AD=A065 879 AIR FORCE INST OF TECH WRIGHT=-PATTERSON AFB OHIO SCH--ETC F/6 9/2
A STUDY OF EMBEDDED COMPUTER SYSTEM SOFTWARE ACQUISITION MANAGE==ETC(U)

SEP 78 6 M BARBEE
UNCLASSIFIFD AFIT/GSM/SM/T85=1

L C_

giites
= |EE

“"l_‘g_" e M2

e 2
L £ R

T s

TR T

ADAO 65879

AFIT/GSM/SM/78S-1

A STUDY OF EMBEDDED COMPUTER SYSTEM
SOFTWARE ACQUASITION MANAGEMENT
ND
RECOMMENDATIONS TO IMPROVE
DEVELOPMENT VISIBILITY

THESIS

AFIT/GSM/SM/78S-1 Gary M. Barbee
Capt USAF

Approved for public release; distribution unlimited

——————

Qd AFIT/GSM/SM/78$'|]

TuDY OF EMBEDDED COMPUTER_§YSTEM
OFTNARE ACQUISITION‘MANAGEMENT
\ AND

w

——
—
—

b ;\\

A

BECOMMENDATIONS TO lyPROVE

Rt uporamrats

QEVELOPMENT_YISIBILITY,

\
t

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

o

by

@G&é}" M. / Barbee) B.S.E.E.
Capt USAF

Graduate Systems Management

(JL/.?E.”""?E‘_'?Z? i

Approved for public releasg, distribution unlimited

g2
Y Y i

L ot

Preface

This thesis is an attempt to document Embedded Computer System (ECS)
software development problems and recommend solutions and improvements to
some of those problems. This research may also be of interest to readers
desiring an introduction to the DOD software development process and the
accompanying guidance and regulations. I accept full responsibility
for any errors contained herein.

I would 1ike to gratefully acknowledge the adyice and assistance of
my thesis advisor, Professor Charles W. McNichols and my reader
Professor Saul Young. Very special thanks go to my wife, Shirley,

and children, Michelle and Jeffrey for their help and understanding.

Gary M. Barbee

Contents

Page
i R RN R TSR R B TR S L MR PRI SR S ii ;
ISiE of - Eigures e in B i s i s B s e e iv :
3 AOSEMEE « . . ¢ v 2o s T e e A R D VR S v |
I. Avionic Software Acquisition Problems 1
11001108 G 117 SRR MRS B VR S TR R 1 4
: Statement of the Problem and Study Objectives 8
; Scope of RESearch . o wiaiv » o« & & @ 6 & & el 9 ‘9
Organization of the Thesis« 10
) 1 Methodology: = o i o il @i e v e e i S 12
The Literature SEareh « « « « & = 5 &« » w5 & 55 s = » 12
Summarized Preliminary Recommendations 13
The INEBYWIEBN <« « « + v v » v ¢ 55 5 ¢ w.w % % 5 & % & 14
The INtervion FOTIEE . + « « + « & & « 5 = & & & = « % 15
Description of Interview Population 16
: Methods of Analysis and Comparison 17
; III. Description of the Software Development Cycle 21
5 Traditional DOD ECS Acquisition Life Cycle Phases . . . 24 :
% : COMCOpL FOYMUIARTOR .« « « v o « & s 3 % & v & % & % » & 29
| g BIHREION .« .« « v o v s v s v v o e 32
Full Scale Development B T N 37
Production . ¢« ¢« ¢ « v ¢ s ¢ ¢« ¢« v o s T 42
3 Operation and Maintenance 43

i Iv. Literature Search « vv .+ o 5 o 5 ws s s @ B s s s e mow s
DOD Sponsored Studies and Guidebooks
DOD Regulations, Specifications, and Standards

Thesis, Reports, and Periodicals
Preliminary Recommendations
V. DRI RESUIER & <« « a a5 s h v w o wh
VI. Summary, Conclusions, and Recommendations
SHIMARY o 0 & & v e i B e e e e e e
SO TURIEIE, i e e W AR e e e e Wk e
Final Recommendations
Areas for Further Study
BIBEIGORADRY i W i e bl et e e e e
Appendix A: Structured Interview Format
Appendix B: Glossary of Terms ¢ ¢« o v o

Appendix C: Personnel Interviewed at ASD, Wright-Patterson AFB,
Ohio

iii

L ——

List of Figures

_ Figure Page
] g 1 Hardware vs Software Cost Trends 4
€ 2 Idealized System Life CYCT€ . « © v v v v v v v e v e e e 25
3 Task Relationships During Full Scale Development 38
4 Interrelation of Software Acquisition Study Findings 47
il
i
;
§
)
]
iv

AFIT/GSM/SM/785-1

Abs tract

\he United States Air Force is the largest user of computers in the
world and a major portion of that information processing capability is
comprised of digital avionics computers. This thesis describes some of
the major problems of acquiring Embedded Computer System (ECS) software
for avionics systems. A description of the DOD avionics software
acquisition process is included for background information as well as
a discussion of the applicable guidance, policies, and regulations.

Recommendations to improve software acquisition were derived from
literature research, refined by interviews with practicing software
engineers and managers, and presented as a product of this thesis. The
interviews were conducted with software acquisition personnel at the
Aeronautical Systems Division of Air Force Systems Command at
Wright-Patterson AFB, Ohio. A major conclusion of this thesis is that
the development of a computer software management discipline is both

necessary and feasible.

i

I. AVIONIC SOFTWARE ACQUISITION PROBLEMS

Introduction

Avionic software development and procurement has been an area that
has largely escaped normal managerial controls. Frequently, actual
software costs exceed the initial budget by 100% and the time to reach
operational status is often twice as long as scheduled (Ref 29:138).

It is difficult to estimate the effort required to produce software,
especially avionic software. The software development process is not
well understood and the numerous factors affecting the development 1eave
decision makers with a limited ability to effectively monitor and direct
the process.

Prior to WWII, the standard practice was to develop and acquire most
system components and sometimes complete subsystems separately from their
use in the total weapons system. Design and integration approaches of
most weapons systems were stable enough to permit components and entire
subsystems to be integrated for the first time only after each was separately
completed. The Air Force was literally buying major weapons systems in
bits and pieces rather than as a total functioning system (Ref 32:73).

Following WWII, the impact of advanced technology required a new
approach to system development that designed a component from its
inception to integrate efficiently into the total system. This called for
greater controls over the complex parallel developments to coordinate
schedules, functions, physical characteristics, etc. (Ref 32:73).

Methods were developed within the Air Force to control the technical

and managerial functions of both contractor and in-house development.

sl e i

This resulted in a profileration of staffs and multiple levels of review
in both industry and the Air Force (Ref 32:75).

The need to improve avionic system software acquisition has been
made apparent by the succession of cost overruns and defective systems
that have drawn sharp criticism to one or more programs in recent years.
The clutter of programs and problems has made it difficult to understand
or grapple with the underlying causes of software acquisition difficul ties
or their solutions. Well known major systems with these characteristics
have been the B-1, C-5, F-15, F-111, etc.

Each of these weapons systems contains a computer system as an
integral part of its identity and function. This has become so common
that the term Embedded Computer System (ECS) has evolved to describe the
computer hardware and software that is buried within a major weapons
system. This type of ECS is physically incorporated into a larger,
generally mobile, electromechanical system whose primary function is not
data processing (Ref 30:159). Generally, the DOD specifies the weapons
system requirements and the developing contractor determines whether a
computer system must be integrated into the weapons system to satisfy those
design requirements.

Until recently, the majority of managers and contracting personnel
were content to treat software merely as data (Ref 17:1). These managers
were primarily concerned with the weapons system meeting overall design
specifications, not how a black box subsystem worked inside the total system.
Documentation of software of this type was sometimes given a low priority
because of its expense, and the idea of buying it later if necessary was
prevalent. This created a situation where a major weapons system was
acquired without knowing completoly what was inside it or how to maintain
or modify it. In some cases, when the software documentation had to be

2

bought, it did not exist and the individual people who developed it were
no longer available to provide it. The “data" therefore had to be
completely reconstructed at great expense.

Many studies have been made to find ways of improving software
acquisition. A major idea of these studies has been to increase management
visibility of software development. The importance of this visibility is
supported by the DOD Weapon Systems Software Management Program designating
software management visibility as one of its four main objectives (Ref 14:3).
The lack of software management visibility was also identified as a major
DOD problem in a Johns Hopkins University Applied Physics Laboratory (APL)
study entitled DOD Weapon Systems Software Management (Ref 19:2-4).

Software is the least visible and tangible of any aircraft subsystem
and is therefore the least understood. System Program Office (SPO)
management seems to have a problem working with and understanding this
nebulous area because management is generally far removed from its
development. Unlike the manager, who sometimes fears software, the engireer
who deals with it on a day to day basis refers to it as if it were a physical
unit, not as the concept which it really is.

The development, application, utilization, and management of software
for avionic systems is one of the most critical problems in implementing
digital avionics. This is important because digital avionics is apparently
the airborne information processing tool of the future.

This statement has great significance to the DOD as evidenced by the
large software expenditures to date. Jacques Gansler, Deputy Assistant
Secretary of Defense for Material Acquisition, has stated that there are
at least 115 different defense systems that utilize ECS, approximately

one-half of which are now in service. He also stated that the DOD is

spending more than $3 billion annually for software (Ref 16:41-43) (Ref 34:5).

Wm——m e . — v-.}.-

This has created great interest in the cost of software because some people
still consider software to be merely data required to utilize hardware.

The relative cost importance of s~ “tware versus hardware is depicted
i by the graph in Figure 1. This graph was on the cover of the Defense

Management Journal, October 1975 (Ref 18:3).

‘

Defense systems costs have been rising at a rate approximately five
times the national inflation rate over the last twenty years. (Ref 4:3-4).
¢ Lack of contract costing visibility further complicates the cost problem

because software in the past was never classified as a separate contract

line item. Software was usually embedded in the total weapons system cost

and could not be tracked separately. Management did not place enough

100

% of Total
Cost 80+ HARDWARE

60}
40r

SOFTWARE

20

1955 1970 1985

Figure 1. Hardware versus Software Cost Trends (Ref 18:3).

!
¥

emphasis on development of computer resources until after it was designated
a problem area, and achiev.ng visibility after the fact was neurly impossible.

The indirect costs of software are even greater than the direct
costs because software is generally on the critical path in overall
system development. That is to say that software schedule slippages usually
translate directly into total system schedule slippages (Ref 39:7).

Billions of dollars are being spent annually for embedded computer
systems (hardware and software) by the DOD. However, a search of the
literature uncovers no formal design method to insure that a given
hardware/software mechanization is near optimum for either a general or
specific appiication (Ref 6:98).

Some Major Software Problems: (Ref 31:39):

1. Faulty and incomplete communication of user requirements.

2. Unrealistic cost estimates caused by insufficient visibility

and control. (There appears to be no reliable techniques for
estimating development effort.)

3. Unrealistic time schedules caused by the same lack of visibility

and control.

4. High software failure rates.

5. Incomplete and insufficient specifications.

Software visibility has been heralded as the key to solving the
software development problem. The major reason has been the lack of
importance associated with software development in relation to the overall
weapons system. This Tack of attention amplifies errors made early in a
program such as inadequate requirements definition and incomplete integration
of hardware and software requirements. The lack of development status

monitoring during development aggravates the problem (Ref 14:i).

An understandable eagerness to avoid past errors and minimize future
criticisms leads to the bureaucratic tendency to bring all information to
the top for decisions or to leave major decisions and data at too low a
level. The DOD has shown wide swings between "centralized" and "decentralized"
patterns of management philosophy on decision making (Ref 32:87).

The current DOD philosophy on decision making attempts to maximize
the advantages and minimize the disadvantages of centralized control by
selectively decentralizing some decisions and encouraging participation
in management. This policy has increased Air Force responsibility for its
own programs by giving it more authority to make decisions. Finding a
compromise position between centralization and decentralization appears
to be the best approach. However, philosophy and policy need to be reinforced
by clear statements on the limitations and placement of authority and
responsibility within the Air Force and all of the DOD (Ref 32:87).

Currently, policy making and acquisition program monitoring responsibilities
are split between the business and technical functions of high 1evel management.

In the DOD, a large number of regulations, directives, and standards
have been written for systems acquisition management. Most of these
documents,wefe not designed originally for software but were modified after
the fact. The majority of these publications are still hardware oriented
and conflict with each other and with current policy (Ref 35:29).

Upon initiation of a new acquisition program, the procurement function
must begin employing the contractual techniques and tools required by policy
and regulation. These policies and regulations, which were usually written
for more orthodox procurement applications, have themselves frequently

created difficulties when applied to advanced technology acquisition programs.

i s

When technical requirements and considerations occur first and the
business function second, the acquisition process operates in an
information vacuum. Important issues go unresolved and are sometimes
determined without inputs from affected organizational functions. Those
issues include roles and relationships of government to industry in
defining a system, method of approach, degree of technical risk, scheduling,
priorities, and cost, all of which should be coiisidered from the start
by all affected parties.

With only a single organized effort underway to meet the need, system
performance and schedule slippage have to be accommodated by additional
funding. As a result of this monopoly-like situation, costly and burden-
some controls and regulations must be applied to a greater extent than in
competitive procurements to assure public accountability.

In addition, there are no standards to measure the efficiency of a
single software development undertaking and no competition to aid in
choosing the best system. This, coupled with a contractor's tendency to
promise the customer what he wants rather than innovating and demonstrating
new products that were not asked for, decreases the emphasis on product
improvement.

Another recurring problem area is that contractors are overoptimistic
in their estimates of system cost, performance, and delivery date and
make contractual commitments based on those estimates in order to win
program awards.

The need for software visibility to combat development problems has
been stated repeatedly in current literature and speeches (Ref 14:1). How-

ever, many attempts at corrective action to date have been piecemeal and

counterproductive, leading to regulations to explain regulations, people

|

to check people, and procedures to facilitate procedures. These patchwork
improvements only aggravate the underlying problem in avionic software
acquisition. That problem is the lack of visibility over the key decisions
that control the definition, development, and acquisition of avionic

software (Ref 32:70).

Statement of the Problem and Study Objectives

The ECS software for a weapon system development is not the major
part of the total system but must be considered critical to the overall
performance of the system. If the total system will not function without
the software, the importance of this factor is well established. The
question is, how does the manager supervise ECS software development
to acquire effective software delivered in a timely fashion?

This question leads to the subject of this research: the development
of a set of recommendations that if implemented would improve the ability
to monitor and manage ECS software development progress in the United
States Air Force (USAF). The initial recommendations are a synthesis of
the ideas and concepts contained in the available literature. A series
of interviews with experts in the field helps consolidate and refine the
recommendations into a product usable to the ECS software development
community.

There appears to be no generally accepted guidelines for planning
software acquisition programs, and therefore, provisions for monitoring
and managing development progress often are initially overlooked. If the
proper management information requirements are not defined early it a
program, the necessary data is generally not available later to monitor
and control the development effort. This prevents accurate evaluation
of contractor or in-house progress toward development goals. Management,

therefore, cannot determine whether software development is on schedule

8

-

ot T 8 et it

or whether more attention, i.e., manpower and money, should be expended
to prevent software from becoming a troublesome critical path program
delay. According to Brooks, any increased effort must occur before a
* problem develops to be effective (Ref 7:44-52). The lack of visibility

of software development progress precludes accurate establishment of

development milestones and measuring completion of those milestones.

This forces the USAF to accept a contractor's forecast of a
"reasonable" schedule and incremental estimates of degree of task comple-
tion because there is no way to question the contractor's evaluation.

In other words, there is no way to refute a contractor's reply of 90%
complete and two months ahead of schedule when he is actually 50% complete
and two months behind schedule.

What then, does the manager need to know about the software development?
Basically, the same information is needed to manage a software development
as is needed for a hardware development (Ref 14:4-5). Primarily, these
information needs are:

1. Is it on schedule?

2. Is it within cost?

3. Does it meet technical specifications?

The problem being researched here is to find ways to ensure that
these three questions are more accurately answered during the development

process.

Scope
This research has been limited to ECS software even though some of

the discussions and conclusions may apply to Automatic Data Processing (ADP)
software. The primary orientation has been toward computer systems acquired

under the 800 series of Air Force regulations rather than the 300 series.

T e

This limitation tended to focus on airborne and spaceborne Operational
Flight Program (OFP) development because most Air Force ECS software
is of this type. These developments also tend to be of a smaller
magnitude, thus simplifying data collection and analysis.

The research was also 1imited to the development phase of the
software life cycle because, unlike hardware, there is no production
phase. After completion of the development, the final software program
is merely duplicated, distributed for operational use, and controlled
as a Time Controlled Technical Order (TCTO). Therefore, the operational
use, maintenance, and modification of ECS software has not been covered
here.

Software cost estimating has been covered only as was necessary and

no detailed inclusion was attempted due to extensive treatment elsewhere.

Organization of the Thesis

The study was done in the form of two separate but related investi-
gations with Chapter II discussing the methodology for those investiga-
tions.

Chapter III describes the ECS software development process and
relates much of the relevant literature directly to the traditional DOD
development cycle.

Chapter IV contains the results of the portion of the search of
current literature that was intended to determine the state-of-the-art
and current thinking on the problems of managing software development.
Discussions of potential solutions to these problems were digested and
documented. The end result of this section was a tentative set of
recommendations that, if implemented, would improve the ability to
monitor and manage ECS software acquisition by increasing development
visibility. This set of recommendations was then used to initiate a series

10

WLt Y L A

of interviews with software development experts.

Chapter V presents the results of subjective interviews with ten
Air Force software project managers and other experts to validate and
revise the tentative set of recommendations to reflect their collective

thinking and experiences. The revised set of recommendations is included

at the end of this chapter.

Chapter VI contains a summary and some conclusions with respect

to software development visibi]ity and how best to achieve it.

IT. METHODOLOGY

This thesis represents an investigation of the problems involved
in developing one particular class of computer software, ECS avionic
software. Specifically, the objectiyes of this study were:
1. To review the available literature and derive from that
a set of recommendations to improye the ability to monitor
and manage USAF ECS software development.
2. To conduct a series of interyiews with people knowledgeable
in the ECS software development field, who would help
consolidate and refine the recommendations into a product
beneficial to the ECS software development community.
- 3. To learn more about the thesis topic.
In pursuit of these objectives, Chapter I discusses the nature of ECS
software development problems while this chapter, Chapter II, describes
the methodology that was followed to accomplish the research objectives.
Chapter III presents and analyzes the ECS acquisition process and Chapter IV
surveys the relevant literature that was not covered in Chapters I, II,
or III. Chapter V documents and analyzes the interview results and
Chapter VI contains the summary, conclusion, and recommended areas for

further research.

The Literature Search

A major goal of this thesis was to review the available literature
in the area of software managemert visibility and to combine that
information into a set of recommendations. Those recommendations were

points the author believed would increase management control and visibility

of avionic software development efforts and therefore improve the quality

of the ECS software product. An extensive search of current literature
was conducted and problems, experiences, and possible solutions were
noted.

The relevant literature consisted of magazine articles, guidebooks,
research reports, conference proceedings, regulations, specifications,
standards, correspondence, and speeches. This information was
supplemented by attendance at conferences, seminars, briefings, inter-
views, and personal experience. The increasing number of publications and
conferences reveal a substantial current interest in the subject of ECS
software.

There were three basic categories of literature encountered:

1. DOD sponsored studies and guidebooks.

2. DOD regulations, specifications, standards, and manuals.

3. Thesis, reports and periodicals.

The majority of the published research was sponsored by DOD and is
presented in Chapter III as it relates to the acquisition process

because it deals with acquisition guidance and policy. The survey of the
state-of-the-art software acquisition Titerature included the areas of
software engineering, software management, and software contracting.

It provided the information necessary to determine those areas of software
acquisition where improvements would most increase product quality and
developmental control. A tentative set of recommendations was generated
from which to initiate the interviews, a summarized version of which is

included here for discussion.

Summarized Preliminary

Recommendations to Improve Software Acquisition Visibility

1. Require using command participation in and input to all

13

requirements definitions and design reviews.

2. Require that software be included in all System Requirements
Analysis (SRA) during the Concept Formulation Phase of system
acquisition.

3. Move software to a higher level in the Work Breakdown Structure
(WBS) and revise MIL-STD-881A to include software.

4. Establish measurable and achievable milestones for each
software development.

5. Emphasize software in the Program Management Plan (PMP) and
greater use of the CRISP.

6. Define support and operational software as separate deliverable
contract line items with configuration item status.

7. Ensure that one person is accountable and responsible for
software in the SPO.

The recommendations were the author's estimate of the most needed
changes in the software acquisition process. Each recomnmendation, if
implemented, was believed by the author to increase the quality and
timeliness of information necessary to understand and control the
acquisition cycle either by affecting the management information or the

management personnel.

The Interview

The interviews were designed to compile feedback as to the accuracy
of the tentative recommendations and to test additional conclusions derived
from the literature. One interview per subject was conducted with the
consensus of subjective results integrated into the tentative recommendations
after all interviews were conducted. The subjective results include
additions, deletions, corrections, and overall opinions of interviews

subjects.
14

Since the interview is subjective in nature and not readily

quantifiable, the interview format was not formally pretested. There
was no statistical requirement for sample size, and ten subjects were
deemed sufficient to give feedback for analysis. An approximately
equal mix of civilian and military govermment experts were utilized.
The answers to interview questions were assumed to reflect the subjects

true beliefs.

The_Interview Format

After the recommendations were formalized, a structured interview‘
was created to gquide the interview subjects through the required material.
Each subject was asked the same questions with the responses and any
ensuing discussion documented by this author. The recommendations
were included in the structured interview which covered a wide range
of subjective software development and management issues. The interviews
were designed to test conclusions derived from the literature and also
to evaluate the accuracy and completeness of the recommendations. The
interview format is included at the end of this chapter and will be
discussed here.

Because the interviews were primarily the expression of subjective
views by the subjects, the format first established the subject's
experience level and general credibility. The experience and credibility
factors were necessary in order to judge the relative weight and usefulness ?
of subject responses. This was done by asking questions about the nunber
of years and type of computer experience as well as current grade and

current job. The remainder of the interview involved both general and

specific questions concerning technical and managerial ECS software acquisition]

issues. The recommendations as well as two sets of software acquisition
problems were separately rank ordered and discussed by the subjects. Issues
were addressed that allowed for either a managerial or an engineering view-
point and a difference of opinion was apparent along those lines. The
/results of the interviews are discussed in greater detail in Chapter V

and the Preliminary Recommendations are further discussed at the end of

the literature discussion in Chapter IV,

Description of Interview Population

: The interviews were conducted with ten software engineers and

computer program development managers of the Aeronautical Systems Division

of Air Force Systems Command (ASD/AFSC) at Wright-Patterson AFB, Ohio.
Their individual and collective experience levels have been determined
by the author to be sufficient to justify their classification as experts
in the practical applications of software development techniques. These
experts have actual experience in the software development field ranging

from 5 to 18 years, therefore, are assumed to be qualified to speak on

visibility problems.

The interviews were personally conducted by this author in private
environments. The subjects were separately interviewed to maintain the
individuality and originality of responses. Each was chosen because of
his experience level and type of background. Some subjects were senior
engineers and managers while some were Captains with five years of experience
in the software development area. An interesting point is the fact that a
junior Captain with only six years in the service and five years in software
development is a senior man in the software development field, The general

\\‘1ack of experienced people made the junior Captain the Functional Group

| eader of his software development office. The subjects were distributed

\

16

about evenly between managers and managing engineers. That is to say
the shortage of software acquisition personnel requires that some
engineers must also serve as managers, usually without adequate

preparation.

Methods of Analysis and Comparison

This thesis did not lend itself to quantitative or totally objective
analysis. The literature proyided expert opinions on how to analyze
software development.problems and possible solutions. The interviews
documented the opinions of practicing software engineers and managers
concerning software visibi]ity\and the author's tentative recommendations.
The synthesis of ideas from the Iitérature into recommendations, the
interpretationband_inc]usion of feedback from interviews, and the
derivation of thesfs conclusions are the subjective efforts of the
author. While striving for objectivity and unbiased analysis, the
author's personal experiencé in the software area influences the inter-

pretation of interview and literature data sources.

Interview Format

1. Have you been associated with the acquisition of ECS software?

2. How many years?

3. What is your current grade?
4. Where are you assigned?
5. What type of software experience do you have?

6. Describe your current job.

7. What order would you place the following ECS software problems
in to reflect the greatesf difficulty to your organization?
Why?

17

10.

11.

12.

13,

14.

a. Dynamic state of the technical art.

b. Contracting policies.

c. Inadequate management techniques.

What other problems have you encountered?

From your experience, do you agree that some of the ECS software

acquisition problems are caused by management's inability to

develop appropriate techniques as fast as the technical state-

of-the-art advances? Please comment.

From your experience, in what rank order of importance would you

place the following problems? Why?

a. Defining the specific software requirements.

b. Defining and then implementing milestones for ECS software
development.

c. Tracking the software system's development progress.

d. Defining and specifying the software end product.

e. Verification and Validation (V&V).

Would you say that ECS acquisition managers are well prepared

and trained or would you say that, for new personnel, a learn-by-
experience education system is employed? Explain.

What experience and training do you feel are required for an
adequate background?

Do you feel that good management practices and expertise are

usually available but are not effectively used? Explain,

Do you belieye that useful management information is often
unavailable when needed because practices for evaluation, formatting,

and feedback of software management information is inconsistent or

loosely defined? Why?

15.

16.

17

18.

19.

20.

21.

2é.

23.

From your experience, do software requirements, definitions,
risk analysis, deyvelopment planning, preliminary design
interface definitions occur during Full Scale Development
(FSD) or earlier? Should software design and analysis

begin earlier in the acquisition process than it does now?
Explain.

Do you feel that hardware is usually initiated so early

that software is forced to accept changes to relieve

hardware difficulties even without the appropriate

engineering and design? Explain.

Do you believe that software is so different from hardware,
that hardware management approaches, techniques, and procedures
will not work for software? What aspects of hardware and
software development can be considered alike? Why?

Can most hardware problems be solved by changing software?
What are the implications? Is this good or bad?

Does management of ECS software acquisition use a total systems
approach for hardware and software combined? Should it now?
Do you feel that hardware design drives and 1imits software
alternatives? Should more tradeoffs be made?

Should software be designed first and hardware designed or
acquired off the shelf to match it?

Look at the separate 1ist of "Recommendations for Improving
Software Acquisition Visibility." In what order of importance
would you place these suggestions?

Concerning these recommendations, do you:

a. Completely agree,

b. Completely disagree.

19

24,

25,

c. Feel it needs improvements -~ what changes?

d. Incomplete - what additions?

Do you have any suggestions on how to improve the management
visibility of ECS seftware development?

Do you have any general comments on the subject of the interview?

III. DESCRIPTION OF THE SOFTWARE DEVELOPMENT CYCLE

A primary aim of this thesis is to find means of increasing the
visibility of software development efforts. Better visibility would
provide greater warning indications of development difficulties, help
prevent catastrophic schedule and budget overruns, and improve the
technical quality of software products. To discuss software visibility
problems and improvements, a basic understanding of the process of
software development is necessary. The process must be studied in
terms of the development functions performed, the resources required
to perform the function, and the environment in which the development
is accomplished. Each development function varies with program size,
complexity, and degree of risk, and these factors along with many others
must be considered when analyzing the software development cycle.

The software development process has been described in great detail

many times. However, each author on the subject seems to utilize

different terminology. For example, mangold defines the software development

process with seven steps (Ref 20:2-8):
1. System requirements

Software requirements

3. Preliminary design

4. Detailed design

5. Code and debug

6. Test and preoperations

7. Operations and maintenance

21

e P————

)

Etheredge on the other hand uses a three step description (Ref 15:21):

1. Analysis and design

2. Implementation and test

3. Delivery and maintenance
Wolverton proposed a similar classification (Ref 38:13):

1. Analysis and design

2. Coding and debugging

3. Checkout and test
Wolverton also derived emperical evidence that followed what he labeled
the 40-20-40 rule for allocation of software development resources. He
stated that 40% of the cost of software development was for step one,
analysis and design; 20% for step two, coding and debugging; and 40%
for checkout and test. These are only a few of the methods of describing
the software development process: a more complete discussion of the appli-
cable literature is reserved for a later chapter.

For the purposes of this thesis the software development process wili
be discussed in relation to DOD acquisition activities. Watson's model
for software development (Ref 37:5-55) is formulated within the five
phases of the DOD acquisition model. The normal DOD weapon system
acquisition life cycle is defined in Air Force Regulation 800-2, "Program
Management," and in more detail in Air Force Regulation 800-3, "Engineering
for Defense SystemS."and consists of five phases:

1. Concept Formulation

2. Validation

3. Full Scale Development (FSD)

4. Production

5. Operation/Maintenance

22

"lllll'lll-II'lll-.!"l!l-Il!IllllII!lllIll!llll-!!l-'Vn-!k - — SE— . I “

; Figure 3 shows these phases combined with the primary tasks of both
software and hardware development, the related design reviews, configura-
tion audits, baselines, and the four milestones defined by DOD 5000.1
(Ref 30:5).

Hardware and software development programs progress through the
system 1ife cycle primarily in the same manner. The big difference is

that software acquisition needs no production phase, while going directly

from FSD to deployment.

Software development after definition of the hardware and sof tware
requirements can be classified in the following general tasks (Ref 30:5):

1. Preliminary Design (Analysis)

2. Detailed Design

3. Coding and Subunit Testing

4. Integration and Testing

5. Deployment

Air Force Regulation (AFR) 800-14, Volume II (Paragraph 2-8) defines
a computer program life cycle that is separate and distinct from the
traditional DOD development life cycle that includes phases 1 through
4 above. However, it defines step 5 as Installation and step 6 as
Operation and Support.

The reviews and audits depicted in Figure 2 (Ref 30:7) are based
on the requirements of MIL-STD-1521A with hardware and software usually
considered separately. The MIL-STD-483 principles of configuration
management and the MIL-STD-490 specification requirements are also
reflected in Figure 2.,

Watson also relates software development to the parallel hardware

development as the total Embedded Camputer System progresses through

23

r—-——-——-—-—-—-—-——-—-—-—-———-——’-—a -

the development cycle. This approach is very useful for analyzing the
development visibility problem because it illuminates the critical
decision points encountered in the DOD DSARC environment.

DSARC is an acronym for the Defense Systems Acquisition Review
Council. The DSARC body examines a program at the end of a development
phase to determine whether more resources should be expended on it and 1
thereby allow it to pass to the next development phase. An unfavorable

DSARC decision either cancels the program or leaves it stagnant pending

further study.

Traditional DOD ECS Acquisition Life Cycle Phases

A new system is developed in response to a perceived change in the

environment. The change could be in a military threat or new technological

advances that significantly modify military capabilities. Active systems
may even need replacement, but the point is that a requirement must be
recognized before a new system concept can be formalized. %
The Concept Formulation phase analyzes the perceived need to determine |
whether or not it should be firmly established. Studies are conducted to
determine if the proposed systems are economically or technically feasible
and if production can be accomplished in time to satisfy the requirement.
During this phase, some exploratory development is often done to estimate
the technological feasibility of producing the system (Ref 25:11).
The Validation phase was previously called the project or contract
definition phase. The system's performance requirements are defined and
a minimum of preliminary design and engineering is accomplished. Major
technical approaches are analyzed and some hardware may even be developed.
The result of this phase is the contract definition which is required to
initiate Full Scale Development (FSD) (Ref 25:20).

24

(L:0€ 43Y4) 91947 9417 we3sAs pazi|eap] g @4nbi4

S g o

SISVHI TIDAD-11T WILSAS
IINYNIINIYWNOL V34O # INIWO13AI0 ONINIINIONS 3TVI5-11N4 # zo:é:.;# Ll “
GNY INIWAO1IAN 01 INA0M

;
— il
IN3w013A3G] [Noitvanva ’
e SINITISVE onniaNIoN3| | aNv Nou i I,
ONY s 3vx-1ng] |-vasnowso WV
NOIONAOW AUVN IWTT38d 1 NotsIuw | {1 No1STHW 0 INOISTUW §5
111 INOLSIUW T | i
v 1531 GNV | I ¢
I NOILVIO3INI ’
1 1242 | B
| }
. 1S4 1IN !
: GNV ONIGOD |
[| E
| NOIS3a
] V34 | a3nvia “
! |
“ vod NOISIO | ,
_ | | ANVNIWIT 38
| W04 _ _ A
! | | | SINIWIHNO N ,
| INN3ISVE | | | i v
| 12NA0W - — — o
1 WISAS _ !___ui INNEVE
}

TWNOLLINNS 5INIWININD 33

s B: 201V on
3SA
) CP D & @ G ok
S -- /NOISSIW
m_z.‘ NOLIV¥340 /NOI1ONAOW AAUVESIINI ll e \

LA e -

e

g
:

e NOISIO
MIIAY AUVNIWITR
NOILYDIITYND TYWHO4 = ¥04 e
LaNY NOLVINOIINOD
NOIS3Q
IVOISAHd = VDd V4 a3ivila
116NV NOLLY¥NOLINOD
TYNOUDNNS = ¥4
1531 LINN GNY
(M3IATY NOILVONEY 4
TYNYIINI 3O1DV¥INOD) ‘GRINO 3 AVW
MIIAIY SSINIOVIY IS3L = Wl 1S31 GNY (FYMLIOS O JAVMOIVH) ONIAIOLON JAILITTIS
v3IA3Y NOISIC VOILYD = ¥aD NOILV¥O3INI “314WvX3 ¥O4 g ..M-uummm,u._ouwhgs
MIIATE NOISIO AUWNIWITINY = ¥0d L cuM. wal zﬁ.:go.!Ou WYEOOW ¥31N4WOD
MIIAY NOISIO WILSAS - ¥QS SINIISVE 1D B . o e
MIIAZY SINIWININOIX WIISAS = ¥¥S ARYNIWITi8Y TS —— 310N

FSD generally includes the design, prototyping and testing of the
completed system. This phase is of primary concern to this thesis and
will be extensively discussed in a later section.

Production of the completed system can mean many things. Mass
production lines are required to produce fleets of aircraft but a few
hours of computer time could “produce" enough copies of a software
program to issue one copy per aircraft. Acceptance testing can last
weeks for aircraft and seconds for a single punched tape copy of a

computer program.

The operation and maintenance phase begins when the first system
is delivered and considered functional. A statement is then issued
announcing the Initial Operating Capability (IOC) for the system. The
system is then operated, maintained, and even modified to utilize it
over an average 10 to 20 years of operational 1ife. When the system
is no longer a cost effective method of satisfying its assigned mission,

it is considered for retirement and the life cycle is completed.

A few additional terms should be touched on here before Qelving
deeper into the software development process.

Reliability is one term that does not mean the same thing to software
that it does to hardware. Generally, reliability can be defined as the
probability that an item will function within specified 1imits for at

least a specified period of time under specified environmental conditions.

Hardware reliability is usually described as mean time between failure

(MTBF) rates. However, the MTBF concept does not lend itself to describing

software reliability. There are several reasons for this. One is that
software does not normally fail in the sense that it suddenly stops

functioning. Software does not experience physical degradation and

26

therefore, is not subject to sudden failure (Ref 37:21). Unlike hardware,
the older more widely used software is more reliable because through use
most errors have been discovered and corrected. The problem is that
software will almost always do what the programmer coded it to do, and
still may not meet the performance requirements. The Joint Logistics

Commanders Software Reliability Work Group (SRWG) defined software

reliability as (Ref 36:89): 1

“ . . . the probability that software will satisfy stated !
operational requirements for a specified time interval. . ." i

The SRWG definition considers software to be reliable even if
there are errors, so long as it performs its operational functions
satisfactorily. The SRWG also states that (Ref 36:90):

"There are no quantifiable means at present which can be
used to guarantee or measure software reliability."

Unlike hardware there are no imperfections or variations that

are introduced by making additional copies of a piece of software other

than easily checked copying errors. While hardware is constrained by

the laws of physics and can fail due to heat, gravity and other physical
phenomenon, software will not. However, if a computer fails the software
it contains will cease to function properly. Software interfaces are
generally conceptual rather than physical, e.g., there are no easy-to-
visualize wires and connectors (Ref 36:47).

When a hardware development manager moves to the software development
field, he is forced to reevaluate some of his attitudes and approaches to
problems and concepts. The concept of hardware reliability just does not
fit software because it is impossihle to prove that software is reliable.
A manager can only hope to get a feeling for the probability of reliability

from documentation of the development and testing process (Ref 37:21).

27

SRS —

The DOD has historically treated ECS software as technical data

(Ref 17:1). This has caused some problems in the areas of Verification
and Validation because of the varied and conflicting uses of the
terminology. Validation of computer programs is defined by AFR 800-14
as the process of determining that the computer programs were developed
in accordance with specifications (Ref 2). In a different use of the
term, Validation is the phase of the project deyelopment when the
preliminary design and engineering concepts are verified and definite
management planning is performed (Ref 25:20). Another type of
validation occurs during the development phase just prior to production.
Validation at this time certifies that the system complies with its
performance specifications (Ref 37:21).

Validation also is used with respect to technical data such as
repair manuals when it is prepared as Technical Orders (TO). A TO is
a set of instructions for operating and maintaining equipment or
performing other tasks that require a standard procedure (Ref 30:15).
In this case, validation consists of the contractor proving the accuracy
and completeness of the TO document. Verification in this sense is an
actual Air Force user checking the TO for clear, sufficient content and
compatibility with existing equipment and procedures.

Verification of computer software, on the other hand, is defined

by AFR 800-14 as the process of assuring that performance of the required

functions in the specified enyironment is satisfactory (Ref 2). Satisfac-

tory is a key word because of the impossibility of checking all of the
potentially infinite number of logical paths. There are many more
distinct paths to test in software than in hardware and the software

errors generally come without advance warning, provide no period of

graceful degradation, and usually do not announce their occurrence (Ref 36:47).

28

i nsidin i

The best possible condition of software verification is merely
satisfactory performance combined with documentation to assure that
the develooment was properly executed. However, all hardware circuits
can be physically tested and except for future degradation, it can be
said that performance has been proven. If a hardware fault is detected
and repaired, the system usually is restored to its previous condition.
A software correction on the other hand, always changes the previous
state of the system (Ref 36:91).

The flexibility provided by software also introduces another
problem area. It is sometimes too easy to make changes, and modifica-
tions are sometimes made too casually without full consideration of the
impacts. Making a correct change is generally very difficult and even
harder to test because of the interdependency of the software parts.
The main point here is that software is never 100% reliable (Ref 37:22).

Now that the required terms have been discussed and the framework
constructed for understanding the software development process, the

process steps will be reviewed in greater detail.

Concept Formulation

Concept Formulation is basically the method of deciding whether or
not to commit further funds to a proposed system. The formulation phase
weeds out the technically impractical and economically unfeasible system
proposals and further defines the selected systems. The proposals may
be rejected because they do not meet user requirements or are not feasible
in terms of cost, technical performance, or schedule. During this phase,
analyses and studies are performed to document the necessary data and
pertinent information to allow high level decision makers to determine the

necessity of a project (Ref 25:11).

29

o

¥

To facilitate these high level decisions, reports are prepared and
submitted stating the options and relevant factors. The Decision
Coordinating Paper (DCP) is one type of report in this category. DCP's
are required for each DSARC review, are limited to 20 pages each, and are
labeled DCP I, DCP II, and DCP III respectively. A DCP is required by
DOD Instruction 5000.2, Paragraph IV.A.2, to document the important
information concerning the system and its status. The factors covered
would include the need, the threat, concept, milestones, and unresolved
issues (Ref 25:9).

The major inputs, functions, and outputs of the Concept Formulation
phase are as follows (Ref 27:12-20) (Ref 37:24-25):

INPUTS

1. User Requirements (Requirement for Operational Capability)

2. Planning Criteria

3. Cost Estimation Approaches

4. Required Resources vs Available Resources

FUNCT IONS
1. Initial System Definition
2. Cvaluation of Technological Alternatives

Studies and Comparison of Cost/Benefit of Alternatives

Selection of Best Alternative

o W

Engineering Refinement and Draft of Functional Specification
Planning

REVIEWS and AUDITS

1. System Requirements Review - (SRR)
2. DSARC I(Program Decision)

QUTPUTS

1. Program Description

Draft System Performance Specification
Preliminary Resource Requirements
Preliminary Schedules

Preliminary Cost Estimates

Prel iminary Subsystem Requirements Allocation

~N Oy O AW N

Program Management Directive (PMD)

Draft DCP I for DSARC I

O

Draft Validation Phase Request for Proposal (RFP) and Statement
of Work (SOW) - Software Sections
10. Initial Program Management Pian (PMP)

It must be recognized here that this is the ideal situation, the
way the acquisition process should work, not necessarily the way it
is. Some factors that should be considered as early as Concept Formulation
in actual practice are not covered until later phases. The most important
of these overlooked items is planning, especially for software development.

It should also be noted that the primary emphasis of this phase
js toward the major weapons systems such as the aircraft or missile.
The subsystems including computers are reviewed only from a functional
standpoint to answer questions regarding subjects such as their technical
feasibility. Determination of how to approach performance problems are
reserved for the validation phase. If the major system concept is
recommended for further expenditure of funds and passes to the Validation
phase, the subsystem technical approach to performance requirements is then

addressed.

31

- T T,

Validation

During the Validation phase, the system perfermance requirements are

allocated into subsystem performance requirements and\interfaces between

subsystems are defined. The summation of the subsystem performance

requirements should then satisfy the performance specified for the total
system. First, an analysis is performed to evaluate the technical and
economic aspects of the preliminary system requirements. The user's
mission and operating environment is analyzed and compared with the
preliminary system requirements to determine any deficiencies and the
degree of technical risk involved. The total system performance L%
requirements and system definition are then reyised to reflect the new \\\\
performance concepts (Ref 25:20).

After the total system has been reviewed, the individual subsystems
undergo the same type scrutiny. At that time, operational, performance,
and design requirements and specifications are generated. Planning, cost
estimating and scheduling are conducted for each major subsystem as well as
the total system. For major weapons systems, the largest part of the
validation phase is usually conducted by a contractor with the Air Force
merely reviewing and approving (Ref 37:29-31).

The Validation phase is primarily made up of the following (Ref 27),
(Ref 37:30-31) and (Ref 30:5-67):

INPUTS

1. Mission Requirements

Mission QOperational Enyironment

3. Planning Criteria

4. Subsystem Operating Concepts

5. Cost Estimations

6. Description of Program Characteristics

7. Draft System Specification or System Performance Specification

8. Preliminary Resource Requirements Estimate

9. Preliminary Schedules

10. Revised DCP I and Possible Redirection from DSARC I
11. Budget Authorization/Program Authorization (BA/PA)

12. Revised PMD

FUNCTIONS

1. System Requirements Analysis (SRA) |

Deyelopment Planning

3. Contract Planning
4. Detailed Cost Estimating ;
5. Trade Off Studies i
6. Interface Planning

7. Revise System Specification

8. Revise PMP

9. Review Validation Phase Contract RFP and SOW for Softwqre [tems
10. Draft Software Development Specification |
11. Draft Preliminary Software Test Plan
12. :Draft CRISP

3

i

13.. Prepare Draft DCP II for DSARC II
REVIEWS AND AUDITS

1. System Design Review (SDR)
2. DSARC II (Ratification Decision) !
QUTPUTS »

1. Reyised System Specification

. Preliminary Subsystem Design and Development Specification

Revised Schedules

S w N

Prel iminary Test and Integration Plans

33

R s s

5. Trade Off Study Reports !
Detailed Cost/Benefit Study Reparts on Alternatives

System Requirements Analysis (SRA)

Operation and Development Plans

O 00 N o

DetaiTed Cost Estimates

10. Draft CRISP

11. RFP and SOW

12. Signed Validation Phase Contract
13. Reyised DCP II from DSARC II

14. Revised PMP

At this point, the reader is again reminded of the difference between
the ideal ECS development cycle and the development process as it is
actually practiced. The preceding discussion has been concerning the

jdeal Concept Formulation and Validation phases. Compared to the

extensive paper studies, analyses, and sometimes exploratory development
of hardware, Validation phase software studies are almost non-existent.
Software is analyzed only to the point of deciding whether the total
system should utilize some software and then to roughly estimate the

amount and cost of software.

Both the Rand Study (Ref 13) and AFSCM/AFLCM 375-7 (Ref 3) emphasize
the generation of specifications during the validation phase with the
DSARC II milestone as the final event in the phase. DSARC II is the %
decision point as to which programs are funded further and thus proceed
to the Full Scale Development phase.

The question that arises here is, who should do the analysis that
is required to establish software design and performance requirements? 1]
The abstract nature of software must be considered when making this

decision because software logic is so much a product of the programmer's

34

creative imagination and individual mind. Because people lgok at and
approach probiems differently it would seem logical to have the software
design analysis, cost estimation, and scheduling done by the same people
who would do the programming (Ref 37:35).

Dr. Barry Boehm, Director of Software Research and Technology
at TRW wrote in Datamation, May 1973, that software emphasis was secondary
to hardware (Ref 5:48-59). He stated that software decisions and require-
ments should be completed before the critical hardware decisions have been
made and that 35% of all software costs are for analysis. This means that
almost 35% of the software development should be accomplished prior to
FSD (Ref 5:57).

The Johns Hopkins University Applied Physics Laboratory (APL) study
titled, DOD Weapon System Software Management Study, stated in June of 1975

that (Ref 18:2-3),
"Despite the implications in the DSARC II review that an

adequate design and costing basis must exist, current

directives are vague on the formal requirements for the

validation phase of the acquisition process. Many software

cost overruns that stem from vague and inconsistent require-

ments could be eliminated by more thorough analysis and

reviews of requirements specifications."
The study also recommended that directives and regulations require this
analysis and definition of software be performed during the Validation
phase. It is important to note that the APL study must have found a lack
of software analysis and definition in the Validation phase or the
preceding recommendation would not have been made.

The Joint Logistics Commanders Software Reliability Work Group (SRWG)

recommended in November 1975 that (Ref 35:91),

35

T At O

-~

“Comprehensive policies should be developed and emphasized

to ensure that the same attention is given to software require-

ments analysis, planning and design as hardware during the con-

ceptual and validation phases of system development. Such

policies should ensure that software is addressed in ROC's,

SOR's, and DCP's and all other appropriate planning documents

and enforced through system design reviews."
The three acronyms ROC, SOR, and DCP are acronyms for Requirement for
Operational Capability, Statement of Operational Requirements, and
Decision Coordinating Papers, respectively.

DOD Directive 5000.29, "Management of Computer Resources in Major
Defense Systems," dated April 26, 1976, stated that (Ref 12:2),

"Validation of computer resource requirements, including

software, risk analyses, planning preliminary design, security

where applicable, interface control, and integration methodo-

logy definition will be conducted during the Concept Formula-

tion and Program Validation Phases of Defense System Develop-

ment, prior to Defense Systems Acquisition Review Council

(DSAch "
This directive also required that defense ECS resources, including both
computer hardware and software be specified and treated as configuration
items. Configuration item status places a high level of management
attention and control on ECS development efforts which previously could
be designated configuration items or critical items (Ref 12:2). A
critical item was on a much lTower level of management attention and
control, and was therefore much less visible. A primary difference is
that a configuration item development specification is an input to FSD
while a critical item development specification is a product of FSD (Ref 37:37).

In addition, DOD Directive 5000.29 requires that a computer resource
development plan (CPDP) be written prior to DSARC II and be maintained

throughout the system Tife cycle (Ref 12:2-3). The above mentioned items

were normally accomplished for ECS hardware prior to DSARC II but usually

not for software (Ref 37:38). These are a few examples of important changes

in the policies and directives that apply to software.

i i sl o

Hardware and software tasks during the Validation and Development
phases do not run parallel in spite of new directives and policies to
the contrary. This non parallel development characteristic was
supported by Watson's study which provides the graph of Figure 3
(Ref 37:39).

The termination of the Validation Phase is the Ratification
Decision known as DSARC II. This milestone is intended to judge the
adequacy of the resultant system and to reassess the continuance of
the system development. An adverse Ratification Decision would end
the program while a favorable decision would allow program passage into
the FSD phase. Program termination could result from inadequate Validation
phase products, discovery of insurmountable technical problems, excessive
costs, or a reduction in the operational requirements that first called

for the system (Ref 25:35).

Full Scale Development

The purpose of the Full Scale Development phase is to produce a
working prototype of the major system and then test to verify that the
prototype meets the functional and performance requirements. During this
phase technicians are trained to operate and maintain the system while
the documentation is generated for use in production and deployment (Ref 25:36).
The FSD objectives include completing system design, resolving important
issues, and completely testing the prototype and it§ subsystems. It is
interesting to note that FSD yields the initial operational versions of
the ECS software, not a prototype. Prototype in this case means a pre-

production system that is identical to the production system in form, fit

37

(8p:L€ 494) 2uawdo|araq a|eds [|e4 Burung sdiysuoije|ay ysel

‘¢ au4nbL4

burysay ubrsaq ubLsag
Buyasa UOL3eI}JLUBA sadA30304(94eMpJeH 9JemMpJaey
:owumvm_m> 9J4eMpJRH pLLNg LeoL3}4) Kaeutwy |d4ad
ik s bUL3SoL ubLso
L Lseq o
pajedbajug UOLIRILJLAIN ademM] 405 34BM] 4OS 34eM3405 uoLyeptep
94eM]40S 3po) LedL3Lu) AaeuLuy |d4g 3J4eM] 405
INIWd0TIA3A ITVIS T11Nd
juawdo|3As(uoLjepleA
dJ4eMpJRH dJeMpJeH
burysay
uotleptLep 9sSeyd
wa3sAs uotje|nuwao4
pajeabajuj 3dasuo)
quawdo [3A3(Q uoLjeptleA
9J48M3 40§ 94BM} 4085

370AJ 3417 W3LSAS

38

and function, but usually differs in other ways such as breadboard versus
fully qualified printed circuit boards (Ref 25:36). Fayorable ratification
by the Secretary of Defense at DSARC II begins FSD but may also redirect
certain system goals, schedules, allowable costs, or other factors.

The software development itself can be classified into five stages
(Ref 37:41) (Ref 30:7):

1. Development Tool Building
Preliminary Design (Leading to POR)
Detailed Design (Leading to CDR)

S w N

Coding and Debugging (Software Testing)

5. Complete ECS (Hardware and Software) Integration and Test

Software development tools include assemblers, compilers and simulators,
to mention a few of the specialized programming tools that may be required.

Trade offs and analyses are utilized during the preliminary design
stage to determine alternative programming approaches and then to select
the best method. Functional flows are Qenerated, memory is allocated,
programming tasks are allocated and generally high level software work is
accomplished (Ref 20:143).

A formal preliminary Design Review (PDR) is held at the end of this
stage. The PDR evaluates the basic design for completeness, adequacy,
and compatability thru briefings, discussions, and analyses to decide
whether the software design is ready to progress to the detailed design
stage (Ref 33:37).

During the detailed desion stage, those design activities are
accomplished which are necessary prior to the actual coding of software.

High leyel software system flows are finalized and lower level detailed

39

T LT g

L adil L o o a aie e e et lieian L o i s L

subunit flows are generated. The Computer Program Development Specification
(Part I) is revieved and the draft Computer Program Product Specification
(Part II) is generated. Preliminary test plans and procedures are finalized
and submitted for approval.

The Critical Design Review is held at the end of this stage to ensure
the design is complete enough to start actual coding. During this coding
the functional flow charts are converted into 1ines of software instructions
usually on a module to module basis. These modules are then checked
manually for errors and then further checked with software diagnostic
programs. When enough modules have been checked individually, they are
compiled and assembed into larger units of software code. The process
goes through many iterations until the total software program has been
compiled and tested. At this point formal integration and testing begins
by combining the software with all the associated hardware (Ref 33:41).

The testing stage is made up of Verification and Validation (V & V)
testing. Validation testing reviews hardware and software separately and
compares them with the appropriate requirements specifications to determine
whether those requirements have been met. After the hardware and software
have passed their separate validation tests they are integrated and sub-
mitted for Verification testing which compares the operation of the
combined ECS with the user's performance requirements (Ref 37:41-47).

A Functional Configuration Audit (FCA) is used to verify the
successful conclusion of testing. The FCA checks and documents that
performance requirements have been satisfied and thereby qualifies the
system for production. A Physical Configuration Audit (PCA) is held to
identify the products and then to verify that the technical documentation

is a realistic and complete description of the FCA qualified product

(Ref 33:45-51).

L it L e i s S

W———-—u———m - - - B

A Formal Qualification Reyiew (FQR) is sometimes held after the PCA.
When possible the FQR and FCA are combined, but if the FCA does not
fully satisfy all testing requirements of the Part I Development
Specification the FQR is held. For this reason, the FQR is considered
an extension of the FCA.
The DSARC III milestone makes the Production and Deployment decision
that ends the FSD phase and allows the program to pass into the Production
Phase or cancels it.
FSD of software is generally made up of the following inputs,
functions, reviews, audits and outputs (Ref 30:7-63), (Ref 25:44), and
, (Ref 37:41-44):
i INPUTS
1. Revised Program Management Directive (PMD)

2. Revised Decision Coordinating Paper II (DCP II explaining Ratification

Decision of DSARC II and any redirection of goals or constraints)

3. Budget Authorization/Program Authorization (BA/PA) 1
4. CRISP
5. Computer Program Development Plan (CPDP)

Computer Program Configuration Management Plan

7. Draft RFP and SOW

8. System Specification

FUNCT IONS

1. Definition of Inputs/Outputs

Allocation of Software Tasks to Software Subunits
Generation of Functional Flow Diagrams

Allocation of Memory

Update of Schedules and Cost Estimates

D O AW N

Generation of Initial Test Plans

q

W — — s : -

7. Interface Definition (including signal formats)

8. Timing Requirements

9. Revise Software Portion of Contract RFP and SOW
10. Reyise CRISP
11. Revise CPDP

12. Reyiew Need for Independent V & V

13. Revise System Specification to Reflect Changed Software Requirements

REVIEWS and AUDITS

1. Preliminary Design Reyiew (PDR)

2. Critical Design Reyiew (CDR)

3. Functional Configuration Audit (FCA)

4. Physical Configuration Audit (PCA)

5. Formal Qualification Review (FQR)

6. DSARC III (Production and Deployment Decision)
OUTPUTS

1. Final Computer Program Development Specification (Part I Specification)

2. Test Plans and Procedures
3. Flow Charts
4. Input/Output Formats
5. Source Program (1istings)
6. Object Program (machine language)
7. Draft Computer Program Product Specification (Part II Specification)
8. RFP and SOW
9. Signed Contract
Production

The primary objective of the Production phase is to produce and deploy

in good working order all of the planned duplicates of the weapons system.

During this phase, the version of the software program qualified during

FSD is duplicated and accepted by the Air Force usually in a very short
process of copying punched tapes or other machine readable media and
checking for errors. This trivial duplication and acceptance operation
is often completed in only a few days. During FSD the acceptance tests
are specified to demonstrate compliance by hardware and software with
production requirements. The computer hardware is produced in a more
orthodox manner with items manufactured sequentially over a long period
of time and accepted on an individual basis. When the hardware and
software have passed their acceptance tests they are passed to the
operational user.

A favorable DSARC III decision initiates this phase and may redirect
factors such as quantities, cost and schedule thresholds. Program
Management Responsibility Transfer (PMRT) from Systems Command to the
using command, on the other hand, terminates the Production Phase. The
occurrence of PMRT begins the Deployment Phase which is otherwise known

as the Operation and Maintenance Phase.

Operation and Maintenance

The first production unit is deployed to the operational environment
where it undergoes a series of tests known as Initial Operational Test and
Evaluation (IOT&E). The purpose of IOT&E is to guarantee that the system
as delivered, satisfies the user's requirements in the operational

enyironment under real mission conditions. Satisfactory completion of

IOT&E results in a formal statement of the Initial Operating Capability (IOC).

The operation and use of an ECS is the performance of the assigned

mission on a regular basis. The effective use of the system is the prime

TPy

objective of thiS phase and requires that it be maintained efficiently
until it is replaced, retired, or consumed by war or accident. A
discussion of hardware and software maintenance must be treated
separately because of their unique differenqes.

Hardware mechanically wears out, electronic components fail, and
degradation occurs with operating time and usage. Components change
electrical characteristics and need adjustment and alignment. Test
equipment, TO's, and spare parts are required to bring the equipment back
to the physical condition it was in prior to the failure.

Software does not fail in the same way as hardware and does not
degrade with use. Software is consistent and will perform in a given
scenario, the same way every time. Software errors are constant and will
not go away without program changes. Software failures during operational
use are merely the recognition of an error that had been in the program
all along (Ref 37:54).

In the case of software, maintenance consists of investigating
possible software errors and devising corrections or ways to work around
the problem. Modification of software would be changing it to meet

tered operational system requirements, or performing requested improve-
2nts. Both maintenance and modification require retesting and checkout
of the entire computer program and are actually redevelopments through
the FSD steps of design, code and test (Ref 25:45).

Level-of-effort contracts are primarily used for both maintenance
and modification and too often are informally managed. These after the
fact software deyelopment efforts should, however, be contractually as

well defined as during FSD. The Air Force on the other hand, may decide

44

ey

to maintain and modify the software internally rather than with
contractor personnel. If this "organic maintenance" option is chosen,
the necessary specialized support tools and software should be acquired
and developed during FSD. Too often these support tools were developed
by the contractor during FSD but the government did not acquire "rights"
to these items in the original contract Statement of Work (SOW) and
does ﬁot get them. Later, if an organic maintenance decision is made

by a tardy CRISP these special tools such as assemblers, compilers,
editors, simulators and emulators must be purchased at a significant :

cost increase (Ref 25:46).

45

TSNy

IV. LITERATURE SEARCH

One of the major goals of this thesis was to review the available
literature in the area of software management visibility and to combine

that information into a set of recommended improvements to increase

management visibility and control of avionic software development.

There is a substantial body of reputable sources, largely from DOD r
sponsored research, that provide a solid foundation on which to build
the set of recommendations. These sources contain a large amount of
factual material and expert opinion on most aspects of system software
development. A large portion of the literature reviewed for this thesis
was referenced previously during discussions of both software acquisition i

problems and the DOD software development cycle. The remaining literature

that is deemed relevant will be covered now. For the sake of organization
and understanding, the results of the literature search will be treated 1
in three sections: 1
1. DOD Sponsored Studies and Guidebooks
2. DOD Regulations, Specifications, Standards, and Manuals

3. Thesis, Reports, and Periodicals

DOD Sponsored Studies and Guidebooks

To complete the discussion of the ECS software acquisition process, ;
some coverage of specific problems must be made. The "DOD Weapon Systems
Software Management Study" performed by the Applied Physics Laboratory (APL)
of Johns Hopkins University offers a "road-map" of critical problem areas
encountered during the software 1ife cycle. This road-map is shown in

Figure 4 (Ref 19:1-3) and identifies 55 interrelated categories of problems.

46

(e-1:6L 33Y)

sbuLput{ Apn3S uoL3LSinboy 84eM3 05 JO UOLIR[3UU3IU]

"y 2a4nbL4

imIMAD 30

b (ANINGD T IAIC OMiNIINIDONG) 9 ANINGOTIAIQ QIDNVACY) D OMIQ AL ISV g ONY SISAT
®NO1AINO0¥s JWVvSO ANIMOIIAIGQ 3TVIS 1INy Juvsa ISYHE NOILVOITVA AVEOO0ue Juvsa

47

S S ~.

[—— .

Each acquisition phase has its own distinct problems and each problem
has a cascading effect on later problems. Most of the literature encountered
deals with the interrelationship of these problems and recommendations for

their solution. In the Defense Management Journal, October 1975, Deputy

Assistant Secretary of Defense Jacques S. Gansler summarized the problems
listed in the APL study by stating that the most critical ECS software
acquisition problems are (Ref 17:1):
1. Increasing weapon systems dependence on software without adequate
management methods to control costs.

2. A lack of software Research and Development programs.

3. A need for improved management expertise and attention in relation
to ECS software.
Much has been written about software acquisition problems and the lack
of management ability to control or even monitor development progress.

The APL study expresses this concern well by stating (Ref 19:2-4),

"The lack of software visibility, as compared to hardware,

in the acquisition of major subsystems is generally agreed to

contribute to the fact that it is not well managed. This

acquisition management problem, in turn, results in numerous

sins of omission throughout the development process that

result in unrealistic cost and schedule estimates, inadequate

configuration management, and related problems."

The reviewed literature reveals the feeling that only recently has
software been considered as an important subcomponent of major weapons
systems. The heightened status of software is no doubt related to the
increased cost of software relative to hardware as evidenced by Figure 1.

Mr. Gansler, speaking as the former Deputy Assistant Secretary of

Defense in January 1978, listed the fiye major observable software management

problems as (Ref 34:6):

48

1. Excessiye Development Costs

2. Excessive Maintenance Cests

3. Schedule Slippages and Delays

4. Excessive Errors/Faults

5. Duplication and Lack of Standardization
He then itemized in simple form what he considered to be the underlying
causes (Ref 34:6):

1. Lack of early management visibility
Lack of management discipline (professional expertise)

Lack of 1ife cycle perspective

S W N

Lack of sufficient control over expenditures
5. Lack of hardware/software tradeoffs

6. Lack of standardization

7. Software treated as data
In conclusion, he cited the following areas for improving the DOD software
acquisition process (Ref 34:9): 1
1. Increased emphasis on requirements analysis and validation
2. Increased emphasis on resource acquisition planning

3. Increased emphasis on software configuration management and control

F=

Increased emphasis on cost estimation and sizing

(S2]

Increased emphasis on personnel development and training
Improved procurement practices

Malcolm Davis of the Rand Corporation made several pertinent points in
a paper submitted to the Software Reliability Work Group (SRWG) of the

Joint Logistics Commanders Electronics Systems Reliability Workshop:

“Much of the agproval chain in computer systems (both

procurement and R&D) is made up of people who are not up to

speed in contemporary computer business and are not suffi-

ciently supported by people who are (Ref 36:39) (Ref 1:85)."

“There is an insufficient number of skilled software

workers in research, technique development and practice

(Ref 36:40) (Ref 1:92)."

The development of software personnel with the expertise to satisfy
DOD requirements is frequently mentioned as a high priority action item.
The recommendations of the SRWG devoted 8 of its 45 points to the
acquisition and development of software professionals within the DOD.

It pointed out that the application of engineering disciplines to the
decision and management of software resources is emerging as a systematic
and useful activity. Because of its infancy, however, those software
development practitioners are largely self-taught, with varied experience
levels and backgrounds, and practice very little uniformity of approach
(Ref 35:100). This software discipline must be formally established with
a scientific basis and then included in educational programs to furnish
the necessary trained people.

Also, there is no written guidance or body of knowiedge that
facilitates the transfer of software development expertise or the
exploitation of lessons learned. As people become technical experts in
the area of software development, they are too often promoted into
management, taking with them the knowledge they have built up through
trial and error. In the dynamic area of software development, this is a
costly oversight, because of its extreme knowledge orientation (Ref 35:30).

A professional profile of what makes a good software engineer and

manager must be defined and classified by education and experience

requirements for levels of proficiency (Ref 35:101). Career paths with

accompanying career incentives must also be developed to foster the

development and retention of professional ECS software engineers and
managers.

This lack of knowledgeable people is a common theme in the software
literature that is compounded by a general lack of understanding of the
software development process. The abstract nature of software and the
relatively undeveloped methodologies for system engineering of ECS
systems makes it very difficult for program management to properly direct
the software acquisition process (Ref 19:2-18).

The DOD has received much unfavorable attention in recent years
over the excessive costs of defense weapons systems. These excessive
costs have been in part due to the mismanagement of programs and cost
overruns with software getting its share of the infamy.

Dr. Currie, the Director of Defense Research and Engineering wrote
to the Service Secretaries in March 1974 (Ref 10),

"It is becoming increasingly apparent that an area which

could provide us with substantial payoff for successful R&D

investment is that of computer software. In 1955, our computer

system costs were about 85% hardware and 15% software. A Rand
forecast predicts that by 1985 we will be spending 5% of our

ADP budget for hardware and 95% for software. The Assistant

Secretary of Defense (Comptroller) and I agree that our software

development strategy deserves a careful review based upon this

trend."”

This need to improve software acquisition moved the 0SD to go one
step further, and wrote to the Assistant Service Secretaries again in
December 1974 notifying them of a two phase plan that was being implemented.

“The sharply rising costs of software programs in the

weapon system acquisition process, with respect to acquisition

procedures, development and maintenance of such software, and

the increasing importance of the software role in the overall

mission effectiveness of major DOD weapon systems constitute

serious technical and management problems that must be solved

if we are to have the weapon systems that are needed for our

national security. To find solutions to these problems, we

are initiating a two phase study program which will require the

joint involvement of the 0SD staff and the Services."(Ref 23)
(Ref 19:R5-R6).

51

i The two phase study referred to above consisted primarily of the

APL study cited previously and a MITRE Corporation study referred to

as the "DOD Weapon System Software Acquisition and Management Study."
The MITRE results were reported to the DOD in June of 1975 and are
summarized below as "Major Observations" (Ref 26), and (Ref 39:9-10).

1. A major contributing factor is lack of discipline and engineering
rigor consistently applied to software acquisition (Ref 26:xi).

2. Good management practices are often available but are not
always followed (Ref 26:xii).

3. The acquisition process does not always recognize the need for
early and complete emphasis on software resources. There are
major differences in application of management practices between
hardware and software (Ref 26:xii).

4. Software indirect costs are often much greater than the direct
costs (Ref 26:xii).

5. There is a lack of consistent practices for feedback of software
management information. Meaningful cost and management informa-
tion for most system developments is not readily available
(Ref 26:x11).

6. Many weapon systems software problems are similar to problems
in other types of software development, e.g. Automatic Data
Processing (ADP).

The same MITRE study also identified four areas as "High Payoff Areas"

(Ref 26:2-13):

1. Software Performance Specifications - The establishment and

consistent application of sound engineering principles and
practices to the process of specifying and validating software

requirements.

52

- - .. -,
W R

2. Software Acquisition Planning - Early and complete software life

cycle planning. The establishment and application of management
practices and strategies designed specifically for software.

3. Software Technology - High leverage technology progress is needed

to further improve software practices and development techniques.
4. Personnel - Provisions are needed to develop and retain experienced
DOD software management and software engineering personnel.

The APL study arrived at separate but similar conclusions and
centered its effort on seven categories of recommendations (Ref 19:2-1),

1. Management Policies

2. Acquisition Planning

3. Systems Engineering

4. Implementation Procedures

5. Program Management Support

6. Acquisition Management Standards

7. Development of Tools and Techniques

Several of these categories are of interest to this thesis and will
be discussed here. The area of management policies includes several issues,
the first which is the analysis and validation of ECS requirements. Initial
requirements are often excessively ambitious and require changes largely
because the initial requirements were not critically analyzed and validated
through a program of advanced development or system definition. The
problem of frequent requirements changes during development is further
complicated by the impact of changing technology and the difficulty of
obtaining usable cost data (Ref 28:144).

The DSARC II review implies that an adequate basis must exist for

design and costing of software. Current directives are vague, however,

i ot o e e O e

on the formal requirements for the validation phase of the acquisition
process. Software cost overruns arising from vague and inconsistent
requirements definition could often be eliminated by more complete
analyses and reviews of requirements specifications prior to FSD (Ref 19:2-3).
Another area of potential management policy improvement that would
increase visibility and understanding of major ECS software components
would be to place them on a par with hardware components. Policies
should consider software a Configuration Item to be delivered on a
schedule, controlled and reviewed, rather than view it as an item of data.
This will require a change in software policy documents and in the Armed
Services Procurement Regulations (ASPR) (Ref 19:6-9).

A particular document that requires modification is Appendix B

of MIL-STD-881A. The appendices describe the levels of the Work
Breakdown Structures (WBS) for seven types of systems such as missiles,
aircraft and electronics. Computer software is addressed only as an item
under electronics systems along with sensors, communications, data displays
and auxiliary equipment. ECS software should at least be placed equal
to major subsystems and not relegated to a subhead under electronics systems.
The WBS for software is of particular importance to allocation
of software costs which has been a continuing problem area. If software
is not sufficiently high in the WBS, costs cannot be controlled or tracked
by management information systems. This type of allocation of costs to the
work unit is required to understand how resources are expended and achieve
visibility into the development process (Ref 19:6-10).
The area of acquisition planning brings up two recommendations for
improved software visibility. The abstract nature of software makes the

measurement of development progress very difficult. Therefore, it is

important to formalize the steps in design implementation and test
with policy guidelines. The lack of formalized steps leads to
difficulties in interface management and to the late discovery of
inadequate requirements definitions or design errors resulting in
schedule slippages and increased costs (Ref 19:2-6).

The requirements for FSD milestones should be more clearly defined
to guide software acquisition through the proper sequence of analysis, design,
development, integration, and test. The milestone definitions should include
criteria that would be used to demonstrate that each milestone had been
achieved (Ref 19:6-13).

The actual definitions of the milestones and the level of design
control required should be allowed to vary from system to system.
Variations would allow flexibility to adapt the guidelines to the unique
requirements of each developing system. There are a number of management
and documentation standards which refer to development milestones. None
of these standards, however, define a clear set that is well suited to
software acquisition (Ref 19:6-14).

The Air Force Source Selection Document (SSD) Exhibit 61-47B was
issued in April 1966 and supposedly superseded by MIL-STD-1483. It is
still used, however, as a basic reference on computer program development
milestones apparently because no other document covers the software
acquisition steps nearly as well. This exhibit should be updated to
provide an acceptable basis for current procurement activities by including
test events and by including document and event related milestones. These
milestones should be established in the Request for Proposal (RFP) and
would provide a foundation for program planning and evaluation of proposals.

Also, each milestone should require a specific deliverable product.

55

B TR R AT R T P . - .
P g AR

b . a prr— "

The B-1 program included SSD-61-478 in the development contracts |
because current Acquisition Management regulations, such as MIL-STD-490,
MIL-STD-483, and Air Force Regulation 800-14, Volume II cite milestones
but do not clearly define the required work or the products to be
delivered (Ref 19:2-6).

The System Development Corporation (SDC) has emphasized another
area of acquisition planning whicii needs increased attention. The
Computer System Resource Development Plan (CSRDP) is the most important
single management document, according to SDC, who recommends that it be
specifically required for major software development efforts. The CSRDP is
generated to ensure that software development is well organized and managed,
and that all requirements are correctly defined as understood prior to FSD.

The development plan explains the contractor's approach to engineering and

management issues and therefore could aid in selecting the proper develop-
ment contractor (Ref 19:6-17).

The Air Force has come closest to requiring a CSROP by detailing

requirements for a Computer Program Development Plan (CPDP) in AFR 800-14,
Volume II. The CPDP covers such factors as organization, management
controls, design, test, milestones, status monitoring, support, documenta-
tion, and engineering practices (Ref 19:2-7). *
The lack of application of systems engineering methodology to the ﬂ
development of software leads to a number of major problems. Computer
systems are too often considered as hardware alone with software design
impacts addressed only after hardware design is final. This failure to
consider the total system, both hardware and software together, has caused

many costly design mistakes (Ref 36:40). During the program validation,

56

LR e . - e W,
T S Y ‘a‘-‘.rv = e — '
L Ve LT T A T S

tradeoff analyses must be performed for hardware versus software approaches
to design issues with appropriate decisions made at SDR and DSARC II (Ref
19:16-21). The final formulation of software requirements should occur
during the advanced development phase. For many systems this phase has
concentrated on design and demonstration of hardware subsystems or
components, it being assumed that demonstration of software design at

this stage is not necessary. If these elements are not given full manage-
ment attention from the outset, penalties appear almost certain in terms

of increased costs, delayed delivery, and compromised performance (Ref 6:98).

The large variation in the requirements and organizations of
development programs demands a great degree of flexibility in the
application of management standards and procedures. It is not desirable
to develop standards and directives to govern all aspects of software
acquisition. Program managers must be allowed to direct their programs
in the most appropriate and cost-effective manner that is consistent with
DOD Directive 5000.1 and the unique requirements of the particular program.
However, the abstract nature of software discussed earlier and the lack of
strong systems engineering methodology requires that the SPO managers have
access to an organized body of knowledge to guide them. The Air Force program
to develop software acquisition management guidebooks is a result of the APL
study recommendation and was implemented by the DOD Weapon System Steering
Commi ttee (Ref 19:6-49).

In 1974 the Assistant Secretary of Defense (Installations and Logistics)
and the Joint Logistics Commanders of all services established in the Weapon
System Steering Committee a joint committee to attack ECS software acquisition
problems. The committee issued a “Capstone Directive" which stated policies

and principles for future software management directives (Ref 35:105). This

57

i g ST e . o~ -~

directive was the first step in a massiyve overhaul of directives,
regulations and standards dealing with ECS software. The overhaul was
structured to correct inconsistencies and to coordinate future publica-
tions concerning ECS software (Ref 37:9).
The directive also committed the DOD to:
“Prepare and maintain guidelines, checklists, handbooks,
and examples covering deyelopment, acquisition, operation and
support (of ECS software)" (Ref 35:106).
f This was interpreted to be a set of guidebooks to lead the software
practitioner and the project managers. The MITRE study proposed a
similar series of guidebooks, which are starting to appear. Electronics
Systems Division (ESD) and Aeronautical Systems Division (ASD) of Air
Force Systems Command are each publishing guidebooks.

The ASD versions are called Software Acquisition Engineering (SAE)
Guidebooks for Airborne Systems. Many of the SAE books have already
been published and appear to go a long way toward supplying the software
development engineer and manager with usable acquisition information.

The ESD guidebooks are referred to as the Software Acquisition Management

(SAM) series and are primarily designed for SPO personnel in the software
acquisition management area. All of these documents are considered "living"
documents in that they will be revised as needed to reflect the true state

of affairs and to provide the type of current information the users want.

These guidebooks appear in this author's opinion to be the best attempt to
date to proyide for visibility into the software acquisition process. These
guidebooks aid the engineer and manager by helping him ask for the right
information at the right time and by helping him require that activities be
accomplished in a timely and properly sequenced manner. This approach allows $

the manager to apply only the guidance that is appropriate to his program

58

» - LR N T —— e
o B o

P

and yet requires the necessary rigor and discipline to improve software
quality. This type of systems methodology provides for effective
f management control of software development.
i Several models and techniques have been developed to estimate software
acquisition efforts and costs. One of the more promising is the RCA Price
(model which was analyzed by Schneider in his AFIT thesis entitled, "A
Preliminary Calibration of the RCA Price Software Cost Estimation Model."
The Army has developed a macro-model for estimating the manpower and time
required for getting a software program operational. This system gives a
manager the data he needs in terms he can use and understand.
Acquisition management standards have been recommended to establish
a common set of software development requirements and criteria to be
applied across all the services. This becomes more complex when
considering the recent efforts of all services to increase the uniformity
and control of their software development programs by issuing new standards
and directives. The proliferation of new regulations contains only one
comprehensive document, AFR 800-14, that deals with software acquisition
management. This regulation should be the basis for any tri-service
document covering the required software acquisition procedures and

approaches (Ref 19:6-48). That brings us to Section II of this Chapter,

DOD Regulations, Specifications and Standards.

DOD Regulations, Specifications, and Standards

The majority of the regulations, specifications and standards that
apply to ECS software acquisition were covered in Chapter III as they

apply to the software development cycle. The coverage here is to clarify

and further describe the most important of those documents.

The SRWG, "Chairman's Report to the Joint Logistic Commanders,"
further supports the premise of a lack of managerial understanding of
software by stating that,

"We have generated in the DOD, a large number of

regulations, directives, and military standards for systems

acquisition management. The vast majority of the procedures

outlined in these documents are not tailored for software.

Software considerations have been added to some of them after

the fact, but they are still really hardware oriented. The

result is that they conflict with each other, use non-standard

terminology... We will have to rewrite all of those regulations,

military standards and directives so that they are consistent

with policy and with each other (Ref 35:29)."

The most important regulation affecting ECS software acquisition
is AFR 800-14, Volume II, entitled "Acquisition and Support of Computer
Resources in Systems." This regulation along with Volume I, and AFSC
Supplement 1 to Volume I, provide guidance for planning, development
acquisition, use, and support of computer resources in defense systems.
Computer systems are the only commonly used components of Air Force
weapon systems whose development is addressed in a separate regulation.
This is partially because computer systems, especially softwaﬁe, are
usually minor portions of a total weapon system in terms of expended resources, and
therefore, too frequently receives insufficient management attention. Also,
computer technology is new and not well understood and is too often on the
critical path of procurement efforts (Ref 30:17).

Volume I of AFR 800-14 provides the basic management policies for the
acquisition and support of computer systems while Volume II presents the
concepts and procedures necessary to implement the policies of Volume I.
Volume II defines four major plans and directives (Ref 30:23):

1. Program Management Directive (PMD) - "The official HQ USAF

Management directive used to provide guidance to the implementing

and participating commands (AFR 800-2).

60

2. Program Management Plan (PMP) - "The document deyeloped and
issued by the Program Manager which shows the integrated time-
phased tasks and resources required to complete the task
specified in the PMD (AFR 8Q0-2).

3. Computer Resources Integrated Support Plan (CRISP) - "The

" CRISP identifies organizational relationships and responsi-
bilities for the management and technical support of computer
resources (AFR 800-14, Volume II).

4. Computer Program Development Plan (CPDP) - “The CPDP identifies

the actions needed to develop and deliver computer program

configuration items and necessary support resources (AFR 800-14,

Volume IT).

Air Force Regulation 800-2, entitled "Acquisition Management -
Program Management," is closely related to AFR 800-14. This regulation
applies to all Air Force acquisition programs identified by DOD as major
defense systems. That is to say, the total system is guided by AFR 800-2
and the computer portion is guided by AFR 800-14.

DOD Directive 5000.1, 18 January 1977, entitled “Major System
Acquisition," is the basi. for acquisition of major defense systems,
and is implemented via AFR 800-2.

DOD Directive 5000.2, 18 January 1977, entitled. "Major System
Acquisition Process" defines the policies and procedures used by the
DOﬁ in the decision-making processes of acquiring major defense systems.
This directive supplements DOD 5000.1 and establishes the Defense Systems
Acquisition Review Council (DSARC) charter and is a key directive for
acquisition of embedded computer systems.

DOD Directive 5000.29, 26 April 1976, entitled “Management of Computer

Resources in Major Defense Systems," is used for management and control of

61

computer resources during the development, acquisition, deployment, and

support of major defense systems. It addresses milestone definition,
requirements validation, risk analysis, deliverable software and also
charters the DOD management Steering Committee for Embedded Computer
Resources. The Air Force implements this directive via AFR 800-14,
Volume II.

Air Force Regulation 800-3, 1 June 1976, entitled "Engineering for
Defense Systems," helps define the engineering effort that will be applied
phase-by-phase throughout the acquisition 1ife cycle. This AFR describes
the policies, principles, concepts and techniques required for the efficient
planning and control of the technical development program and implements
AFR 800-2.

MIL-STD-483(USAF), 31 December 1970, entitled "Configuration Management
Practices for Systems, Equipment, Munitions, and Computer Programs" applies
configuration management requirements and baseline specifications to
development contracts. This standard specifies the use of the reviews
and audits that are detailed in MIL-STD-1521A as well as Engineering Change
Proposal (ECP) guidelines. Appendix VI addresses Computer Program Configuration
Item (CPCI) Specifications such as the Part I (development) and Part II
(product) Specifications as a supplement to MIL-STD-490.

Overall, this standard specifically addresses requirements of software
not found in MIL-STD-480, -481, and -490, such as:

1. Preparation instructions for computer program specifications.
Computer program specification and support documentation maintenance.

Computer program formatting and change processing,

S wWwN

Computer program configuration audit objectives.

62

MIL-STD-490, 30 October 1968, entitled “Specification Practices,"

establishes the format and technical content of specifications that are
unique to a certain project. It defines uniform practices for specification
preparation and ensures the inclusion of essential requirements. Two
specification types, B5 and C5, apply directly to software. Appendix VI
details the requirements for specification type B5, the Computer Program
Development Specification (PART I). Appendix XIII details the requirements
for specification type C5, the Computer Program Product Specification (Part II).
This standard applies to all services and a revision is in process. The
revision is intended to resolve discrepancies that exist between MIL-STD-490
and 483.

MIL-STD-881A, 25 April 1975, "Work Breakdown Structures for Defense

S aneauae Lo

Material Items," details the preparation and utilization of Work Breakdown
Structures (WBS). Computer software currently appears at WBS level three in
the ground support subsystem appendix. However, the appendices covering
aircraft, missile, and space systems are currently deficient with respect

to identifying on-board software as a level three WBS element. Until this
standard is revised to include ECS hardware and software at level three

USAF SPO's must improvise their own level three WBS element to guarantee
visibility of ECS software development.

MIL-STD-1521A, 1 June 1976, "Technical Reviews and Audits for Systems, 1
Equipments, and Computer Programs," defines the requirements for conducting
the following seven milestone events; Systems Requirements Review (SRR),
System Design Review (SDR), Preliminary Design Review (POR), Critical Design

Review (CDR), Functional Configuration Audit (FCA), Physical Configuration |

Audit (PCA), and Formal Qualification Review (FQR). These reviews and audits

are used by contracting agencies throughout the acquisition life cycle to]

monitor program efforts to ensure contractual requirements are being satisfied.
The standard identifies responsibilities and outlines the minimum information
requirements. The chronological relationship of the reyiews to other program

activities is also established and explained.

Thesis, Reports and Periodicals

As was the case with the previous section of this chapter, most of the
relevant literature in this category was discussed in Chapter III as it
related to the software development cycle. Many authors have added to our
understanding of the software development and acquisition process, however,

and a few of these contributions will be discussed now.

In reviewing numerous articles, abstracts and research papers, the
literature was generally divided into two categories. The first consisted
of authors investigating and describing their approach to some technical
problem. The research problem areas in this category can generally be
summarized by Figure 4. This category is not the primary concern of this
thesis and will not be covered further.

The remaining literature primarily deals with various approaches to
computer software acquisition management problems and solutions. A partial
summary of these articles can be found below and in the Bibliography.

The majority of this literature describes the software development process

in isolation, unrelated to computer hardware or other weapon system development
activities.
Zabriskie, in a paper entitled "Development of Weapon Systems Computer

Programs," described the software acquisition process isolated from other

development activities by using thirteen steps (Ref 39). He detailed each
stage of the development process but did not relate the parallel hardware |

development activities. Etheredge (Ref 15) and Wolverton (Ref 38) each used

64 |

‘ different three step descriptions as discussed in Chapter III, but neither
related their steps to the computer hardware development process or to the
DOD weapons systems acquisition phases of Concept Formulation, Validation,
FSD, Production, Operation and Maintenance.

Nelson, however, described a six-step acquisition process for Automatic

Data Processing (ADP) software, which is covered by the 375 series of
P regulations. This type software is not embedded in another system, but is

a complete unit in itself, such as a personnel or finance software program.

In his report entitled, "Management Handbook for the Estimation of Computer
Programming Costs (Ref 27)," he related the six steps to the DOD acquisition
process, for ADP software. This does not directly correspond to ECS software
development and does not relate the parallel computer hardware development.
Watson was a notable exception and was quoted extensively in this
thesis. His thesis entitled, "Acquisition of Embedded Computer Software:
A Descriptive Model (Ref 37)," used three steps to describe the ECS software
development process and related the parallel computer hardware and software
development activities and referenced these to the five traditional DOD
acquisition phases.
In summary, the software acquisition process was described by the
literature with from three to thirteen separate and distinct phases. Some

of the more significant versions are listed by author and number of phases:

1. Etheredge --- three phases (Ref 15) |
2. Wolverton --- three phases (Ref 38)

3. Driscoll --- three phases (Ref 14)
4. Watson --- three phases (Ref 37)
5. Merwin --- four phases (Ref 24)
6. Capps --- five phases (Ref 9)
7. Nelson --- six phases (Ref 27)

65

8. Mangold --- seven phases (Ref 20)
9. Mathis and Willmorth --- nine phases (Ref 22)
10. Bucciarelli --- eleven phases (Ref 8)

11. Zabriskie --- thirteen phases (Ref 39) :
These authors all basically describe the same process but label and group |
activities differently. The obviously emerging and most recent pattern
appears to be the three-phase approach, with the most usable version being
Watson's effort. It relates most of the relevant activities to the DOD
acquisition process making his description more easily understood by
personnel inexperienced in working with software.

Driscoll stated that errors such as poor or delayed definition of
system requirements and incomplete integration of hardware and software
requirements have been amplified by a Tack of managerial attention to
software in the past. He also stated that a lack of ability to measure
software development progress and inadequate numbers of qualified personnel
are conditions that add to the problem.

The emphasis in Driscoll's report as well as most others was to increase
the emphasis on early long term planning for software development. This could
be done by raising software to a higher level in the WBS, requiring software :
be considered in total System Requirements Analyses (SRA), or requiring using
command participation in requirements definitions and design reviews. These
are only a few of the most important specific improyements that could be made i
but the ultimate improvement would be for management to raise software out of
the category of "data" and require that plans for its development are on a
priority level with computer hardware.

The recommendations that follow are a direct result of the problems and

proposed solutions documented in the available, relevant literature. These

66

recommendations summarize this author's perception of the most needed changes

to improve ECS software acquisition visibility. These recommendations were

also the basis for initiating interviews with software deyelopment experts
to derive a validated set of recommendations that if implemented would

benefit the software development community.

Preliminary Recommendations To Improve Software Acquisition Visibility

: 1. Require using command participation in and input to all require-
ments, definitions and design reviews. No party can judge
whether system design and performance requirements meet the
user's needs as well as the user himself. Too often, the user
generates a Requirement for Operational Capability (ROC) and
then functionally steps out of the development picture until
evaluation of the completed project. The using command
representatives must have authority to speak for the command
in important decisions.

2. Require that software be included in all System Requirements E
Analysis (SRA) during the concept formulation phase of system]
acquisition. This necessitates the consideration of software as
part of the total system from the initial planning stages onward.

It also forces early analysis of software requirements to
allocate what portion of the total system requirements software
must perform.

3. Move software to a higher lTevel in the Work Breakdown Structure
(WBS) to force its removal from the category of mere data. Placing
software at the third level of the WBS would require detailed planning
for and consideration of software from the beginning of the system
development process. To do this, MIL-STD-881A on the WBS system

would have to be revised to include software.
67

S A L NG e g .

4. Establish measurable and achievable milestones for each software i

development. This would require increased USAF guidance but

not regulation of what should be accomplished and reviewed at

each milestone event. The Navy has issued beneficial and detailed
documents in this area. Incremental milestones such as Critical
Design Reviews (CDR) for individual Computer Program Components
(CPC) would encourage review to a level of detail not possible

with a single CDR for the entire program.

5. Place more emphasis on software in the Program Management Plan
(PMP) and more widely disseminate the information contained in
the Computer Resources Integrated Support Plan (CRISP). This
would focus more program management attention on what tasks
software is required to perform and how those tasks are to be
accomplished.

The PMP is the program manager's Bible and he must have intimate 1
knowledge of what it requires him to do. Emphasizing software in the

PMP gets high level attention and prevents software from being ignored.

The CRISP documents how software is to be developed, controlled, and

maintained for a particular project and any policy or decision concerning

software should be documented there. 5

6. Define support and operational software as separate deliverable
contract 1ine items to provide increased visibility into the
development process and to provide a separate software cost
breakdown. In the past, the cost of software was generally hidden
inside a contract for a complete computer system and could not
be tracked separately. This made analysis and comparison of]

software costs almost impossible. The software should also be

w

o bl T g)
o i a8 " LAy -y -

designated a configuration item when it will be transferred to

other commands in order to control changes and the versions being
used.

Ensure that one person is accountable and responsible for
software in the System Program Office (SP0). This requires

more technically qualified people and better education and

training programs. It must be pointed out that there are no
formal training or orientation programs for new software

managers that the author has been able to discover.

69

V. INTERVIEWS

The set of recommendations resulting from the literature search in
Chapter IV was used as a starting point for interviewing representatives
of Air Force software management offices. These interviews were used
to subjectively evaluate and refine the recommendations by critique and
comparison with the collective experience of the interview subjects. The
various backgrounds and areas of expertise of the subjects established
a data base of expert opinions concerning the proposed recommendations.
This base was of considerable help in refining and validating the set
originally developed from the literature.

The interviews were conducted through a structured format (Appendix
A) that first investigated the experience and knowledge level of the
participants. This information was used to gauge the usefulness of the
responses received. Next, several types of software problems were noted
and discussed. Then, different types of solutions were recommended by this
author and evaluated by the participants. The 1ist of specific recommendations
for improved ECS software acquisition was then reviewed and discussed.
Finally, general comments on the thesis topic were solicited from the subjects
to record any suggestions or opinions not noted in the formatted interview.
The subjects were selected because of their experience levels and their
varied backgrounds. Appendix C proyides a 1ist of those who were interviewed.

It must be noted that the 1imited time and scope of the research did
not permit interyviews with more than a 1imited number of personnel at a U.S.
Air Force Research and Development (R&D) product division. It is believed,
however, that the results obtained are representative and sufficient to support

the recommendations made in this report.

70

——————————————

A11 of the subjects agreed that management of ECS software acquisition
is a major problem for the USAF and the DOD. The responses emphasized
different problems, however, depending upon the tasks and responsibilities
of the participant. Program managers, for example, were highly concerned
with measuring the percentage of software completion, while engineers were
more concerned about technical requirements defintitions and methods to
verify and validate that the end product was what it was originally specified
to be. Configuration managers, on the other hand, tended to be more concerned
with describing, documenting and controlling changes of the software end
product. This configuration control allows the user to know exactly what
he has and allows him to modify and update the ECS in-house after deployment.

Of particular interest to this thesis is the fact that all responses
except one listed inadequate management techniques as the greatest current
ECS software acquisition problem in his organization. The one differing
response noted past difficulties with contracting policies and related
that this was also a management problem. The dynamic technical nature of
computer hardware and software was not considered a significant problem
by any participant.

When asked what other problems had been encountered, almost across the
board, a lack of early high level planning for software development was cited.
Most subjects expressed the opinion that software is not considered early
enough in the development effort to haye an impact on design issues.
Apparently software personnel are often not eyen assigned to a SPQ until
after some irreversible major decisions on ECS development have been made.
This imposes constraints on the computer hardware and software design before

qualified ECS personnel have even considered the options.

N

—————————————— Y ~ - e en———— = ~ &
LAY e .
L ;AW DA e R - J
T

-

In defense of the SPO and the R&D community, it must be stated that
adequate numbers of qualified software pegple usually are not available.
Some offices expressed a desire for people of any background who could be
trained in software management. Currently, the software development area
is so understaffed that many participants believe the government cannot
match the inflated industrial pay scale. One respondent lamented that
there are not enough government engineers to supervise the technical
development of software and there are even less managers to monitor the
contracting and managerial side of software acquisition. The result is
that engineers or even programmers are expected to manage software
acquisition and administer contracts in addition to their technical
responsibilities. Expressed another way, the proper management techniques
appear to exist but they have not been consistently applied because
the management role in software has not been emphasized. There just
are not enough people to properly perform the software acquisition
management function and the engineer usually does both jobs on several
programs at once.

Another problem uncovered in the interviews and akin to the lack of
qualified people is the lack of training for the new people that are
available. Generally, there are few instructors available because they
cannot be removed from development tasks long enough to train new personnel.
Until recently, a new hire was given a few weeks of self-study in dry
regulations, a few days talking with an experienced "software man," and then
assigned to his own program to learn-by-experience. This leads to some
costly mistakes and was believed to have contributed to the bad track record

of software development.

!Illllllll!!I'-'llulwnin---nu---n : , : I

Recent efforts in ASD, as well as all of DOD, have attempted to better
acclimate new people, first to the DOD acquisition environment and then to
the unique features of software development. Most interviews surfaced
opinions as to the inadequacy of training. Some, however, noted the trend

toward increased orientation through hands on in-house laboratories. The

System Engineering Avionics Facility (SEAFAC) allows new hires to join a
cadre of engineers and managers who are performing small, Tow pressure,
low risk development tasks in the Avionics Engineering Directorate (ENA)
of ASD. These tasks are chosen primarily to provide a learning process

prior to assignment of personnel to SPO's. Another improvement is the

increased retention of experienced people in the home office for reference
while the engineers assigned to SPO, are encouraged to return to them for
guidance. The general feeling of the interview subjects was that there

is not enough training but the situation is improving and that some learn-

by-experience training is required anyway.

Concerning the software development process itself, the consensus
was that more effort should be expended early to alleviate major problems.
The idea of earlier and more extensive planning has already been introduced.
This would include setting up better management information systems to get
the right data at the right time to illuminate issues and decision options.
This increased planning would provide better milestone definition and
scheduling which are primary requirements for improved software development
efforts.

The definition of milestones requires a detailed knowledge of the 4
software development task. A recurring and associated issue described in

the interyiews concerns the inadequate and often delayed definition of

software requirements. Apparently, specified system performance requirements

73

are allocated to the computer hardware early in a program with hardware
design analysis and validation occurring before software tasks have been
defined. Usually, software requirements are not completely defined until
after the other weapon system components are designed and under FSD contract.
This allows very little flexibility to choose the best ECS design options
because the contraints already exist and software is usually considered

the easiest method to provide the functions that other systems find difficult
to perform.

That Teads to another often mentioned problem, inadequate systems

analysis and tradeoff studies. It seems when a development problem is
encountered, the automatic response is "fix it in software." Hardware

design is considered to be inflexible compared to software's inherrent ease

of modification and, therefore, some design options are often not considered.
The interview subjects generally felt that design changes made with software
sometimes cost more, over the total system life cycle, than if made in hardware.

The total system impact should be considered because a change affects many

factors and tradeoffs should be made to get the best decision mix on those

factors. §
Participants also expressed concern over using command participation |

in the definition and review of system performance requirements. Too often

it seems, the user does not actively follow the development process and,

therefore, does not notice the system design gradually straying away from the

original requirements. It is a costly mistake for engineers and managers to

develop a system to satisfy what they understand to be the users' needs only

to discover after completion that the user needed something entirely different.

This happens because the user does not stay involved with the development

process and many interviewers believed this should be required to a greater extent.

74

- e oLyl LS e N i
SV S . ’ B—— - : ‘

The idea of raising ECS software development to a higher leyel in the
WBS received mixed reviews. Generally, the managers agree with the idea
because they perceive an increased visibility into the development process,
and engineers primarily disliked the recommendation because of the added
workload and the increased cost. The literature supports the concept
because of the detailed planning, scheduling and cost information it would
require to describe and estimate sub-units of software work for the WBS.

With only minor exceptions, there was agreement that the same
management approaches and techniques should be applied to computer
software and hardware. The prevailing opinion was that applying the
same techniques across the board would increase the visibility and attention
given to software and would therefore improve the development effort and
the product quality.

A11 of the interview subjects felt that their level of knowledge
and expertise as well as the software community as a whole had increased
significantly over the last few years. They also expressed the opinion
that a Tearning process was occurring, that software management ability

was slowly improving, but that many problems still remained.

75

VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary
This thesis documents a study of ECS software development and the

derivation of recommended improvements to current software acquisition
management approaches. It has been estimated that the DOD currently spends
more than $3 billion annually on software, with entire weapons systems
depending on ECS software for successful operation. The ECS software)

for a weapons system is not the major part of the total system but must

be considered critical to the overall performance of the system. Because

of this virtual explosion in the use of computer resources, and specifically
ECS software in weapons systems, software development problems and costs
have received significant recent attention.

Increased visibility into the software development process has been
proposed repeatedly in current literature and speeches as the key to solving
the software development problem. A primary aim of this thesis, therefore,
is to find means of increasing the visibility of software development efforts.
Better visibility would provide greater warning indications of development
difficulties, help prevent catastrophic schedule and budget overruns, and
improve the technical quality of software products.

To discuss software visibility problems and improvements, a basic
understanding of the software development process is necessary. This thesis
employed a model of the software development process that was defined with
respect to the traditional DOD weapon system acquisition life cycle. The
cycle's five phases are:

1. Concept Formulation

Validation

full Scale Development (FSD)

; 4. Production

5. Operation/Maintenance

A new system is developed in response to a perceived change in the
environment. The change could be in a military threat or new technological
advances that significantly modify military capabilities. Active systems
may even need replacement but the point is that a requirement must be
recognized before a new system concept can be formalized.

The Concept Forumulation phase analyzes the perceived need to determine

whether or not it should be firmly established. Studies are conducted to

determine if the proposed systems are economically or technically feasible
and if production can be accomplished in time to satisfy the requirement.
During this phase, some exploratory development is often done to estimate
the technological feasibility of producing the system (Ref 25:11).

The Validation phase was previously called the project or contract
definition phase. The system's performance requirements are defined and
a minimum of preliminary design and engineering is accomplished. Major
technical approaches are analyzed and some hardware may even be developed.
The result of this phase is the contract definition which is required to
initiate Full Scale Development (FSD) (Ref 25:20).

FSD generally includes the design, prototyping and testing of the
completed system. This phase is of primary concern to this thesis and was
further categorized into the following general tasks: ‘

1. Preliminary Design (Analysis)

2. Detailed Design

3. Coding and Subunit Testing

4. Integration and Testing

5. Deployment

77

———

Production of the completed system can mean many things. Mass
production 1ines are required to produce fleets of aircraft but a few hours
of computer time could "produce" enough copies of a software program to
issue one copy per aircraft. Acceptance testing can last weeks for aircraft
and seconds for a single punched tape copy of a computer program.

The operation and maintenance phase begins when the first system is
delivered and considered functional. A statement is then issued announcing
the Initial Operating Capability (IOC) for the system. The system is then
operated, maintained, and even modified to utilize it over an average 10 to
20 years of operational 1ife. When the system is no longer a cost effective
method of satisfying its assigned mission it is considered for retirement and
the life cycle is completed.

Because of the increasing importance of software to the total system
performance, the problems of cost, schedule, and technical performance of
software have become critical weapon system development considerations. i
Some of the most important causative factors associated with these software
development problems are: *

1. Faulty and incomplete communication of user requirements.

2. Unrealistic cost estimates caused by insufficient visibility and

control.

3. Unrealistic time schedules caused by the same lack of visibility

and control.

4. High software failure rates.

5. Incomplete and insufficient specifications.

Computer hardware and software both suffer from these problems, however, 1
software is newer and in the past displayed unrecognized criticality that

made it more prone to these type problems. There appear to be solutions to

78

i s L R Y

e 1

most software deyelopment problems if the development manager will only
recognize the potential for them and take the necessary steps early enough
to prevent them. The recommendations to prevent these type problems are

presented in the Conclusion.

Conclusion

Software acquisition managers often complain of a lack of visibility
in software development efforts. In this case, visibility means the ability

of someone not directly involved with the actual development to know just

how well a software development is progressing. This lack could reflect

an inability to measure software development progress and status or it

could reflect the lack of importance assigned to ECS software in the past

in relation to the overall weapons system. This lack of attention amplifies
errors made early in a program such as inadequate requirements definition

and incomplete integration and allocation of hardware and software require-
ments. The best opportunity for improving software development efforts would
be to concentrate on the concept formulation and program validation phases of
the acquisition life cycle, which is pre-DSARC II, where the greatest
leverage exists.

Most subjects interviewed in association with this thesis believed that

a large portion of all software problems could be minimized if more software

design and requirements analysis was done prior to FSD. These analyses should
include requirements allocations to software, feasibility studies, hardware vs. |
software tradeoff studies, generation of the Computer Program Development Plan
(CPDP), preliminary Part I Development Specification, Configuration Management

Plan, and risk analysis to name only the major pre-FSD studies and plans. |

79

Proper objectives, schedules, plans and milestones, must be
established early enough for them to be usable during the system development
process. This emphasis on planning should be proportional to its importance
i to the total system rather than its relative cost or work level. A net
reduction of the time and cost of going from a ROC to an effective,

operational system could be accomplished, not by shortening and expending

less for every phase of activity, but by spending more time and money during
early development tasks that will produce net savings in important areas
that follow. In short, if there is any one rule to follow, it is to spend
as much time and effort as possible planning at the beginning of a software
development, as detailed as possible, exactly what the desired end product
should be and how to develop it.

ECS software does not now receive the same degree of management control

and attention that is given to weapon system computer hardware. In the future,

it must receive this Tevel of interest. There are a number of ways this

should be done. One major approach would be to elevate software out of

the data category and into the deliverable contract line item classification.
This would also require that software be controlled as a configuration item,
thereby giving it added visibility. Placing software at a higher level in

the WBS and including software in the SRA would also eliminate many development
problems by requiring more detailed task definition and work estimation.

More emphasis should be placed on a simplified but flexible decision
making process that places greater reliance on sound judgment and less on
regulations and complicated contract clauses. Contracting should be used
as a tool of software development, not as a substitute for good management

of acquisition programs.

80

Weapon systems software by its nature does not fit previously defined
procurement categories. Software is not physical equipment, nor is it data.
Therefore, attempts to define and address software in existing terms often
causes confusion and frequently subjects it to inappropriate regulations by
il1-qualified weapons system management personnel. Increased management
focus and better communication are needed to assure that all levels of
management are knowledgeable in software development and acquisition so as
to better control software acquisition efforts.

The ideal acquisition structure does not eliminate the need for
competent personnel to exercise sound judgment. It only highlights the
fundamental decision points that must be dealt with as a system moves
through the acquisition process. It also identifies the kind and quality
of information that should be available when each decision is made.

Policy guidelines should be set whereby experienced personnel may
exercise judgment in selectively applying detailed contracting regulations.
Contracting methods and procedures have been used as remedies for acquisition
problems found in past programs. This has stimulated a large growth in
contracting regulations that have been applied to most programs, whether
appropriate or not.

Excessively detailed guidance and requirements to use ineffective
contract procedures have often been an impediment to major software acquisitions.
In this area, there is a great need for personnel to have adequate management
authority to adapt, modify, innovate, and be held responsible for actions taken.

Some success has been attained by having the SPO retain direct
control and responsibility for defining and developing a software subsystem
through a competent program staff, giving itself flexibility to change

system characteristics and performance requirements.

81

Al though these avionic software programs warrant special controls and
organizational visibility, overreliance should not be placed on complicated
regulations and contractual clauses. Better assurance of program success
could probably be attained from proper contractor selection and the involve-
ment of a strong, technically competent program management office coupled
with a good test and evaluation capability.

In the DOD, a Targe number of regulations, directives and standards
have been written for systems acquisition management. Most of these
documents were not designed originally for software but were modified
after the fact. The majority of these publications are still hardware
oriented and conflict with each other and with current policy. Patchwork
improvements only aggrevate the underlying problem, which is the lack of
visibility over the key decisions that control the definition, development,
and acquisition of avionic software.

There are a few published examples of important changes in the policies
and directives that apply to software but these changes are minor compared
to what is needed. Hardware and software tasks during the Validation and
Development phases do not run parallel in spite of new directives and policies
to the contrary. This non-parallel development characteristic was supported
by the interviews discussed in Chapter V and by Watson‘s thesis.

The last major area that requires management emphasis is the lack of
sufficient qualified software development personnel. Increased education
of both military and civilian DOD resources is required to combat the high
turnover of personnel. The DOD corporate knowledge has not been documented,
allowing invaluable experience and lessons learned to be irretrievably lost.
The problem arises from personnel leaving Government or leaving the software

career fields. This underscores the need to develop new and capable software

82

it i et M i s i

managers as well as sufficient career incentives and controls to retain them.

Based on a reyiew of previous studies and the collaboration of practicing
software development personnel, this author believes that the primary factor
contributing to ECS software deyelopment problems is the lack of consistently
applied engineering discipline and sound management practices. No single
correction will provide the required discipline and rigor to every facet of the
software acquisition process.

The following are the Final Recommendations of this thesis. The final
version consists of the Preliminary Recommendations revised to reflect the
interview results. In essence, the Preliminary Recommendations were validated,
however, the concensus of interviewed experts was to change the order of

importance and to add additional points,

Final Recommendations to Improve Software Acquisition Visibility

1. Place software development on a level of importance equal to hardware
development.

2. Require using command participation in and input to all requirements
definitions and design reviews.

3. Require that software be included in all system requirements analysis
during concept formulation.

4. Earlier emphasis on software pdanning by addressing software in the
PMP, greater use of the CRISP, and increased attention to the required
management information.

5. Increase efforts to train and retain qualified software engineers
and managers.

6. Generally, apply the same management approaches and techniques to

the development of both computer hardware and software.

83

e e e 1 Ry

7. Moye software to higher leyvel in the work breakdown structure and

revise MIL-STD-881A to include software.

8. Establish measurable and achievable milestones for each software
development effort.

9. Define support and operational software as separate deliverable

contract line items with configuration item status.

10. Ensure that one person is accountable and responsible for software

in the SPO.

Recommendations and Areas for Further Study

This thesis concludes that the preceding"Final Recommendations to
Improve Software Acquisition Visibility" are valid and would be
advantageous to the software development community. It is, therefore,]
recommended that these recommendations be implemented to foster more effective
software acquisition discipline and practice.

It is also recommended that the following areas be studied further: 5

1. Methods for measuring software development progress and the |

possible application of C/SCSC.

2. The creation of intergovernment cataloging and exchange of

government owned computer hardware and software resources.

3. The creation of a USAF or DOD technical school for orientation

i of new software development personnel.

4. Methods for increasing the satisfaction, retention, and indentifi-

! cation of softwape deyelopment personnel.

10.

11.

12.

13.

14.

Bibliography
Aeronautical System Software Workshops. Proceedings, Aeronautical
Systems Division, Wright-Patterson AFB, Ohio: 2-4 April 1974.

AFR 800-14. Management of Computer Resources in Systems. Washington:
Department of the Air Force, September 1975.

AFSCM/AFLCM 375-7. Configuration Management for Systems Equipment,
Munitions, and Computer Program. Wright-Patterson AFB: July 1971.

Air Force Logistics Command. Project Pacer Flash. Volume I:
Executive Summary and Final Report. Wright-Patterson AFB, Ohio:
38 September 1973.

Boehm, Barry W. "Software and Its Impact: A Quantitative Assessment,"
Datamation, XIX (5) May 1973.

Breneman, H. M. "Software Design for Hardware Interaction on Real-Time
Military Systems." Proceedings, IEEE Computer Society International

Conference, Washington, DC, 7-10 September 1976. New York: IEEE, 1976.

Brooks, Frederick P. "The Mythical Man-Month," Datamation, Volume XXI,
Number 12, December 1974. :

Buciarelli, Marco A. "Technical Performance Measurement for Computer
Software Development Programs," a study project to the Defense Systems
Management School, Fort Belvoir, Virginia, May 1974.

Capps, Larry R. "Software Management and the Testing of Weapons Systems
that contain an ECS." A study project presented to the Defense Systems
Management School, Fort Belvoir, Virginia, November 1975.

Currie, Malcolm R. Memorandum to Assistant Secretaries of Military
Departments (R&). Washington, DC: 20 March 1974.

DeRoze, Barry C. "An Introspective Analysis of DOD Weapon System
Software Management," Defense Management Journal 14(4): October 1975.

DOD Directive 5000.29. Management of Computer Resources in Major

Defense Systems. Washington: Assistant Secretary of Defense (I&L),
26 April i973. ‘

Dredner, Stephen M. and Shulman, Hyman. Computer Resource Management
Study; Executive Summary. Santa Monica, California; The Rand Corpora-
tion, September 1975.

Driscoll, A. J. "Software Visibility for the Program Mangger:'a study
project presented to the Defense Systems Management School, Fort
Belvoir, Virginia, May 1974.

85

DT L e

15.

16.

17.

18.

19.

20.

cl.

2.

43.

24.

2.

26.

27.

28.

Etheridge, Boyd, Major, USAF "Computer Software Management from the
Point of View of the System's Manager," Air Command and Staff College
research study, Air University, Maxwell AFB, Alabama, May 1974 (AD920559).

Gansler, Jacques S., "Software Improvement Plan Pressed," Aviation Week
and Space Technology, 104(14), 5 April 1976.

Gansler, Jacques S., "Comment" Defense Management Journal 14(4): t
October 1975.

Government Report. "Space and Missile Systems Organization, Air Force
Systems Command, Information Processing/Data Automation Implications

of the Air Force Command and Control Requirements in the 1980's (CCIP-85),
Volume IV, Technology Trends: Software," October 1973.

Johns Hopkins University Applied Physics Laboratory. DOD Weapon Systems
Software Management Study. Washington, DC: Office of the Assistant
Secretary of Defense (I&L). AD-ADZZ-160. June 1975.

Mangold, Eldon R. "Software Management Visibility. Proceedings of the
Aeronautical Systems Software Workshop, Dayton, Ohio. April 1974.

Managing the Development of Weapons System Software. Conference
Proceedings, Maxwell AFB, Alabama: 12-13 May 1976. (AD-B013-011).

Mathis, N. S. "Software Milestone Measurement Study," Systems
Development Corporation, Santa Monica, California, November 1973.
(LD-37329A).

McClary, T. E. Joint Memorandum from OSD/DDR&E, 0SD/I&L, and 0SD/
Comptroller to the Assistant Service Secretaries for R&D and I&L;
Subject: Management of Weapon System Software, 3 December 1974.

Merwin, Richard E., "Software Management Through Product Control."
A paper presented to the Conference on Managing the Development of
Weapons Systems Software, held at the Air Command and Staff College,
Maxwell AFB, Alabama, May 1976.

MITRE Report. Life Cycle Events: Software Acquisition Management
Guidebook. Dayton, Ohio: Aeronautical Systems Division, Air Force
Systems Command, February 1977. (AD-A037-115).

MITRE Report. DOD Weapon System Software Acquisition and Management
Study, Briefing for DOD Software Steering Committee, 10 June 1975,
Volume I. (AD-A034-802).

Nelson, E. A. "Management Handbook for the Estimation of Computer
Programming Costs," Systems Development Corporation, Santa Monica,
California, March 1976.

Nelson, Eldred, "Developing a Software Cost Methodology, Proceedings,
IEEE Computer Society International Conference, Washington, DC,
7-10 September 1976. New York: IEEE, 1976.

86

o s P —— ~
o g e et o W

s i i 2 10 80 —

S

29.

30.

3L

32.

33.

34.

35.

36.

7.

38.

39.

Putram, Lawrence H., A Macro-Estimating Methodology for Software
Development, Proceeding, IEEE Computer Society International
Conference, Washington, DC, 7-10 September 1976. New York: IEEE, 1976.

Regulations, Specifications, and Standards. Aeronautical Systems
Division Software Acquisition Guidebook. Wright-Patterson AFB:
November 1977. (ASD-TR-78-6).

Reiffer, D. J., "Software Specification Techniques: A Tutorial,"
Proceedings, IEEE Computer Society International Conference,
Washington, DC, 7-10 September 1976. New York: IEEE, 1976.

Report of the Commission on Government Procurement. Washington, DC:
United States Government Printing Office, 1972.

Reviews and Audits. Aeronautical Systems Division Software Acquisition
Guidebook. Wright-Patterson AFB. November 1977 (ASD-TR-78-7).

"Software Management Conference - Phase III," Proceedings, AIAA,
DPMA, Los Angeles, California: 26-27 January 1978.

Software Reliability Work Group (SRWG) of the Joint Logistics Commanders.
Findings and Recommendations of the SRWG, Volume I, Executive Summary.

Andrews AFB, DC: Headquarters Air Force Systems Command XRF, November
1975. (AD-A018-881).

Software Reliability Work Group (SRWG) of the Joint Logistics Commanders.
Findings and Recommendations of the SRWG, Volume II, Supporting
Technical Information. Andrews AFB, DC: Headquarters Air Force

Systems Command XRF, November 1975. (AD-A018-882).

Watson, J. K., "Acquisition of Embedded Computer Software: A Descriptive
Model," A Master of Science, thesis in Engineering Management at the
University of Missouri-Rolla, 1977.

Wolverton, R. W., "The Cost of Developing Large Scale Software,"
TRW Software Series, March 1972. (TRW-SS-12-01).

Zabriskie, R. J., "The Development of Weapons System, Computer Programs,"
A Study Project presented to the Defense System Management School,
Fort Belvoir, Virginia, November 1975. (LD-35049a).

Appendix A

Interview Format

Interview Format

1. Have you been associated with the acquisition of ECS software?
2. How many years?

What is your current grade?

Where are you assigned?

What type of software experience do you have?

(2 IS B

Describe your current job.

7. What order would you place the following ECS software problems
in to reflect the greatest difficulty to your organization? Why?
a. Dynamic state of the technical art
b. Contracting policies
c. Inadequate management techniques

8. What other problems have you encountered?

9. From your experience, do you agree that some of the ECS software
acquisition problems are caused by management's inability to develop
appropriate techniques as fast as the technical state of the art
advances? Please comment.

10. From your experience, in what rank order of importance would you

place the following problems? Why?

a. Defining the specific software requirements.

b. Defining and then implementing milestones for ECS software
development.

c. Tracking the software system's development progress.

d. Defining and specify the software end product.

e. Verification and Validation (V&V).

89

AD=A065 879 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OHIO SCH==ETC F/6 9/2 N
A STUDY OF EMBEDDED COMPUTER SYSTEM SOFTWARE ACQUISITION MANAGE=-=ETC(U) !
SEP 78 6 M BARBEE
UNCLASSIFIFD AFTT/6SM/SM/T8S=1

END .
DATE

FILMED

4-79

., & .
e | —

=

Ef fiz2
||||| s j B

O IIIIF” [

1n.

12.

13.

14.

15.

16.

17.

18.

19.

Would you say that ECS acquisition managers are well prepared

and trained or would you say that, for new personnel, a learn-by-
experience education system is employed? Explain.

What experience and training do you feel are required for an

adequate background?

Do you feel that good management practices and expertise are

usually available but are not effectively used? Explain.

Do you believe that useful management information is often
unavailable when needed because practices for evaluation, formatting,
and feedback of software management information is inconsistent or
loosely defined? Why?

From your experience, do software requirements definitions, risk
analysis, development planning, preliminary design interface definitions
occur during Full Scale Development (FSD) or earlier? Should software
design and analysis begin earlier in the acquisition process than it
does now? Explain.

Do you feel that hardware is usually initiated so early that software
is forced to accept changes to relieve hardware difficulties even
without the appropriate engineering and design? Explain.

Do you believe that software is so different from hardware, that
hardware management approaches, techniques, and procedures will not
work for software? What aspects of hardware and software development
can be considered alike? Why?

Can most hardware problems be solved by changing software? What are
the implications? Is this good or bad?

Does management of ECS software acquisition use a total systems

approach for hardware and software combined? Should it now?

90

B e

g
|

i o e e e b e L i c

20.

21.

o

&3

24.

25.

Do you feel that hardware design drives and limits software

alternatives? Should more tradeoffs be made?

Should software be designed first and hardware designed or acquired

off the shelf to match it?

Look at the separate list of "Recommendations for Improving Software

Acquisition Visibility." In what order of importance would you place

these suggestions?

Concerning these recommendations, do you:

a.
b.
Ce

d.

Completely agree
Completely disagree
Feel it needs improvements - what changes?

Incomplete - what additions?

Do you have any suggestions on how to improve the management visibility

of ECS software development?

Do you have any general comments on the subject of the interview?

91

e T e ean, b v BOTIIRRNTRT - Ji el L7 s Lol B T RN S S

l !
!
.
}

SUMMARIZED - PRELIMINARY
RECOMMENDATIONS TO IMPROVE SOFTWARE ACQUISITION VISIBILITY

Require using command participation in and input to all requirements
definitions and design reviews.

Require that software be included in all System Requirements Analysis
during the Concept Formulation Phase of system acquisition.

Move software to a higher level in the Work Breakdown Structure

and revise MIL-STD-881A to include software.

Establish measurable and achievable milestones for each software
development.

Emphasis on software in the Program Management Plan and greater use
of the CRISP.

Define support and operational software as separate deliverable
contract line items with configuration item status.

Ensure that one person is accountable and responsible for software

in the SPO.

92

et s i i it

Appendix B

Glossary of Terms

s Glossary of Terms

ADP Automatic Data Processing

AFB Air Force Base

AFR Air Force Regulation

AFLCM Air Force Logistics Command Manual

AFSC Air Force Systems Command

AFSCM Air Force Systems Command Manual

APL Applied Physics Laboratory of Johns Hopkins University
ASD Aeronautical Systems Division

ASPR Armed Services Procurement Regulation

BA/PA Budget Authorization/Program Authorization

CDR Critical Design Review

CDRL Contract Data Requirements List

CPCI Computer Program Configuration Item

cpDP Computer Program Development Plan

CRISP Computer Resources Integrated Support Plan
C/SCSC Cost/Schedule Control Systems Criteria

CSRDP Computer System Resources Development Plan

DCP Decision Coordinating Paper

DID Data Item Description

DOD Department of Defense

DSARC Defense System Acquisition Review Council

ECS Embedded Computer System

ECP Engineering Change Proposal

CNA Avionics Engineering Directorate of ASD

ESD Electronics Systems Division

FCA Functional Configuration Audit

FSD Full Scale Development

FQR Formal Qualification Review

FQT Formal Qualification Test

10C Initial Operating Capability

IOT& Initial Operational Test and Evaluation

MTBF Mean Time Between Failures i
OFP Operational Flight Program
0sD Office of the Secretary of Defense
PCA Physical Configuration Audit

PDR Preliminary Design Review

PMD Program Management Directive

PMP Program Management Plan

PMRT Program Management Responsibility Transfer
R&D Research and Development

RFP Request for Proposal

ROC Required Operating Capability

SAM Software Acquisition Management

SAE Software Acquisition Engineering

SDR System Design Review

SEAFAC System Engineering Avionics Facility
SOR Statement of Operational Requirements
SOW Statement of Work

SPO System Program Office

SRA System Requirements Analysis

94

MI s s “J‘T'i t\'f"‘i. B et i o B l

b o

——

SRR
SRWG
SSD
TO
TCTO
TRR
USAF
V&V
WBS

System Requirements Review
Software Reliability Work Group
Source Selection Document
Technical Order

Time Controlled Technical Order
Test Readiness Review X
United States Air Force '
Verification and Validation
Work Breakdown Structure .

95

Appendix C 1

Subjects Interviewed at Wright-Patterson AFB, Ohio

:
¢
£
.
4

Subjects Interviewed at Wright-Patterson AFB, Ohio

Ajmel S. Dulai
PAVE TACK
ASD/ENAIA

Robert H. Gilmore
PLSS (SD-26E)
ASD/ENAIA

Kenneth L. Henry, Capt, USAF
B-1 Bomber
ASD/ENAIA

John M. Hoefirlin
Senior Software Engineer
ASD/ENATA

John Y. Hung
Air Launch/Ground Launch Cruise Missile
ASD/ENAIA

C. Paul Johnson
Systems Software - Group Leader
ASD/ENAIA

Herbert R. McCarter
Technical Policy - Group Leader
ASD/ENAIA

Jack T. Sakai, Capt, USAF
Functional Software - Group Leader
ASD/ENAIA

Timothy A. Sparling
F-15 (TEWS)
ASD/YFEA

Beecher W. Vaughn

AE Software Focal Point
ASD/AECC

97

VITA

Gary Michael Barbee was born on 7 February 1950 in Columbus, Georgia.
p He graduated from Central High School in Phenix City, Alabama in 1968 and

attended the University of Alabama for two years. In 1970, he transferred

to Auburn University from which in March 1973, he received a Bachelor of
Science degree in Electrical Engineering, as well as a commission in the
USAF. He was then assigned to Aeronautical Systems Division of Air Force
Systems Command at Wright-Patterson AFB, Ohio where he served as a research

and development electrical engineer. During this time, he performed

T N T e N R

computer hardware and software design and development contract management
as well as flight test functions for the AC-130 Gunship and HH-53 Pave
Low III development programs. In June 1977, he entered the School of
Engineering, Air Force Institute of Technology at Wright-Patterson AFB,

Ohio.

Permanent address: 4903 16th Court
Phenix City, Alabama 36867

This thesis was typed by Pamela Glendening.

98

wT

T — ; —— : I :
- i s O - LR e :

-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BEF?,%;"C‘C';:,T,Egg,‘;}g":ORM
[T REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFIT/GSM/SM/78S-1
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
A STUDY OF EMBEDDED COMPUTER SYSTEM SOFTWARE MS Thesis
ACQUISITION MANAGEMENT AND RECOMMENDATIONS TO
IMPROVE DEVELOPMENT VISIBILITY B i el e o
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Gary M. Barbee
Captain, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. P:(E)GRAAM ERLEMENTT. PROJECT, TASK
Air Force Institute of Technology (AFIT-EN) TR e
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
October 1978

13. NUMBER OF PAGES

98

. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Approved for public release; AFR 190-17
ML s

JQSEPY P. HIPPY, MaYor, USAF
Dt ot iffcrmaiten DEC 6 1978

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Embedded Computer Systems Software Development
Computer Software Software Acquisition
Software

Avionics Software

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

The United States Air Force is the largest user of computers in the world and a
major portion of that information processing capability is comprised of digital
aviondcs computers. This thesis describes some of the major problems of acquir-
ing Embedded Computer System (ECS) software for avionics systems. A description
of the DOD avionics software acquisftion process is included for background
information as well as a discussion of the applicable guidance, policies, and

regulations. (continued on reverse)

DD, on'ys 1473 E€OITION OF 1 NOV 68 15 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterec

-

N
v iy M
sl S

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20. ABSTRACT (continued)

Recommendations to improve software acquisition were derived from literature
research, refined by interviews with practicing scftware engineers and
managers, and presented as a product of this thesis. The interviews were
conducted with software acquisition personnel at the Aeronautical Systems
Division of Air Force Systems Command at Wright-Patterson AFB, Ohio. A major
conclusion of this thesis is that the development of a computer software
management discipline is both necessary and feasible.

UNCLASSIFIED

B : SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

-"_ e~ — .?- ". \'u)-
e N L B i gt T "t '
d SR

