

FTD-ID(RS)T-1731-77

RD-A065871

.

FOREIGN TECHNOLOGY DIVISION

SOME RECENT STUDIES IN THE CARDIOTOXICITY OF AEROSOL PROPELLANTS

by

Zijad Durakovic, Luka Stilinovic, et al.

Approved for public release; distribution unlimited.

D

DC

1979

19

Improve the second s	ACCESSION 151 RT13 UPD URAXHOUNCES JUSTIFICATION	White Socilies				FTD -ID(RS)T-1731-7	7
Requester: FTD/PHE Approved for public release; distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGI- NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION	A	FTD-ID(R. MICROFIC CSI77122 SOME REC AEROSOL By: Zij English Source: Country	S)T-1731- HE NR: 018 ENT STUDI PROPELLAN ad Durako pages: I Lijecnic July 197 of origin ed by: I	-77 HD - 77-C IES IN THE C NTS ovic, Luka S 11 cki Vjesnik, 76, pp 374-3 n: Yugoslav LINGUISTIC S F33657-76-D-	ARDIO stilin Vol s78	21 November 1977 450 TOXICITY OF ovic, et al. 98, No. 7,	
OR OPINION OF THE FOREIGN TECHNOLOGY DI- VISION. WP-AFB, OHIO.		Approved THIS TRANSL NAL FOREIGN EDITORIAL CI ADVOCATED C AND DO NOT OR OPINION	r: FTD/I for publ Ation is a re i text withou omment. Stat DR IMPLIED ARI NECESSARILY I	PHE lic release; endition of the of ut any analytical tements or theo e those of the Sou REFLECT THE POSI	RIGI- L OR RIES IRCE TION	PREPARED BY: TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION	

Lijekovi i metode

Lij. vjes 98:374, 1976

SOME RECENT STUDIES IN THE CARDIOTOXICITY OF AEROSOL PROPELLANTS Zijad Durakovic¹, Luka Stilinovic², Ivan Bakran Jr³, and Senadin Durakovic⁴

The chlorofluoromethane and ethane derivatives, because of their exceptional physio-chemical properties are very often used as propellant gas for different materials which are to be dispersed as aerosols (different household sprays, cosmetic sprays, medicines for inhalation, etc). The same gases are used as cooling gases in refrigeration equipment because they have a very low conversion point from liquid to gas and so the gas cools the environment. On the market, they have the names: Arcton, Genotron, Isotron, Frigen, Forane, Algoforane, Freon, etc. Manufacturer's advertising claims that such gases are practically non-toxic, do not irritate the respiratory organs and do not smell even at a 20% concentration volume in the air. $^{\perp}$ Such a claim is based on the chemical stability of the methane and ethane derivitives because of the stable chemical connection among the fluorine, chlorine and carbon, and on the basis of experiments with animals.²

The cardiotoxicity of the propellant gases has been the subject of studies in the U.S.A. since 1970 after the publication of the expidemiological study about the sudden and unexpected deaths among youngsters using different aerosols³.

¹·Zijad Durakovic, M.D., MSMD, specializing in Internal Medicine, teaching assistant of the Clinic for Internal Medicine in the Hospital Center of the Faculty of Medicine in Zagreb.

² Luka Stilinovic, biomedical engineer, MS - chemistry, teaching assistant of the department for occupational diseases, chief of the immunology lab of the Institute for Medical and Occupational Research JAZU in Zagreb.

³·Ivan Bakran Jr., MD, Specialist for internal diseases, teaching assistant of the internal diseases clinic in the hospital center of the Zagreb university.

4.Senadin Durakovic, biomedical engineer, teaching assistant of the microbiology lab, faculty of technology in Zagreb. Two years before, Speizer et al., had observed a high death rate among asthmatics who over-used and used uncontrolled (by inhalation) imprenaline aerosol. Since then, this type of medicine has been obtainable only by prescription in Great Britian³. In our country (Yugoslavia), an extensive article was published about this problem⁶. We can say about these initial studies that some researchers believe that propellant gases sensitize the heart on the arrhythmic action of the endogenic catecholamines^{3,7,6}. Some researchers believe that the inhalation of propellant gases cause, arrhythmia because of asphyxia⁹⁻¹¹ and others claim a cardiotoxic effect¹³⁻¹⁶.

In 1972 we published an article on the arrhythmogenic effect of the dichlorofluoromethane on a rat heart (Arcon 12, Freon 12)¹⁰. At the time we published our article, only one experimental study by Taylor, Harris⁹ and Silvergradeova¹¹ had been published which was critical of our study. From the theoretical and practical point of view the problem is important today. We will try to study the problem on the basis of our own experimental research with animals and on the basis of the studies of other authors. The latest experimental studies contribute much to the understanding of the damaging mechanism of propellant gases, but we must say, there is still a lot of discrepancy in the interpretation of the arrhythmogenic effect. Cohen¹⁷ believes that the inhalation of different aerosols with propellant gases causes a respiratory depression, tachycardia, and pupil dilation; and that clinical patterns are the same as those for delirium or mental unbalance. He believes that, in the case of overuse of the spray, death occurs because of respiratory cardiac arrest. However, it is not possible to learn from the article if the author is talking about the effect of the active substance or the toxic effect of the propellant gas. The author blames the propellant gas for the larinx cooling and spasm. Only one component of the aerosol the propellant gas - has the capability of evaporation point. Thus, the effect is cooling of the environment.

-2-

Bass³ questions such an explanation of the propellant gas effect. He believes that the persons who have died suddenly inhaling the propellant gas did not inhale the cold gas. Thus, cooling of the larinx was impossible, because the propellant gas reaches the larinx as a gas already warm. Bass³ adds that death occurs very fast, so it cannot be explained by progressive brain damage. Cohen¹⁷ believes that the sudden death occurs after the aerosol inhalation because of the heart arrhythmia caused by hipoxia. Our research shows that the rat's asphyxia causes only a transient bradicardium¹⁶. Taylor¹⁸ has tried to explain the importance of hzpoxia for the heart arrhythmia occurance in the case of Freon II. In his (Taylor's) experiments, rabbits have inhaled 9 possible mixtures of 21%, 11% or 7% oxygen with 0%, 5% or 15% of Freon II. Simultaneous inhalation of Freon II and oxygen has caused bradiarrhythemia, atrio-ventricular blockages and, finally, respiratory arrest in the experimental animals. This leads the author to conclude that changes of heart rythms are caused as an interaction of hypoxia and Freon II on the transparent level of the heart muscle.

Unexplained mechanisms of the arrhythmogenic effect of propellant gases was a reason that Aviado and Belej systematically tested 15 different propellants. After the intravenous anesthetization of mice by ternobarbiton, the experimental animals inhale propellants for 6 minutes. Some of the animals were given adrenalin intravenously. In accordance with the obtained results, the propellants were divided into three groups: the first group are propellants which cause heart arrhythmia and sensitize the heart for adrenaline effect (Freon 11, 3-chloromonofluoromethane, Freon 21, vinyl chloride, methylene chloride, trichloroethane and Freon 113 - trichlorotrifluoroethane); in the second group are the propellants which sensitize the heart for adrenaline (Freon 22, chloridefluoromethane, Freon 114, dichlorotetrafluoroethane Freon 115, chloropentafluoroethane, octafluorocyclobutane, isobutane and propane); in the third group are propellants

-3-

which do not sensitize the heart for the adrenaline effect (Freon 12, dichlorofluoromethane, Freon 142b, monochlorodifluoroethane and Freon 152a difluoroethane). The inhalation of Freon 11, 21 and 113 in a concentration of 10% has caused atrioventricular blockage and ventricular extrasistole. The gases from the second group did not cause heart arrhythmia even in concentrations of 40% to 60%. In our experiments¹⁶, Freon 12, after 1-1.5 minutes of inhalation by rats, has caused disturbances of the rhythm and the flow (nodal rhythm, ventricular extrasistole, all kinds of blockages, up to the total atrioventricular blockage), and finally, an astole after 8 to 30 minutes from the beginning of the inhalation. This is the difference between our experiments and Avaid and Beley experiments. It seems to us that the differences are caused by the different types of experimental animals and different concentrations of Freon 12. This claim was confirmed by the results of Reinhardt et al.²⁰. They did test the effect of 13 propellant gases on the dog heart. All tested propelant gases, including Freon 12, have caused arrhythmia. Another important variable in the experiments is the difference in the concentration of the propellant gas and the duration of inhalation. In our experiments, rats have inhaled Freon 12 in concentrations higher than 60% for 1-1.5 minutes. The mice¹⁹ were exposed to the same gas for 6 minutes and the concentration was higher than 40%. Finally, the dogs²⁰ have inhaled the same gas for 5 minutes in concentrations of 2.5% to 5%.

In our newest study²¹, we have tested (using the same method) the influence of Freon 114 (dichlorotetrafluoroethane) on the rat heart. The animals have inhaled propellant gas from a plastic bag for 1-1.5 minutes. Immediately after inhalation stops, sinoatric blockage, atrioventicular blockages of the second order type Mobitz I and Mobitz II have occured, further consequences have been complete atrio-ventricular blockage, progressive bradjarrhythmia, microvoltage and cardiac arrest. These results are almost identical to the arrhythmias caused by Freon 12 in our previous experiments.

-4-

Beley et al., have tested the influence of 15 propellant gases on monkey hearts. The monkies have been anesthesized using fenobarbitone. The experimental animals were artificially ventilated during the test and propellant gases were inhaled for 10 minutes in concentrations of 0.5%, 1%, 2.5% and 5%. After inhalation the adrenaline infusion was done for 5 minutes with a dose of 5 mg/kg/min. and inhalation of the propellant gas. Freon 11 in concentrations of 2.5% did not cause changes, but 5% Freon 11 has caused ventricular extrasistole and atrioventricular blockage in 2 of 7 monkies. The combination of mlocardiac ishemia caused by adrenergic adrenaline stimulation has increased heart sensitivity for arrhythmogenic action of Freon 11 tenfold. We have to mention the interesting study of Aviado and Belej of the isolated dog heart that has shown the depression of the heart chamber function for concentrations of inhaled Freon 11 and 113 of 2.5% and 5%. Freons C-318, 115 and 152a have caused the decrease of the miocardio contractibility in concentrations of 10% and 20%.

Doherty and Aviado, have studied the adrenaline role in heart arrhythmia after the inhalation of propellant gases. They have tested the effect of Freon 11, 12 and 152a on adrenalektomifized rats. For adrenalektomifized animals, Freon 11 in concentrations of 20% and Freon 12 in concentrations of 40% have caused arrhythmia. In the control group of experimental animals with intact thyroid gland, concentrations of Freon 11 and 12 twice as small, caused heart arrhythmia. The electrocardiogram changes caused by Freon 152a were similar to changes after inhalation of Freon 12 for adrenalektomifized animals and for control group animals. These facts led them to the conclusion that all three propellant gases cause arrhythmia indirectly because of the secretion of Katcholamina from the thyroid glands and by the direct stimulation of the beta-adenergic receptors of the mlocard. The same effect of propellant gas on the heart was achieved by the absence of arrhythmia after the blockage of the beta-adrenergic receptors using sotalole and propranolols. As a most important result, Doersty and Aviado

-5-

consider the fact that some propellant gases do not cause heart arrhythmia in mice and monkies, but do cause abnormality in the electrocardiograms of rats. All of the tested propellant gases cause a heart arrhythmia in at least one type of animal (mice, rats, monkies). This means that all of the gases are arrhythmogenic and rats are most sensitive to their arrhythmogenic action.

Kilen and Harris²⁵ have tested under in vitro condition the contractual capability of the isolated papilar muscle of the left rat heart chamber. Freon 12 in concentration of 11.35 mg/100 ml, rapidly decreased reversible isometric contraction of the papilar muscle. The effect of Freon 12 depends on the dose, for example, 1.06 mg/100 ml caused the decrease of the isometric contraction for about 20%. The negative isotropic effect of Freon 12 occured regardless of the quantity of available oxygen. Therefore, the depression of the contractibility of the miocard could be a cause for sudden and unexpected death of children using the propellant gases as a drug.

Friedman et al.²⁶ have determined the lethal concentration of the seven propellant gases for rats. All tested propellant gasses (Freon 11, 12, 21, 114, C-138 and isobutane) have caused apney and finally, cardiac arrest. The fastest was Freon 21. It caused the apner after four minutes of inhalation in concentrations of 19%. Freon C-318 was the slowest; it caused apney after 26 minutes in concentrations of 48%. The electrical activity of the heart disappears in 5 to 10 minutes from the occurance of the apney. Before apney it was noticed that the transitory acceleration of breathing had occured. The transitory acceleration of breathing, the decrease of breathing volume and the increased resistivity in the respiratory paths were noticed, but the authors did not try to explain them. Our results are very similar²¹, but the speed of the apnex appearance depended on dosage. When the animals inhaled propellant gas Freon 114 for one minute, the apney appears in 2 to 10 minutes from the end of inhalation. When the animals inhaled for 1.5 minutes, the apney appears one to three minutes after inhalation.

-6-

Friedman et al., have divided the propellant gases into three groups with respect to their effect on lung function. In the first group are Freon 12 and 21 which do not cause an increase of bronchial resistivity; in the second group are Freon 11 and C-318 which decrease lung ϵ lasticity and breathing volume; in the third group are Freon 114 and 115 which cause tehypney. On the basis of these results, Friedman et al. recommend that the two most toxic propellant gases Freon 11 and 12 be replaced with other less toxic propellant gases in aerosol cans. Brody et al., have tested the effect of Freon 11, 12 and 152a on the heart and lung in 96 mice. The mice have inhaled the propellant gases for 4 minutes in concentrations of 1% and 2%. This relatively low concentration of propellant gas causes an increase of the bronchial resistivity and decrease of lung elasticity. Intratrachial application of papain has caused the decrease of breathing frequency and consecutively a decrease of the minute lung ventilation, but breathing volume does not change. Lung edema was found postmortem. Further, in experimentation, the animals with lung damage using the proteolitic enzime of the papain have inhaled propellant gas for 4 minutes. This decreases the breathing volume, minute lung ventilation, lung elasticity and breathing frequency. Seven minutes after inhalation of 10%-Freon 11 we have a heart arrhythmia for 4 minutes. Intravenous application of adrenøline accelerates the occurance of arrhythmia, for example, arrhythmia appears for 3.8 minutes after the inhalation of the propellant gas. For experimental animals with priliminary given papain, 10% Freon 11 has caused large disturbances of rhythm and behavior regardless of the adrenalin. The inhalation of Freon 12 for 4 minutes in concentrations of 40% together with adrenaline has produced a high amplitude of the ARS complex of the electrocardiogram. Freon 152a caused arrhythmia but combination with adrenaline did not increase the arrhythmogenic effect of the propellant gas in mice pretreated with papain. The conclusion is that death is the result of cardiac arrest.

all and a set the second of the

Measuring the chemodynamic changes for dogs, Simaan and Aviado²⁸ have tried to test the direct effect of Freon on the dog heart. They have recorded the pressure in the lung artery, left atrium and in the left chamber at the end of the diastole. The dogs inhaled Freon 11, 12, 114, 152a and C-318. A concentration of Freon 11 of 0.5% did not cause pressure changes, but 1% Freon 11 did cause an important pressure decrease and an increase of heart frequency and pulmonary vascular resistivity. Freon 12 caused the same effect, but in concentration of 10%, Freon 114 in concentration in concentration of 2.5%, Freon 318 in concentration of 20% and Freon 152a did not have any effect in concentration of 20%. It is important to say that the system vascular resistivity was not stable during the experiment; increasing and decreasing, in an amount causing the authors to conclude that its measurement is not important for the experiments. In their latest study, Simaan and Aviado²⁹ have perfused isolated dog lungs and then applied propellant gas by inhalation. Freon 11, 12 and 114 have caused a drop of the average aorta pressure but only Freon 11 and 14 have decreased pressure in the lung artery. When the animals have obtained, together with Freon, the blocator of the alfa-adrenergic receptors, the average pressure in the lung artery, in the aorta and the average perfusion pressure decreased. The pressure in the left atrium and the heart frequency did not change. In order to find out if the propellant gas acts locally on the parasymptotic reflex mechanism of the respiratory system, parasympaticolitic atropin was asministered to the animals. The inhalation of 5% Freon 11 after atropin had the same effect as in the experiment with tentolamin - alfa-adrenergic blocator.

Finally, we would like to mention the case of a 16 year old who has died, probably because of the inhalation of an overdose of aerosol from a plastic bag.³⁰ It was a mixture of Freon 11 and 12. The epidemologic data about the inhalation of propellang gas are confirmed, and an hour after inhalation he died in the local hospital. Postmortem analysis using gas chromatography was applied to measure the concentration of Freon 11 and 12 in different times. Propellang gases were found

-8-

Figure 1. Wright "air peak flow meter"

in the blood, brain, liver, kidney, larinx and bladder. The author concluded that such a distribution is similar to the distibution of chloroform after death caused by chloroform. It appears that such a good postmortem analysis has proven that for humans there is a danger in the case of over-inhalation, if not of all propellant gases, at least for Freon 11 and 12. To this time, cardiotoxic concentrations of the particular propellant gas, the precise mechanisms of its action and different sensitivity of different animals on the inhalation of the propellant gases is an open question.

Our personal experiences give us enough reasons to consider an indispensible rational approach to the application of the bronchospasmolics in the form of an aerosol. It is necessary to know about the danger from the arrhythmogenic effect of the propellant gas and bring it to the patients attention. On the other hand, a bronchospasmolitic of the sympaticomimetic type should be prescribed only in the case when, on the basis of functional testing of the lungs, we come to the conclusion that the bronchial obstruction of the patient at the given moment is only or basically, caused by the spasm of the smooth bronchial muscle and has a reversible character. It is hopeless to

-9-

expect results from such medicine in the case of inflamation of nasal passages and the obstruction of the respiratory paths with high viscosity spasm. Probably, such circumstances force the lung patient to uncontrolled use and in panic because of short breath, he continues to inhale the bronchospasmatic, exposing himself to danger.

All these remarks do not intend to discredit this important and useful group of medicines, but only to create an appropriate therapeutic attitude toward their application.

It is impossible to evaluate the therapeutic effect of antihypertensor without measurement of the pressure. We have many prescriptions for bronchospasmolitics, most often in the form of aerosol, without evaluation of their therapeutic effect. If the evaluation of their therapeutic effect is done, then it is based on a patient's statement or on the basis of lung ascultation. Today, we have instruments, no more expensive than a pressure meter, which can evaluate the effect of the bronchospasmolitics very quickly. The Wright peak flow meter is such an instrument. Such an instrument can help to evaluate the effect of the bronchospasmolitic and its therapeutic action. Using the graph of the normalized value we can scale the effect of the bronchospasmolitic. We believe that by using such an instrument, lung patients can protect themselves from the harmful effects of aerosols and propellant gases of the bronchoe spasmolitic. The lung patient should know that if, after the use of the bronchospasmolitic, he does not feel better, he should immediately contact his physician. Only the physician can diagnose the right reason and the treatment and if the patient has inhaled a large quantity of bronchospasmolitic, the physician may decide to use corticosteroide.

LITERATURE

- 1. Frigen: Handbuch für die Kalte und Klimatechnik, Hoecht. 1969
- 2. Herzka A.: International encyclopaedia of pressurized packaging (Aérosols), Pergamon Press, Oxford 1966, str. 3
- 3. Bass M .: Sudden sniffing death, JAMA 212:2075, 1970
- Speizer F. E., Doll R., Heaf P. J.: Investigation on to use of drugs preceeding death from asthma, Brit, med. J. 1:339, 1968
- 5. xxxx: Beta-adrenergic bronchodilators and sudden death in asthmatics, Drug Therap. Bull. 14:21, 1976
- Duraković Z., Stilinović L.: Problem kardiotoksičnosti potisnih plihova, Arh. hig. rada toksikol. 25:349, 1974
- 7. Bass M .: To the Editor, JAMA 215:118, 1971
- Paterson J. W., Sudlow M. F., Walker S. R.: Blood-levels of fluorinated hydrocarbons in asthmatic patients after inhalation of pressurised aerosols, Lancet, 2:565, 1971
- 9. Taylor C. J., Harris W. S.: Cardiac toxicity of aerosol propellants, JAMA _14:81, 1970
- Egle J. L., Putney J. W., Borzelleca J. F.: Cardiac rate and rhythm in mice affeted by haloalkane propellants, JAMA 222: 786, 1972
- 11. Silvergrade A.: Aerosols and aerosol propellants in asthma, JAMA 215:118, 1971
- Silvergrade A.: Cardiac toxicity of aerosol propellants, JAMA 222:827, 1972
- Flowers N. C., Horan L. G.: Nonanoxic aerosol arrhythmias, JAMA 219:33, 1972
- 14. Flowers N. C., Horan L. G.: Acid-base relationship and the cardiac response to aerosol inhalation, Chest. 63:74, 1973
- Fraser P. M., Speizer F. E., Waters S. D. M., Doll R., Mann N. M.: The circumstances preceeding death from asthma in young people in 1968 to 1969, Brit. J. Dis. Chest. 65:71, 1971
- Stilinović L., Duraković Z., Vukadinović Gj., Beritić T.: Utjecaj diklordifluormetana (Arcton 12, CCl₂F₂) na srce štakora, Arh. hig. rada toksikol. 23:19, 1972
- 17. Cohen S.: Glue sniffing, JAMA 231.653, 1975
- Taylor G. J.: Cardiac arrhythmias in hypoxic rabbits during aerosol propellant inhalation, Arch. Environ. Hith. 30:349 1975

- Aviado D. M., Belej A. M.: Toxicity of aerosol propellants on the respiratory and circulatory system, I cardiac arrhythmia in the mouse. Toxicology 2:31, 1974
- Reinhardt C. F., Azar A., Maxfield M. E., Smith P. F., Mullin L. S.: Cardiac arrhythmias and aerosol smiffings, Arch. Environ. Hith. 22:265, 1971
- Duraković Z., Stilinović L., Bakran I. Jr.: Electrocardiographic changes in rats after inhalation of dichlorotetrafluoroethane (Arcton 114, C₂Cl₂F₄), Jap. Heart J., u tisku 1976
- Belej A. M., Smith D. G., Aviado D. A.: Toxicity of aerosol propellants in the respiratory and circulatory system, IV cardiotoxicity in the monkey, Toxicology 2:381, 1974
- 23. Aviado D. A., Belej A. M.: Toxicity of aerosol propellants in the respiratory and circulatory system, V ventricular function in the dog, Toxicology 3:79, 1975
- Doherty R. E., Aviado D. M.: Toxicity of serosol propellants in the respiratory and circulatory system, VI influence of cardiac and pulmonary vascular lesions in the rat, Toxicology 3:213, 1975
- Kilen S. M., Harris W. S.: Direct depression of myocardial contractility by the aerosol propellant gas dichlorodifluoromethane, J. Pharmacol. Exp. Ther. 183:245, 1972
- Friedman S. A., Cammarato M., Aviado D. M.: Toxicity of aerosol propellants on the respiratory and circulatory system, II respiratory and bronchopulmonary effects in rat, Toxicology 1:345, 1973
- Brody R. S., Watanabe T., Aviado D. M.: Toxicity of aerosol propellants on the respiratory and circulatory system. III influence of bronchopulmonary lesion on cardiopulmonary toxicity in the mouse, Toxicology 2:173, 1974
- Simaan J. A., Aviado D. M.: Hemodynamic effects of acrosol propellants. I cardiac depression in the dog, Toxicology 5:127, 1975
- Simaan J. A., Aviado D. M.: Hemodynamic effects of aerosol propellants, 11 pulmonary circulation in the dog, Toxicology 5:139, 1975
- Poklis A.: Determination of fluorocarbon 11 and fluorocarbon 12 in post-mortem tissue: a case report, Forensic sci. 5:53, 1975

and and a stranger was a series of the

and the second s

DISTRIBUTION LIST

DISTRIBUTION DIRECT TO RECIPIENT

ORGANIZATION		MICROFICHE	ORGAN	IZATION	MICROFICHE
A205	DMATC	1	E053	AF/INAKA	1
A210	DMAAC	2	E017	AF/ RDXTR-W	1
B344	DIA/RDS-3C	8	E404	AEDC	1
CO43	USAMIIA	1	E408	AFWL	1
C509	BALLISTIC RES LABS	1	E410	ADTC	1
C510	AIR MOBILITY R&D	1	E413	ESD	2
	LAB/FIO			FTD	
C513	PICATINNY ARSENAL	1		CCN	1
C535		ī		ETID	3
0,37	AVIATION DID CAL	—		NIA/PHS	ī
C591	FSTC	5		NICD	5
C619	MIA REDSTONE	í			-
D008	NISC	ī			
	USAICE (USAREUR)	;			
H300		i			
P005	ERDA	1			
	CIA/CRS/ADD/SD	1			
NAVOR	NDSTA (50L)	- .			
NASA/	KSI	1			
AFIT/	'LD	1 .			

and the second second

2

FTD-ID(RS)T-1731-77