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ON DISCRETE VORTEX SYSTEM OF WING OF PINITE SPAN

N. F. Vorob!yev

Here we investigate the problem of an inviscid, incompressible
flov past the lifting surface of a wing. The wing surface itself is
replaced by vortex surface S, while the sheet of vortices flowing
from the trailing edge and, in the general case, from the lateral and
leading edges of the wing, is represented as vortex surface Z. This
surface consists of vortices whose axes in the case of st2ady motion
are directed alony the flow line. Vortex density p on surfaces S and
Z are determined from the condition of nonpassage (nonpenetration).

Moreover, the conditions of shed on the edges of the wing must be

met. The presenc2 of a vortex sheet flowing from the edges of the
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ving makes it possible to assure the condition of velocity limitation
on the edges from which the vortex sheet flows [1-3]). In the case of
a linear system, when the vortex sheet flows only from the trailing
edge, on the leading and lateral edges of the wing, as we know, the
speed of the inflow (penetration), determined within the framework of
an ideal fluid, is infinitely great. In the nonlinear case, where the

shape of the surface is unknown, solution to integral equations for

vings of complex plan shape is difficult [1, 2)].

There exists a method for calculating the aerodynamic
characteristics >f a flat wing of arbitrary plan shape, where the
vortex layer simulating the wing surface is replaced by a system of
discrete vortices, the intensity of which is determined from the
conditions of nonpassage (nonpenetration) [4). The vortex sheet
outside of the wing is also simulated by discrete vortex lines, which
represent a continuation of vortices on the surface of the wing
itself. Pach of the vortex lines outside of the wing consists of
rectilinear segments vhich take the direction of velocity at the
corresponding point in space. The position of the vortex lines
outside of the wing is determined by the method of successive
approximations in the calculation process. The solution to the
problem of the flow past a wing of finite span according to the
system of discrete vortices is reduced to solving a system of

algebraic equations. This method can be conveniently used on the




poC = 1790 PAGE 3

computer for wings of arbitrary plan shape. The wing can also be
represented by a system of discrete vortices in the case where it is
cambered. In the liscrete system of a wing of finite span the problenm
of conversion in the case of an increase in the number of discrete
vortices replacing the ving and the problem of satisfying the shed

conditions on the edges of the wing remain open.

In the present study we show that with proper selection of the
discrete vortices which replace the wing surface and points at which
the conditions of nonpassage are satisfied, vhen the number of
vortices is incr2ased, the algebraic sums used to represent the
velocity induced on the wing surface by discrete vortices will be
transformed into integrals whose convergence can be proven, while the
introduction of additional vortices near the edges will assure that

the shed condition is met.

Generally a ving of arbitrary plan shape is a certain smooth
surface S, vhich aust be covered by an orthogonal grid of curvilinear
coordinates related to the wing surface. The coordinate system is
selected such that the line §{ = const connects the leading and
trailing edges of the wing (FPig. 1). Applied to the surface is the
discrete coordinate grid & = const, { = const, which breaks the wing
down into rectangles with sides A% 20y, One of the coordinate lines

passes through point N(§+ ) and is the coordinate line of the grid
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§=fi. The two other coordinate lines of the grid, vhich are the
closest to point N(§. %) and are orthogomal in relation to lime &=§i,
are selected such that point N(:. §) represents the middle of the side
of the coordinate grid. This is line &=U;— AL, i={(;+AL;,

Selection of the direction of vortex lines which replace the
wving can be arbitrary. These vortices are not subject to the laws of
behavior of a vortex line in the flow of an ideal fluid. It is
assumed that the segment of the coordinate line whose middle is point
N(Ens %) is the segment of a vortex line of constant intensity. Points
N &), through which the IT-ghaped vortices pass, can be numbered by
rov and colusn: every point has a number (m, n). At points
(8s 5 —A%), (86 &+ A%) the vortex line has a break and continues along

coordinate lines {=={;—AL; {={;+Al; to the trailing edge of the wing.

Beyond the IT-ghaped vortex of intemsity Al on the wing on
coordinate line segment &=%i+Aki=fm:1, the middle of vhich is point
E+A%. 8, ve find the folloving vortex lime of comstant intensity
‘ATmsn. At points (§c+Aki, Li—Al), (Ri+Ak. L+A%) this vortex lime also has
a break and continues along coordinate lines &=0;—Al; {={0;+Al; to the

trailing edge of the wing.

Thus, the eatire ving S is covered by a system of discrete

rectangular Il-shaped vortices, vhich are related to the wing. The
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Tl -shaped vortices arranged on the ving S, and also a certain
additional number of discrete vortices, vwhich can be introduced later
for meeting the conditions of shed on the edges of the wing, descend
from the wing and continue outside of the wing to infinity,
simulating vortex sheet Z. The vortex lines representing vortex sheet
Z consist of finite rectilinear segments which lie in the direction
of the velocity at corresponding points outside of the wing [4). The
intensity of the vortices is determined from the conditions of
nocnpassage on the wing surface and the shed conditions on the edges
of the wing. When the cell dimensions are decreased, in the
expression for the velocity induced at points on the wing surface, ve
get a peculiarity related to sections of attached vortices. Related
to the sections of free vortices representing vortex sheet I is the
regular part of the expression for velocity induced at points on the
wing surface S. For proof of convergence of the process for reduced
cell values of thes coordinate grid we must select point positions on
the wing surface at which the conditions of nonpassage are satisfied.
As such we select the points M(x, z) with coordinates *= &+ 9;"» Ze=,,
vhich lie in the jeometrical centers of the coordinate cells (see

Fig. 1).

Henceforth considerations related to passage to the limit with a
decrease in the coordinate cell A, 2A%; without limitation of

generality will be done for a flat wing of arbitrary plan shape.
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Everythiny that has been said above also applies to arbitrary smooth
surfaces vithout curvature separation lines. In the case of a flat
ving the orthogonal coordinate system is rectilinear on wings, and,
consequently, each [l-shaped vortex related to the wing consist of

three rectilinear segments.

The velocity induced by elementary vortex d/ of intemsity T at a
certain point separated by distance r from the middle of the

elementary vortex is determined by the Biot-Savart formula

W= L. AR
According to this formula, for points on a flat wing the velocities
induced by vortex lines lying in the same wing plane are directed
along the normal to the surface. Here the value of the velocity
induced at point N(x, z) on the wing by a M-shaped vortex of
intensity Al; passing through point N(sl) and consisting of
rectilinear segmeats of finite length 2A%; & —xa(§;—A%), Bi—xo(§+AL),
vhere E=x(0) is the equation for the trailing edge of the wing, can

be represented ia the fora of

ar *
AV = — 5 (F(x. 2, §. & + BL) — F(x. 2, &, §— AL
o (i Ly # 2,

Mm

vhere
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S '-(—m_;-), p [x—x, (%)
FL\‘.Z. g‘ h)* ‘__:[ l—! ‘_—-’W]‘
AT
AVJO: bk ﬁL[F(x- z, Ei! z+e;)—F(x, Z, ai' Z—“G,‘)l. (2)
“b (;‘- c,—z)'
vhere

Ari=AriJ (&l- z)v Ab-ei’

Point M(x, z) is selected in the center of the coordinate cell,
so that in the case of a finite number of discrete vortices &i¥x,
vhile ==z only for a certain column of coordinate cells. The
velocity induced at point M(x, z) by all discrete I1-shaped vortices
associated with the wing S is represented by the sum of velocities
induced by each of the [I~shaped vortices. If we perform summation in
a fixed row, in this case discarding the term which correspond to
value § = z, and then summation for all rows, the velocity at point

(x, z) can be represented in the form of

Ve —ar S 2 e G o) ey L UL

X 2AC’AE‘+ gp(gh l) IF(xo 2, Eh Z+GJ) b F(x. 2, gi' 2——8;),“1}v (3)

vhere the intensity Al; of the I[I-shaped vortex passing through point
§i L (Em tn) is represented in the form of Aly==p(E, {;) Ak, here Ak is the

distance along axis & from point & j(m 3«) of this vortex to point
t4+AL, LfBmii, Bs), through which the following I1-shaped vortex passes.
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In formula (3) summation by column is excl«ded in the double sum,

vhere (a™2Z, suymamation of this column is done separately.

Por an infinite increase in the number of discrete vortices,
vhen first 2A4,~+0, and then Al;—~0, the welocity induced at point (x,

z) by all attached vortices can be represented in the foram of

{s)
v=—-1'rr{ [f PR OFG, 28O+ | oG 2)IF (2,2, 8,2+ 0)—
82 xg (2)
—F(x,2,%, 2—¢)ldE}, 4)

vhere S-2¢ is the area of the wing with the excluded flat width of 2¢
near point :=z¥=x() =% represents the equation of the trailing
and leading edges of the wing, respectively, while the derivative of

the function P(x, z, &, &) takes the form of

o LR x—1
r;(x,z.e.o—m{‘m—_a‘,'mr“

s OP 2 — 5, AR =0 —x, 0) (2 — cv}
(b=, OF =032 3

Function Fy(%: 2 80 exists in the range of S-2c. In the range of
S-2¢ within the internal integral of the double integral of formula
(4) ve can integrate by parts. After setting z > 0, without limiting

the generality we get

, ) =, (0)
Ve |- L heoreatoaa—" pkrerx
% (0) Xpp (2—0)
% Flx, 2,8 2,(8)dE + ) PEOF(x,280d + Ve @

=4 (0)

X Plx.z.E.z..,(!)ld&+x (I S P (& 2ap B)I F [x, 2,8, 20p (B)) dE —
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xgq3—2) x5(0)

- { p(&mr(x.z.u)a—‘“f_‘,mo)r(x.z.&om+

(3=—4) xy (s+9) :
O bR —F b i— O~ | pROFztOE. )
xq (2—1) xp (250)

x, (1+0) x, (z+e)

+ (\" p (8, 20p (B)) F [x, 2,8,205(8)1 4k — ’L' p@E,z+e)F(x,2,8 2+ ¢)dkt
zg(2-9) xg )

x4 (2)

+7 pRAPELEI+—Flrabi—old |
xg (2)

Por proof of th. existence of velocity on the wing deteramined by

formula (5), ve must make assumptions on the shape of the wing
contour and on the nature of vortex demsity om the wviamg. Por contour
L ve assume the continuity of equations t=xu(l), i=x(l) of the leading
and trailing edges of the contour in the range of a < { < b (can be
the lateral edges, parallel to axis € when § = a, ¢ = b). We also
assume that on th2 wing, including the edges of the wing, the value
of vortex density p(é, ¢) and derivative P;(E.D. from vhose value we
determine the maximal density of discrete vortex limes on wing S

coinciding with the direction of axes &, satisfy the Holder boundary

condition.

Nov let us prove the existence of velocity on a wing determined
by formula (5) for internal wing points. The double integral in

formula (5) can be represented in the foram of

ij &.(;l ‘).(I. 2, " ‘)‘m
& ==

vhere expression

Ozt = @Wu- Hle—s®1
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represents the continuous function for wing points (x, z) wvhich do
not lie on the trailing edge of the wing. This integral represents
the main value of the Cauchy type iterated integral, which exists for
points which do not lie on the wing contour and which because of this

represents the internal points for each of the iterated integrals

rsle.

After adding the single integrals in which we have the
expression p(&, 0) F(x, z, &, 0) d& under the integral sign, there
remain tvo terms, vhich on the basis of the main-value theorem can be

represented in the form of

xn(z+e)

(24
ﬁ({_.)p(ao)ux.z.acmﬁ'y 0 @O F(x,2,8,0)dk =

xg (242)

=pIxu(2),01 F Ix, 2, xa (2), 0] 2¢ + px, (2), 0 F [x, 2, , (2), 0 2,
vhere Flx,2/%g,(2), 01 = L' {ﬂ‘ — 5, @OFFd [x—x, (0)] }

T s @ i R L

is the function limited to points which do not lie on the edges of
the wing (value z > 0). Under the above assumptions on the finiteness
of the values of vortex density on the wing edges, the value of each

of these terms when ¢—+0 reverts to zero.
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The sum of single inteqrals which under the integral sign

contain function

F(X,Z,E,Zi.)_—-_r;'_‘){ (x — [ l‘—"“t‘,] }=

=1 T YR=TRTONTT

_H{xakats)
= ﬁ—rL-T -

vhere limH (x,2,8,z+¢)=0,
-0

also reverts to z2ro vhen ¢—+0, Let us showv this using function F(x,

2o €, Z ¢+ £) as an example.

=, (2) (s+e)
[ P&F(x2E2+e)dE— ([ pEz+e)Fx28zte)f =
=g (2) xg (2+0)
2y (s+0) xg(s+e)
=— [ pGz+)—pENFx2E2+e)dE+ j'” p(62) X
xpn 1+¢) g (2 %
x4 (2) F- x4y (2+2) ¥ !
xFrz,bz+0dk+ | pRFEzbz+oRf= (e @2+ ?
=, (40 VO g ;
u.m+u;u
+0(e) ”u"'.g"'h) ®— L [ s@aH®zEz+e)a
xq (2)

e
e 5 P(Ev')”(‘!zcgv3+!)d§.

x3 () + ex, (2)

In the first term the integramd, because of the property of function
H, reverts to zero vhen e¢—+0, while the last two terms are

representad on the basis of the sean-value theorem in the form of

—p|%a(2) +~ -;-x;(l)-l]ﬂ[x. 2,xq(2) + -;-x;(z).z < G]at;(l) -

—9[1. @ + 5 % (), z]H [x. 2%@) + g x@) 2+ e] % (2)
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and, on the strength of function H, also revert to zero whem e¢—0.

The remaininy single integrals in the right part of formula (5)

represent, vhen e¢—+0 the contour integral

fPlﬁ.f(E)lF(x.z.E.l(&)ldE.

vhere ¢ = f (&) is the equation of the contour L, integration with
respect to which is done counterclockwise. The contour integral can

be written in the form of

(x—

$ott.t 0Ll &

vhere function ® is determined by dependence (6). Por points (x, 2)
vhich do not lie on contour L with the condition of continuity of

equations for the leading and trailing edges, two situations can be

encountered in the contour integqgral: 1) x Ee 2 # f(E), 2) x f &, 2=
= f(¢9). The case vhere x = &, z = f(€) for internal points (x, z) of

a ving cannot exist.

F,(®)dt
In the first case the integral ?";‘:{_‘r, vhere
Fn({)=p|§-l(9|-w:oprosonts a continuous fumction, where P, (x) =

o{x, £(x) ) is a Cauchy type integral and exist in the sense of the

main value.

Fe(R) d
In the seconil case the integral ??‘-%é. where
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’:Q'P‘Efml-!]ﬁ;":‘i-um is a continuous function. Here P, (E9) = 0 for
1 -shaped vortices which end on the trailing edge is reduced to the

1 form of the Cauchy type integral by substitution of variables f (&) =

$ritie=—n

-

vhere vhen &€ — €9 t — 2. This integral exists in the sense of the
main value when f* (E0) f 0. For contour L with the condition of
continuity of the equations of the leading and trailing edges value
fe* (&) = 0 can occur only for end points on the contour ¢ = a, ¢ = b,
vhich cannot be points & = €0 for points (x, z), vhich do not belonyg
to contour L. If there are lateral edges parallel to axis & wvhen ¢ =
a, € = b, vhere f* (&) = 0, then neither can the points on the lateral
edges be points & = £0 for points (x, z) which do not belong to the
ving contour. This means that in the second case the contour integral

exists in the sense of the main value.

Thus, the velocity induced by the [T-ghaped vortices on wing S
vith transition t> the limit from the discrete system to the systenm
of the vortex surface, is determined for internal wing points by the

formula

Vel @ OF @2 DR+ o RIQIF e 2B I@IE. ()
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The integrals which determine velocity are integrals of the
Cauchy type, and for internal wing points they exist in the sense of
the main value. Essential for representing velocity in the sense of
the main value of Cauchy type integrals (including iterated
integrals) is the breakdown of the integration range into parts
vithin the neighborhood of a certain point: 0 K € K x - 6, x ¢+ 6 K &
L x3(0) and a L § Lz - £, 2 ¢f K ¢ £ b. The selection of the
point M(x, z) in the center of the coordinate system, carried out in

this work for the discrete case, assures convergence of the integrals

in the sense of the main value vith transition to the limit.

The end (nonzero) density values of the vortex lines on portions

of the wing contour where the vortex sheet does not descend (flow

off), give us infinite velocity values within the framework of an '?
ideal fluid. On wing contour L the conditions for the existence of |
the integrals through which the velocity induced by the vortices is

expressed will be met in the case where contour L is a line which

lies entirely within the vortex surface S + §S. This means that the

vortex surface of the wing must continue unbroken beyond wing S. Then

contour L becomes a line vhose points are the internal points of the

vortex surface S ¢ 6S which lie within the contour L ¢ 6L. For the

internal points of the surface the existence of velocity in the sense ;
of the main value is proven. Here the velocities at points on contour

L are determined by formula (7), vhere integration is done with
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respect to the surface S + 6S and the contour L ¢+ 6L. The vortex
sheet lying within the contour L ¢+ 8L, vhose shape in the nonlinear
case is known in advance, vill, as already mentioned, give us the

reqular velocity component for points on the wing S and its edges L.

In the studied case, vhere the wing is a lifting surface without

thickness, for the existence of finite velocity on the edges we must

impose the condition of -the smooth joining of the wing surface S and
the vortex sheet Z which flows off of it and the condition of
continuous transition of the vortex demnsity of these surfaces on
their boundary - contour L. On contour L satisfaction of the
condition of finite velocity does not generally require that the
vortex density on the edge of the wing revert to zero, provided the
vortex sheet flows from it. The vanishing of the density of the
vortex lines which coincide with the direction of axis &€ on the
trailing edge of the wing in the case of the linear system is caused
by the form of the vortex sheet beyond the wing and comes froam the
zondition of shed from the edges of the wing formulated above. In the
linear system, vhere the vortex lines beyond the wing take the
direction of velocity at infinity, on surface Z there are no vortex
line components which are perpendicular to axis & (axis &€ on the wing
as the direction of velocity at infinity), and from the conditiom of
the continuous tramsition of the vortex surface S into surface I it

follows that on the trailing edge of the wing S the intensity of the
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vortex density of the last of the [l -shaped vortices should be equal
to zero. For the vortex line (ving of infinite span) from the
condition of finite velocity ve also get the values for zero vortex
density on the trailing edge of the vortex segment. In the case of

the end point of a vortex line the condition of finite velocity,

determined by th2 Cauchy type integral, can be satisfied only when

vortex density vanishes at the end of the line [S). However, in the
case of a vortex shedding from the edges of a wing of finite span, E
the edges of the wving do not represent the end points of the vortex
lines, and vortex density on the shed line is generally not equal to

zZero.

In the discrete system ve can impose a distribution of vortex
lines which at the transition to the limit from the discrete systenm
to the system of the vortex surface wvould cause a break in the
transition of vortex density on the wing contour L. This is assured
if a point which in the discrete system is considered to be a wing
edge point is limited on the vortex sheet side by a vortex line of
the same intensity as on the inner side of the wing (Pig. 2). Since
on ving S the vortex lines parallel to axis { and axis € have two
directions, for the selected system of rectangular [l-ghaped
vortices, the limiting density value of discrete vortices om the wing
in the direction of axis { equals p(& = const, ), vhile the limiting

density value of liscrete vortices on the wing in the direction of i
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axis & equals xﬁnpﬂai’z const) d&, for each point on the edge at

o
vhich the condition of nonpassage is satisfied there are generally
tvo additional vortices. On the side of the vortex sheet one vortex

runs parallel to axis &, the other - parallel to axis ¢.

The wing is broken down by a discrete grid of coordinate lines
into a coordinate cells. In the center of each of these at point (m,
n) the condition of nonpassage is satisfied. Here, on contour
segments which do not coincide with the direction of the coordinate
lines, the contour is replaced by a broken line, which is located

outside of the wing (the wing surface is taken with an excess). The

rectanqular [I-shaped vortex lines vhich are bound to the wing and

vhose intensity is determined from the conditions of nonpassage, are
shown in the left side of Fig. 2 as continuous lines. The arrows
indicate the positive direction selected. The figure also shows the
part of these lines which lies in a single cell. Here each of the
bound vortex lines begins and ends on the trailing edge of the wing.
Continuation of these vortex lines outside of the wing, beginning
vith the leading 2dge, coincides with the direction of the flow
velocity. On the left side of the figure their continuation, nowv as
free (vortex lines), is shown by solid lines which begin at the
corresponding points on the trailing edge. The boundary points at
vhich the conditions of nonpassage are satisfied and vhich for the

discrete systea represent the contour points, are marked by x°'s. At
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these points the shed conditions must be met, i.e., conditions
imposed vhich assure continuous transition of the vortex surface of

the wing S into the vortex surface of the sheat ZI.

For a trailing edge which is not parallel to coordinate axis ¢,
point (m, 1) vhich lies in the center of rectangle BnsFaiCmsDms ig
limiting. Here the boundary of the wing S and of the vortex sheet X
are the sides BniDni and DmiCmi-. To assure an unbroken vortex
surface in the direction of axis & (vortex lines coincide with
direction of axis ¢) along the side D».Cn1 , vortex line of intensity
Alm; is introduced, where Aln: represents the intensity of the
lN-shaped vortex line bound to the cell vhose center is the point (m,
). At points Dmi, Cmi the vortex line breaks and thereafter behaves
as a free vortex line. To assure the comtinuity of the vortex surface
in the direction of axis ¢ along side BmiDmi, we introduce the vortex
line of intensity 2Al'ni—ATlm:-, At points Bni,Dm: the introduced vortex
line breaks and thereafter behaves as a free vortex line. In Fig. 2
the introduced vortices are shown as dashed lines. There selected

positive direction is indicated by arrows.

For a trailing edge parallel to axis ¢{ point (m, n), which lies
in the center of the rectangle BmaFnaDm«Csn is the boundary point.
Nere the boundary of the wing S and of the vortex sheet I is the side

BnaCnna, o assure the continuity of the vortex surface along side
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BusCrnn, we introduce a vortex line of intensity Al'ma. At points
BusCms the introduced line breaks, and thereafter behaves as a free

vortex line.

Por a lateral edge parallel to axis {, the point (m, 1), which
lies in the center of rectangle BmiCmiDmiFm:i, is the boundary point.
Here the boundary of ving S and of the vortex sheet I is side  BuCus
Along side Bm.Cmi! we introduce a vortex line of intemsity 24T —Al..,
vhich continues to the end of the lateral edge, wvhere it sheds as a
free vortex line together with all attached vortex lines coinciding
with the lateral edge. At point Bm1 the vortex line behaves as a free
vortex line. The selected positive direction of the bound and

introduced vortex lines is indicated by arrovs.

Por a leading edge wvhich is not parallel to axis ¢ the point (m,
0), vhich lies in the center of rectangle D.o Bmo Fmo Cne, 18 the
boundary point. Here the boundary of the wing S and of the vortex
sheet I consists >f the sides DOmoBno and DniCno, Along side
DmoBmo(DniCmo) we introduce a vortex line of intensity
Almstg— AT o (Al'm gy — Al'my 4- ATmo), which from pcint Dmo behaves as a free
vortex line, and from point Bmo(Cmo continues along the wving parallel
to axis & to the trailing edge of the wing, vhere it sheds as a free
vortex line together with the corresponding attached vortices. The

positive direction of the introduced and attached vortex line is

e e eacae i S

Aice ’ i A s
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indicated by arrows. The different signs for the value of intensity
in the case of corresponding arrovs, and also identical signs in the
case of arrows of opposite directions, indicate the mutual
obliteration of the effect of the vortex lines. As wve see in Fig. 2,
the intensities of the introduced vortex lines which assuce the
continuous transition of vortex surface S into surface I in the
direction of axis & and axis ¢ for point (m, 0), are such that they
mutually obliterate the effect of the attached vortex bound to point
(m, 0) and the effect of the sums of introduced vortices of intensity
ATmo, In the discrete ving system it is possible to not immediately
introduce the attached vortex of intensity Almo which corresponds to
(m, 0), but to select the intensities of the introduced vortices

equal to Alm-1i and Almi1s—Al'm; , respectively.

Thus, the intensity of all nevly introduced vortices on the wing
edges vwhich assure finite velocity at the points on the edges, is
expressed as the intensity of the attached II-shaped vortices plotted
earlier, whose intensity is determined from the conditions of

nonpassage on the wing surfaces.

Institute of Theoretical and Applied Mechanics, Siberian Branch AS

0SSR, Novosibirsk
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