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Chapter 1

INTRODUCTION

As in other regions of the Western Pacific, tropical cyclones
create a severe natural hazard in the Philippine Islands area (1). In
some cases, the tropical cyclones cause severe damage to ships in
harbor (2). Therefore, it is very important to know what effects local
topography has upon mean wind velocity and gust intensity in the location
of ship anchorages, new piers and in the vicinity of aircraft facilities
in order to take advantage of any sheltering effects.

The purpose of this wind tunnel study program is to determine wind
characteristics such as mean wind speed, turbulence level and wind
direction inside the Subic Bay Basin for a range of wind directions
corresponding to those most probable for typhoons.

A 1:15,000 scale model that included the mountain and valley system
affecting wind inside the Bay was constructed. The model was studied in
the environmental wind tunnel of the Fluid Dynamics and Diffusion Labora-
tory at Colorado State University. In this facility, flow simulating
an atmospheric boundary layer with neutral thermal stratification was
developed over the model.

The study included flow visualization using oil films and smoke and
hot-wire anemometer velocity measurements. The studies were conducted
in sufficient detail so that the wind at piers, anchorages, airfield,
mouth of the Bay, and far south to the entrance of the Bay may be com-
pared with the wind direction and speed observed by the meteorological

station at Cubi Point.
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Surface flow patterns, mean wind speed isotachs and turbulence
intensity contour lines were developed for the entire Bay area. The
gradient wind direction ranged from 180°T to 270°T with increments of
| LA

This report is supplemented by a 750-foot color motion picture and

a set of 95 color slides which show the flow structure inside the Bay

and the surrounding area.




Chapter 2

THE PHYSICAL MODEL

| ) 2.1 Similarity of Wind Tunnel Boundary-Layer Flow and Natural Wind

: The requirements to obtain good simulation of natural winds by wind
4 tunnels have been discussed by Cermak and Arya (3) and Cermak (4,5).

’ Generally speaking, the criteria for similarity of atmospheric boundary
layers are the following: (1) undistorted scaling of boundary geometry
(geometric similarity), (2) bulk Richardson number equality, (3) Rossby
number equality, (1? kinematic similarity of approach flow (distribution
of mean wind speed énd turbulence characteristics), and (5) Reynolds

number equality.

o T

For this study, geometrical similarity was achieved by an undistorted
model having a scale of 1:15,000 for both horizontal and vertical
directions. This scale was chosen to facilitate ease of measurements as
well as to permit inclusion of significant topography surrounding Subic
Bay.

For the strong winds (typhoons) considered in this study, the
thermal stability is essentially neutral. Thus, thermal similarity was
achieved by using isothermal flow in the wind tunnel.

1 : With existing wind-tunnel facilities, Rossby number equality cannot
be achieved. However, when fluid particle transit times from the location
” 5 of a major boundary-layer disturbance across the prototype area of

concern is a small fraction of one day, the Coriolis acceleration will
have minor effect on the flow. In this case distances from surrounding
mountains across the Bay are about 10 mi (16 km) and wind speeds may be
abouf 70 knots (130 km/hr). Therefore, transit times are small relative

to one day and Coriolis effects would be negligible.

.
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Wind tunnel studies of atmospheric motions near the Earth's surface
at meso-scales--from 5 to 50 mi (8 to 80 km) in extent--require use of
models of the order of 104 smaller than the prototype topographical
features [Cermak (5)]. In this case, if the Reynolds number for both
the prototype and scale model is based on the ambient flow velocity U,
the characteristic length L, and the kinematic viscosity v, and if the
same fluid and approximately the same flow speed are used then the ratio
of the Reynolds number for prototype and scale model will be of the same

order as the length scale ratio; i.e.,
UL U LM
= (PPy, MM, |
R /Ry = € o S Lyl

In other words, the Reynolds number difference is so large that similarity
in the ordinary sense does not exist.

In this study, an approximate similarity method suggested by Cermak
and Peterka (7) was used. Basically, the concept is that when both the
prototype and model flows are in the turbulent state over essentially
flat surfaces, the model may be roughened to produce flow characteristics
corresponding to those found at Reynolds number larger than the actual
value. This approach depends upon producing flows in which the flow
characteristics become independent of Reynolds number if a lower limit
of the Reynolds number is exceeded. For example, the resistance coef-
ficient for flow in a sufficiently rough pipe as shown in Schlichting
(8, p. 578) is constant for a Reynolds number larger than 2x104. This
implies that the basic flow quantity of surface shear stress is directly

proportional to the fluid density times the mean flow speed squared. In

turn, this condition is the necessary condition for mean turbulence
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statistics such as root-mean-square values and correlation coefficients
of the turbulence velocity components to be equal for the model and the
prototype flow.

All the studies contained in this report were conducted with the
upstream edge of the model set at less than 2 ft (0.6 m) from the
entrance of the wind-tunnel test section. In this approach region, the
floor of the wind tunnel was covered with a layer of sandpaper to provide
roughness (0.06 in.) equivalent to a typhoon roughened sea surface.

With this experimental arrangement, a boundary layer of 2.5 in. (0.06 m)
depth with a mean velocity power-law exponent of 0.22 was obtained at
the test site. The vertical distributions of longitudinal mean velocity

and turbulence intensity are shown in Fig. 6. Thé measurement techniques

for mean velocity and turbulence are discussed in Section 3.2.

The boundary-layer thickness versus model height above the sea
surface (about 2 in. (5.08 cm)) ratio in this case is of the order one.
Although the model surface was smoothed by using clay (described in
Section 2.3), the surface was still quite rough--some of the ridges
presented rather sharp edges. The model surface apparently produced an

aerodynamically fully rough flow. A Reynolds number based on the height

SO O S Y

of the model terrain above sea level and a free-stream velocity of
35.5 ft/s (21 knots) was 3.9x104. Therefore, with this wind speed, the i
flow characteristics within the bay basin is considered as Reynolds

number independent. Thus, acceptable flow similarity was achieved

without precise Reynolds number equality. It should be noted that all

the velocity measurements were conducted at only one free-stream velocity

of 35.5 ft/s (21 knots) in the tunnel.
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The average roughness height of the sandpaper particles was about
0.06 in. (0.15 cm) which corresponds to a prototype wave of 75 ft
(22.9 m). Selection of the sandpaper roughness was made based on the
following considerations: (1) the viscous walil-layer thickness 6L was
determined to be approximately 0.1 in. (0.25 cm) over a smooth surface
at the test site for a wind speed of 35.5 ft/s (21 knots), (2) the aero-
dynamic roughness Zo corresponding to a 0.1 in. (0.25 cm) thick viscous
layer is 0.001 in. (0.0025 cm) (GL/IOO) which for a sand roughened
surface requires a particle size k of 0.03 in. (0.08 cm) (SOZO),
(3) wave-height data for a wind speed of about 70 knots indicate wave
heights at the harbor mouth of about 32 ft (9.8 m) or 0.026 in. (0.07 cm)
for the model and (4) the water surface of the model bay area was made
of smooth plexiglass. In order to ensure that the flow characteristics
inside the bay area was Reynolds number independent (corresponding to
an aerodynamic rough surface), especially with wind from 180°T to 210°T,
a sand particle size of Zo for the smooth surface plus the wave height,

i.e., 0.03 in. (0.08 cm) plus 0.026 in. (0.07 cm) or 0.06 in. (0.15 cm)

was selected.

2.2 Wind-Tunnel Facility

The physical modeling was conducted in the environmental wind tunnel
located in the Fluid Dynamics and Diffusion Laboratory at Colorado State
University. A plan view of this wind tunnel is shown in Fig. 1. This
wind tunnel may be deécribed generally as a low-speed open-circuit
facility. The variable speed fan is driven by a 50 H.P. DC motor. The
test section is nominally 12 ft (3.66 m) wide, 8 ft (2.44 m) high and
57 ft (17.4 m) long. Honey-comb straighteners and two screens are

provided at the intake to calm the flow and eliminate large-scale

o e o
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disturbances from entering the test section. The roof is adjustable to
maintain a zero pressure gradient along the test section. The mean
free-stream velocity can be adjusted continuously from 1 to about 40 ft/s

(0.6 to 23.7 knots).

2.3 Topographical Model

The terrain model was constructed at an undistorted scale of
1:15,000. Excepting for the base plate which was made of 0,125 in.
(0.32 cm) plywood, the terrain model was made from styrofoam sheets cut
to match contour lines of a topographic map provided by the Navy. The
model terrain was then smoothed with clay and coated with a layer of
green paint.

In order to use the oil-film technique (described in Section 3.1)
to study the flow pattern near the water surface inside the bay area,
the water surface of the bay area was made of a 0.125 in. (0.32 cm)
thick plexiglass base plate. A 4x4 in. (10.16x10.16 cm) square grid was
painted on the plate to enable accurate location of measurement stations.
The topographical model inside the wind tunnel for a wind direction of

180°T is shown in Figs. 2 and 3.

-




Chapter 3

INSTRUMENTATION AND DATA ACQUISITION

3.1 Flow Visualization

Flow visualization over the Bay and surrounding areas is necessary
to define the overall flow pattern and its characteristics. Both the
smoke and the oil-film techniques were used. The smoke technique shows
both the unsteady and average character of the flow at any position in
space by proper positioning of the smoke source. The oil-film technique
reveals long-time average features of the flow pattern very near the
surface.

Titanium tetrachloride was used for the smoke study. The smoke
either was released from a tube which could be held at any position in
space or was released from a syringe to form a line source on the surface
of the model. Motion pictures were taken to record the flow patterns.

The oil-film technique was used to observe flow patterns near the
sea surface within tﬁe bay area. The oil-film technique uses a mixture
of zinc-oxide powder, ''Crisco'" and light mineral oil. The mixture ratio
proportion by volumes are about 10 percent zinc-oxide powder and 90
percent oil. The surface of the plexiglass base plate was coated uni-
formly with a layer of the oil mixture. After running the wind tunnel
for a pefiod of time, the oil film formed a steady pattern for a parti-
cular wind direction.

It has been argued that very close to the surface in a turbulent
flow the mean streamlines are parallel to the mean shear stress lines
but are different from mean particle paths. These differences may be
quite marked in the highly turbulent flow near some obstacles--Hunt et

(9) and Lighthill (10). Since motion of the oil-film is affected

o =




strongly by viscosity of the oil the suspended particles in the oil film
do not follow randem motions of the air particles but depicts the mean
streamline or mean shear stress line. Typical oil film patterns are
shown in Figs. 4 and 5.

Conclusions obtained from the flow-visualization studies are

discussed in Section 4.1.

3.2 Velocity Measurements

Velocity measurements were made at four elevations (70, 150, 195,
and 275 ft) for 60 locations shown in Fig. 7. The vertical distribution
of mean velocity and turbulence intensity was made at the location shown
in Fig. 7 to define characteristics of the approach flow boundary layer.
These measurements were made with a probe consisting of a pair of tung-
sten hot-wire sensing elements. The wires are 0.0002 in. in diameter
and 0.063 in. long and are mounted parallel to each other horizontally,
one above the other, with a separation distance of 1/16 in. Based on
information obtained from the flow-visualization, the hot-wire probe was
properly set with its axis perpendicular to the mean flow at each
measurement location.

Two Thermo-Systems constant-temperature hot-wire anemometers
(Model 1050) were used. Mean voltage outputs were read from two digital
voltmeters. The rms voltages were obtained from two DISA RMS meters
(Model 55D35) and were read from two digital voltmeters. The anemometer
units were operated without filtering or linearization.

The probe was calibrated prior to each wind-tunnel measurement by
using a Thermo-Systems, Inc., Model 1125 calibrator and a MKS Baratron

pressure meter. Calibration data were fitted to a variable exponent

form of King's Law

(4
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E2 = A+ BU"

using a least-squares curve fitting program. In this relationship E
is the hot-wire output voltage, U the approach velocity and A, B
and n are coefficients determined to fit the calibration data. The
above relationship was used to recover the mean velocity at measurement
points from the measured mean voltage. From this equation it follows,
to a first order approximation, that the fluctuating velocity in the

form Urms (root-mean-square velocity) can be given by

2 B Erms

ms 2o Un-l

U

where Erms is the root-mean-square voltage output from the anemometer.
All rms values of turbulent velocity Urms were divided by the local
mean velocity U to obtain local turbulence intensity Urms/u'

During the measurements air temperature in the Qind tunnel was also
recorded. A method suggested by Bearman (12) was used to correct for
the error due to air temperature differences during calibration and
while making the measurements. There are two restrictions for Bearman's
correction method to be valid: (1) the temperature difference must be
small (less than 20°F) and (2) the wind speed must be greater than 3 to
5 ft/s (0.9 to 1.5 m/s). Both of these restrictions were met for all
the measurements performed.

For each new probe used or during a prolonged usage of the same
probe, calibration was performed both before and after the day's measure-

ments. This procedure was used to check the calibration and also to

assure system accuracy and repeatability.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Flow Visualization

A 750-ft film showing the characteristics of flow in the Bay basin
and the surrounding area by smoke visualization supplements this report.
This color motion picture has been arranged into titled sequences that
are specified in Table 1.

Ninety-five color slides taken during the wind-tunnel test period
also supplement this report. The slides are numbered according to the
test sequence. The slides show the general model arrangement in the
wind tunnel, the overall and detailed oil-film pattern for each wind
direction. Figures 4 and 5 show typical examples of these oil-flow
patterns.

For wind directions near 180°T the flow is generally quite straight
and directly into the Bay through the Bay entrance excepting at the
southwest parf of the Bay where the flow curves slightly along the coast-
line. For wind directions near 270°T, the motion pictures reveal a
highly complex flow with interesting secondary flows produced by the
ridge and valley system on the west side of the Bay. The surface flow
tends to follow the direction of the valley and therefore forms several
mean streams with fairly large-scale motions moving onto the Bay. Once
the flow moves over the water surface of the Bay, the flow pattern
becomes less complex and streamlines tend to become parallel.

Based on the oil-film patterns supplemented with visual observations
of the smoke pattern, the surface flow patterns for each wind direction

were developed. They are shown in Figs. 8 through 14.
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This wind study was conducted primarily to obtain overall information
about the wind field over the Bay. Therefore, details of wind character-
istics in the wake of small islands and other local topographical

features and structures were not measured.

4.2 Wind Velocity

Mean velocity and turbulence profiles of the approach flow were
taken at locations upstream of the Bay entrance or of the model (at
locations free from the effect of topography) and therefore are character-
istic of the boundary layer approaching the model. Several sets of the
approach flow data were taken during this study as a precautionary
measure and they were found to be identical. The mean velocity and
turbulence profiles of the approach flow are shown in Fig. 6. The
boundary-layer thickness & was 2.5 in. (6.35 cm) corresponding to a
prototype value of 3125 ft (953 m). This seems to be a reasonable value
as compared with the field data of Fort Wayne, Indiana--Chaudhry and
Cermak (11). In the form g— = (%)n , the velocity profile has an
exponent n of 0.22 for themapproach flow and is considered as reason-
able as compared to observed n values for tropical cyclone profiles
(range from 0.14 to 0.30).* The longituQinal turbulence intensity is
defined as the root-mean-square of the longitudinal velocity fluctuations
divided by the local mean velocity. The turbulence intensity at the sea
level is about 25%.

Measurements of mean velocity and turbulence intensity were also

made at four different heights--70, 150, 195, and 275 ft (21.3, 45.7,

59.5 and 83.7 m)--above the sea level at approximately 60 locations

*For a more detailed discussion, refer to Bates (13).




13

within the Bay area for each wind direction. Seven wind directions were
studied--180°T, 195°T, 210°T, 225°T, 240°T, 255°T, and 270°T.

The mean wind speed isotachs (U(z)/Uw) and turbulence intensity (in
percent of local mean velocity) contours inside the Bay for each wind
direction at each of the four elevations are shown in Figs. 15-1-a
through 21-4-b. The contour lines are based on the data measured at 60
locations shown in Fig. 7 with 85 additional intermediate points gener-
ated by a parabolic curve fitting method. The local mean wind speed was
normalized by the free-stream wind speed in all the plots. The normal-
ized wind speed and local turbulence level at Alava Pier, Rivera Pier,
NSD(Supply) Pier, Fuel Pier, Leyte Pier, Bonton Pier, Camayan Pier,
Nabassan Pier, and Cubi Point meteorological station are also shown in
these figures.

The flow characteristics are rather uniform inside the Bay for wind
directions near 180°T, excepting for the lee sides of ridges where lower
mean wind speed with higher turbulence levels occur. In interpreting
the turbulence data, one should noté that large values of gustiness must
be interpreted in terms of the magnitude of mean velocity since a low
local wind velocity can lead to large values as effectively as large
root-mean-square velocities.

The wind characteristics become more and more complicated as the

wind direction approaches 270°T. This is caused by mountains on the

‘west side of the Bay. As described in the previous section, the flow

tends to follow the course of the valley when it passes over the mountain

region. This results in high wind shear (a high velocity gradient) and
therefore causes high turbulence levels. This effect can easily be seen

in many of the figures such as Figs. 19-4-a and 19-4-b. Generally
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speaking, the mountains provide good shielding effect for the region
along the west coast of the bay when the wind approaches from behind the
mountains, but no such effect is observed on the east part of the bay.
In some cases even higher wind speeds are observed. This is apparently
due to the effect of secondary flows.

The mean velocity and turbulence profiles at the Cubi Point
meteorological station are compared with those of the approach flow in
Figs. 22-a and 22-b. Figures 23 and 24 are mean velocity and turbulence
intensity at various elevations at Cubi Point plotted as a function of

wind direction.
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Chapter 5

CONCLUSIONS

A simulated atmospheric boundary-layer flow over a model of the
Subic Bay Basin in the Philippine Islands was established.

Results of the flow visualization study show that for wind directions
near 180°T, the wind is generally uniform over the Bay and blows quite
straight and direct into the Bay through the mouth of the Bay. For wind
directions near 270°T, due to the effects of the mountains on the west
side of the Bay, the flow is more complex with large scale secondary
flow occurring. The westerly wind tends to follow the course of the
valley into the Bay. Once over water the wind moves directly across the
Bay with increasing speed. High wind shear is observed for westerly
winds on the west part of the Bay due to effects of the ridges and
valleys. Although turbulence intensities are high along the west side
of the Bay for westerly winds the local mean wind speeds are low. There-
fore, the mountains to the west provide significant sheltering from

strong westerly winds.
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Topographical Model in Wind Tunnel
180° Viewing Downstream
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Topographical Model in Wind Tunnel
180° Viewing Upstream




|

S -

21

Fig. 4. 0il Flow Pattern for the Subic Bay Basin at 225°T
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Mean Wind Speed

Isotachs for the Subic Bay
Basin at 195°T, z = 275 £t (83.9 m)
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Fig. 17-1-b. Turbulence Intensity’ Contour Lines for the
Subic Bay Basin at 210°T, z = 70 £t (21.3 m)
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Fig. 17-2-a. Mean Wind Speed l‘thachs for the Subic Bay
Basin at 210°T, z = 150 ft (45.7 m)
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Subic Bay Basin at 210°T, z = 150 £t (45.7 m)
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Fig. 17-3-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 210°T, z = 195 £t (59.5 m)
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Fig. 17-3-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 210°T, z = 195 £t (59.5 m)
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Fig. 17-4-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 210°T, z = 275 £t (83.9 m)
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Subic Bay Basin at 210°T, z = 275 ft (83.9 m)
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‘Basin at 225°T, z = 70 ft (21.3 m)
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Fig. 18-1-b.
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Turbulence Intensity Contour Lines for the
Subic Bay Basin at 225°T, z = 70 ft (21.3 m)
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Turbulence Intensity Contour Lines for the
Subic Bay Basin at 225°T, z = 150 ft (45.7 m)
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Fig. 18-3-a. Mean Wind Speed Isotachs for the Suhic Bay
Basin at 225°T, z = 195 ft (59.5 m)
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Fig. 18-4-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 225°T, z = 275 ft (83.9 m)
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Turbulence Intensity Contour Lines for the
Subic Bay Basin at 225°T, z = 275 £t (83.9 m)
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Fig. 19-1-a.

64

Mean Wind Speed Isotachs for the Subic Bay
Basin at 240°T, z = 70 ft (21.3 m)
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Fig. 19-2-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 240°T, z = 150 ft (45.7 m)
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Fig. 19-3-a. Mean Wind Speed Isotachs for the Subic Bay :

Basin at 240°T, z = 195 £t (59.5 m) 1
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Fig. 19-3-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 240°T, z = 195 ft (59.5 m)
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Fig. 19-4-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 240°T, z = 275 ft (83.9 m)
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Fig. 18-2-a. Mean Wind Speed lsotachs for the Subic Bay
Basin at 225°T, z = 150 ft (45.7 m)

‘g 0-1-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 255°T, z = 70 £t (21.3 m)

e — \— e
.

il




e

T T

¢

73

.‘.

3

)

Fig. 20-1-b. Turbulence Intensity Contour Lines for the

Subic Bay Basin at 255°T, z = 70 ft (21.3 m)
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Fig. 20-2-a. Mean Wind Speed Isbtachs for the Subic Bay g 5
Basin at 255°T, z = 150 ft (45.7 m)
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Fig. 20-2-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 255°T, z = 150 ft (45.7 m)
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Mean Wind Speed Isotachs for the Subic Bay

Figo 20-3-‘0
Basin at 255°T, z = 195 £t (59.5 m)
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Fig. 20-3-b. Turhulence Intensity Contour Lines for the %
Subic Bay Basin at 255°T, z = 195 £t (59.5 m) P
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Mean Wind Speed Ithachs for the Subic Bay
Basin at 255°T, z = 275 ft (83.9 m)
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Turbulence Intensity Contour Lines foz the
Subic Bay Basin at 255°T, z = 275 ft (83.9 m)
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Fig. 21-1-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 270"T, z = 70 ft (21.3 m)
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Fig. 21-1-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 270°T, z = 70 ft (21.3 m)
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Fig. 21-2-a. Mean Wind Speed Is/otachs for the Subic Bay
Basin at 270°T, z = 150 ft (45.7 m)
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Fig. 21-2-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 270°T, z = 150 ft (45.7 m)
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Fig. 21-3-a. Mean Wind Speed Isotachs for the Subic Bay
Basin at 270°T, z = 195 ft (59.5 m)
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Fig. 21-3-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 270°T, z = 195 £t (59.5 m)
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Fig. 21-4-a. Mean Wind Speed Isoltachs for the Subic Bay
Basin at 270°T, z = 275 ft (83.9 m)
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Fig. 21-4-b. Turbulence Intensity Contour Lines for the
Subic Bay Basin at 270°T, z = 275 ft (83.9 m)
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Table 1. Motion picture scene guide.

-
=3

g

Scene Wind Direction ]
Jev 1 180°T
2 195°T
3 210°T :
4 225°T
5 240°T '
6 255°T
7 270°T

Movie length 743 ft.

Running time (approx.) 20 min. 5 sec. i 1
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