage of special data structures and firmware to achieve its efficiency .~—~

nj’ 

DD 
~~~~~~~ 

1473 £olTION O~~ t NOV I$ 9

~~~~~~~~~~~~~~~~~~~~~ 7’~
_ 

~~
.

— 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~_ ._~~_ 4 * ~~~ ~~~~~~~~~

~~ - - s r ’— - -

UNC LASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (IW,~ . D a E&.r.dj

(Continued)

The loader was developed and implemented at NSWC on a Nanodata QM- l
computer in less than 200 micro locations.

I

r UNC~ASSIPIED
SECURItY CLA SI4PIC*TIO~ OP YWI$ PASI~~~a. Dais ~~~~~~~

~*rT~i.•~
.

-

~~~~~~~~~~~~~~~~~
~-



-~~~ ~-

FOREWORD

* The micro implemented loader (MIL) was designed and implemented as a capa-
bility of an operating system called EASY (Emulation Aid System) for the Nano-
data QM—l microprogrammable canputer at NSWC. The project was supported by the
FBM Geoballistics Division and by the Canputer Facilities Division.

This report was reviewed by Mr. Hermon W. Thanbs, Head of the Programming
Systems Branch , Canputer Programming Division.

Released by:

RALPH A. NIEMANN , Head 4Strategic Systems Depar tment

AC CESS

NTIS W .it e Sect ion

BalI Section 0
0

hiS’ I i’d

Lv
ms1RIzi*~!~ ma ~ ~1’( I.O’ES

- ~~~~~~
__ 

CIAL

iii

_ _  

J ~~~~
,

-~



- — —~~~~
-- -

- -

CONTENTS

INTRODUCTION 
1

FUNCTIONAL DESCRIPTION
OVERVI3q
RELOCATION 2LINKING 2

D ETAIL~~~DESCRIPTION 3ThE OBJSCT MODULE DATA STRUCTURE 3LINKI?~~~ALGORITHM 10LIBRARY FUNCTIONS 11BOUND OBJSCT CODE MODULES 12DYNAMIC LOADING AND FREEING OF 0B ThX T MODULES 12
CONCLUSIONS 13

REF’ER~ 4CES 14
DISTRI~~JTION

i~

V 

.. — .

~

-.

_ _ _ _  
au:.. ~~~~~~~~~~~~~~~~

~~ •t~~ H 
~~~~~~~~~~~~~ 

I ~~~~~~~~~~~

- 4i~. IS,uI~~PS1
- ,. .~

- -- — -.-

f

INTRODUCTION

• During the requirements definition phase of a project for the development
of an operating system called EASY (Emulation Aid System),1’2 the need for an
effective and efficient program loading facility was noted. A loader was re—

• quired that supported linking , libraries , overlays, and , if possible, dynamic
allocation and delocation of code modules. There was a serious time and man-
power constraint that made minimal implementation mandatory. Since this need
became apparent early in the operating system project, it was possible to in-
fluence the design of the operating system and the underlying control structure
of the machine architecture. The high—level language SIMPL3’4 was chosen as
the language for implementing system and user routines. Also , the implementor
of the compiler for the SIMPL computer programming language was available to
generate the object code in the structure specified .

A search of the literature revealed only meager information on loaders.5’8
Very little information on the subject stating useful general principles with
respect to microprogrammable computer loading was found.

4
The goal of the design then became to develop a loader facility that was

flexible and powerful enough to support the end use in an effective and efficient
manner but not to encumber the end user or implementor with unneeded complexity.

• Mr. Charles W. Flink II and Mr. John G. Perry, Jr., helped refine the design
leading to implementation . The micro implemented loader (MIL) design was com-
pleted in May 1976 and, except for some minor enhancements, implemented by
December 1976.

FUNCTIONAL DESCRIPTION

OVPIWIEW

• The MIL represents an advance in program loading technology for micropro—
• grammable computer architectures. The effective use of data structures9 and

firmware accounts for the efficiency of the MIL. Its design supports all of
the standard functions associated with traditional computer subsystems, which
use complicated linkers, loaders , and library facilities requiring many thou—
sands of instructions to complete their tasks. MIL accomplishes loading of
code, linking of global data, binding of externals to entry points, and code

• relocation without the expected complexity. The more advanced loader functions
such as libraries and bound object code modules (i.e., sometimes referred to
as overlays or segments) are also suppor ted . These bound object nv~dules are
dynamically loaded and freed.

1

*•.- • - :‘ : ~- _--n,j~
.r11~~~~~...*~~

_ - -- -

- •~ - .,— . - • _—t_ ~~~~~~~~~~~~~~~~~ - • : • •- - • •~ .-
- •

,

-
• _~~•i

i .i_,~_ -

- -. - -- —- - - - - ~~~*— - - - -

Fina l ly , there is the almost un ique feature of delaying binding unt i l
the actual time of f i r s t execution of the instruction that references the external
or global data. The Burroughs Corporation B7000/B6000 computer user loader
has this characteristic.1-0 This feature makes for a more efficient utilization
of computer resources . It also saves on computer processor utilization and
computer memory space, since only those references actually used in the particular
run need be resolved and reside in main store.

Traditionally, loaders with this type of capability require a large amount
of code to perform their function. The MIL system has no high—level code; all
of the coding was done in microcode. The operating system or user program acti-
vates the ioader indirectly by any instruction whose reference is unresolved or
explicitly by two machine instructions (i.e., PSLOAD, PSFREE). Th~ entire
loader is implemented in microcode on a Nanodata QM— l computer11’~”’ in less than
200 words. True ease of implementation, reliability, and efficient operations
can be obtained when system functions are reduced to a nodule of this size.

RELOCATION

One of the fundamental functions of any loader facility is the handling of
relocation of machine addresses. A conventional approach by a loader facility
might requ ire all machine instruction modules to generate the code as if the
module was going to execute at memory address zero. The loader would also re-
quir e the generator of the machine nodule to supply the relocator with a mapping
of what instruction addresses would have to be changed if the module was exe-
cuted at some Other address in the machine. This procedure is generally neces-
sary since most conventional machines require machine instructions to contain
absolute memory address. The computer needs to know exactly what location to
reference. In traditional loader facilities this binding of instructions to
memory address occurs at load time.

However , the EASY operating system resolves this problem by defining in
micr ocode a machine where instruction addresses needing relocation are replaced
with displacements between instruction location and the memory word referenced .
In order for the firmware to compute the real computer memory address pointed
to by the machine instructions, the microcode adds the displacement given in
the machine instruct ion to the location of the instructions. This sum is the
absolute memory address needed to be referenced. This form of addressing is
sometimes referred to as relative addressing .

Since all code generated for this micro mach ine is done by one translator ,
the cc*nputation of th is displacement is handled transparently to the end user.
Implementation of this design feature eliminates a large part of the overhead
performed by the loader .

• LINK iNG

Another fundamental function of any loader is the linking together of
separately generated load modules. It is very useful for a routine generated

2

• __
- - -

- ______

— • - - - -

~‘ - - ‘~r - - -

— - ‘

at one time to reference another routine or data location generated at some
other time. The traditional method is to modify the instructions address of
all references to the external location with absolute address of the location
before execution starts. This approach requires much overhead in table space
and central processor time for externals possibly not used . This process is
generally known as resolution of external references, binding , or linking .

The MIL design takes a different approach. No resolution of externals
takes place until the actual instruction referencing the external is executed.
The firmware is aware of a link list of entry points running through the machine
code modules. The firmware makes use of this data structure to resolve the ad-
dress dynamically . NIL may load a nodule into core to satisfy the external re-
quired.

DETAILED DESCRIPTION

THE OBJECT t4)DULE DATA STRUCTURE

A detailed description of the data structures of the object nodules and
their relation to other parts of the system is presented in this section. Each
object/load module can consist of up to seven separate tables. The format and
relation of each table are illustrated in Figure 1. The labels associated with
the first word address of each table are given on the left of the figure. The
tables are

MHDR* Module Header Table
MID* Module ID Table
EXTM External Name Table
GWBALS Globals Table
ENTM* Entry Point Name Table
TEXT Text Table
ENDM5 End Module Table

* Required as part of any object module

It should be noted that, in this particular implementation, program space
started at high memory addresses and grew towards low memory addresses. So the
“top” or oldest module is found at the foot of the diagram, and the most newly
loaded module or “bottom” is ~t the head of the diagram. Two pointers, Bottom
of Program Space (BPS) and Top of Program Space (TPS) , are also given in Fig-
ure 1. The function of TPS is to indicate the start of the program space, where-
as BPS indicates the end of the currently used memory. As more space is needed ,
BPS is decremented .

The purpose and structure (Figures 2 through 8) of each table illustrated
in Figure 1 are presented in the following pages. In the implementation de—
cribed, the tables were reconstructed in 18—bit QM—l computer words. However,

1~

3

1-
- , .- ~- ~I

_
- - .~~- 4• - - , .

—

- - - . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -- - -

~~
-fl •__u-

I
• - - •. 4,...

~~
_ ____ ,•_ . - -

• ~1’

• ~-~~~w ___ __ _ _ - . - - - --

~~

-

~~~

- - - - - 
-

______ 
r—

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODULE

MHOR MODULE LENGTH
___________ 0 0 LEGEND :

MID * LENGTH OF MID E~~~~1I GLOBALS * LENG TI-4 OF GLOBALS DATA

MID MODULE NAME
I VERSION S • 4 *I —-

~~~~~~~~~~~~~~~~~~~~~~DATE TIME - COOE
_ _ _ _  I _______-

~~

________

EXTM I -
~~~~ EXT1 NAME

- —--~~~~~~~~~~ - -
I

~
____ __, 0I MIL TABLE

EXT2 NAME ENTRIE S
-

~~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GLOBALS

---- L~~~~ MHDR~
1

ENTM I - LOWER
I -~~~ ENT1 NAME

LGHER
TEXT

t J - - ~-- -- -- r
• - — ~~~~~~~~~~~~~ MHOR *t ENTM
- NOTE: STAR (*1 SIGNIFIES THE

— — — ~~~
- ENT2 NAME

VALUE OF THE CURRENT
I RELATIVE LOCATIO N IN THIS

I MODULE THUS MHDR *
I - .~~~~~i-~~~•

-
- - -

~~~. - IS A  RELATIVE POINTER
I CALL C)— — T O THE BEGINNING OF

THE MODULE

ENDM 
i... — - -—-- -- a MHOR * 

-

7070707070708

~~~~~— OLDER MODULE

~~~~ 
TPS

Figure 1. MIL Load Module with 2 Externals EXT1, EXT2
and 2 Entry Points ENT1, ENT2

4

~~.

.—- -
“

- 
_ _
~~~~

_
~~~•

- -
~~~~ -; _•T ,•~

_
-

• .

-
—

• -•-.~~~w~~
_ _ _ S _ • • - -. -

~~~~

the EASY user is only aware of the machine as a 36—bit machine. Transparent to
the user two QM— 1 words were used to make a SIMPL—Q word. However , 18—bit
fields are efficiently implemented in this application so most of the fields
are half EASY words.

4

Module Header Table (MHDR)

Purpose

1. To identify start of a legitimate module

2. To function as a dummy external link

3. To allow location of other tables within the module to be defined

M H D R  0 777777~ LENGTH OF MODULE

2 FIRST EXT POINTER 0

4 MIO POINTER LENGTH OFMID

6 GLOBALS POtNTER LENGTH OF GLOBALS

Figure  2. Module Header Table

Description of Entries

Word 0 — All sevens to flag start of module
— Used with word 1 to form a dummy external name

1 — Length of module, binary number
— A relative pointer to start of next higher module

2 — Relative pointer to first external item in module or,
if none, to ENDM + 4 (i.e., the next MHDR)

3 — Z e r o

4 — Relative pointer to module ID table

5 — Length of module ID table

6 — Re lative pointe r to globals table

7 - Length of globals table

I
_ ___ _______
_______  — -~~~~~~

- 

j ~~~~~~~~4~ML - —

: _~: r



- - - - - -- - - - - . -  —

Note

If other tables are needed in the future , a relative pointer should be
inserted at the end of the header table along with a word containing the length
of the table .

Module ID Table (MID)

Purpose

To allow human identif icat ion of the module

MID 0 MODULE NAME

2 VERSION I ENDM + 4 — *

4 .ULIAN DATE TIME

Figure 3. Module ID Table

Description of Entries

Word 0 and 1. used to contain name of module as defined in SIMPL—Q

2 - Version number of SIMPL—Q compiler being used to generate
module (binary number)

3 — Relative pointer to start of next higher nodule in core (i.e.,
next MHDR)

4 — Julian date (binary numbe r representing YYDDD)

5 — Time of compilation (binary integer representing HHII4SS)

Note

This table contains huma n identification information. For this table and
al l other loader tables, names are 1—6 characters represented with 6—bit ASCII
characters. All names start with an alpha character (01—33 octal) and are left—
justified within the word and zero—filled. If the name is used for external or
entry data (as opposed to external or entry PROC/FUNC ) , then the leftmost bit
is set to 1. This guarantees that external linkages can only be made to the
correct type of links.

6

~f1_ _ _ _ _   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _4 _ -. -- :~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,
~~~ ~~~~~~~~~~~~~~~~ 

- — - -

—

$ I. r - $- 7 r -

-

External Module Table (EXTM)

Purpose

To allow an external reference to be satisfied dynamically

EXTM 0 EXTERNAL NAME

LINK TO I EXIERNAL ADORESS2 NEXT EXTERNAL OR ZERO

Figure 4. External Module Table

Description of Entries

This table consists of zero or more quadruples of words of the following
format linked together.

Word 0 and 1 — Name of external, up to six- 6—bit coded characters

2 - Relative pointer to next external quadruple

3 — Initially zero; when resolved, the relative address
corresponding to the external name

Note

All references to this external within a module normally refer to the same
quadruple. -

In large nodules where a reference to this table may be greater than 100008locations, a second table for the same external name will be generated. Caution
must be used in dynamically redefining such multiple external tables, since the
table could be redefined and another table used in the call statement executed.

- -

The names of all external data references are coded so a distinction between
transfer (call) and a data reference can be achieved. Data references have the
high—order bit of the first character set.

7

~~~~~~~~~~~~~~~~~ ~~~~ — - —  . -c_•--._ . ~I -~ ---—--— - —- .-- -~~~~~_ L 
~~~~~~~~~~ - 

- — — - — ---—-- -
•• -

—
-

-

-

fr
y.. - -

~kS~~—----------—--—.-

~

----------- --- - - -
- - . - -

.
-
~~~~- - - - - - - r~~

- -~~



— - —

Globals Table

Purpose
To group all globa l variables together

-
‘ 

. GLOBALS CONSTANT

POINTER TO
NEXT ENTRY MHDR — * ENTRY- POINT TABLEI IN

ENTRY NAME TABLE

CONSTANT

OTHER GLOBALS

Figure 5. Globals Table Containing an Entry Point Table

Description:

The globals table consists of zero or more locations for global variables.
If it is an entry global var iable, then an entry table (with the global name
coded as a data item) precedes the location of the global variable .

Entry Table (~~ Th)

• Purpose
To allow reference of data or P1~)C/FUNC from another nodule

ENTM 0 LINK TO POINTER TO
NEXT ENTRY MODULE HEADER TABLE

2 ENTRY NAME

Figure 6. Entry Table

8 •

_ _ _ _ _  

_

:~~~~~~~
‘ 

~~~~~~~ ~~~~


—, . — -~~~~w — - - •• — - -
-

Description

An entry table may occur in one of two places——either in the globals table
(as shown in Figure 5) for a data item or in the text table (EASY code) for

• ~~TRY PROC or FUNC (Figure 6) . In either case , the item (code or data) being
• . referenced immediately follows the entry table . Regard].eas of the location

of an entry point , the format is:

• Word 0 — Relative pointer to the pr eceding entry point in the module;
if none , then relative pointer to 2 words before module (i.e.,
E~I)M + 2 of pr eceding nodule)

1. — !kelative pointer to module header table

2 & 3 — Name of the global or entry point

Note

Data names for globals and PROC/FUNC must follow the convention discussed
under the module ID table.

Text Table - -

Purpose

To provide an area for executable code

TEX T

POINTER TO
NEXT ENTRY MHDR — * ENTRY POINTI TABL E IN

ENTRY NAME
TEXT TABLE

TEXT FOR
PROC A

Figure 7. Text Table Containing an Entry Point Table

9

r~~ -
.

- -_ _ _ _ _ _ _ _ _

4- ~~~ ;
~~ ~~ ~~~~~~~~~~~~~

— - • • - •. —- • - - — - - —

Description

This area of the object module contains the EASY machine language code
for the program. It also may contain entry tables if there are entry points• for PROC/FUNC in the module.

End Table (F~DM)

I Purpose

1. To identify the end of a module

2. To function as a duni~y—entry link into a module

LINK TO I
~~~ END ~ 0 LAST ENTRY POINT MHDR — *

— 
IN MODULE

2 7070707070708

Figure 8. End Table

1’ Description of Entries

Word 0 — Relative pointer to last entry point in the module

4- 1 - Relative pointer to MHDR

2 & 3 — 707070707070 Octal. Dummy name for pseudo entry point in module

- Note

Entry links point toward low memory, and external links point in the other
direction. This choice was made so that the most often referenced entry points

- would be found the quickest.

- LINKING ALGORIT1*4

During execution when a program addresses some procedure or data outside
• of its own module, a special microaddressing method is invoked. The machine

instruction referencing the external does so indirectly through a two—word ex-
ternal table (see Figure 4). The machine instruction also causes the special
microaddresaing method to be invoked. This microaddressing method examines

- the external table address field for a non—zero value. If non—zero, it will
- use this value as the relative memory address for the memory reference or jump

10

• 
- 

~~~~~~~

-
- --- - - - . ~~~ - —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
=_5__

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- — —~

instruction being executed. If the micro instruction finds a zero address
value , the firmware will search all entry point tables (see Figure 6) for a
name matching the external name. On finding a match it uses the memory loca-
tion of the next address after the entry point name for the external address.
This address is made relative to the external table and is written into the ex—
ternal table address field and the machine instruction proceeds.

If the micro instruction cannot f ind an entry point to match this name in
memory and the external was a PROC or FUNC reference (CALL), then the Loader
can search its directories (libraries) for an entry point name matching the ex-
ternal name. If the external was a data reference, then the program is aborted.
The reasoning is that the user should have data in memory before accessing it
(this restriction may be debatable). Once found, the loader firmware loads
this routine into memory, which wr ites (i.e., a block copy) the nodule directly
into memory starting at the next available location by the BPS pointer. BPS
is then set to be the first xocation of the nodule loaded. Therefore, the
chain of external tables always starts at a fixed offset from the BPS and ends
at TPS. Likewise , the chain of entry tables always starts in a fixed relation
to the TPS and ends at BPS. Module loading in this manner allows the modules
to be linked into the existing chains without any modification (e.g., relocation,
resolution). -

If the loader routine cannot resolve the external, then the name is un-
satisfiable and the user program is aborted.* If the module has been found
and loaded into memory, then the instruction which referenced the external
is reexecuted. This time the micro instruction finds the entry point and
normal execution continues.

As part of this load function the system routine (PSLOAD) must validate
that the module is valid and there is enough field length between TPS and Top
of Working Storage before loading programs. The PSLOAD function can be exe-
cuted explicitly from the high—level language and load a module.

LIBRARY FUNCTIONS

The storage of routines on a file with a directory is referred to as a
library. Loaders traditionally reference a file with a directory to place in—
to core frequently accessed routines needed by other load modules. SORT and

•
-

input/output (I/O) routines are examples of routines frequently needed by other
modules. It is very desirak ie to have this type of routine accessible to other
modules in a transparent (as possible) method.

MIL supports this feature by using the operating systems’ file directory
features. The names of the d i f ferent files in a particular file library are
the entry point names of the nodules referenced. Thus the standard file mach—
anism of the operation system is converted into a list of entry points and the

* Unless the user has prev iously info rmed the operating system to return
control with (or without) an informative message.

11

— _ _ *
-

- - - - ---— — - - -~~~~~ ___ _____
l -

location of the modules containing them. The firmware uses the file directory
mechanism to locate the module and then issues an I/O to transfer the required
module into memory.

-

-
BOUND OBJECT CODE MODULES

Segment loading capability can be accomplished (as explained above) by
making a call to an entry PROC/FUNC not residing in memory. Overlay loading can
be accomplished with the aid of a simple copy utility which forms a single mod-
ule of all modules common to one overlay. This overlay is then stored in the
file directory for MIL with its primary entry point as file name. Any external
reference to this entry point name will cause the entire overlay to be loaded.
Execution of the overlay will start if it is a procedure entry point name.

DYNAMIC LOADING AND FREEING OF OBJECT MODU LES

To load an overlay , a call is made to its external reference name. An
entire overlay program space can be released by delinking any entry point in
that overlay. Module delinking (freeing program space) is accomplished by
the high—level statement PSFREE that translates into a micro instruction. The
operand for this instruction is the address of any entry point in the module
that is to be deallocated.

All nodules with lower addresses than this module will also be deallocated
at the same time. The micro algorithm uses the pointer which links to the
beginning of a module to find the length of the nodule and therefore its last
word address. Once this address is known, the algorthim then checks the stack
used by SIMPL-Q. This is to insure that deallocation of the nodule(s) will
not leave an activated stack entry for a module but no module to return control
to. When this ch’ck is satisfied , pointers are adjusted for freeing of object
modules. This is accomplished by setting the BPS to the location before the
module being delinked. Also, the external address fields of the remaining
external tables that reference the module just delinked are zeroed. This is
performed by checking the addresses in the external chain against the new BPS.

- •
If the address is less than the current BPS, then the address is set to zero.

If the PSFREE request cannot be accomplished because of active modules with
lower address than the current module requesting being freed, then the request
is modified to deallocate as much of the program space as possible or the re-
quest becomes a no operation (NOOP).

-_-~~~ _r~~
—

~~ __

. • ~ . 4 . v
~~~v?r .  - —- - 

~~~~ •~~~•
- .-~‘•‘.-~-~ - - -

_ ±

- - ~ ‘~~~~~~ ‘- - - --—-—-•--— - - -~~~~~~~~~~ -- ~~~- - IJH~~~~~ f’r~~~- ~~~~~~~~~~~ — - - -- b.—

-
CONCLUSIONS

- The func tions performed by the micro implemented loader allow for a wide

*
range of capabilities without undue complexity. The design relies on a micropro—

-
graranable processor ’s ability to redefine the machine’s apparent architecture
and data structures to develop a relatively small comprehensible approach. The
implementation has shown that this approach is easily produced, efficient, and

- adequate for the needs of the users.

I.

- ~~~~~~~~~~~~ ~~~~~
- . • . -

~~~~~~~~~~~~~

~± 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



—I -- - - - - -—-- - — — - - ----— —- - --- ----- - -- - -- -- -

REFERF~4CES

1. John G. Perry, Jr., EASY System Programmer ’s Guide, Naval Surface Weapons
Center , Dahlgren Laboratory Technical Report N~~C/DL Th—3774, Dahigren,Virgin ia , January 1978 .

2. Charles W. Flink II, EASY-—The Design and Implementation of an Intermediate
Language Machine, Naval Surface Weapons Center , Dahlgren Laboratory Technical

• Report N~~C/DL Th—3765, Dahigren , Virginia , December 1977.

3. V. R. Basili and A. J. Turner , SIMPLi-T: A Structured Programming Language,
U. of Maryland Computer Science Center , Computer Note CN—14.2, August
1975.

4. John Perry, SIMPL—Q Reference Manual, Naval Surface Weapons Center , Dahlgren
Laboratory Technical Report NSWC/DL TR—3778, Dahlgren , Virginia.

5. D. W. Barron , Assemblers and Loaders , American Elsevier , New York, 1969.

6. C. Presser an& J. R. White, Linkers and Loaders, ACM Computing Surveys, Volume
4 Number 3 , September , 1972.

7. K. Dadi, L. Dadi, A. Mateeva, and I. M. Salamatin , Organization of A Relocatable-
Program Library f o r  a Fixed-Pa ge Computer , Computer Software and System
Programming, Plenum Publishing Corporation, New York, New York.

8. Roger J. Martin , 4 General Purpose Overlay Loader for CDC 6000—Series Computers ;
Mod if icat ion of the MAS~RAN Linkage Editor, Naval Ship Research and Development
Center, NSRDC Report 9062, Bethesda, Maryland, April 1973.

9. Donald E. Knu th , The Art of Computer Programming: Fundamental Algorithms,
Volume I, Add ison—Wesley, 1969.

10. Burroughs Corporation , Burroughs B7700 Systems Reference Manual.

ii. Nanodata Corporation , QM-NCS, Preliminary Systems Operations Guide, Williams-
yu le, New York, May 1977.

12. Nanodata Corporation, Task Control (TCP 1.05), Revision 2, Williarnsv ille ,
New York, 1976.

1-•
14

- 

__________________________________________ ~~~~
- :-

‘

~~~~~~~~~

- - -
~~~~ 

- 

-
- 

- 
- -

- .,— ø-~ .-~~~_ •.•-~~~~-, - • — - * ~ - - ~• .~~~~— m~ - -

3 ) 
, 

j 1r — 
~p_~

•_*
- -  ---~~ -.- - -.



• — — -. —

DISTRIBUTION

Defense Advanced Research Projects Agency
1400 Wilson Bou levard
Ar lington , VA 22209
ATTh: William Carison

U.S. Naval Electronic Systems Command
Wash ington, DC 20360
ATTN : John Machado

(Code 330)

Computer Science Depar tment
University of Maryland
College Park, MD 20742
ATTN: Dr. Yahan Chu

Dr. Victor Basuli

Cauputer Science Depar tment
V.P.I. and State University
Blacksburg, VA 24060
ATTN : Dr. Richard Nance

Dr. Thomas Wesselkamper

Nanodata Corporation
2457 Wehrle Drive
Williamsville, NY 14221
ATTN: Mile Brenner

USC/Information Sciences Institute
4676 Admiralty Way
Marina Del Ray, CA 90291
ATTN: Lou Gallenson

Defense & Space Systems Group of TRW Inc.
One Space Park
Redondo Beach, CA 90278
ATTh: Barry Press

David Bixler
Herb Wagenheim

Martin Marietta
P.O. Box 179 - 

—

Denver , CO 8020 1
ATTN : Skip Scown

B. Clausson

_ _ _ _ _ _  _ _ _  

- Th
~~~~


— - - -

-
~~~~~~ w —

*

DISTRIBUTION (Con tinued)

McDonnell Douglas
5301 Solsa Avenue
Huntington Beach , CA 92647
MVTN: Harris Dairymple

RADC/ISCA
Gr i f f i s s  Air Force Base
Rome, NY 13441
ATTN: Armand Vito

Dr. W. A . Burkhard
Compu ter Science Division
Department of Applied Physics and

Informa tion Science
University of California at San Diego
Laj olla , CA 92093 (4 )

Dr. John Tartar
Depar tment of Computer Science
University of Alberta
Edmonton, Alberta

• Canada T6G 2E1

Coi~~ ander a
Naval Ocean Systems Center
271 Catalina Boulevard
San Diego, CA 92152
M’Ill: Code 5200

Rugs Eyers

Command thg Officer
U.S. Army Harry Diamond Laboratories
2800 Powder Miii. Road
Adelphi, MD 20783
A11~N: Br anch 520

Rick Johnson - 

- 
-

DIT—NCO International
5612 Brighton Terrace
Kansas City, ?~ 64130
M”I’N: 3. L. Herbaman

NCR E&M -SD
16550 W. Bernardo Dr .
San Diego, CA 92127
A’l’rN: Leslie Stevens

Manager , Product Firmware

~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ t-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— •-

~~~~
-

~~~ 

___

~ ________________________________



-. — - •  - - -••— ~~-- - — - -- - — --- -- -

DISTRIBUTION (Continued)

Nanodata
6065 Madra Ave .
San Diego , CA 92120
ATTN : Robert C. Boe

A. Ammer man (CCI4PRO)
Rt. 1 Box 690
Ki ng George , VA 2248 5

General Research Corporation
307 Wyn n Drive
Huntsville, AL 35807
ATTN: H. D. Fitzgibbon

System Development Corporat ion
4810 Bradford Blvd , N.W.
Hun tsville, AL 35805
ATTN: Robert Kirk

University of South Louisiana
Box 44850
Lafayette , LA 70504
ATTh: Paul A. Boudreaux

Defense Documentation Center
Cameron Station
Alexandria, VA 22314 (12)

Library of Congr ess
Washington, DC 20540
ATTN: Gift  and Exchange

Division (4)

Local:

~4l
K54 (R. Pollock, W. McCoy) (2)
K60
K6l
K70
K74
K74 (Gaas) (20)
N30 (R. Hem )
X210l (GIDEP)
X2l02 (2)

- - 
-- ~~~~~~~~~~~~~~~~~ ‘~ ~T c ~~~~~~~~ ~~~~~~~~~~~~~~~ 

. 
~~~~~~~ ~~~~~

- ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - ~ ~~~~~~

