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A LIFTING SURFACE OP AVERAGE ASPECT RATIO IN A SUBSONIC GAS PLOW

A. N. Panc henkov

(Ki ev)

For man y technical applications there must be information on the

hydrodynasic characterist ics of lifting surfaces of average aspect

ratio of arbitrary planform . However, in developing an ana lytical

theory of a lifting surface of average aspect ratio there are

difficulties involving peculiarities of the general problem of the

motion of a lifting surface in a gas flow.

Methods of the potential of accelerations have made it possible

to obtain a two—dimensional singular integral equation for an

arbitrary lifting surface under various conditions (1). Furthe r study

. .il Q~~ ~~~~~
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proceeds along two directions.

1. Development of numerical method s of solving the integral

equation. The most widely developed method in various studies

is the method of collocations, which in this proble. has a simple

hydrodynam ic inter pretation., Distributing discrete vortices along the

lif ting surface, let us trace the formalistics of the method of

collocatjons; here the number of vortices determines the precision of

the solution.

A system of Dne-dimensional integral equations of the

collocation method can be obtained, avoiding operations of the

methods of accelera tion potential - by examining the physical pict ure

of the flo w, caused by fl—shaped vortices. This method is used in [2J

to thoroughly stuly a broad class of stat ionary problems of a lifting

surface.

2. Deve]op.ent of analytical methods for lifting surfaces of

limited planform. The •ost widely developed theory is that of

the Prandt l lifting line — for wings of large aspect ratio — and the

theory of low—aspect wings (the Jones theory).

The Pra ndtl theory is ~incorrect” in the limiting sense (7); in
this connection it is not possible to construct, using familiar

- ~~~~~~~~~ 
. 
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me tho5s, a theory of a wing of average aspect ratio in which the

Prandtl problem would be the zero approxi mation. This “incorrectness”

in the limiting sense of the Prandtl problem creates mathemati cal

difficulties and has attracted the attention of researchers. Pot

example, N. Van Dyke (8) again turns to this problem and develops a

solution based on various expansions and on the connection of the

solutions in the problem with “singula r perturbations” (using his

terminolog y). The theory of a low—aspect w ing is “correct” in the

limiting sense, an d it can be obtained by passa ge to the limit from

the general problem of a lifting surface (7].

The theory of a low-aspect wing g ives satisfactor y results only

for )~ <C 1, and its ertension to an aspect ratio of — 1 and more leads

to high errors, particularly in determining the moment on the wing.

However, its “correctness” opens the way for development of method s

in which the Jones theory will be the zero approximation.

The authors of [L$ ,53 derive a solution to the problem in the

form of a series in powers of X2 , which does not apprecia b ly ex pand

the boundaries of applicability of the theory.

In (7) we propose s. .kiag th. soletiom to th. problem in the

form of a ser ies in powers of T
~
... J/(+)

’+ 1 —+ .  which can g ive

converging resulti for a broad rang. of ~~ Tb. results obtained in
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this work are encouraging; however, the unwield iness of the

asym ptotic methods of the pertur bation theory obviously lea ds to

difficulties in developing a theory for wings of arbitrary for..

In the present work we develop an analytical theory of a lifting

surface with average aspect ratio, based on the use of integral

operators ( 3 )  that convert the solutions of the two—dimens iona l

Laplace equation i n t o  solutions of e l l ipt ical  equ at ions. The general

representation ob ta ined  for t h e  velocity po ten t ia l  includes all  the

results known f rom the l i t e ra tu re  as t h e  zero approximat ion  (a wing

in plane—paral le l  f l o w , the Pr andt l theory,  the Jones theory, and the

Laid law theory of wing s of arbitrary aspec t rat io ( 6 ) ) . The f i r s t

approx imat ion , examined  in this work, leads to a linear second—order

ordinary d i f f e r ent ial equation for load distribut ion over the wing

chord . This di f f e ren t i a l  equat ion is easily solved for arb i t r a r y  wing

p lanf  arm .

As appl icat ions  of the genera l results, in this wor k we s tudy

wings of rectangular and triangula r planfor.. The vast amount of

calculation data given in (2) is in good agreement with the obtained

results for the intervals of practical interest up to X — SI.

With an increase in Mach nu.ber the limits of applicability of

the results increase, and when N > 0.75 they are valid to X — 10.
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This fact, in part icular , leads to the co nclusion that  for  hig h Mach

num bers even high-aspect wings must be studied using the theory of

wings of average aspect ratio.

The proble. of the stationary moveae~ t of a lif ting surface in

an incompressible fluid reduces to the boundary—value prob lem for the

Laplace equat ion:

~,— F (g ) ;  g~~ s 1; ( 1)
ç
~

— 0;  x , y , ~~ ( s 1.

where s1 is a surface moving in a f lu id  w i t h o u t  pe r tu rba t i ons,

coinciding with the projection of the lifting surface onto plane Oyx;

s2 is a semi—infinite surface movin g in a fluid withou t

per turba t ions  and beg inn ing  at the t r a i l i n g  edge of s u r f a c e  s
~ .

Using the  basic idea of Bergm an ’s method ( 3]  of the possibi l i ty

of representing the solution to an elliptical equation in te r ms of

the solution to the Laplace equation , for solving the Laplace

equat ion in three-dimensional space we can write the representation

F~ 4c) ‘)+ (x. .) L11, +

~~~~~~~~~~~ ,)+ Z,~ (v, (2)

_ _ _ _ _  

i~~Ald
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He rs 90. amd ~o. are solut ions of the  t w o — d i m e n s i o n a l  Laplace
eq uat joe.

Series (2) con ta ins  fa m i l i a r  theories as low er—order
approximations:

1) • = 00 ( x ,z )  — p lane—para l l e l  f low ;

2) • = F ( y ) ø , (x ,z) 4 X o(7.*) — Prandtl theory  of a h igh—aspec t
wing ;

3) P(x)x 0( y, z )  — theor y of a low—aspect w i n g ;

4) 0 = P(y)00(x,y) • P(m)x~~(z,y) — L a i d law  theory  of a w ing  of
arbitrary aspect ratio (6).

Let us state the problem about the realization of the algorithm

used to calculate series (2).

In coordinates ,~~ tb. Laplace equation will have the form

(3)
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The connection among the coordinates is given by the

relat ion ships

where 
~~~~~~~~~ is the relative span in section x;

b(y) is the half—chord in section y;

1(x)  is the semispan in section x.

If the istegc~al operator realizes the mappia g ~Y(k , ~ . z ) -~~9 ( x . Y l )  and

met ‘V is the solution to the equat ion

(4)

such an operator will be called the integral Fourier operator.

For e quation (4) there exists an integral operator of the first

kind wi th  t he  degenerate kernel

V Y•+ ~~ K~ (~) ~ ‘V•P~ (y1)4 (5)

~~ii-~~~~LL~~: 
—---4
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where ~‘. — c , is the associated Solut ion to the Laplace equa tion .

We easil y f i n d  th a t  functioas ‘~ ‘ aM ~ satisfy t h e  f unct ional
relation sh ips

B’Iç (i,; F~ (v,) + x; (~) F~ ~~ 
— /(~ (y) F (y 1) = 0. (6)

(7)

Let operator T be given in the form

(8)

t h en  from (3) we g.t

~~~~~~~~~~~~~~~~~~~~~~~~~~ )~
t (x) N at ( )

If function N (k,x) is the solution to the differentia] equation

N ( k , x ) )
~
’(

~ )+ 8’ (k) N (k . ~ =0. (9)

operat~or T in form (8) realizes the required mapp ing .

- -~-~~ - ------- ---— -.-- ——-~ --—--- -~ --
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Wow we hi ve

+ 
~ 5 S K,, (v) ‘V 0 (k. 

~ ~
) N (k. ~ dkF,, (~~

) d~~. (1 0)

From form (10) we cam obtaim the sacond part of series (2), if

we set

~p, (k. ~, ~ ‘N (k. ~ dk — P,,1 (i~ Xe,,, (y~ 
z)

The first part of series (2) can be obtained in the same manner ,

introducing the opera tor  T 1 that realizes the mapping

‘V (x, k. z) -~ p (x, &q, i)

Now let us apply form (10) to the problem of the motion of a

l i f t i n g  surface.

If we re ta in  only the f i rs t  ter m of series (10) , we get an

approximation corresponding to the theory of a low—aspect wing.

In accordance with this, we assume

~~~~~~~
k.

~~
O) N (k , i

~
d k .

~~~~~S 
‘~~~dr1 (11)

where ç j) 4 is circulation about the contour L€ !1 ÷ x) in

3.

~~~~~~~~
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Sect ion ~.

Let us introduce in (11) an assumption typical for a problem
omly of the class

r(x.~~=r(x)y(~ , y (0)— I ,

then

‘I’, (k . ~~ 0) = 

~

(12)

Fornu].a (11) defines the vali.s of the induced velocity along
axis z on the lifting surface. Defining the induced velocity from
(10), we get the one—dime nsional singular integra l equation of the
problem

LJ  Y’(t ~i) [.~-~~ + 
~ 

K,, G k) G (k) N(k , x)

X dAdY:] d Yl =F ( ; ~~5. (13)

Let us examine the probl•m in the second approximation,
retaining in (13) only the terms containing F i = 1 and
Prom (9) we have
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* $ N~ (k , x)B (k) — — 7 .  (x) N (k , x)

~hen

I— ~
’ K 1 ( ~~G ( k ) N ( k , ~~~~~~~~~~~ (f- ~ _) v) ( 14)

an d the equation will have the form

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (15)

E qua t ion  (15) can be solved by var ious approx imate  methods.  In

particular, th i s eq uat ionis regula ted by the action of the inver sion

opera tor in the class of fun ctions un boun ded at the en ds, and for its

solution we can use method s of solving the Predhola equations. Let us

give the solution to equa tion (15) for a lif t ing surface w i th a

constant angle of attack over th. span in the var iational

approximat ion, assuming ~(1i)—Yi~~ ’. Operating on both sides of the

eq uation wi th  the op rator L.’.fV t~~~’dy , we get the d i f f e ren t ial

equation ‘-

(16)

Equation (16) is easily solved with arbitrary functions X(x) and

?(x). Thus we can stud y a broad class of wings wit h varyin g
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planforms.

As the first exam ple of using this developed theory, let us

examine the problem of a plane lifting surface of rectangular

planform , for which we have very detailed results obtained by the

collocation method in (2]..

In this problem equation (16) will have the form

I’ (x) — .2’~ J’ (x) = 7. (1 7)

The solution to (17), containing two unknown constants , will be

I 2 P ’2 2PT
r (x) + Aje~~ + A1e

As one of the conditions for determining the constants, let us

take the condition of the Joukovski—Chaplygin postulate:

I”( 5)~~~ 
(18)

The second condition can be the condition of the boundedness of

the solution with ~~~~~~~~~~~~~~~ or the condition

(19)
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Prom cond ition ( 1$) A S — A 1., ~ and the so lution is t r a n s f o r m e d  to
the form

F ‘4’ 2~~1 1ch t (z + I )j . (20)

From the condition of bomndedness of the solution when ~~~~~~~

4 
~ yr

A,_ . t .~~~~ ,
while from condition (18)

~vr
A 1 4 Vr

Nov let is define the conditions on the wing .

The lif t and momen t coefficients of the w ing are defined by t he
formul as

(21)

c.N__r u{Sr (x)dx_r (_ I)]. (22)

Using condition (1$), vs get

(23)

— ~~~~~~~~~~ :— _ -~~~~~~~~~~ _
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ch~~~! 

_
~~~~ th~~~!J. (24)

The position of the aerod ynamic center of the wing is defined by

the formula

~ h~~
”
~ 

2
4 )~1ch

Xjr~~ I~~

~~

— 

~~~~~~~~ 

(25)

If we determine A 1 from the conditio n at infinity, the lift
coeff ic ient  will  be

~~~ _ 4 \
I—. ‘. 

~~ (26)

Now we can compare the results obtained wi th  the  f a m i l ia r

calculation data.

In rig. 1, curve I represents the results obtained by S. N.

B.lotserkovskiy for C’ (21; carve 2 corresponds to calculation by

formula (26) ; curve 3 is for calcalation per formula (23).

Figure 2 shows a graph of 1p VS h. Curve 1 represents

ca lculation per formula (25); curve 2 — the results of
R.lotaerkovskiy ’s calculations [2). As Pig. I shows, formu las (22)

and (23) agree veil with data for calculation up to aspect rat ios of

._— ~,__ _~~~~~ . L_ - -~~~~~~~
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We know that the theory of a low— aspect ving gives, for a

rectangular wing (see Fig. 1) , coincidences wi th the precise resul ts

up to — I with respect to lifting force, but leads to great errors

wh en de t e rmin ing  t h e  moment , even for  7. — 0.2. Therefore, conformi ty

of the developed theory with cal culation data, wit h respect to

moment, is of grea t interest. From Fig. 2 we see that even for mula

(25) reproduces veil the displacement of the aerodynamic center of

the wing in the set 7.E(0 ÷ 41 . Formula (26) agrees well with the data

in moitograph (21 for 7.EI0+co~ . loveve r, de te rmina t ion  of A 1 based on

the condition at infinity leads to great errors in determining the

moment.

For the subsonic flow of a compressible timid, in for mula s

(20)—(26) it is necessary, in place of 7., to set 7.~~~7.~ and

except for the 7. appear ing  with the multi plier ii (21)—(U).

It is in te res t ing  to note that  with  increasi ng Ma ch numbe r the

set in which the obtained results are valid expands, and alrea dy w hen

N — 0. 75 7.f (O ÷ 101.

Now let us examine  the proble, of a f l a t  delta wing.  The

funct ion 7. (x ) for a delta wing has the f o r m

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7 . .7. (x) — T IxI

and the general solution to equation (16) vilj be

— t + s~’ + a~ —”,

72 a,— —----—-
2 ( 2 )

We determine the  constants  8~ fro. the conditions

Ir (x)y
(28)

(~~:
‘
~)~~~~~

o. (29)

— 

~~r ~~~~~~~~~~~~~~~~~~ B, —(I + 28k). (30)

The lift coefficients for a delta wing will be defined by the
formula

C, -,

~‘e

where

(31)

- 
..- - . - 

— —  

_
:~

-L
~~~
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For the moment coefficient the following formula is valid :

Cm =..
~.a[ 1F (x) dx __ 2P (_ 2J] . (32)

Calculating, we get

~~~~~~~~~~~~~ (33)

~~
._ Si ~~ a,+2~~ -~~2”. (34)1 a~+2 a,

The l ocation of the aerodynamic center of the wing is det ermined
by the formula

xp 1!. (35)

In Pig. 3, curv e 1 representes the  resul ts  of Lawrence ’s
calculations (B]. while curve 2 shows the calculations per formula
(31).

Figure 4 shows the curve p calculated per forsula (35) . The
data obtai ned for a delta wing give values tot 7.~~~2,5 that are

satisfactory for technical applications.

~~~~~~~~~ —~~~~~~~~~--—— 
T?:-~~~~~~~~~~~~~
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The influence of the Mach number in the delta—wing pr oblem is

calculated in the same manner as in the previous problem. Using the

developed method we can also study the problem of a lifting surface

in a supersonic flow.
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