

Report 2250

WATER ABSORPTION OF FLUIDS/OILS

by Robert G. Jamison

June 1978

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA Destroy this report when no longer needed. Do not return it to the originator.

1

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

THE REAL PROPERTY.

	CUMENTATION PAG	а) Е	READ INSTRUCTIONS
1. REPORT NUMBER	2. 60	VT ACCESSION NO.	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
2250			
A. THELE (and Substitio)		TOT	S. TYPE OF REPORT & PERIOD COVERE
WATER ABSORPTION	OF FLUIDS/OILS	0	Final Report.
			- PERFORMING ORS. REPORT NUMBER
7. AUTHOR(s)	and the second	-	8. CONTRACT OR GRANT NUMBER(+)
Robert G Jamison			
9. PERFORMING ORGANIZATION Fuels and Lubricants Di	vision DRDME-GL:	100	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Energy and Water Resou	irces Laboratory ;	(16)	1L762733AH20
U. S. Army MERADCO	M; Fort Belvoir, Virgini	a 22060	
Fuels and Lubricants Di	vision, DRDME-GL:	(1)	June 1978
Energy and Water Reson	irces Laboratory;	22000	13. NUMBER OF PAGES
U. S. Army MERADCO 14. MONITORING AGENCY NAME	ADDRESS(If different from	a 22060 Controlling Office)	15. SECURITY CLASS. (of this report)
(001	1		Unclassified
1213-1	2,1		15a. DECLASSIFICATION/DOWNGRADING
L			
17. DISTRIBUTION STATEMENT	ease; distribution unlim	ited. ck 20, 11 different fro	m Report)
17. DISTRIBUTION STATEMENT	ease ; distribution unlim (of the abatract entered in Blo	ited. ck 20, 11 different fro	a Report)
17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES	ease; distribution unlim	ited. ck 20, 11 different fro	m Report)
17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reve	ease; distribution unlim (of the obstract entered in Blo	ited. ck 20, If different fro	m Report)
 17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reve Fire-resistant Hydraulic Aretic Engine Oil 	ease; distribution unlim (of the abstract entered in Blo (of the abstract entered in Blo (FRH) Fluid	ited. ck 20, 11 different fro tify by block number) Dieste Silice	m Report)
 17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reve Fire-resistant Hydraulic Arctic Engine Oil Inhibitor Stability 	ease; distribution unlim (of the obstract entered in Blo (of the obstract entered in Blo (FRH) Fluid	ited. ck 20, 11 different fro tify by block number) Dieste Silicor Water	r Report) r Ie Sensitivity
 17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reve Fire-resistant Hydraulic Arctic Engine Oil Inhibitor Stability Inhibitor Compatibility 	ease; distribution unlim (of the obstract entered in Blo (of the obstract entered in Blo (FRH) Fluid	ited. ck 20, 11 different fro tify by block number) Dieste Silicor Water	r Report) r Re Sensitivity
 17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reve Fire-resistant Hydraulic Arctic Engine Oil Inhibitor Stability Inhibitor Compatibility 20. ABSTRACT (Continue on reve The object of the on the inhibitor system this experimentation, a analyzing water in thes fact that absorbed wate 	ease; distribution unlim (of the abetract entered in Blo (of the abetract entered in Blo (FRH) Fluid (FRH) Fluid (FRH) Fluid e etda II necessary and Ident investigation was to of s and basestocks of var a need was generated is fluids and oils. The r affects the stability of	ited. ck 20, 11 different fro tify by block number) Dieste Silicor Water to block number) determine the e ious hydraulic fl to develop a r results subseque the inhibited fl	r Report) r ne Sensitivity ffects of water absorption uids and engine oils. From nore accurate method for ently obtained verified the uid and oil systems.
 IFORM 1473 EDITION 17. DISTRIBUTION STATEMENT 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on revel Fire-resistant Hydraulic Arctic Engine Oil Inhibitor Stability Inhibitor Compatibility 20. ABSTRACT (Continue on revel The object of the on the inhibitor system this experimentation, a analyzing water in the fact that absorbed wate 	ease; distribution unlim (of the abetract entered in Blo (of the abetract entered in Blo (of the abetract entered in Blo (of the abetract entered in Blo (FRH) Fluid (FRH) Fluid investigation was to o s and basestocks of var a need was generated the fluids and oils. The r affects the stability of OF I NOV 65 IS OBSOLETE	ited. ck 20, 11 different fro tilly by block number) Dieste Silicor Water (fy by block number) letermine the e ious hydraulic fl to develop a r results subseque the inhibited fl	r Report) r re Sensitivity ffects of water absorption uids and engine oils. From nore accurate method for ently obtained verified the uid and oil systems.

CONTENTS

Start Salt a

Section	Title	Page
	ILLUSTRATIONS	iv
	TABLES	iv
I	INTRODUCTION	1
11	TEST PROCEDURES	2
111	RESULTS	3
IV	CONCLUSIONS	19
	BIBLIOGRAPHY	20
	APPENDICES	
	A. HUMIDIFICATION PROCEDURE	21
	B. GAS CHROMATOGRAPHY	22

iii

A. S. S. M.

Of Butt Sectors D Nucl-sectures D restantications D entroperations Entroperations entroperations Entroperations entroperations Entroperations entroperations Entroperations entroperations Entroperations	115	Walls Section	
NAME HAVELS	05	ant sectors	0.
AT A STATE AT A STATE AND A ST	Net martin		01
an muchan an an and a start and a start and a start and a start a star	CSTO SCATERIA.		
AND AND TO A STRING			
	12 11 11	AT AN ASILITY	sia.
	**************************************	eranasiliir s	66 3 STIN
		AT AN ABILITY S	8368 24194

ILLUSTRATIONS

Figure	Title	Page
1	Water Absorbed by the Eight Test Samples After 14 Weeks of Exposure	6
2	Results of Determining Water Content by CG	12
3	Spectra of Three Different Hydraulic Fluids Which Were Exposed to the Humidification Procedure	15

TABLES

Fable	Title	Page
1	Water Absorption Levels in Test Arctic Engine Oil Samples	4
2	Water Absorption Tendencies of Selected Engine and Hydraulic Oils	11
3	Comparison of Absorbed Water (Gas Chromatograph vs. Karl Fisher)	14
4	Water Absorption Characteristics of Lubricants	18
5	Percent Water Increase in Basestocks After 30 Days Exposure at 80-Percent Relative Humidity	19

a ser a serie of the series

Sec. 6

WATER ABSORPTION OF FLUIDS/OILS

I. INTRODUCTION

All petroleum-based fluids can absorb trace amounts of moisture if exposed in a humid environment or by direct contact with water. Depending on the specific applications and the severity of water contamination, this absorption can result in deleterious effects to the intended function of the petroleum-based fluids. This contamination becomes more critical to fluids formulated with additives designed to impart or improve desirable properties or suppress undesirable properties in order to accomplish specific functions. These additives, dissolved in a predetermined formulation to meet specific performance requirements, are required to remain in solution under all environmental and storage conditions including those involving water contamination.

Unfortunately, this critical solubility equilibrium can be easily upset by small amounts of contaminants leading to a massive functional deterioration of the fluid. A case in point occurred in the turret and gun control hydraulic system of the M60A1 (AOS) tanks retrofitted with the new less-flammable hydraulic fluid MIL-H-46170 (FRH), which is based on a synthetic hydrocarbon (commonly termed alpha-olefin). It was determined that moisture reacted with a water stabilizer additive, causing the rust inhibitor (dinonylnaphthalene sulfonate) to precipitate from the solution.¹ Other is stigators found that the presence of moisture in nonaqueous liquids such as turbine oils and hydraulic oils may constitute a serious problem.² These oils are designed for long-life operation and reuse in multifunctional applications where water is a normal or frequent contaminant.

The Project Manager's Office of FAMECE/UET (Family of Military Engineering Construction Equipment and Universal Engineer Tractor) had expressed a concern with the potential problem of water contamination/absorption and resultant emulsification tendencies of the formulated specification engine oils utilized in the hydraulic systems of these vehicles. It was noted that FRH fluids if adopted for FAMECE/UET would be able to tolerate and solubilize larger amounts of water than the MIL-L-2104C OE/HD010 oils, resulting in a system less sensitive to problems associated with water absorption.

M. E. LePera, J. Messina, H. Mullinger, and C. E. Snyder, "Investigation of the Causes of Stuck Servovalves in U.S. Army Hydraulic Systems Using MIL-1146170, Hydraulic Fluid, Rust-Inhibited, Fire-Resistant Synthetic Hydrocarbon Base," American Society of Lubrication Engineers, 32nd Annual Meeting in Montreal, Quebec, Canada. 9-12 May 1977.

² E. L. Armstrong, S. J. Leonardi, W. R. Murphy, and P. S. Wooding, "Evaluation of Water-Accelerated Bearing Fatigue in Oil-Lubricated Ballbearings." Vol. 34, 1, 15-21. American Society of Lubricating Engineers, 10-13 May 1976.

In another area of water contamination problems occurring in the field, Yuma Proving Ground (YPG) personnel requested an investigation of a subzero automotive engine oil (APG Purchase Description No. 1) which had been delivered to their facility in an unsealed 5-gallon container. The oil showed a precipitate and appeared to be contaminated by water. This evaluation required (1) the investigation of a new and uncontaminated oil sample for the water absorption effects on the product in question and (2) an assessment as to whether the absorbed water would produce any additive component precipitation as had occurred with YPG samples.

One additional area of potential concern involved the water absorption tendencies of the MIL-L-23699B aircraft gas-turbine engine lubricants. Water absorbed by these fluids was reported to be related to engine-bearing corrosion problems. More specifically, corrosion was evidenced in the areas where the ball-bearing made contact with the race during periods of short inactivity. As a result, an evaluation of water absorption tendencies was deemed necessary in an effort to determine the relationship of water absorption to bearing corrosion tendencies of aircraft gas-turbine engine lubricants.

In view of the above areas of immediate and/or potential concern, an investigation was judged necessary to define the water absorption and compatibility phenomena of lubricants and fluids found in the Military supply system. Further, with the increased emphasis on utilization of synthetically derived base stocks for fluids and engine oils, this need became more critical. This report described the results of the investigation to define water absorption characteristics of Military specification fluids and engine oils.

II. TEST PROCEDURES

Individual fluid/oil samples evaluated during this investigation initially were subjected to the humidification test and, subsequently, were analyzed for water content by use of a newly developed gas chromatographic procedure, or the Beckman K-4 Aquameter (ASTM D-1744). Additionally, samples were analyzed by infrared spectroscopy after testing to ascertain the amount of additive separation. In the humidification test described in Appendix A, a desiccator is charged with Ammonium Sulfate to yield a relative humidity (RH) of 80 percent.³ A 100-milliliter (ml) sample of fluid/oil is then exposed to the conditioned atmosphere by placing the sample into an uncovered test jar in the center of the desiccator. Samples of fluids/oils can be withdrawn at specified intervals through a stopper in the desiccator lid, allowing the RH to be constant during the test duration.

³ Federal Specification VV-B-680B, "Brake Fluid Automotive." 20 Jul 72.

The Gas Chromatography (GC) was employed to determine the water content in the fluid/oils wherein the Beckman K-4 Aquameter (ASTM-1744) results were suspect because of additive chemistry interference.^{4,5,6,7} The instrument used was a Hewlett-Packard 5834A with a 18850A terminal (Appendix B). The column used was a 2-m (78.7-in.) by 3-mm (OD, 1/8-in.) diameter copper tubing packed with Porapak Q (Walter Associates, Inc.). The following are conditions under which the tests were performed:

Detector Thermal Conductivity	Test Condition
Detector Cell Temperature (° C)	295
Helium Flow Exit (cc/min)	30
Inital Temperature (° C)	120
Initial Isothermal Time Interval (min)	1
Programmed Rate for Temperature Rise (min)	5
Final Temperature (° C)	200
Final Isothermal Temperature Time Interval (min)	2
Injection Port Temperature (° C)	300
Max. Oven Temperature (° C)	250
Recorder Chart Speed (in./min)	1
Recorder Chart Attenuation	1
Recorder Chart Slope Sensitivity	0.03

With an infrared spectrophotometer⁸ equipped with a 0.25-mm Sodium Chloride Cell, fingerprint spectra were recorded of the fluid/oil before and after the humidification tests. In this manner, changes in infrared spectra could be monitored to indicate potential additive-water-fluid incompatibility.

III. RESULTS

Eight samples (described in Table 1) of synthetic subzero automotive engine oil, with which YPG encountered problems, were subjected to the humidification test. The results in terms of water absorbed after 14 weeks of exposure are presented in

⁴ ASTM-D-1744, "Water in Liquid Petroleum Products by Karl Fisher Reagent."

⁵ Sherm Zweig, Handbook of Chromatography. Vol. 1 and 2. CRC Press, 1972.

⁶ D. Nogare & Juvet, Gas Chromatography, Interscience, April 1966.

⁷ Robert G. Jamison, "Determination of Contaminants in Less-Flammable Hydraulic Fluids." MERADCOM Report 2192, September 1976.

⁸ K. E. Stine, "Modern Practices in Infrared Spectroscopy." Laboratory Manual, 1975.

Table 1. Water Absorption Levels in Test Arctic Engine Oil Samples^a

				Ex	posure to	o Humidi	fication To	st For:
Specification Type	Source	Sample	Basestock Type	4 wk	6 wk	8 wk	10 wk	14 wk
APG PD 1 ^b	Company C	CCL874	Polyalkylated Benzene	0.28	0.32	0.28	0.32	0.35
APG PD 1	Company E	CCL875	Diester	0.17	0.28	0.23	0.22	0.24
APG PD 1	Company E	CCL876	Diester	0.34	0.29	0.24	0.25	0.27
APG PD 1	Company E	CCL877	Diester	0.34	0.31	0.25	0.24	0.31
MIL-L-46152	Company H	CCL878	Diester	0.51	0.45	0.39	0.43	0.48
Candidate MIL-L-46167	Company M	CCL725	Polyalpha Olefin	0.32	0.33	0.37	0.42	0.25
Candidate MIL-L-46167	Company R-	CCL807	Diester-Mineral Hybrid	0.44	0.46	0.46	0.50	0.31
MIL-L-46152	Company C	CCL813	Polyalkylated Benzene- Mineral Hybrid	0.30	0.32	0.32	0.33	0.16
^a Water levels determined via AS	STM D-1744 using a Be	ckman KF-4 Aqu	ameter.					

^b Aberdeen Proving Ground Purchase Description No. 1 for "Lubricating Oil, Internal Combustion Engine, Subzero."

4

5

Mar I am

Table 1 and are illustrated in Figure 1. After 14 weeks, the subzero automotive engine oil (APG Purchase Description No. 1) became cloudy and a fine, white precipitate was observed at the bottom of the test jar. This sample exhibited the same conditions as the deteriorated contents of the 5-gallon container received from YPG, proving the assumption that excessive water contamination had caused the additive precipitation.

Previous to this study there was no acceptable test method to determine or measure the amount of water absorbed by a variety of formulated oils and fluids that differed not only in composition but also in chemical structure. Therefore, it was necessary to develop such a method. Six samples of engine and hydraulic oil were exposed to the humidification procedures and sampled for the water content every 30 days, using the Karl Fisher technique for measuring the weight percent water. The six fluids selected are shown in Table 2. The measured amount of absorbed water in the synthetic hydrocarbon base (MIL-H-46170) material was extremely high. The Karl Fisher Method (ASTM D-1744) is accurate only for small amounts of water (ASTM limits 50 to 1000 p/m). Figure 2 illustrates the results of determining water content by GC as interfering compounds are elated to distort the quantitative analysis. Table 3 shows the comparison of absorbed water measured by Karl Fisher (ASTM D-1744) and GC versus the difference in weight percent between the methods. The Karl Fisher reagent apparently reacts with the dispersant additives in engine oils to give higher results, whereas the GC is not affected by this and only determines water as a singular peak. The resulting water content of the samples in Table 3 did not affect a precipitate; therefore, the difference between the absorbed water (after 30 days of exposure) and one percent total water was investigated. After the addition of free water, the samples were shaken vigorously for 30 seconds and then measured. After 2 hours, it was evident that all samples except silicone produced a precipitate, indicating gross water incompatibility.

To determine whether additives precipitated or reacted with absorbed water after exposure to the humidification procedure for 114 days, the infrared spectrophotometer was used to identify possible additive depletion. Figure 3 illustrates the spectra of three different hydraulic fluids which were exposed to the humidification procedure; in all three there is a slight "OH" band at 3 microns, typical of the hydraulic fluids tested.

The water absorption tendencies of MIL-L-23699B gas-turbine lubricants are of interest in view of recent efforts to develop a corrosion-inhibited version. Six QPL samples of MIL-L-23699B were obtained from the Naval Air Propulsion Center (NAPC). In addition to these six products, one petroleum solvent-extracted-neutral basestock (450SUS) was evaluated concurrently for reference purposes. In order to permit direct comparison with other fluids and oils, five additional specification products are shown in Table 4. The results are shown for a test period of 2, 4, 8, 16, and 30 days after exposure to the humidification test.

ALLE .

** 6 E

Table 2. Water Absorption Tendencies of Selected Engine and Hydraulic Oils

			Exposure	to Humi	idificatio	n Test For:	
Specification Type	QPL No.	Fluid Type	Initial Water Content	4 wb	4m 8	4 61	
MIL-L-2104C, Tactical Engine Oil Grade OE/HDO-10	MC-573MOD	Conventional Petroleum Oil	0.473	0.975	1.37	0.77	0.78
APG PD No. 1 Arctic Engine Oil	3908D	ISODECY Azealate (Diester)	0.194	0.362	0.45	0.21	0.22
MIL-H-46170, Less- Flammable Hyd Fluid	MF2	Polyalpha-Olefin (Synthetic Hydro- carbon)	0.037	0.314	0.47	0.24	0.27
MIL-H-6083D, Rust- Inhibited Operational	M-5056	Viscosity-Index Improved Kerosene	0.044	0.159	0.26	0.12	0.13
Candidate MIL-B- 46176 Auto Brake Fluid	U-265523-1	Silicone Base	0.027	0.239	0.36	0.41	0.55
MIL-H-5606C, Air- craft Hyd Fluid _(OHA)	MA-687759	Viscosity-Index Improved Kerosene	0.021	0.05	0.11	0.02	0.03

11

AT SIL

AMERY - APG-PD-1 AFTER 111 DAYS @ 80% RH

Figure 2. Results of determining water content by CG.

「大子」になったい

A STATES

			W	ater Conte	ent (%)	-
Specification Type	Fluid Type	Humidity Test Time (Days)	GC	D1744 KF	Difference GC vs KF	
APG PD No. 1	Diester	Initial	0.046	0.19	0.144	-
Arctic Engine Oil	Diester	114	0.171	0.22	0.049	
MIL-H-46170	Polyalfa-	Initial	0.02	0.04	0.02	
	Olefin	114	0.09	0.27	0.18	
MIL-H-5606C	Petroleum	Initial	-	_	-	
	Base	114	0.05	0.03	0.02	
MIL-H-6083D	Petroleum	Initial	0.047	0.044	0.003	
	Base	114	0.08	0.13	0.05	

Table 3. Comparisons of Absorbed Water (Gas Chromatograph vs. Karl Fisher)

– No data.

14

3. 9. 2 m.

Figure 3. Spectra of three different hydraulic fluids which were exposed to the humidification procedure.

15

Source States

THE PERKIN-ELMER CORPORATION, NORWALK, CONN.

PART NO. 137-1281 7: 8

16

A. 2020 - +1

THE PERKIN-ELMER CORPORATION, NORWALK, CONN.

17

the state

Table 4. Water Absorption Characteristics of Lubricants

Chacification			Bacactoch	Watar W+ 0		Watar Wt	Of A fine D.	Louison East	
openincation			Dascaluck	Waler, WI 70		waler, wi	/0 AILET EX	posure roi	
Product	Sample	Origin	Fluid Type	Initial	2 Days	4 Days	8 Days	16 Days	32 Days
MIL-L-23699B	QPL Sample A	NAPTC	Polyol Ester	0.030	0.219	0.254	0.274	0.276	0.269
MIL-L-23699B	QPL Sample B	NAPTC	Polyol Ester	0.008	0.198	0.246	0.248	0.242	0.246
MIL-L-23699B	QPL Sample C	NAPTC	Polyol Ester	090.0	0.201	0.268	0.268	0.271	0.270
MIL-L-23699B	QPL Sample D	NAPTC	Polyol Ester	0.030	0.236	0.273	0.289	0.310	0.296
MIL-L-7808G	QPL Sample E	NAPTC	Polyol Ester	0.020	0.205	0.205	0.201	0.236	0.221
MIL-L-23699B	QPL Sample F	NAPTC	Polyol Ester	0.019	I	I	1	1	0.286
	SAE 30 Grade	Basestock	Petroleum	0.019	0.019	0.015	0.019	0.012	0.019
MIL-H-46170	QPL Sample	MERADCOM	PAO ^b	0.037	I	I	I	I	0.314
MIL-H-6083D	QPL Sample	MERADCOM	Petroleum	0.044	I	I	I	1	0.159
MIL-H-5606C	QPL Sample	MERADCOM	Petroleum	0.021	I	I	I	I	0.050
APG PD No. 1 ^c	QPL Sample A	MERADCOM	Diester	0.194	I	I	I	I	0.362
APG PD No. 1	QPL Sample B	MERADCOM	PAB ^d	0.170	ı	I	I	1	0.280
^a Samples exposed to I	humidification procedu	are (constant relative	e humidity of 80 pe	rcent).					

^b Polyalpha-Olefin Basestock commonly r.Jerred to as Synthetic Hydrocarbon.

^c Aberdeen Proving Ground Purchase Description for Arctic Internal Combustion Engine Oil (NATO 0-183).

d Poly-Alkylated Benzene Basestock.
 – No data.

18

5

Table 5 provides a summary of water absorption tendencies of fluids/oils by generic type. Increases vary from 87 to 886 percent with Polyalkylated Benzene derivatives showing the least amount of water pickup, whereas Polyols give the greatest.

Basestock	Percent Water Increased by K. F.
Petroleum	106
Polyalpha-Olefin	748
Polyol	886
Silicone	785
Polyalkylated Benzene (Diester)	87
Hybrids	138

Table 5. Percent Water Increase in Basestocks after30 Days Exposure at 80-Percent Relative Humidity

IV. CONCLUSIONS

Water determinations by Karl Fisher (ASTM D-1744) method gave consistently high results with formulated fluids and oils because of additive interference.

At a level of 1 percent added water, all fluids except the silicone produced a precipitate, indicating additive insolubility/incompatibility.

Upon exposure to 80 percent relative humidity for 14 weeks, the subzero automotive engine oil was the only material tested to show a precipitate.

Petroleum base fluids such as MIL-H-5606 absorb the least amounts of water. However, petroleum oils with a high level of additive treatment (MIL-L-2104C) pick up large amounts of water.

BIBLIOGRAPHY

FEDERAL SPECIFICATION

VV-B-680B, "Brake Fluid, Automotive," 20 Jul 72.

MILITARY SPECIFICATIONS

MIL-L-2104, "Lubricating Oil, Internal Combustion Engine, Heavy-Duty," 20 Nov 70.

- MIL-H-5606, "Hydraulic Fluid, Petroleum Base, Aircraft Missile, and Ordnance," 30 Sep 71.
- MIL-H-6085, "Hydraulic Fluid, Petroleum Base, for Preservation and Testing," 5 Mar 73.

MIL-L-7808, "Lubricating Oil, Aircraft Turbine Engine, Synthetic Base," 10 Sep 71.

MIL-L-23699, "Lubricating Oil, Aircraft Turbine Engines, Synthetic Base," 22 Nov 71.

- MIL-L-46152, "Lubricating Oil, Internal Combustion Engine, Administrative Service," 20 Nov 72.
- MIL-L-46167, "Lubricating Oil, Internal Combustion Engine, Arctic," 15 Nov 74.
- MIL-H-46170, "Hydraulic Fluid, Rust-Inhibited, Fire-Resistant, Synthetic Hydrocarbon Base," 28 Mar 75.
- MIL-B-46176, "Brake Fluid, Silicone, Automotive, All-Weather, Operational and Preservative," 27 Mar 78.

PURCHASE DESCRIPTION

APG PD 1, "Lubricating Oil, Internal Combustion Engine, Subzero," 15 Jul 69.

APPENDIX A

HUMIDIFICATION PROCEDURE

Two bowl-form glass desiccators, 250 mm inside diameter, having matching tubulated covers fitted with No. 8 rubber stoppers, are charged with 450 ± 25 grams of reagent grade ammonium sulfate and 125 ± 10 ml of distilled water. The surface of the salt slurry shall lie within 45 ± 7 mm of the top surface of the desiccator plate. A corrosiveness test jar is placed in each of the desiccators, and the desiccators are placed in an area where temperature is controlled at $23 \pm 1.1^{\circ}$ C ($73.4 \pm 2.0^{\circ}$ F) for 24 ± 4 hours. After the conditioning period, the rubber stoppers in the desiccator covers are carefully removed and 100 ± 1 ml of the test fluid is placed in each corrosion test jar by means of a pipette. The rubber stoppers are immediately placed back in the cover openings. The desiccators are left in the controlled temperature area for 30 or 60 days. On completion of the exposure to the humid atmosphere in the desiccators, the test jars containing the fluid are removed and tightly covered. Samples are removed by pipette, and water determinations are conducted.

APPENDIX B

GAS CHROMATOGRAPHY

The 5834A Gas Chromatograph is a keyboard instrument that houses a multifunction digital processor. Working with values entered via the keyboard on a special terminal unit, the processor establishes isothermal or programmed temperature control of the GC. The processor also analyzes integration data by basing its calculations on the method entered before a test run is started. During a run, the terminal traces the chromatograph and prints peak retention time and at the end of the test automatically prints the qualitative report.

DISTRIBUTION FOR MERADCOM REPORT 2250

No. Copies	Addressee	No. Cppies	Addressee
	Department of Defense	2	CDR US Army Research & Technology
1	Director, Technical Information		Laboratories
	Defense Advanced Research		Applied Technology Laboratory
	Projects Agency		ATTN: DAVDL-EU-TAP
	Arlington VA 22209		(Mr. Morrow)
	Armigion, VA 22209		(Mr. Bartone)
12	Defense Documentation Center		Fort Eustis, VA 23604
	Cameron Station		
	Alexandria, VA 22314	1	HQ, 172nd Infantry Brigade (Alaska)
	Department of the Army		ATTN: AFZT-DI-L Directorate of Industrial Operations
1	HQ, Dept of Army		APO Seattle 98749
	(Dr. Bryant)	2	CDP
	Washington, DC 20310	2	US Army General Material &
			Petroleum Activity
2	CDR		ATTN: STSGP-FT
	US Army Materiel Devel &		STSGP-PE
	ATTN: DRCLDC (Mr. Zentner)		New Cumberland Army Depot
	DRCMM-SP (Mr. Vondiciar)		New Cumberland, FA 17070
	5001 Eisenhower Avenue	1	UK US Army Ceneral Material &
	Alexandria, VA 22333		Petroleun, Activity
			ATTN: STSGP-PW
1	CDR		Sharpe Army Depot
	US Army Tank-Automotive		Lathrop, CA 95330
	Command	1	CDP
	ATTN: DRDTA-R		US Army Foreign Science &
	Warren, Michigan 48090		Technology Ctr
			ATTN: DRXST-MT1
2	CDR		Federal Bldg
	US Army Tank-Automotive		Charlottesville, VA 22901
	ATTN: DRSTAM	1	CDR
	DRSTA-GBP		US Army Maintenance Management
	(Mr. McCartney)		Center
	Warren, Michigan 48090		ATTN: DRXMD-TP
	Director		Lexington, KY 40511
1	US Army Materiel Systems	1	HO US Army Test & Evaluation
	Analysis Agency		Command
	ATTN: DRXSY-CM (Mr. Woomert)		ATTN: DRSTE-TO-O
	Aberdeen Proving Ground, MD		Aberdeen Proving Ground, MD
	21005		21005
		1	HQ, US Army Armament Research
			ATTN: DRDAR-TST-S
			Dover, (19 07001

23

* Think

No. Copies	Addressee	No. Copies	Addressee
1	HQ, US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-MEG 4300 Goodfellow Blvd	1	Prod Mgr, M113/M113A1 Family of Vehicles ATTN: DRCPM-M113 Warren, Michigan 48090
	St. Louis, MO 63120	1	Proj Mgr, Mobile Electric Power ATTN: DRCPM-MEP-TM
1	Director US Army Research & Technology Laboratories (AVRADCOM)		7500 Backlick Road Springfield, VA 22150
	Propulsion Laboratory ATTN: DAVDL-LE-D	1	Ofc of Proj Mgr, Improved Tow Vehicle
	21000 Brookpark Road Cleveland, OH 44135		US Army Tank-Automotive Rsch and Development Command ATTN: DRCPM-ITV-T Warren, Michigan 48090
1	HQ, US Army Aviation Research and Development Command	1	Proj Mgr, Patriot Proj Ofc
	(Mr. Crawford) P.O. Box 209 St. Louis, MO 63166		ATTN: DRCPM-MD-T-G US Army DARCOM Redstone Arsenal, AL 35809
1	CMDR	1	Ofc of Proj Mgr, FAMECE/UET ATTN: DRCPM-FM
	ATTN: AFLG-REG (Mr. Carbo) Fort McPherson, GA 30330		US Army MERADCOM Fort Belvoir, VA 22060
1	CDR US Army Aberdeen Proving Ground ATTN: STEAP-MT Aberdeen Proving Ground, MD 21005	1	CMDR US Army Quartermaster School ATTN: ATSM-CTD-MS (MAJ Brewster) ATSM-TNG-PT (LTC Volpe) Fort Lee, VA 23801
1	CDR US Army Yuma Proving Ground ATTN: STEYP-MT Yuma, Arizona 85364	1	HQ, US Army Armor School ATTN: ATSB-TD Fort Knox, KY 40212
1	Michigan Army Missile Plant Ofc of Proj Mgr, XM-1 Tank Sys ATTN: DRCPM-GCM-S Warren, Michigan 48090	1	CMDR US Army Logistics Center ATTN: ATCL-MS Fort Lee, VA 23801
1	Michigan Army Missile Plant Prog Mgr, Fighting Vehicle Sys ATTN: DRCPM-FVS-SE Warren, Michigan 48090	1	CMDR US Army Field Artillery School ATTN: ATSF-CD Fort Sill, OK 73503
1	Proj Mgr, M60 Tank Development ATTN: DRCPM-M60-TDT Warren, Michigan 48090	1	CMDR US Army Infantry School ATTN: ATZK-CD Fort Knox, KY 40121

No. Copies Addressee

1

1

1

1

2

1

- CMDR US Army Ordnance Center and School ATTN: ATSL-CTD-MS Aberdeen Proving Ground, MD 21005
- 1 CMDR US Army Engineer School ATTN: ATSE-CDM Fort Belvoir, VA 22060
 - CMDR US Army Infantry School ATTN: ATSH-CD-MS-M Fort Benning, GA 31905
 - Director Army Materials and Mechanics Research Center ATTN: DRXMR-STL Technical Library Watertown, MA 02172
 - Director US Army Materiel Systems Analysis Agency ATTN: DRXSY-CM Aberdeen Proving Ground, MD 21005
 - Director Petrol & Fld Svc Dept US Army Quartermaster School Fort Lee, VA 23801
- 1 HQ, 193D Infantry Brigade (CZ) Directorate of Facilities Engineering Fort Amador, Canal Zone
- 2 Engineer Representative US Army Standardization Group, UK Box 65, FPO New York 09510
 - HQ, USAEUR & Seventh Army Deputy Chief of Staff, Engineer ATTN: AEAEN-MT-P APO New York 09403
- 1 HQ, USAEUR & Seventh Army Deputy Chief of Staff, Operations ATTN: AEAGC-FMD APO New York 09403

No. Copies Addressee

1

1

4

30

53

3

2

1

1

1

1

MERADCOM

Commander, DRDME-Z Tech Director, DRDME-ZT Assoc Tech Dir/R&D, DRDME-ZN Assoc Tech Dir/Engrg & Acq, DRDME-ZE Spec Asst/Matl Asmt, DRDME-ZG Spec Asst/Tech Asmt, DRDME-ZK CIRCULATE

- Chief, Ctrmine Lab, DRDME-N Chief, Elec Pwr Lab, DRDME-E Chief, Cam & Topo Lab, DRDME-R Chief, Mar & Br Lab, DRDME-M Chief, Mech & Constr Eqpt Lab, DRDME-H Chief, Ctr Intrus Lab, DRDME-X Chief, Matl Tech Lab, DRDME-V Dir, Product A&T Directorate, DRDME-T CIRCULATE
- Engy & Wtr Res Lab, DRDME-G Fuels & Lubricants Div, DRDME-GL R. G. Jamison, DRDME-GL Tech Reports Ofc, DRDME-WP Security Ofc (for liaison officers), DRDME-S Tech Library, DRDME-WC Programs & Anal Dir DRDME-U Pub Affairs Ofc, DRDME-1 Ofc of Chief Counsel, DRDME-L

Department of the Navy

- Commander, Naval Facilities Engineering Command Department of the Navy ATTN: Code 032-A 200 Stovall St Alexandria, VA 22332
- Officer-in-Charge (Code L31) Civil Engineering Lab Naval Construction Battalion Ctr Port Hueneme, CA 93043
 - CDR Naval Air Systems Command ATTN: Code 52032E (Mr. Weinburg) Washington, DC 20361

Mar Sile m

No. Copies Add

1

2

1

1

1

1

2

1

1

Addressee

- CDR Naval Air Development Ctr ATTN: Code 30212 (Mr. L. Stallings) Warminster, PA 18974
- CDR Naval Research Lab ATTN: Code 6170 (Mr. H. Ravner) Code 6180 Washington, DC 20375
 - CDR Naval Air Engineering Ctr Naval Air Station ATTN: Code 92724 (Mr. Senholzi) Lakehurst, NJ
- Chief of Naval Research ATTN: Code 473 (Dr. R. Miller) Arlington, VA 22217
- CDR Naval Air Propulsion Center ATTN: PE-7 Trenton, NJ 08628
 - CDR Naval Ship Engineering Center Code 6101F (Mr. R. Layne) Washington, DC 20362
- CDR David Taylor Naval Ship Research and Development Center Code: 2830 (Mr. G. Bosmajiian) 2831 Annapolis, MD 21402
 - Joint Oil Analysis Program Technical Support Center ATTN: Code 360 (Mr. R. Lee) Naval Air Rework Facilities Pensacola, FL 32508
- Department of the Navy HQ, US Marine Corps ATTN: LMM (LTC Beason) Washington, DC 20380

No. Copies Addressee

1

2

1

2

1

Department of the Air Force

Headquarters USAF ATTN: RDPS (Mr. Eaffy) Washington, DC 20330

- CDR USAF AeroPropulsion Lab ATTN: AFAPL/SFF (Mr. Churchill) AFAPL/SFL (Mr. Jones) Wright-Patterson Air Force Base, OH 45433
- CDR USAF San Antonio Air Logistics Center ATTN: SAALC/SFQ Kelly Air Force Base, TX 78241
- CDR USAF Materials Lab ATTN: AFML/MBT AFML/MXE Wright-Patterson AFB, OH 45433
- CDR USAF Warner Robins Air Logistic Center ATTN: MMEAP Robins Air Force Base, GA 31098

DEPARTMENT OF THE ARMY U. S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR. VIRGINIA 22060

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

POSTAGE AND PEES PAID U. S. DEPARTMENT OF THE ARMY DOD-314

THIRD CLASS MAIL

THE REAL PROPERTY.