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A LIPTING SURFACE OF AVERAGE ASPECT RATIO IN A SUBSONIC GAS FLOW

A. N. Panchenkov

(Kiev)

For many technical applications there must be information on the
hydrodynamic characteristics of lifting surfaces of average aspect
ratio of arbitrary planform. However, in developing an analytical
theory of a lifting surface of average aspect ratio there are
difficulties involving peculiarities of the general problem of the

motion of a lifting surface in a gas flow.

Methods of the potential of accelerations have made it possible
to obtain a two-dimensional singular integral equation for an

arbitrary lifting surface under various conditions [1). Further study

- 11 09 146
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proceeds along two directions.

1. Development of numerical methods of solving the integral

equation. The most widely developed method in various studies
is the method of collocations, which in this problem has a simple

hydrodynamic interpretation. Distributing discrete vortices along the
lifting surface, let us trace the formalistics of the method of
collocations; here the number of vortices determines the precision of

the solution.

A system of one-dimensional integral equations of the
collocation method can be obtained, avoiding operations of the
methods of acceleration potential - by examining the physical picture
of the flow, caused by []-shaped vortices. This method is used in [2]

to thoroughly stuly a broad class of stationary problems of a lifting

surface.

2. Development of analytical methods for lifting surfaces of
limited planfora. The most widely developed theory is that of
the Prandtl lifting line - for wings of large aspect ratio - and the

theory of low-aspect wings (the Jones theory).

The Prandtl theory is "incorrect"™ in the limiting sense [7]); in

this connection it is not possible to construct, using familiar
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methods, a theory of a wing of average aspect ratio in which the
Prandtl problem would be the zero approximation. This "incorrectness"
in the limiting sense of the Prandtl prcblem creates mathematical
difficulties and has attracted the attention of researchers. For i
example, M. Van Dyke [8] again turns to this problem and develops a
solution based on various expansions and on the connection of the
solutions in the problem with "“singular perturbations" (using his
terminology). The theory of a low-aspect wing is "correct”™ in the

limiting sense, and it can be obtained by passage to the limit from

the general problem of a lifting surface [7].

The theory of a low-aspect wing gives satisfactory results only
for A\ << 1, and its extension to an aspect ratio of ~1 and more leads
to high errors, particularly in determining the moment on the wing.

However, its "correctness™ opens the way for development of methods

in wvhich the Jones theory will be the zero approximation.

The authors of [4,5) derive a solution to the problem in the
form of a series in powers of A2, which does not appreciably expand

the boundaries of applicability of the theory.

In [7] ve propose seeking the solution to the problem in the
form of a series in powers of tk-]/K%Y4-L—%¢ which can give

converging results for a broad range of X\ The results obtained in
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this work are encouraging; however, the unwieldiness of the
asymptotic methods of the perturbation theory cbviously leads to

difficulties in daveloping a theory for wings of arbitrary form.

In the present work we develop an analytical theory of a lifting
surface with average aspect ratio, based on the use of integral
operators [3] that convert the solutions of the two-dimensional
Laplace equation into solutions of elliptical equations. The general
representation obtained for the velocity potential includes all the
results known from the literature as the zero approximation (a wing
in plane-parallel flow, the Prandtl theory, the Jones theory, and the
Laidlaw theory of wings of arbitrary aspect ratio [6)). The first

approximation, examined in this work, leads to a linear second-order

ordinary differential equation for load distribution over the wing

chord. This differential equation is easily solved for arbitrary ving

planfornm.

As applications of the general results, in this work we study

vings of rectangular and triangular planform. The vast amount of
calculation data given in [2) is in good agreement with the obtained |

results for the intervals of practical interest up to \ ~ 4.

With an increase in Mach number the limits of applicability of

the results increase, and vhen M > 0.75 they are valid to \ =~ 10.
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This fact, in particular, leads to the conclusion that for high Mach
numbers even high-aspect wings must te studied using the theory of

vings of average aspect ratio.

The problem of the stationary movement of a lifting surface in

an incompressible fluid reduces to the boundary-value problem for the

Laplace equation:

Ap = 0;
9 =Fl): &€= (n
o, =0 XY 2E 8,

vhere s, is a surface moving in a fluid wvithout perturbations,

coinciding with the projection of the lifting surface onto plane Oyx;

S, is a semi-infinite surface moving in a fluid without

perturbations and beginning at the trailing edge of surface s,.

Using the basic idea of Bergman's method [3] of the possibility

of representing the solution to an elliptical equation in teras of

the solution to the Laplace equation, for solving the Laplace

equat ion in three-dimensional space ve can write the representation

o=F,@ [0..(8. 7+ Ev,.. (o)L, (t)] +
2 ne=|

os ] (2
+.Pm(‘) [lh(’- ')+ E x.m(’- .’QM“’ l- )

[
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Here %« amd *» are solutions of the two-dimensional Laplace

equation.

Series (2) contains familiar theories as lover-order
approximations:

1) ¢ = #5(x,z) - plane-parallel flow;

2) ¢ = F(Y)%p(x,2) ¢ xgo(y,%) - Prandtl theory of a high-aspect

wing;

3) P(x)xq(y,2) - theory of a lov-aspect wing;

4) & = F(y)do(x,y) ¢ P(x)Xg(x,y) - Laidlaw theory of a wing of
arbitrary aspect ratio [6].

Let us state the problem about the realization of the algorithm

used to calculate series (2).

In coordinates ;. : the Laplace equation will have the form

|
(3) 3
Q;'.+ e; + At (v) 9 =0
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The connection among the coordinates is given by the
relationships

X --}b (y).
¥ =yl (x)
2 =12b(y),

vhere A (v = %((IT)) is the relative span in section x:

b(y) is the half-chord in section y;
l(x) is the semispan in section x.

If the integral operator realizes the mapping ¥(k j. 9~ 9(t.4 2 and

set ¥ is the solution to the equation
Yat¥:—8'wy=o (%)
such an operator vill be called the integral Pourier operator.

For aquation (4) there exists an integral operator of the first

kind with the degenerate kernel

Y=Y + E L) f ¥ Fuly,) dy. (5)
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vhere v,—¢, is

the associated solution to the Laplace equation.

We easily find that functions X apd Fn satisfy the functional

relationéhips
=B ) Fa ) + Ky () F, (0) = Ko () F (4,) = 0,

=84 ¥ 2K, @) Fa ) =0.

nes|

Let operator T be given in the foram

Eofa
rw:ﬁﬁwu,nNmnn

then from (3) we get

N* (k%) , N*
Yo+ ¥, + vk (DY =0 Ay T B (k).

(6)

n

(8)

If function N(k,x) is the solutiom to the differential equation

N* (k, ) AT (x) 4 B* () N (k, X) =0,

operator T in form (8) realizes the required mapping.

. -l e~ " 2 ————
i e SN - Ny :m ‘ I‘
i
-

(9)
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Now we have

O=TY m o (Yoo 7 AN (& T+
0

of Kn W) ¥y (k. y. 3) N (k. 3) dkF , (¢)) dy,. (10)

p-}‘l

o

n=sl

Prom form (10) we cam obtain the second part of series (2), if

we set

o [ Yo DA = P Pl
The first part of series (2) can be obtained in the same manner,
introducing the operator T, that realizes the mapping
¥(x k2)>0lxy2)
Now let us apply form (10) to the problem of the motion of a

lifting surface.

If ve retain only the first term of series (10), we get an

approximation corresponding to the theory of a low-aspect wing.

In accordance with this, we assume

o ar (x. n)
Ly b7 ON® Fara L L (00 (11)
2"§ o(lyr) (lx) =i;!—i_(‘_ dﬂ,

) =

=)

= )
vhere r n=/yE W& is circulation about the contour LEI[l+zx] in
x
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section 1,

Let us introduce in (11) an assumption typical for a problen
only of the class

FED=T@ym y©0 =1,

then

+1

Yok 7.0 = (Y0 dnG (k):
. f.(yvv *)

T R (12)
Mﬁ? (k) N (k, 3) dr.

Formula (11) defines the values of the induced

axis z on the lifting surface.

(10), ve get the one-dimensional singular integral equation of the
problen

velocity along

Defining the induced velocity from

’. —«
1 1
e j‘w(m[ +

j? Fy () T
@ —n

_SKJznmnNWAx
vy =My '

iDMs

X dkdy, |dn = F (x, §). (13)

2

—_

Let us examine the problem in the second approximation,

retaining in (13) only the terms containing P, = 1 anqd Kn®==%-BHMD.
Prom (9) we have
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2 2, N (& x)
B (k) = —2 (X)m.
then
) 2 -~ \
I-§&®Gm~mnu=—*?({g>m‘ (14)
and the equation will have the foram
| & ' (x) 1 A2 (x) I (x) g o
ﬁ'.‘y'(")[ﬂx) T=% " ¢ itL yln(u-'\)]dn-F(x‘yr (15)
-if '

{

Bquation (15) can be solved by various approximate methods. In
particular, this equationis regulated by the action of the inversion
operator in the class of functions unbounded at the ends, and for its
solution we can use methods of solving the Fredholm equations. Let us
give the solution to equation (15) for a lifting surface with a
constant angle of attack over the span im the variational
approximation, assuming v(W=Vi—1W, Operating on both sides of the

-Il

equation vwith the operator L-flfrhrdy. ve get the differential
7 -1

equation

My _ A T\
oy 8 (K(x)) i (16)

Bquation (16) is easily solved with arbitrary functions X (x) and

F(x). Thus we can study a broad class of wings with varying

A o i
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Flanfornms.

As the first example of using this developed theory, let us
examine the problem of a plane lifting surface of rectangular

planform, for which we have very detailed results obtained by the

collocation method in [2]}.
In this problem equation (16) will have the form
I' (x) — %’ I (x) = A (17

The solution to (17), containing tvo unknown constants, will be

2 2‘1 . _u/i"l
=5 S

l‘(x)=l[l+A1¢ 4 Age

As one of the conditions for determining the constants, let us

take the condition of the Joukowski-Chaplygin postulate:

I (—1)=0. (18)

The second condition cam be the condition of the boundedness of

the solution with A~ _, or the condition




P——-———————————— - ™

DOC = 1631 PAGE 13
o
From condition (18) 4,-Apl'1' and the solution is transformed to
the form
2V )
8 2y?
l‘(x)-X[I-Aac Tch‘—{—(l-!-l)]- (20)
L

From the condition of boundedness of the solution vhen A+ w

S PR
Aje=e e X '

r{o

wvhile from condition (18)

Novw let is Jefine the conditions on the ving,

The 1ift and moment coefficients of the ving are defined by the

formulas

Cy= 2 ar (=1, (21
el Thusn it
=y j; (K)de =T'(=1) . (22)

Using condition (18), we get

c_uk | ;
" T(“W )* (23)
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1 A 4;/}’}. (24)

na
e'-Tx[Hch!.{f —2”_0‘ T

The position of the aerodynamic center of the ving is defined by

the formula

A thu/i' 2

2y A a4V

Xpe= | — 1 : .
1— - (25)

ch4{2
If ve determine A, from the conditiom at infinity, the 1lift
coefficient will be
4

Cv-,%("'-r)l (26)

Now we can compare the results obtained with the familiar

calculation data.

In Fig. 1, curve 1 represeats the results obtained by S. M.
Belotserkovskiy for C) (2): curve 2 corresponds to calculation by

formula (26); curve 3 is for calculation per formula (23).

Pigure 2 shovs a graph of *r vs A. Curve 1 represents
calculation per formula (25); curve 2 - the results of

Belotserkovskiy's calculations [2). As Pig. 1 shows, formulas (22)

and (23) agree well with data for calculation ufp to aspect ratios of
~ 4,
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We know that the theory of a low-aspect wing gives, for a
rectangular wing (see Fig. 1), coincidences vwith the precise results
up to X ~ 1 with respect to lifting force, but leads to great errors
vhen determining the moment, even for A\ ~ 0.2. Therefore, conformity
of the developed theory with calculation data, with respect to
moment, is of great interest. From Fig. 2 we see that even forasula
(25) reproduces vwell the displacement of the aerodynamic center of
the wing in the set A€(0+4] . Pormula (26) agrees well with the data
in monograph [2) for A€I0+ »] « HOWwever, determination of A, based on

the condition at infinity leads to great errors in determining the

moment.

Por the subsonic flow of a compressible fluid, in foraulas
(20)-(26) it is necessary, in place of A\, to set A=Ap and P=Vi—A',

except for the )\ appearing vith the multiplier im (21)-(26).

It is interesting to note that with increasing Mach number the
set in vhich the obtained results are valid expands, and already when

M~ 0.75 A€ 10101,

Now let us examine the problem of a flat delta wing. The

function A (x) for a delta wing has the form
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A& = 5 i

and the general solution to equation (16) will be

{((_:))._ 4 Bix® 4 By,
]/1+§+| V1+__|
a = ] v Gy = (27)
We determine the constants B, from the conditions
I'x)\ =
(¥ )es = (28)
I'(—2)
(I(—z))h-"“ d
By e MR B, = — (1 + 28,)
] ¢|2.'+¢|?(|_.')' L] 1) (30)

The lift coefficients for a delta wing will be defined by the

formula d
C,-%_o"a.
).0-21,
vhere

¥ | B,2% 4 B2, (31)
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For the moment coefficient the following formula is valid:

0
c,,--;la[fr(x)dx-zr(—m]- (32)
~2 g

Calculating, we get

Cn=—TF 2o, (33)

B 2, B .
_;22‘ +a—:2-'. (34)

‘llacl— o

The location of the aerodynamic center of the ving is determined

by the formula

v
p=—g (35)
In Pig. 3, curve 1 representes the results of Lavrence's

calculations (8], while curve 2 shows the calculations per formula

3.

Figure 4 shows the curve *r calculated per formula (35). The

data obtained for a delta vimg give values for Ap < 25 that are

satisfactory for technical applications.

R
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The influence of the Mach number in the delta-wing problens is
calculated in the same manner as in the previous problem. Using the

developed method we can also study the problem of a lifting surface

in a supersonic flow.
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