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I.

.

INTRODUCTION

I

Integrated optics (10) involves the technology of guiding and
manipulating optical waves in dielectric waveguides, the generation and
detection of optical waves, and the coj~p1ing of optical waves into and
out of 10 circuits. The simplest form of optical waveguides is a die-
lectric slab. By studying the properties of slab waveguides, an under-
standing of more complicated vaveguides is possible.

A planar dielectric slab waveguide is shown in Figure 1. The
waveguide region has an index of refraction, a1, with surrounding media
having indices of n0 and a2. For waveguiding, the following criteria
must be met:

• - (1)

A x
S

p

n
d - 

I ,

p

FIGURE 1. A Planar Dielectric Slab Waveguide.

I Naval Weapons Center. Thteara ted Optics , by L. B. Hutcheson.
China Lake, Calif., NWC, December 1975. (NWC Th 2592, UNCLASSIFIED.)
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If n y — n0, then it is called a symmetric waveguide. If n2 ~ a0, then 
• 

-

there exists an asymmetric waveguide. Of course, the modal solutions
which satisfy the boundary conditions are simpler for the symmetric case
than for the asymmetric case. It is also Interesting to note that for
the symmetric waveguide there is no cutoff frequency2 which implies that
the lowest order mode can propagate at very low frequencies. However,
there does exist a low frequency cutoff for all the modes of the asym—
metric waveguide.

There are two different types of eledtromagnetic modes in dielectric
waveguides, guided modes and radiation modes. Figure 2 distinguishes
between these two different types of modes. To~obtain total internalreflection, the incident angle, O~ , must be greater than the criticalangle , °c ’  for each interface. For interface 0,1

01 > 0~ = sIn~~ [~
] . - 

(2)

For interfa ce 1,2
• r~~21

- 

0i > 0~ = ~~~~ - 
(3)

In Figure 2(a) the light passes through the boundary into the vaveguide
and through to the next boundary; this Is called a radiation mode.
Figure 2(b) shows another radiation, or substrate, mode where the light
Is incident at an angle larger than 0

~ 
for the upper boundary but smaller

than O
~ 

for the lower boundary with n2 being greater- than n0. In Figure
2(c) the angle 0~ surpasses both critical angles of each interface,
which results In total internal reflection. Thus, in the guided mode
the light is trapped in the guide.

For guided modes3 and for a certain waveguide thickness, d, and
indices a0, fit and ~2, 

light will propagate in the guide with an angle
of incidence I) only if, after two successive reflections, the wave •

front Is again in phase with the original wave front. If this were not
the case, after many reflections, somewhere down the waveguide wave
fronts with a range of phases between 0 and 21T would add to zero ampli-
tude, which implies the wave would not propagate. This results in the
requirement that at an arbitrary point the phase of one wave front
obtained from another by two successive reflections must equal the phase
of the second wave fron t at the same point, or must dif fe r  by a multiple

2 D. Marcuse. Theory of Dielectric Optical Vaveguides . New York ,
Academic Press , 1974.

~ K. A. And revs . Op tica l Waveguidea and Integn2ted Optics Tech-
no1o~j ~j ,  Naval Research Laboratory Report 7291 (August 1971), UNCLASSIFIED.
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FIGURE 2. Ray Diagrams Illustrating (a) Radiation Modes, (b)
Substrate (Radiation) Modes, and (c) Guided Modes.
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of 21, . This requirement permits propagation for only discrete values of
u. This means that only a finite number of discrete guided modes exists.
This is quite different from the radiation modes in that there exists an
infinite continuum of unguided radiation modes.

This report will present the waveguiding properties of optical
dielectric waveguides using both the ray optics and wave optics tech—
niques. Then these results will be applied to investigate the losses
In dielectric waveguides. In particular, losses due to short bending
radii of the dielectric waveguides will be presented. -

• THEORY OF DIELECT RIC WAVEGUIDES

• MAXWELL’S EQUATIONS

Maxwell’s equations are explained in detail in many textbooks~”5
on electromagnetism, so here they will only be stated and used ~s needed.
Maxwell’s equations relate th~ magnetic field intensity vector H and t~e
magnetic f l ux density vector B to the4electric field intensity vector E
and the e ~‘ctric displacement vector D:- 

‘ I
and

• ~~x~~~ ” — ~~~ , (5)

where ~/3t is the partial derivative with respect to time and 3 has the
vectorial componen ts of [a/ ax , a/ay, ~/~z). (Maxwell’s equations will
be used in the context of light wave interactions.) Consequently, the
curren t term has been neglected in the above equation. Also, i~ will
be assumed that there are no electric charges which means that D satis-
fies the rela tion

v~• i ~ = O  . (6)

Similarly, ~ satisfies the relation

(7)

In addition to Maxwell’s equations there are equations which relate
• the two elect ric vectors and the two magnetic vectors which are , in gen— F

eral , material dependent :

“ C. H. Durney and C. C. Johnson . Introduction to Modern Electro-
• ‘mz~inoticn. New Yo rk , McGraw—Hill , 1969. 

-

• J. A. St ratton. Electro~rrzgnetic Theor~j .  New York, McGraw—Hill ,
1941.

4
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• —D E • E  (8)

and
• 

_ ,
B = j ~~~~H

where ~ and ~ are tensors representing the material permittivity and
permeability, respectively. If ~ and ii are functions of positions in
the medium then the medium is called inhomogeneous. If there is no
position dependence, the medium is called homogeneous. On the other
hand , if ~ and i~ are tensors, the medium is termed anisotropic while an
isotropic med ium is one in which ~ and ii are scalar quantities. There—

• 
• fore, the most general type of medium is anisotropic and inhomogeneous.

However, for many cases of practical interest, the medium can be approx-
imated to be Isotropic and homogeneous, which is what will be assumed in
the following analysis.

To obtain the useful wave equation one must manipulate Maxwell’s
relations until an equation results which depend s only on or ~t. To
make the analysis simpler , without losing genera lity, one can assume
one of the guided dimensions to be much larger than the other guided
dimension. In the waveguide shown in Figure 1, the y—dimension is made

• much larger than the x—dlrection which yields a planar vaveguide and in
Maxwell’s equations one can take

~~~— O  . 
• 

(10)

The planar waveguide Is the same solution as the channel vaveguide with
one dimension much larger than the other.6 This actually does not
restrict the generality of the modal analysis since the coordinate sys-
tem can always be rotated until this condition is satisf ied for any
given mode.

Before one can f ully understand the interactions of guided waves a
• knowledge of the properties of guided modes must be obtained. A concise

• definition of the term “mode” is difficult to make. A mode can be
regarded as an eigensolution of Maxwell’s equations belonging to a
particular eigenvalue and satisfy ing all the boundary conditions of the
problem.’ The modes of a dielectric slab vaveguide are classified as
transverse electric (TE) and transverse magnetic (TM) modes. A TE mode

G 
~ • A. J. Marcatili. “Dielectric Rectangular Waveguide and

Directional Coupler for Integrated Optics,” BELL SYST TECH J, Vol. 48
(September 1969), pp. 2071—2102.

1 D. Marcuse. Li~iht Transmiesicn Optics. New York, Van Nostrand
Reinhold, 1972. •
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means that the electric field component in the direction of wave propa-
gation does not exist. A TM mode has no component of the magnetic field
in the longitudinal direction. Since the TE and TM modes have different
components they must be stud ied separa tely.

TE—GUIDED MODES •

Transverse electric modes only have three field components which
are E~, H~, 

and H~. In a linear and Isotropic material Maxwell’s Equa-
tions 4 and 5 become, after using relations 8 and 9,

~~x i c on2}~ (11)

and -

4-
• ‘- -

~V x E —p 0~~~ , (-12)

• with

(13)

where k, ~ and ~ are unit vectors in the x, y and z directions, respec-
tively, and n is the index of refraction of the medium. Assuming a
field of the form

~~~~ 
— ~z) (14)

where B is the propagation constant along the axis of waveguide and
u.ing relation 10, Maxwell’s equations yield

— — iwc 0n~E~, (15)

iBEy — _iwi.IoH~ 
(16)

— 
~~~~~~ 

. (17)

Putting H~ and H~ in terms of ~~~ we get

— 

~E 

• 

• 

• (18)

H _ _J_ __ z 119~z wii 0 ax

6
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Substituting Equations 18 and 19 into 15 yields the familiar wave equa-
tion in terms of

• )2E
+ (k~n~ — B2 ) E = 0 , (20)

ax2

where k2 = w2U 0c. Therefore, by solving the one—dimensional—wave Equa-
tion 20 for ~~ the magnetic f ield components, H,~ and H

~
, are obtained

directly from Equations 18 and 19.

Before trying to solve the wave equation in each of the three
regions, a physical picture of the modes can be obtained by seeing what
happens when the propagation constant, 8, at some fixed frequency, takes
on different values. Refer to Figure 1 to see the relationship between
the three regions and the indices. Also, the waveguide is assumed to be
asymmetric with n1 > n2 > no. Therefore, the wave equation is different
for each of the three regions since a in Equation 20 takes on a0, n1
and n2. Clearly, if B > kn1, which Is the largest B possible, and8
since l/E ~

2E/ax2 > 0, then E must be exponential in all three regions.
The boundary conditions at both interfaces must be matched which means
tha t the f ield increases to inf inity exponentially away from the wave—

• guide. This says that for this B the solution is not physically realla—
• able and is not a real wave.

To obtain a guided mode solution the ‘-propagation constant must
satisf y kn 0, kn2 < 8 < kn1 which yields a sinusoidal solution in region
one and an exponential solution in the other two regions. This, of
course, can be achieved only if n1 > n2, n0, which fur ther supports the
criterion tha t the waveguiding layer must have the largest Index as was
shown in Equation 1. The radiation modes exist for kn0 < B < kn2, which
is the substrate radiation mode. Also, for 0 < 8 < kn 0 radiation modes
exist in both surrounding media since the field is sinusoidal in all
three regions.

When solving the wave equation, the solutions must satisfy the
• boundary conditions at the two dielectric interfaces at x — 0 and x ——d. The boundary conditions are such that the tangential E and H fields

must be continuous at the dielectric interfaces. This means that both
and Hz must be continuous at x 0 and x — —d. In addition to this

requirement , to obtain a physically realizable solution the electric
field , E~ , must be zero at x — 

~~~~~~~
. Since the term k2n2 

— 82 takes on
d i f fe rent values in each of the three regions , it will be simpler to
defi ne three new variables:

H A. Yariv. Quantum Electronics , 2nd Edition. New York , John
Wiley and Sons , Inc. , 1975.

7

- i -•

~

-• • ~~~~~~~~~~~~~~~~~~~~~~~ . • ~~~~~~~., • • _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~ •~~~~



- 

. 

• -
~~~~~~~~ 

- 

~~~~~~~~~~~~~~~

NWC TM 3136

a7 — k 2n~ — 82 , (21)

— 8~ — k2n~ (22)

52 — 82 
— k 2n~ (23)

These def initions provide for ~~~, ‘r and S being real and the solution to
the wave equation can be assumed to be of the form

1Ae
_6
~
c 0~~~x

E~ =~~Bei~~ + Ce~~°’~ —d ~ x i 0 (24)

LDe ’
~
’
~ 

—d ~ x

The constants A, B, C and D are determined through the use of the
• boundary conditions at x = 0 and x = —d, upon which applying the conti-

nui ty of 5 across the boundary yields

A = B + C  (25)

and
• —iud lad• D = B e  + C e  , (26)

and since H~ must also have its tangential components equal across the
• boundaries the following additional equations are obtained:

— SA laB — inC • (27)

and

• SD — iaBe 1~d 
— iaCel~ d 

. 
• 

(28)

Nov we have four equations and the four unknown constants (A, B, C and
0). Solving the four equations by the method of determinants results
in the following relation:

ad — arc tan [
~
] + arc tan [~J 

. (29)

The fact that Equation 29 is periodic with a period it , since the tan is
periodic in it, says that relation 29 should be written -

ad — arc tan [~.] + arc tan [~~] + mw , (30)
where a — 0,1,2,3, ... is the mode number .

8 
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Substituting the expressions for E~ (Equation 24) into the wave
equation (Equation 20), yields

• ~2 + k’~n~ — 82 = 0 (31)

—CL 2 + k~n~ — 82 = 0 , (32)

+ k1n~ — 82 = 0 , (33)

where k = 2-n/A 0, and eliminating 8 from the equations we get ,

62 + = k 2 (n~ — n~ ) , (34)

y 2 + a 2 k2 (n~ — .n~) . (35)

These two equations, together with Equation 30, are the complete set of
equations which determine the TE modes. The above equations can be
applied to either an asymmetric or a symmetric guide. First, the equa-
tions will be solved for the asymmetric case. For a typical asymmetric
guide, the refrac tive indices n0, n1 and n2 satisfy the relationship
that n1 >> no and n 1 ~ a2. This would be true in most cases when the
top boundary layer is air (n 0 = 1). The simplest way to solve these
equations is to solve them graphically. Relations 34 and 35 are equa—

• tions of a circle with radii of

R1 = (52 + a2)½ (36)

and

R2 (y 2 + a 2)½ (37)

and they are shown in Figure 3. For the indices of n0. — 1, a1 — 1.55
and n~ — 1.52, the circle describing 52 + a2 would be approximately 15
times larger than y2 + ct 2 . As can be seen from Figure 3, the range of
values which a and y can take on are the same and are much larger than
range of 6. However, the magnitude of 6 is much larger than the magni-
tudes of ii and y. This will simplify Equation 30 by using 6/a >> 1
which makes arc tan 5/a ~ n/2 and leads to

• ad — arc tan[1] + n/2 + mit • 
- 

(38)

which can be rewritten in the form

• yd — ad tan(od — w/2 — mit) — —ad cot cd . (39)

~~~~L_ _ _ _ _  _ _ _  __________________
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RANGE OF 6

.
~~~~~~~~~ 

L1__ 
62 +a2 k2 (n1

2—n0
2)

/ i RANGE
I j 1 0Fa

I 
_ _ _ _

III 4 R~

RANGE OF y

72 
+ a2 — k2 2 

—

FIGURE 3. Diagram Which Illustrates the Relative
Magnitude of a, S and y.

Equation 39 and

(‘rd) 2 + (ad) 2 = (kd) 2 (n~ — n~ ) (40)

are each plotted in Figure 4 and the intersection of the two curves are
the solutions. As discussed earlier, ‘y must be positive to have guided

• modes; consequently, only the first quadrant is plotted for the circles.
The intersections where y is negative correspond to the even modes;

• therefore, only odd modes exist for the asymmetric waveguide. It can
be seen that asymmetric dielectric waveguides have a low frequency
(long wavelength) cutoff below which energy does not propagate. For a

• particular propagating mode the values of ‘r and a are determined by the
• circle of radius R where

R — kd(n~ — ~2 )½ (41)

and for the ath propagating mode the radius of the circle must be between

(m~+ 1)” ~ kd(n~ — n~ ) ~ (2m + l)iv/2 . (42)

10 
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+ (ad)2
7d —OdCOtad N. ‘ 2 2 2- 

~l ~~ 2

-

.

FIGURE 4. Graphical Solutions of the Transcendental
Equations for the Asymmetric Waveguide.

• The condition of index change An — n1 — a2 for cutoff of the ath mode
becomes . 

S

(2 — l) 2rx’~2= 32n 2 [
~
] ‘ 

(43)

where ~ is the free space wavelength and d Is the waveguide thickness.
The number of modes that propaga te are f inite and are dependent on the
parameters n 1, n2, A and d which are controllable. For example keep—

• ing Aid constant, an index change by a factor of nine is required for
the second mode to propagate over that required for the lowest order
mode.

If the dielectric vaveguide is symmetric , i.e., a 2 — a0, then some
surprisingly d i f fe rent  results are obtained . The analysis is simplified

- if the modes are separated into even and odd modes due to the symmetry .
Considering even modes first , from Equation 24 ,E~, in the vaveguide
becomes (subscript e is for even)

11 

) 3 .
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E~ = B cos ax , - (44)

and fr om Equation 19,
ict

• H~ 
= — 

~~~ 
B sin ax . (45)

in the bottom layer is

E~ = D cos ad e’r
~’~~’~ (46)

and
- 

H = D cos ad e’r(~
C
~~~ . (47)z e

Applying the boundary condition at x = —d, that E must be continuous
results in

B — f l  
- (48)

and applying 11z continuous at x —d yields

yd = ad tan ad . (49)

The amplitude Be can be determined by~ca1culating the power flowing
in the mode along the waveguide (z—directioa) using Poynting’s theorem V

1 ~~~~~~~ +P — f ( E  x H*) dx . (50)

Since the above involves a cross product and the only component of a TE
mode is 5, then the magnetic field component needed is Lh; therefore,

P — -~ JE H *  dx , (51)

• and from Equation 18,

, (52)

which gives 
•

P ~~~~~
— I I E 1 2 dx . (53)

L
O~~~~~~, ‘~ •

Sub st ituti ng• Equa t ions 44 and 46 into Equation 53, and using Equat ion
49, yields 

~._i•~
_ •~ 
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r 2 w ~~p 1½
~ I (54)e ( L3d + B/YJ

• Similarly, the odd modes are solved in the same manner using

E~ = C 0 sin ax (55)
• 

inside the waveguide with

IaH = — C 0 cos ax . (56)a WP 0
In the bottom layer ,

E~ = —E 0 sin ad e’r~~~~~ (57)

and

= ~~~ E0 sin ad e’r~~~~~ (58)

where the minus sign comes from the fact that it is an odd mode . Using
the continuity of the f ields across the boundary yields

•
. C0 = E 0 (59)

and

yd — —ad cot ad . (60)

The power flow calculation yields
. 

r 2WU 0p i ½
C0 “[

~ 
+ - 

(61)

One has to be careful when using Equations 54 and 61 since they look
the same. When using the relation for Be, the constants 8 and y are
evaluated from relation 49; whereas, relation 60 is used to evaluate 8
and y for C0.

Figure 5 shows a plot of relations 49 and 60, and relation 40 is
used in the same manner to find the graphical solutions as was done for
the asymmetric waveguide. •As can be seen from the solutions of ti’ -,

transcendental equations for the syimsetric vaveguide, there is no low

• frequency cutoff for the lowest order propagating mode. The frequency
• can be made arbitrarily low (smaller radius circle) and a solution

still exists (see Figure 5). 

- -• ~~~ _ _ _ _  
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(EVE N MODES) (ODD MODES)— ad tan ad — —ad cot ad

+

• 

— ft~j)2(512
_~~2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I

FIGURE 5. Graphical Solutions of the Transcendental
Equations for the Symmetric Waveguide.

• Another important aspect of guided wave optics Is the dispersion
in the waveguides, i.e., how the propagation constant , 8, varies with

• frequency. The dispersion relationship is obtained by substituting •

• the equations for a , ‘r and 6 (Equations 21—23) into Equation 30, which -

yields

1(82 
- k2n2)½1

• [(k2n~ — 62 )d 2 ]½ — arctan 
2

• L(k2
~~ 

— 82)½ •

- 
- 

~— 
• 

—
~ 

• (62)
I ( B 2 _ k 2n~)½ I -

+azctan l I+m iTL0~
2
1t~ 

- 82)½J

for TE modes of an asymmetric waveguide. Also, remember for guided
modes, the propagation constant obeys

• kn0 < kn2 c B ( ku 1 , • 
(63)

14
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where k = U/c. Therefore, as can be seen In Figure 6 , 8 is bounded by
u/c n 1 above which no solutions exist, and u/c n 2 below which exist
radiation modes. Figure 6 also shows what three typical dispersion
equations look like, and Figure 7 shows computer solutions obtained for
an asymmetr ic waveguide with n o 1, n 1 = 2.23 , n 2 = 1.393 and d — 3.34
pm.9 Physically, the shape of the dispersion curves is explained as
follows. Increasing the frequency, the depth of penetration of the
exponen tial tails of the f ields into the surrounding media decreases,
which means that the electric fields are more confined to the guiding
layer. In the limit as w + the fields are totally confined to the
waveguide layer. The slope of the upper boundary is the velocity of
light in the substrate with index a2. When u/c approaches kn2 the
constant Y approaches zero and this causes the exponential tail of the
field to extend infinitely into the substrate.

C
‘I, -

/
RADIATION

MODES GUIDED
MODES

3

/ FORBIDDEN
/ REGION

0

• 0

FIGURE 6. Typical u Versus B Diagram Shoving the Dispersion
• Relationship of Three Discrete Guided Modes for Dielectric

Slab Waveguides.

• N. K. Barnoski. Intr~th4otion to Integrated Optics . New York,
Plenum Press, 1974.

15

• - .  - •~•-- - 
~~~~~~~~ •_~~~~ ~~•— • • • • — - - • - - •

In _h _A ~~~~~~~~~~~~~~~~~~~~~~ — — __________ ~~~~ ---~ 
- 

— —k--- —
~~~~



•
~

•
~ --~ 

~~~
- - - -

~
_ -

~~~
--

~~~ —• -— -
~‘-

- -
~~~ •

•

NWC TM 3136

100.0 —

• 
: •

* 60.0 -

3
37.6 —

z.o - /~~I,
12.5 - •

//
0~~

’ I I I I I I
0 31.9 63.7 96.6 127.4 159.3 191.1 223.0

p x 1 0— 3

FIGURE 7. Dispersion Curves of Ten Modes of an
Asymmetric Waveguide With d = 3.34 pm , a0 = 1,

= 2.23 and n2 = 1.393. Natural dispersion is
neglected.

Beyond the limits of B — u/c n 2 and 8 — u/c n1, there is a continuous
spectrum of radiation modes. In this region 8 is imaginary and these
modes are called evanescent. Figure 8 shows typical electric field
patterns for, the three lowest order modes of an asymmetric vaveguide.

This concludes the discussion for the TE—guided modes of a dielec-
tric waveguide. The analysis for TM modes is very similar except t”~e
field components are Ex, E2 and Hi,. The TM modes are obtained by set-
ting H~ — 0. The- resulting transcendental equations are much the same. •

The equations of the circles are identical to those for the TE modes
(i.e., relations 34 and 35). The difference between TE and TM modes is
in Equation 30, where the ratio y/a in the TE case becomes (ni /n2)2 ‘ma
for TM -modes and the ratio 6/a in the TE case becomes (n1 /n 0)2 6/a forTM modes.
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FIGURE 8. Typical Electric Field Intensity
Patterns for Three Lowest Order Modes.

• Now we have a useful understanding of guided wave optics. How the
parameters of the waveguide can be changed to affect the propagating
modes is understood. This treatment can be extended to two dimensions
(i.e., rectangular dielectric waveguides) but the results are much the
same except guiding takes place in both of the transverse directions.
In deriving the wave equation, a/ny can no longer be taken as zero. At
any rate, now we can consider other important topics by using our knowl—
edge of the waveguide modes. The next section viii consider losses in
dielectric waveguides due to bending of the vaveguides. These losses
are important in establishing the maximum packing density of integrated

• optical circuits (lOCs). 
•

BENDING LOSSES
• .

There are many factors which limit the performance of waveguides
in lOCs. Two of the more important ones are scattering losses which
are due to vaveguide edge roughness, and bending losses whfch are due

17
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to a short radius of curvature of the waveguide. Bending losses is not
necessarily the more important of the two losses in describing the

F performance limitations of the guides. However, if one is to be con-
cerned with the lower limit of the number of functions per unit area to
be performed on an IOC , then the primary topic to be considered is bend-
ing losses.

No matter how large or small the radius of curvature of the bend ,
the dielectric waveguides will always lose, power by radiation around
the bend. The loss may be quite small if the radius of curvature is
sufficiently large. However, losses can become quite large if the
radius of curvature is small. The bend losses come from two effects:
First , the shape of the mode varies with the radius of curvature, and
second, the energy is radiated to the surrounding media as it travels
around the bend . The bending loss is a very- fast function of the radius
of curvature. In other words, the loss due to some value of radius of
curvature can be quite small, but a very small change in the bend radius
will cause a sharp increase in the loss.

First, let us get a physical picture of the causes of the bending
• losses. Figure 9 shows a waveguide with a radius of curvature R. A

portion of the energy of the dielectric waveguides travels outside the
waveguide in the form of an evanescent wave. The evanescent field out—
side the waveguide is decaying exponentially in the transverse direc-
tion to the waveguide axis. As the waveguide is bent the planes of
constant phase are as shown in Figure 9. The planes of constant phase
are separated further apart the farther one goes from the center of
curvature. Therefore, the farther from the center o.f curvature the
wave is, the fas ter it must travel so that it can still be in phase
with the guided wave. Each medium has its own characteristic phase
velocity which is determined by the index. The surrounding media has
a larger phase velocity than does the wavCguide since the index is
smaller. At some critical distance from the vaveguide, the evanescent
wave must travel faster than its characteristic phase velocity to remain
In phase with the rest of the wave. Since this is not a physically
realizable situation the wave detaches itself from the rest of the wave
and radiates into space. The sharper the bend of the vaveguide, the
closer the critical distance is to the waveguide. Since the evanescent
wave is an exponentially decaying wave the field increases exponentially
towards the waveguide and, as will be shown, the critical distance varies
linearly with the radius of curvature. Therefore, only a small change
in the radius can make an exponential change in the field that is radi-
ated away from the waveguide.

Figure 10 shows a propagating mode along with its associated 
•

evanescent wave in an expanded view of a curved waveguide. The angle $
la the ang le between adjacent p lanes of constant phase. At the critical
distance (R + r) ,  the distance that the evanescent wave must travel from
one plane of constant phase to the next is (R + r)8. The distance that

18
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FIGURE 9. Curved Slab Waveguide With Radius of Curvature R and
• Critical Distance r (Distances Measured From Center of Waveguide) .

Straight lines are planes of constant phase .
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• - FIGURE 10. Expanded View of the Curved Waveguide .
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the guided wave must travel is Re. However, they must travel these
different distances in the same amount of time. The velocity inside
the waveguide is w/kn1 and the maximum velocity permissible in the outer
media is u/kn2. By setting this maximum velocity at the critical dis—
tance and equating the times for the waves to travel the different dis-
tances, we get

(R + r) Okn2 ROkn 1
w u~~ 

(64)

and solving for r, the critical distance, we get

r =[
~
L1

hI
2 ]R  . • (65)

The attenuation loss for slab waveguides can be calculated using
the velocity approach described above and first developed by Marcatili
and Miller.’0 From the discussion of slab waveguides in the previous
section, the transverse field distribution can be described as

E = cos(k
~
x) for -

~~~~ ~ x ~

and

E cos(kxd)e
”1’

~ 
— d]/~ for lx i  �~ ‘~~~ , (66)

where the coordinate system is now in the middle of the vaveguide, n”
~

is the transverse decay coefficient outside the guide, and the waveguide
is symmetric. Obviously, to discuss losses due to bends, as described
by Figure 10, the vaveguide must have guidance in two dimensions. How-
ever, in this analysis the losses in the plane of the waveguide will be
considered . Later in this section there will be a discussion of two—
dimensional losses.

Now split the energy carried by the field into two parts: (1) that
energy beyond the critical distance r(&r) and (2) the total energy in

• the vaveguide (&
~~
). This yields the two energies10

& = n/2 c0s2(kxd/21e
_2(r — b/2]/ ,~ 

- 
(67)

and
— n/2 + 1/2k sin kd + n cos2(k d/2) . 

•

(68)

E. A: J. Marcatili and S. E. Miller. “Improved Relations
Describing Directional Control in Electromagnetic Waveguidance ” BELL
SYST TECH J, Vol. 48 (SEptember 1969), pp. 2161—88.

20 -

_  
_  

-- -L ~~~~~~~~~~~~~~ ~~~~~~~ .._.~~~
.- - 

~~~~~~~~~~~~~~ 
—



_______ — ---— —- ..• ~~~~~~~ — - - 
=— C-’-- -

~~~
-
~~~~~~~~~ • 

_ _  _ _ _ _ _ _r~~~ 
- -___

‘ NWC TM 3136

Nov let P0 be the propagating power and a the attenuation constant
where

1 dP
• a~~~j—~ -— . (69)

o 2

Let a be the transverse field width, then t, the distance that the energy
remains collimated in an infinite medium, is given by

2
(70)

and the use of the relations for the energy (Equations 67 and 68) yields

Ed + 2ncos(d d/2)J2

2A 
X 

•
- (71)

The attenuation constant a in terms of the energy is given by

&i r
. (72)

Substituting in the relations for r, L, &~ and ii,, yields
—BRa A e  , (73)

* • where
(Ari/2]cos 2(k d)e~~~

2

A —  x • (74)
(n/2 + (1/2k

~
)sink

~
d + rtcos2(k d/2)](d + 2rIcos(kd/2)]

and
In  — n 11 2

1 . (75)
~~L ” 2 J

These results further show the commanding influence that the bend-
ing radius has on the loss. Table 1 shows some results1° using the
above analysis with the vaveguide index of refraction — 1.5. Figure 11
shows a plot of the loss as a function of R for case 2. Note that a.
40% decrease in R brings about two orders of magnitude increase in the

• loss.

• Marcatili has made a complete analysis of the losses in rectangular
• dielectric vaveguides.~~ In his analysis he used a modal analysis as

- 1~ g~ A. J. Marcatili, “Bends in Optical Dielectric Guides ” BELL
• • SYST TECH J, Vol. 48 (September 1969), pp. 2103—32.
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TABLE 1. Waveguide Losses as a Function
of Radius of Curvature.

Index of R
surrounding A, B, for

Case d, tim medium nepers/m meters~~ a—l neper/m

0.198 1.0 2.57 x 106 3.47 x 106 4.25 um

2 1.04 1.485 1.04 x lO~ 
- 

1.46 x l0L
~ 0.79 mm

3 1.18 1.4985 5.4 x i0~ .81.4 0.106 m

1 0 —
8 —
6 —

4 —
4

us 2 —

w 1 -
Z 0.8 —

0.6 —

0.4 — 
-

•

0.2 —

0.1 I I I I I
0 0.2 0.4 0.6 0.8 1.0 R, mm

FIGURE 11. Radiation Loss Versus Bend Radius. •
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opposed to the velocity approach described above. Since his paper has
• such a complete analysis, and his results are very similar to those just

obtained, this discussion will just present some of the important results
not covered in the velocity analysis.

In the modal analysis, the effect of guide curvature is to change
the real part of the propagation constant, introduce an imaginary part

I of the propagation constant corresponding to the loss, and alter the
field distribution. This also leads to the radiation loss being related
to the bend radius exponentially. Figurer 12 shows the field distribution
as a function of guide width, d. It also shows that the field distribu—

- 

- tion perpendicular to the plane of curvature i~ symmetric and unchanged
due to bending of the waveguide.
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FIGURE 12. Field Distribution as a Function . •

• of Guide Width d. All three waveguides have
• the same radius of curvature.
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DISCUSSION

It has been shown that losses in dielectric optical vaveguides due
to bends in the waveguides can be quite large. When considering packag-
ing density of integrated optical circuits, bending losses definitely
need to be taken into account. The losses are an exponential function
of the bending radius.

Further investigation of the bending losses needs to be performed.
In particular, experimental studies are needed. A number of theoretical
aspects of bending losses have been reported ; however, no experimental
investigations have yet been reported. The next step of this program Is
to investigate the experimental aspects of bending losses. A program is
now underway to make diffused waveguides in LiNbO3 and to experimeutallycharacterize the waveguides and compare the results with theory. Once

• this has been accomplished, curved waveguides will be made and charac—
terized, with an emphasis placed on the dependence of beading loss on
bending radius.
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