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EXECUTIVE SUMMARY

THE MAGNETIC INDUCTION OF THE SYSTEM CONSISTING
OF A COIL AND A FERROMAGNETIC SPHERICAL BODY
OBJECTIVE
The objective of this work was to derive solutions to static ferro-

magnetic problems that included both current-carrying coils and linear
ferromagnetic bodies. The solutions are intended for comparison with
solutions to ferromagnetic problems obtained by various numerical
techniques such as the finite difference method, the finite element method,

and the integral equation iterative solution method.

APPROACH
After deriving the governing differential equation from Maxwell's
equations for classical magnetostatic field theory, the method of separation

of variables was employed to obtain the problem solution.

RESULTS

The magnetic induction was calculated for two geometries (configura-
tions) of a ferromagnetic spherical body surrounded by a current-carrying
conductor., The first case was for an infinitesimally thin current band
carrying a stationary current and surrounding a spherical shell. The
second case was for a current band of finite width carrying a stationary
current and surrounding a solid sphere. The ferromagnetic bodies were
assumed to be linear and homogeneous. The reduction of the solution of the
dipole term to that of a filamentary, circular, current-carrying conductor
is shown for the first case when the permeability of the ferromagnetic

spherical shell is allowed to approach that of free space.

RECOMMENDATIONS

It is recommended that the derived solutions be programmed on a
digital computer for direct comparison of these results to those obtained
by various numerical methods. There are plans to implement these recom-
mendations during the fiscal years 1979 and 1980.
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ABSTRACT

The magnetic induction is calculated for two
configurations of a ferromagnetic spherical body
surrounded by a current-carrying conductor. The
first case is for an infinitesimally thin current
band carrying a stationary current and surround-
ing a spherical shell. The seccnd case is for a
current band of finite width carrying :a stationary
current and surrounding a solid sphere, The ferro-
magnetic bodies are assumed to be linear and homo-
geneous. The reduction of the solution for the
dipole term to that of a filamentary circular
current-carrying conductor is shown in the first
case when the permeability of the ferromagnetic
spherical shell is allowed to approach that of
free space.

ADMINISTRATIVE INFORMATION
This work was performed under Program Element 1121N, Project B00OS5,
Task Area B0005-SL-001, Work Unit 2704-110. The project director is
Mr. J. L. Corder, David W. Taylor Naval Ship Research and Development

Center.

INTRODUCTION

In the past, exact analytical solutions of Maxwell's equations using
classical formulations have been limited to body shapes and inhomogeneities
that conform to a few separable coordinate systems. With the advent of
modern digital computers with large computational and storage capabilities,
many electromagnetic field problems of importance in engineering practice
can and have been solved by using a numerical solution to the governing
differential or integral equations under a suitable choice of boundary
conditions. Such numerical solutions of Maxwell's equations, when used
with a complete description of the electric and magnetic sources and the
constitutive laws of the media, can be used to describe completely the
electric and magnetic fields produced by the source, including nonsymmetric
geometries, nonsymmetric source distributions, and spatially varying

media parameters.
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The 1iterature1-6 contains numerous examples that demonstrate the
power of using numerical techniques such as the finite difference method,
the finite element method, and the integral equation iterative solution
method. Both two- and three-dimensional electrical engineering problems
have been solved. Authors have tried to validate the numerical methods
and calculations by comparing numerical results to:

1. Simple problems using engineering approximations.

2. Other numerical method solutions of the same problem.

3. Laboratory experimental results.

4. Problems that have analytical solutions.
Another technique that could be used but which the authors of this report
have not seen very widely used in the literature is a comparison of two
theoretical formulations for a given problem solved by the same numerical
method. An example might be a vector potential formulation compared to
a scalar potential formulation.

The motivation for this work arose out of the need for solutions to
static ferromagnetic problems that could be used for comparison with
numerical methods. The capability exists to calculate the magnetic field
due to a ferromagnetic body immersed in a constant inducing field for the
following bodies: solid sphere, spherical shell, solid prolate spheroid,
prolate spheroidal shell, solid general ellipsoid, and general éllipsoidal

shell.7 Also, the capability exists to calculate the magnetic field caused

by a single or combination of current-carrying coils.8 However, the

capability did not exist to calculate the magnetic field caused by a ferro-

magnetic body in the presence of the field created by a current-carrying coil.

BASIC EQUATIONS
We can start with Maxwell's equations for classical magnetostatic
field problems

1A complete listing of references appears on page 63,
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VUxH=1J (la)*
-
7-%=0 (1b)
where Ed magnetic field intensity (A/m)**
B magnetic flux density (T or Wb/mz)

T electric current density (A/mz)

In the general case for ferromagnetic materials -B>is a nonlinear function

of .IT :
=@ 2)

where as shown in Figure la -B>15 not a single valued function of -H> The

function f(i-?) depends on the magnetic history of the material, that is

how the metal attained its magnetization. This is referred to as hysteresis.

It is also noted that any property of a ferromagnetic material has meaning

only if it is considered together with its complete magnetic history.

In certain practical engineering problems, the variation in the
magnetic intensity is small, and the functional relationship between-B»and
?1s approximately linear (see Figure 1b). For the linear case where the
material is isotropic, the magnetic induction _B..is related to the field
intensity ?by the relationship

-’?= My (xm+1) K= .uour -H>= u;l’ (3)

where Xn magnetic susceptibility (dimensionless)
M magnetic permeability (henry/meter)

(xm+1) =M relative permeability (dimensionless)

7

He free space permeability (4mx10 ' henry/meter)

*The del operator ‘v>is defined with respect to the rectangular coordinate
system and is strictly valid in a rectangular coordinate system only.

Very often‘v’x and 'v’ are used as equivalent symbols for curl and divergence
generally. This use is followed in this report.

**Definitions of abbreviations are on page v,

3
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(a) Curve for a Ferromagnetic Material

) FLUX DENSITY B
(Wb/m?)

MAGNETIC FIELD INTENSITY ;l’
(A/m)

__/

(b) Curve for a Ferromagnetic Material
at Low Inducing Fields

ﬁ FLUX DENSITY B, (Wb/m?)

MAGNETIC FIELD INTENSITY H, (A/m)

Figure 1 - Typical Magnetization
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This report assumes that the ferromagnetic body has isotropic and
linear material properties. The divergenceless nature of the magnetic flux
density in conjunction with the fact that the divergence of the curl of
any vector function is zero allows the introduction of the magnetic
vector potential field dﬁ

T-vxX : )

<>
where A is the magnetostatic vector potential function in weber/meter.
The substitution of equation (4) into equation (la) gives the fundamental
equation of the vector potential of the magnetostatic field.

%$x6§3-&$x$%=7 (5)

For homogeneous materials as assumed in this report the magnetic permeability

is spatially invariant. Hence

¥

20 6)
and equation (5) reduces to
3x$x?=L3 (7)
Using the vector identity i
vxvxT=-v@D - gk (8)
equation (7) becomes f
VoD -al=-uT )

The magnetostatic vector.potential is characterized by the important

property that its divergence can be conveniently chosen to be zero.
>
V.A=0 (10)
Equation (9) reduces to the vector Poisson's differential equation.

-> =
BA=-Ww S (11)

This is the governing equation for our calculations.




The general boundary conditions to be satisfield at the interfaces
of stationary dissimilar media may be derived from the limiting integral

forms of Maxwell's equations and are given by

el

n, . (E;Jﬁi) = 0 or Bnl = an (12a)
> - D> ->

n, X (HZ—HI) =J HtZ-Htl = JS (12b)

where the subscripts 1 and 2 indicate the media under consideration, and
':12 denotes the unit normal vector to the interface and is directed from
medium 1 into medium 2. In the case where the materials are linear and

isotropic equations (12a) and (12b) become

- >~ >

n,- (uzﬂz—ulﬂl) =0 (12¢)
B o ;

+* 2 1 ot

n, x( uz - ”1) Js (124)

->
J is a true surface current density that may exist at the interface. At

an interface where J is 0, equations (12b) and (12d) need to be modified
accordingly.

THIN COIL SURROUNDING A FERROMAGNETIC SPHERICAL SHELL

GENERAL SOLUTION

We now proceed to solve the boundary value problem of a ferromagnetic

spherical shell of outer radius R2, inner radius Rl’ and a homogeneous
permeability Hys surrounded by an infinitesimally thin current band of
radius R having a current density J. A constant current density is
assumed. Figure 2 identifies the four regions of interest. Regions
I, III, and IV have a permeability equal to the permeability of free
space U wyich for convenience will be labeled My Thé problem's v
spherical symmetry suggests that a spherical coordinate system such as
that shown in Figure 3 be used in the problem solution.
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INFINITESIMALLY
THIN SPHERICAL
CURRENT BAND
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Figure 2 - Ferromagnetic Spherical Shell
Surrounded by an Infinitesimally Thin
Current Band




= rsin 6 cos ¥
= rsin @ sin
= rcos 6
Figure 3 - Spherical Coordinate System
and the Corresponding Unit Vectors
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Ampere's law states

-7 (13)

> > >
and since V:B = 0, the induction B must be the curl of some vector field-r.
o
The governing differential equation for A when homogenous and linear mate-

rial are considered is from equation (11).

@x--ul* (14)

*We note that a distinction is drawn between the operatoer called the
scalar Laplacian operator and the vector Laplacian operator designed by % .
The vector Poisson's equation in rectangular coordinates can be treated

as three uncoupled scalar equations as shown below.

2 2 2 2 2 2
o
2 2 2 y 2 2 2.
X dY dz ¥x dY dz
2 2 ..
A ?¥°A d3°A
-e) 54 ; + ; = -e:Jx + eny +-e:Jz
. dx Ay oz

where $8 A4 =V2Ai =pJy for i = x,y,z. However, if the vector Poisson's
equation is resolved into orthogonal components in other coordinate
systems the differential operation mixes the components together giving
coupled equations as shown below for spherical coordinates.

2 2
A A d°A oA
2 T 2 1 r cot O T
al-2 [ gl L& a gl 4 B
r arz r or r2 r r2 ae2 1:2 36
2
1 . A JFeZn a_A_S -2cotb, _ 2 iﬁp -
rzsinze awz r2 ¢ r2 : r2 sin 6 e
2 2 ¥4
T %% 2 ¥ Ag 1 A e O 1 N
Ll s g b = Aot e s te - i 7 e 2 2
. r- sin” 6 r 36 r r° sin” 6 AV
A A 2% 2A T
2 r _Sest® ¥ ¥ L 2.9 1 ks ]
b iy 7 i 1 M. e T Ay * 3 )
r B r~ sin 6 dr r- sin‘g r 26
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2
& coth aAw " 1 ’ re) A!p ¥ ) EﬁE - 2 cotf Eﬁﬁ_
r2 36 rz sin26 awz r2 sin® L r2 sin® 3y
= JE VI AT

The general expression in spherical coordinates for a current density is

>

B TR
rr 0°6

J (15)
"

where the.z.are the unit orthogonal vectors. For stationary currents
in vacuum the vector potential function that satisfies equation (14) is

given by

, dv (16)

where dv = elemental volume
r! = distance between
and dv at the source point.

From equation (16), we

in the current-carrying region

>
the field point where A is being determined

—->
see that the elemental vector potential dA

> -
due to a current element Jdv is in the same direction as J. It is well

known from this that the lines of the magnetic vector potential.z'are
circles centered about the coil or loop axis. The magnitude of K>along

. such a circle is constant, which means that iris a function of the
spherical coordinates r and 6 only. Therefore, we know in advance for this
problem that Aq,is the only compoﬁent of X’existing at the field point.
The infinitesimally thin band of current shown in Figure 2 has only an
azimuthal or V component, which is a function of r and 6, and lies on the
boundary between regions III and IV (i.e. r = R3). For this current,

equation (15) reduces to

& 0 y if 9<91 or 9>ez
J =

oy a7

Therefore, equation (14) has only an azimuthal component and can be

expressed as:

10
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a A‘J) = ﬁAw(r,e) = 0 (in regions I through IV) (18)

When the vector Laplacian Bis expanded in spherical coordinates, equation

(18) can be written as

2 2

d°A 2 23A 1 3°A cot 6 A A

_'P__,__ ——‘E+—2 529+ 2 o 2w2 = 0 in regions I
3r2 r 3r r° 236 " 30  x°sin®® through IV (19)

In order to solve equation (_19), it is necessary to obtain the general
solution in regions I through IV. Thus, by multiplying equation (19)
by rz we obtain

rzbzAw 2104, azAw A A
+ r—t s PRI e TR R (20)

. ar 26 36 sin0

dr

Applying the method of separation of variables, let us assume that A'JJ

can be expressed as a product of two functions

A\P = R(r)0 (6) (21)
where R(r) is a function of r only and @(0) of 6 only. Substituting
this form of the vector potential Ad} into equation (20), we have after

separation of variables

2
d Rér) + 2 @) p(wlgnm o (22a)
dr r dr r
2 : '
40, cor o 43¢ +[p(p+1> - —4 ]o<e) =0 e
dé

sin"0

where the separation constant is p(p+l) and p is an integer from one to
infinity. The differential equation !

11




2 2 {
-—d—%+cot GQ—Q +[p(p+l) - In—E-—]O=O (23)
do de sin" 0 g

has as a general solution

0(8) = @p(e) = CPP:(COSG) + DPQI;(cose) (24) l

Comparison of equations (22b) and (23) shows that in equation (23) n? is *
equal to 1. This requires that m always be unity. The solutions of

equations (22a) and 22b) are then expressed as

———

R(x) »R (25 = &' P ip gl piptl)
r ¢ r ¥ : o

0(8)

1l 1
9) =
Op( ) CpPp(cosB) + Dpr(cosG)

The associated Legendre functions of the first and second kind are designa-
ted as P:(cose) and Q:(cose), respectively. Therefore, the general
solution of equation (19) in regions I through IV may be formed from the

product of the solutions in equation (25) which yields

A, = R(1)O (0) = p2=31 Rp(r)op(e)

——

(26)
A’ fP 4 BIE 1 1
: 0
( P - CpPp(cose) + Dpr(cos )

In the spherical case, associated Legendre functions of the second kind
are infinite at cosf = il,‘and thus cannot be included when the region
under consideration includes the symmetry axis. Therefore, the constant'

Dp must be set equal to zero, and equation (26) reduces to

e B

- 2 PR e Apl(cose)
1

Ay p_l(p g ) P
where A =A'c

' P PP @n

[ & o S A 'i

. | P PP : .

| l

——— = et e e g — = - - o fiein
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BOUNDARY CONDITIONS
The form of the potential in each of the regioms (I through IV) is
determined from equation (27). These magnetostatic vector potentials in

regions I-IV are:
o0

= = p 1
AL AwI > (Aplr ) Pp(cos@)
p=1
o
p . P52 3
Byr ™ By = 2 Kot # r—(P———pﬂ) P (cosd) (28)
p=1

Kk B

= & P P3 1

AIII AWIII z: [ApBr + r(p+1) } Pp(cose)
p=1

>
I

R

: z S Tpl 1

v = A " X [r(p+l) ] o sl
p=1

where for the AWI component B . = 0 because at r = 0 the potential must be

finite and for the AwIV compozint Ap4 = 0 because as r approaches infinity
the potential must remain finite.

At each interface, the basic laws of :Egneﬁgftatics in equations (1la)
and (1b) reduce to boundary conditions on B and H that can be used :o

evaluate the six constants in equation (28). From equation (lb), thc normal

>
component of B across each boundary must be continuous, i.e., (B - B ) nl2 =0
where the quantity n12 is the unit outward normal to the surface This
provides the following boundary conditions which must be satisfied by
the solution in equation (28) for each region.
BrI -,BrII at r = R1
W Tan R (29)
"ot Nl "%
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The normal component of the magnetic field Br is expressed in terms of

the vector potential as

>
Br = (VxA)r
ke
B, = Tsind 36 (sinGAw) (30)
where
- > =->
e egr ewrsine
-
B = ks £ I 2
r“sinb or FE Y
0 0 Awr sinb

However, since the vector potentials in each region are functions of

P;(cose) we can simplify equation (29) to constraints on A

]
AI = AII at r = R1 (31a)
AII = AIII at r = R2 (31b)
AIII = AIv at r = R3 (31c)

The second set of boundary conditions is obtained from equation (12b).
->
The tangential component of H across each boundary must satisfy the

relationship
; -> > g
w,x (W, -H) =J

12 =8

s
- > ,

where J (which equals J (0)) is the real surface current density in the

limit of vanishing width between the two regions. Using the relationship

> >
B = uH, equation (32) may be expressed as

=
(o=}

B
S (33)
i

i
N
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Referring to the curl in equation (30), we can write Be as

P

From equations (32), (33), and (34) the tangential components in

regions I-IV must satisfy the relationships.

1.1 8 Bl e a s

g Ty e e i (35a)
1 1 ‘e ' ey ] i >

& it ar (rAIII) + i, T ar (rAII) =0atr-= R2 (35b)

o L 1 i (rA_.) + ok B (rA Y W 1(R) at v = R (35¢)
By T v M, r r TYY 3

The general expressions for the potentials in each region (equation (28))
are then substituted into the boundary conditions (equations (31) and (35))
and solved for the constants Api and Bpi' There are six algebraic eq;ations
with six unknowns and the potential in each region can then be specifically
determined. The six boundary value equations that must be solved for the
coefficients are given below (where the index p is odd only and understood
to take on values from 1 to @ ). It is noted that the current Jw(G) must be
expanded into a set of associated Legendre functions in order to evaluate the

constants Api and Bpi’ The detailed expansion is in the next section

entitled "Expansion of the Current (Jw(e)) in Associated Legendre Polynomials'.

Alelp - [Aszlp + BPZRI'("”)] : (36a)
P -(pt1) | _ P =(p+1)

[APZRZ + BPZRZ ] [AP3R2 + BP3R2 ] (36b)
p -(p+1) -(p+1)

[A sR3" + B R, ] Nk [R3 ] (36¢)
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1 p-1 -p-2 1 p-1
o Sm— -+ - B _— =
™ [Apz(p 1R, Prea%y ]+ ul{APl(pH)Rl 9
(36d)
p-1
bk ) =2 1 1A p-1
0 [Ap3(p+l) R2 po3R2 ]+ v [Apz(p-H) RZ
-pB R, P2 =0 (36¢)
p2 2 §
- J (8)
1 -p=2 1 p-1 -p-2 p
kil -pB U s el I O
5 [ e ]+“1 [Ap3(p+1)R3 Pips " ] 1
P~ (cosf)
P
(36f)

The solution of these equations to obtain Bp3 in terms of known quantities

is performed in Appendix A. In summary:

1 .-1 i il ..
A S Jp“(e)( [x](pﬂ)Rz(p ! -()R, P72 )* '1]{ 3,1(0) (p+D) gy e
p3 < 1 ()R -P‘Z)+ 1 (z][x +1)p P-D) 1 ~p-2
EI 2 iy ( [x] & )R, - ﬁ; ( (2] (PR, )]
(37a)
where = -(2p+1) P Pl
et R [1+(p+l) “2]
] " (37b)
1 - ‘L)
s
-(ptl)
(2] - —(p+1) (37¢)
([X]R2p+R2 P )
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2
J ') = P — (37d)
P ([X]RZP +R, (P+1))
u,J_(6)
O e (37¢)
L Pp(cose) R, (2p+1)

The numerical values for the other five coefficients can be obtained from

the following equations:

B, = B [z] + Jp"(e) (38a)
A =3, ® (38b)
Ay = [x] B o (38c)
Ty S R g (384)

pl P2 p2'1

L AP3R3(2p+1) + B4 (38e)

Since the coefficients Api and Bpi can be determined from equations
(37) and (38), equations (28) can now be used to completely specify the
potentials AI, AII’ AIII’ and AIV in regions I through IV. Then the normal
(Br) and tangential (Be) components qf the magnetic induction in regions
I through IV can be determined by using equations (30) and (34), respec-
tively.

In Appendix B the magnetic vector potentials AWI in the inner region
and AWII in the outer region are derived for the infinitesimally thin
current band in a homogeneous medium of permeability ul (see Figure 1-B
in Appendix B). Also, the dipole potential term in the outer region

(r>R1) for the infinitesimally thin current band is reduced in a special

case to the dipole potential term for the circular filamentary current loop.

17
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In Appendix C the coefficients Api (i =1,2,3) and Bpi i = 2,3,4)

for the vector potentials for the present ferromagnetic shell problem reduce

to the potentials in the two regions of the simple current band problem
when the permeability of the ferromagnetic shell H, approaches that of
the surrounding medium ul. This shows that the solutions of the above

ferromagnetic current problem have the correct mathematical form.

EXPANSION OF THE CURRENT (Jw(e))IN ASSOCIATED LEGENDRE POLYNOMIALS
Any function that can be expanded using a Fourier's series in a given
interval -1<uf<1 can also be expanded in a series of associated Legendre
polynomials in the same interval using similar methods. The associated
Legendre functions are defined by the equation
2 4",

P. (u') = (@1 -p

12, %m
A )

e (39)

where p'! = cos6 and -1<u'’<l, Also, the function Pp(u'),‘which is valid

whatever the range of the variable u', is defined as

1 aP

P ) = =t— - q'?pP (40)

Let us assume the expansion is similar to Purczyr{ski's9
oo
1
J (8) = J K ) 41

NORIDIIRS S P, (cos0) (41)

y p=1

The coefficients Kp are determined from equation (41) by multipling
both sides by P;(cose) and integrating over sin6d® from O to w,

™
_ep) 1 f 1
% TG+ * T A Jy(®) P (cosb) sinbde (42)
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‘ l The identity

-L b
» T
m! m __204m);
[ / Pp' (cose) Pp(COSO) sinf6db = (24+1) (R—m)' Gplp
0
'» (43)

was used to determine Kp (equation 42). Setting Jw(e) to a constant J

L | L

we can express equation (42) as:

m
2ptl 3l
KP 2p (p+1) L TJ(cose) sin6d6 (44)

{ Zooan

f Since the current in this problem extends from(gl = u)to {:%é'+ a),
see Figure 4, the expression for Kp (equation 44) may be written as
T
K. » et 2 Pl (cos8) sinddd + T infdo
o 7p (p+1) v cos sin Pp(cose)s n
N Fas
2 2
(45)

By noting that

! 1 ucond) = (~132T pi * (cos0) (46)

( it follows that the associated Legendre functions Pl(cose) are even func-
tions with respect to cosf when p is odd. The expression for K may be
simplified to -

p————

__zﬂi[ 1 {n6do. 47 "
p(p+1) PP(COSG) sl ' ( )

when p is odd (K = 0 when p is even) after utilizing the symmetry of J(6)

in Figure 5. By changing the variable in equation (47) to u' = cosf, the

integral for Kp may be written as

SE—

sino 3
= 2p+l P "yau'
K —P———p(p+1) /(; 5"y (48)
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The values of the coefficients Kp for p odd were worked out by

Purczynski9 and are:

2
Kl - (sinacoso + a)
K, = L sinocosa (10 sinza-9) + a]
3 64
11 4 2
K., = = | sinacosa(56 sin a-70sin”0+15) + o
5 256
15 6 4
K7 32768 [sinacosa(13728 sin 0-23408 sin o
+ 11060 sin%a-1330) + 50 a]
K, = =it [ sinncosa(311168 81n%a-679536 sinSa
9 . 327680

+ 488488 sin’a-128590 sinZo+8715) + 245 a]

r
\

Figure 4 - Spherical Coil Cross-Sectional
View - Definition of Angle Alpha
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L
:
|

3, ()
3y 01=9% K, P} (cos )
p=1
- J
i CEE R SLERARTN T e ) .

Figure 5 - Coil Current as a Function
of the Polar Angle Theta

FERROMAGNETIC SPHERE SURROUNDED
BY A COIL OF FINITE WIDTH

GENERAL SOLUTION
We now proceed to solve the boundary valve problem of a solid ferro=
magnetic sphere of radius R1 and homogeneous permeability ul surrounded

by a current band of finite width having inner radius R, and outer radius

R3 as shown in Figur?’f. éﬁfonstant current density iszassumed. A linear
relationship between B and H is assumed. Regions II, III, and IV have
homogeneous free space permeability designated as uz. The permeability
of the conducting coil in region III is assumed, also, to be equal to Mye
The geometry of the problem suggests spherical symmetry as in the previous
problem. . :

The partial differential equation that governs this problem is again
equation (11),

al--u7 (50)
where T- ?wAw(r,G)

> o5
J = ewa(r,e)
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CONDUCTOR
U&RENT DENSITY
=e,Jd, (r.0)

Figure 6 - Ferromagnetic Sphere Surrounded
by a Coil of Finite Width (yz Plane)

As before, it is necessary to solve equation (50) and use the appropriate

boundary conditions to evaluate the constants. Equation (50) reduces to

A = - pJ (r,m 51
°¢' uw(r, (51)
where

Jw(r,e) = Jw(e) in region III if elsesaz and RZSrsR3

Jw(e) =0 if 6<61 or.6>62 for all r(e1 and 92 are defined in
Figure 6), »
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Expanding the vector Laplacian in equation (51) in spherical coordinates
results in the expression:

2
o AR i_‘w g i
T &

Brz r dr r 36 r2 36 Zinzq

(52)

- qu(e) in region III

0 in regions I, II, and IV

Thus, the solutions in regions I, II, and IV are solutions of Laplace's
equation and are obtained by the method of separation of variables as in
the previous problem. The potential solution in region III, however, is
the solution of Poisson's equation. ’

The potentials in regions I, II, III, and IV are:

.= (A
I pI p=l pl

>
]

Py p; Ceosb) (53a)

5 .. P )t
Ay = Mg z (A L _('L+1) ) D i

>
|

- i M P
111 = A\DIII Zl(A 3r + (p+1) )Pp(cose) +
p=

2

b3 “er K ) 1
p#z (p-Z) (P+3) PP(COSQ) (53C)
p=1 ‘

e el (—3& P L(cost) (53d)

Equation (53c), the azimuthal component of Poisson's equation in
spherical coordinates, is solved in detail in Appendix D. When the current
is expanded in associated Legendre functions we have
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[+ ]
J (r,8) =J@) =J 2 g pl(cosd) (54)
w =1 PP

p .
where only the odd coefficients contribute since the even coefficients
are zero. The coefficients for the current were derived previously (see

equations (49a through 49e)).

BOUNDARY CONDITIONS

This solution must satisfy the boundary conditions developed in
equations (29) through (33). Because there are no surface currents on
the boundary between the regions in this ferromagnetic problem,.j; is zero

and the tangential boundary conditions for regi@ns I-IV become

TR " T -
n, T 3r (rAII(r,G)) = ul * e (rAI(r,G)) at r R1
(55a)
s R 1 13 &
ﬁ;' T 5 (r III(r,6)) o (rAII(r,G)) at r R2
(55b)
: W SE ) e T =
E; - (rA (r 8)) “2 ok III(r 8)) at r = Ry
(55¢)

The general expressions for the potentials in each region (equation
(53)) are then substituted into the boundary conditions (equations (31) and
and (55)) and solved for the Api & and Bpi'
equations with six unknowns and the potential in each region can then be

There are six algabraic

specifically determined. The six boundary conditions that must be
solved for the coefficients are (where the index p is odd only and

understood to take the values 1 to «):

P . P ~(p+1)
iRy = AR + B R . (56a)
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P
i

P—

e B T I T I B e B

e

—

2

H,JR, K
P ~{p+l) _ P =(p#l) 2
e L A 3Ry * Posts (p-2)(p+3)
(56b)
T
P -(p+l) 2 F.p -(p+l)
AysRy + B R4 * oD 43 " Bouks (56¢)

o Lo b ] e p-1
;_ [Apz (p+1)R1 (p)B le ] [Apl(p+1)R1

H
. 1
(56d)
3u JR K
' 4 R L -2, MpTRp
TS [Ap3(p+1)R2 (P)B 3R, (p-Z)(p+3)]
1 pel - -p-2
- [ A, (PYDIR, (P)B_ R, ] (56e)
i L P ~p-2 by 4 p-1 _ =R .
i [ (P)B R, ] “ & [Ap3(p+1)R3 (P)B 4R,
3U2JR3K ]
-2) (p+3) (56£)

The mathematical solution for Bp3 in terms of known quantities

obtained in Appendix E and is given by

3uzJR2K

o (p=1) _ "2 . 29p
B3 { Ky (PHLIR, (3-2) (p+3) (57a)

+ [x] (p+1)R2P‘1KPH - (p)Ré'p'ZK;' },////

{ -0k, P - [2][X] (1R, +[ 2] (p)RZ"”z,
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U
i 1
: ~(2p+1) P == :
gy [ 1.+( P+1) “2} (57b

t . ( S pdds) )
. uz |
i JRR, T
el 2" p 3
Kp > = N iy (57¢)
[ ] Rz—(p+1)
z2) = ~— - (57d)
P -(p+1)
([x]R2 =, )
2
u,JR, “K
202 Ip P
TR =) Y o) B Sy (57¢)
P ([ ]RP+R'(p+1)) oz
Eiho" £ Ry

The numerical values for the other coefficients can be obtained from the

equations

Ap3 = Kp' (58a)
By = Bys [2]. + K (58b)
Ay = [x] B» (58¢)
Apl = Apz + szkl'(z""'l) (584d)
g Ap3R3(2p+l) iyt u%ﬁi::zl)(p et
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CONCLUSIONS AND RECOMMENDATIONS
The method of separation of variables has been applied to determine
the magnetic field of the systems consisting of an infinitesimally thin

spherical coil around (outside) a ferromagnetic spherical shell and a

spherical current band of finite width around a solid ferromagnetic sphere.

The resulting formulae can be used in the analysis of magnetic induction
of ferromagnetic bodies due to current-carrying coils.

The magnetic vector potentials in the inner and outer regions are
derived for the infinitesimally thin current band in a medium of homo-
geneous permeability. The dipole term for the potential on the outer
region for the infinitesimally thin current band is reduced in a special
case to the dipole potential term for the circular filamentary current
loop. It is also shown that the vector potential for the ferromagnetic
shell surrounded by a 1nfiniteéimally thin current band reduce to the
potential in the two regions of the simple current band problem when
the permeability of the ferromagnetic shell approaches that of the

surrounding medium.

It is recommended that the solutions derived in this report be
programmed on a digital computer. The resulting calculations should then
be compared to solutions obtained by various numerical methods in order
to validate the numerical methods and calculations, There are plans to

implement these recommendations during the fiscal years 1979 and 1980.
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APPENDIX A

CALCULATION OF COEFFICIENTS OF THE VECTOR
POTENTIALS FOR A THIN COIL SURROUNDING
A FERROMAGNETIC SPHERICAL SHELL

In this appendix the coefficients are derived for the vector poten—-
tials in regions I-IV for a ferromagnetic spherical shell surrounded by an
infinitely thin current band. For a detailed discussion of the ferro-
magnetic problem see the section in the text of the report entitled '"Thin
Coil Surrounding a Ferromagnetic Spherical Shell'". The magnetic vector

potentials in each region are given by:

(oo}

= E / 1
AWI P | (Aplr )Pp(cose) (A-la)
TR P 1
YII =1 (A 2r + (p+l))Pp(cose) (A-1b)
oy p b _
AwIII p§1 (Ap3r . (p+]_)) Pp(cose) (A-1c)
A ) Bgt» Pl( 8) i
vIv - 3 | (D) pero .
p=1

The coefficients (A and B ) in equations A-la to A-1d are
obtained by substituting these equations into the boundary conditions
(equations (A-2a to A-2f))

A, = AII at r = R1 (A-2a)

A_=A at r = RZ (A-2b)

A =A atr = R3 (A-2c)




S b 1 1 9 |

Tu, roar (rhyyd + pyror (rA) = 0 at r =R (A-2d) {
|
}
B B, 215D . :
“Ha ¥ @ Cehpyy) + W, T 3r (rApp) =0 at r = R, (A-2e) )
L e 1 Z
T, ¥ & (Sl Mok Br (rAr;y) = J(0) at r = R, (A-2f)

After appropriate substitutions of equations. A-la to A-1d into equations

A-2a to A-2f, the following boundary value equations are obtained. ]
(A RP)=/A R"+—BP§_ (A-3a) ]
pll \ p21 R (p+1)
1
' p B2 p 53 l
(APZR2 b 1 E (p+l) = AP3R2 + . (p+1) (A-3b)
2 2 «‘
5 B 3\ B 4 ' 1
Tag— - —P2_ -3c {
(AP3R3 R (P+1)) ( R (p+l)) G :
3 3
1 [ p-1 -p-2
- N =
™ LApz(p DR, (p) Bp2R1 ] '
1 p-1 3 “
+ - [Apl(p+l)R1 ] =0 (A-3d) l
Py & pelio -p-2
. [Ap3(p+1)R2 () B4R, ]
' p=1 _ -p-Z] “ .
+ ™ [APZ (p+1)R2 (p) Bp2R2 0 (A-3e)
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oy e -p-2 1 (p-1) _ -p-2
™ [( p)Bpl.R3 ] + ™ [Ap3(p+1)R3 (p)Bp3R3 ]

J (6)
=2 (A-3f)

1
P (cosB
P #8)

These algebraic equations provide six simultaneous equations with
six unknowns, and they can be solved for the coefficients Api and B i by
tedious algebraic manipulation.

Solving equations (A-3a and A-3d) algebraically results in the

solution for A in terms of B
p2 p2.

A,= [x] 8 (A-4)
where 1+ _BI Ny
- B -(2p+1) : (p+ > U_

P 2
[x] (1_u_1>
Ky

The solution for Apl from equation (A-3a) is

G -(2p+1) %
Apl = Ap2 + BpZRl (A-5)

Also, solving equations (A-3c) and (A-3f) algebraically for Bp4 gives the
expression for Ap3 in terms of known quanitities after equating the

functions for Bp4 to Bpé from each equation. Thus,
A, =3 A-6)
y3 = 3060 (
where
MlJp(e)

P;(cose) R

! =
Jp(ﬁ)

31




?
.

The algebraic solution for Bp& from equation (A-3c) is

Aaay) o (A-7)

L 03

p4 P
The following expression is obtained for sz from equation (A-3b)
after substituting the expressions for Ap3 (equation A-¢), and Ap2 (equa-
tion A-4).

B, =~B4(2] + JI')'(G) (A-8)
where Rz—(p+l)
Zl=
L] ([x]mF sz, 0
and
I ) P
Je) JP( )R2
P

=([x] R, Pu g = iFhLE)

The mathematical solution for Bp3 in terms of known quantities is obtained
from equation (A-3e) by substituting the previously obtained expressions
- % fe g

or Ap3 (equation A-6), Ap2 (equation A-4), and sz (equation A-8)

1 [ (p-1) -p-2\, 1 5 (»-1)
== J1(0 - + — 0 + (
i, Tp¢ )\[x] (p+1)R, (PR, uy 5@ @R,

2 =

B =
3 2 -p-2 1 -1 1 —p-2
y (ﬁ:(p) R, P >+ u—z([Z][X](pﬂ)Rz(p )>- ‘Tz—([Z] PR, P )

\

(A-9a)
where ‘ 5 _p_ E.l_
- Rl'( p+l) Y AR
(x] = (A-9b)
.ul
1 -
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P

g ~(p#l)
(2] =;-—2
( fxln? +n -(p+1)) (A-9¢)
2 2
J 1(8) R,P
J ") = P 2 (A-9d)
P P -(p+1)
([x] B, + R, )
pJ (0)
J ') = 1P (A-9e)
P P;(cose)R3(p-1)(2p+l)

After the numerical value for Bp3 is calculated on the computer for a
specific problem, the numerical values for the other coefficients can be

obtained from the following equations:

sz = Bp3 [ Z] + Jp"(e), (see equation A-8) (A-10a)
Ap3 = Jp'(e), (see equation A-6) (A-10b)
ApZ = [X] sz, (see equation A-4) (A-10c)
A.=A_,+B R -(2p+1), (see equation A-5) (A-10d)

pl P2 p2'1

= (2P+1) -7 -
Bp4 AP3R3 + Bp3 (see equation A-7) (A-10e)
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APPENDIX B

DETERMINATION OF POTENTIALS FOR INFINITESIMALLY
THIN CURRENT BAND AND INFINITESIMALLY THIN COIL

In this appendix the potentials AWI in the inner region and AwII in
the outer region are derived for the infinitesimally thin current band in a
homogeneous medium of permeability My (see Figure 1-B). Also, the potential
in the outer region (r>R1) for the infinitesimally thin coil is shown to
reduce to the potential of the circular filamentary current loop.

The potentials in the inner region AWI and outer region AwII of the
infinitesimally thin current band problem are solutions to the vector

*
Laplace's equation XA = 0. These solutions can be expressed as:

oo

1% Py ol
AWI = pZi (Aplr ) Pp(cose) (B~1a)
Eicahs ( 5 Pl (cos6) (B-1b)
WIT ] r(p+1) o cos

The coefficients Apl and sz are determined from the boundary conditions of

the problem. After algebraic manipulation such as with equations (31) and ~
->

(35) in the text, the boundary conditions for the normal component of B 3

>
and the tangential component of H become:

AwI = AWII at r = Rl (R~7a) i
s
] ol : it i
“1 ¥ A (rAII) + ul r Bt (rAI) Jw(e) at r = R1 i
(B-2b) i
Substituting the expressions for A ,. and A (equations B-la and B-1b) into

yI YI1
the boundary value equations (equations B-2a and B-2b) provides us with the

following algebraic equations for the coefficients:

r - ()

P
A R B2k

pll




-

iE I -p-2 5
o [ (-P)B_,Ry ] (B-3b)

1 p-1 /1
+ -— |A +1)R =J (6 2 0
My [ pl(p Ry ] p( ) p(cos )
where Jp(e) is the pth term of Jw(e) (see equation 41). These equations
are solved for Apl and sz by simple algebraic manipulation.

TR T I ek i

o1 p2R1 (B-4a)

ulJp(G)Z/Pi(cose)

B . = —
R1 P (2p+1)

p2

(B-4b)

The potential A is determined by substituting the expression for

WII
sz (equation B-4b) into equation (B-1b).

- ulJ__(e)/ Pl (cos0) ;
Aovim T P P P~ (cosh) (B-5a)
VI pai | (pe) -2 | °
r (Zp+1)R1
= 1 pt+l
JK P (cosf)R R
= M98 s 1 -—;l : (B-5b)
p=1 (2p+1)
where Jp(e) = JKPP;(cose)' (B-5¢)
and n
2p+1 J- 1
JK = 0 ) 0do B-5d
. ’E’(FD‘ g It )Pp(cos ) sinfd (B-5d)

AWII is the potential in region 2 which is external to the coil (see
Figure 1-B).
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INFINITESIMALLY
THIN SPHERICAL
CURRENT BAND
J(o)

Figure 1-B - Infinitesimally Thin Current Band

Now the solution for A (equation B-5b) can be reduced to that for

ge:
the filamentary coil and the answer compared with that for the same problem
from a standard text (Jac_kson,10 page 144, equation (5.46)).

The coefficieat JKp for the expansion of the current

1
3,0 =§ JK P (cos ) (B-6)

for the current filament is obtained from the equation (see equation B=5d):

(m)
-2t NN 5o eyl (cosBhd(cosd)
K, 75 (p+1) -/:05(0) Ry cos 6) p(cos ) cos' (B-7)

e 1 ( ZELl__) pl(0)
R P
1 \ 2p(p+1) | -

Pt
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_ | =(2p+1) o G
JKP [2p(p+1) ] [Rl Pp(o)]

where J(8) = %—-G(COSS)
i

The special value of the associated Legendre function is calculated

from the expression (where m = 1)

(p-m) /2
P:(o) =si:1) P (pm) ! , (p+m, even) (B-8)
[p (5m): (5
=0 : > (p+m, odd)

This expression may be derived from the series expansion for the
Legendre function (see Smythe)11 and letting cosf = u! approach 0,

Substituting the expression for JKp (equation B-7), into equation
(B-5b), results in the expression for the vector potentials AwII in the

external region for the filamentary coil.

oo M
& 2k 1 P_(0)
o p=1  (2p) (p+1) =

1P1 (cost) (Rl P
r ) (B-9a)

Now equation (B-9a) must be multiplied by ﬁg to change from SI units
to Gaussian units, and ul must be set equal to 1 as ul is the free space
permeability which equals 1 in the Gaussian system.

After making these substitutions we have

4
c

x o Sl

© 1pl(cosh) (R phL Ly
B R _1)
r
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Now taking the first term (p=1) for use in the comparison with the result

in Jackson10 we have
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2
R 1
A BESE: . ) P. (cosB) 3
wII(p=1) - ( r) 1 (B-9¢)
This expression agrees exactly with the expression in Jackson10 for the
first term in the series where R1 = a in his notation.10 The magnetic
fields far from the loop for the p=1 term are dipole in character.

The AWI I term for the current band problem also reduces exactly to
(p=1)

Jackson's term with n=0 (Jackson,lo page 144, equation 5.46) for the
potential inside of the loop.
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APPENDIX C

w REDUCTION OF THE MAGNETIC VECTOR POTENTIAL
| FOR A THIN COIL SURROUNDING A FERROMAGNETIC
SPHERICAL SHELL TO THAT OF A THIN COIL
IN FREE SPACE WHEN IN THE LIMIT My

EQUALS U,

 digle

In this appendix, the coefficients Apl’ ApZ’ Ap3, sz, Bp3, and Bp4
for the potentials are evaluated for the system consisting of a ferro-
magnetic shell with permeability u2 surrounded by an infinitesimally thin
current band in a homogeneous medium with permeability ul in the limit as
Hp = Hye These coefficients are utilized in equation (28) in the section
of the report entitled "Thin Coil Surrounding a Ferromagnetic Spherical
Shell". The variables are defined in Figure 2 located in the text of
this report. When Yy is set equal to u2 the problem reduces to that of

finding the potentials in the two regions of a simple current band (see

Figure 1-B in Appendix B), since the ferromagnetic shell will now have
= a permeability “1 equal to that of'the homogeneous medium with permeability
Yy
In this limit the coefficients should assume the following form:

Apl = Ap2 = Ap3 (C-1a)

= = (0 i 3
Poa " a0 Ry -
and where Apl and Bp4 should reduce to the coefficients for the potentials
in the two regions for the spherical band problem (see Appendix B). If i
the coefficients assume this mathematical form it will prove that the M

mathematical form of the coefficients for the spherical shell surrounded 4

by a thin current loop are mathematically correct.

The mathematical sqlution for Bp3 in terms of known quantities was
derived in Appendix A and was reported in the text of this report (see
equation (37a)).

T, STy S

| 1 Sy » p-1 _ p-2), 1L p-1
; l; ™ J;'(S)([X] (p+1)R2 (p)R2 )-+ MlJp (9)(p+1)R2

u » [(%1- (PIR, P~ )+ %,—;([z][._x] (p+1)R2p.-1) < }1—2([21 (p)nz-p-z)]
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where 3
SR ® TR Y.
- Ry by [1 +(p+1)u2]
(x]= ' e
(*-%
1 i
)
-(p+l)
R
[2] 2

‘([ x] &, + R2-<p+1))

[ P
Jp (O)R2

P -(p+1)
(x]Rr," + &, )

" =
Jp (6) (

ulJp(G)

J!(0) =
P P;(cose) R3(P'1) (2p+1)

The coefficient Bp3'will now be evaluated when the limit is taken with {
My = u2 which cause [X] to approach infinity (). Also, the expression )

for J;'(O) is substituted into equation (C-2a).

a2

(c-2b)

(C-2¢)

(c-24)

(C-2¢)

——

~——— - - e ——




(€-2)

—

: A C )
(T+d)- lenv A(T+d)

(a=la)
O =
s, 4 d | n a .o
(x] z
( —+
4 4 Z d
(+d)- 1+ &8 (x] Tn (14d)- ¥ Tn e Lo =)
[ [4 o 5 A i Z o < |x
()= Yga)- HO[ T N\ gy g ¥ ) T 540y D) [x]
) 1 oo s T
o z + Gu :
2 P X)L Tyereay | A~ ]
— -d
e e P mﬁevﬂ T

gd

43

S

{
{
|
|




—

The expression for Ap2 (see equations (38c) and (38a) 1in the text is:

Ky ® [x] B, " [x] B3 [z]) +(x] 3 (0)

= n
where By = B3 [z] + Iy (0

The expression for Ap2 when My equals M, can be expressed as

A = lim{:.w [x] B3 (z]
L, (P L]

(ul=u2) (u1=u2

+ [1)1&.‘1: w([X] Jr;' (6))

A =J!
02 , o (®

(u1=u2)
[x] " P*D
where limit ([X] (z])- 1i{mit o =01 -
-(p+1)
limit »’ o
P
(Rz T §
and limit({X ] J" (9))=
h3ald 5 @)
x] 3'(0)R,P
limit (x] 2 ‘ G5 J;(e)

[x]+= g~ (P+D)
[x] <R2p " _Z[Y]__)

and ; Bpé I = 0, (see equation C-3).
(“1'“2)
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(C-4a)

(C-4b)

(C-5)

(c-6)
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The expression for Ap equals Jg(e) (see equation (38b) in

3

(uy=u,)
the text of this report). The expression for sz (see equation (38a) in
text of this report) is:

By = By3 [z] + J1(®) (c-7)

The expression for sz when ul = uz can be expressed as:

sz l s E;i(,j‘f:w( Bp3 l . [#]

(uy=1,) (uy=H,)

J1(0) RZP
+ limit

sz ot

*=H) -

12 .~ (P+1)
where limit [2] = 1limit 2 : =0

p -(p+l)
fale « &, B R0 T
p
and 1mie [ J,©) R,
+> o i P = (p+1)
[x] ([x] R,” + R, )

=0
B

(ul.uz)

and

The expression for Apl is (see equation (38d) in the text)

& -(2p+1)
Apl Apz + sznl (c-9)
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The expression for A is

o when ul = U

2

A

pl i

p2 P2
(u1=u2) (“1'“2) (u1=u2)

+|B

]
A Jp(e)

pl |

4 (Cc-10)
(“1'“2)

where B

p2

(ul-uz)

The expression for Bp4 (see equation (38e) in text) is:

B, =A c-11
s (c-11)

%1 R3(2P+1) + B

3 p3

The expression for Bp4 when My = My is

; (2p+1) , |,
Bp4 Ry + 3

4 = | (c-12)

(u1=u2) (u1=u2) (ul=u2)

? (2p+1)
R3 =

p3 pl

(2p+1)
Ry

where B
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This means that in the four regions, the potentials used in equation

(28) of the report are

Ap =¥ (Aplrp) P;(cose) (C-13a)
p=1
= P BRZ 1
AwII =% (Apzr + r(p+fy) ' Pp(cose) (C-13b)
p=1
T: P v 3 1
y— Ll ( KB —R——r (p+1)) P, (cosd) (C-13c)
p=
. B4 1
Ava - ¥ D) Pp(cose) ; (C-13d)
p=l \ T :
reduce when ul = u2 to the form
o Apl
i i 2: P Pl(cose) (C-14a)
$1,11,111 (0 =u.) P
pel e
® Ppd ‘
1
A - Y - P_(cosH)
\'j - p
WY e (uy=u))] (C-14b)
¢ (PHL)

These are the solutions for the potentials of the current band in a region
of space with homogeneous permeability Y (see equations (B-la and B-1b).
We now have the solutions for the two potentials in regions I and II
(AWI,II,III, and AWIV’ respectively) for the simple current band problem.

This indicates that the form of the coefficients Api and Bp are mathemati ~

i
cally correct.
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The mathematical expressions for Apl and Bph will be evaluated in
the limit as “1 = “2' These values will then be compared with the coeffi-
cients Apl and sz, respectively, for the two regions of the current band

problem (see Appendix B). pr (see equation (38e) in text) is:

7 (2p+1) e
Bp4 = AP3R3 + Bp3 (C-15)
When ul = u2, Bp4 is
= (2p+1)
Bp4 = Ap3 l Ry + Bp3
(u1=u2) (u1=u2) (uy=1,)
her A = J'(6
where 03 ‘ p( )
(ul=u2)
and Bp3 =0
(u1=u2)
B = u.J (8) /P (cosd)R, P 2(2p+1)
pé 1'p P 3 g
(“1’“2)

v

The form of A l is:
pl

(“1'“2)
A =(B
pl p4 e, (c-17)
| | R3 e
(“1'“2) ,(“1'"2)
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The mathematical expressions for Apl and Bp4 (equations C-17 and C-16,
respectively) for the ferromagnetic spherical shell surrounded by a thin
current band in the limit as Uy, = M,y are the same as the coefficients
Apl and sz (see equations B-4a and B-4b), respectively, for the vector
potentials in the regions of the current band in free space (see Appendix
B). It is noted that when making the comparison R3 must be set equal to

R1 For comparison, the coefficients for the current band problem are:

Ay - BPZRI-ZP-I (C-18a)
ulJ (9) Pl(cose)

By memdir (C-18b)

P R, P74 (2p+1)

1

and the coefficients for the ferromagnetic shell problem with Uy = Y, are:

. -2p-1 s
Ap1 Bp4R3 (C-19a)

AL /P;(cose)

B —p-2
R, P=%(2p+1)

pé

(C-19b)

49




—— ———
———— e (S

. LN

APPENDIX D

SOLUTION OF THE AZIMUTHAL COMPONENT OF THE VECTOR
POISSON'S EQUATION XX = -qu IN
SPHERICAL COORDINATES

For the benefit of the reader, the azimuthal component (y component)
of the vector Poisson's equation in spherical coordinates as originally
derived by Purczyr{ski9 is presented in detail as related to the problems
addressed in this report. Because of the spherical symmetry of this
problem, only the Yy component of the vector Poisson's equations is needed.
Following in an outline of Purczyﬁ%ki's development, the general form of

the component of the current is:

Jw(r,e) = Jrq-2 Zl KPP;(cose) (D-1)
p=

where the case q = 2 is of primary concern in this work. The general ¥

component of Poisson's equation is written as

2 2
3 d 9°A A
g«pg_ﬂL AHI_ —L_+_ __._.“p_.'.g_'_:.e_a—y =
Brz T ar r281n26 r2 362 r2 96
_usz(r,e) in current region
0 otherwise

(D-2)

(o]
Multiplyingt’Aw by r” and substituting the general expression for
Jw(r,e) in equation (D-1) gives the expression

A a2
r? __f!_ + o —Br - WZ Aw + cotb —fm— (i=0y

8in“6 36 96

= - uerq Z K P (cose)
o e

which is assumed to have a solution of the form
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A=A =X f<r)P;(cose) (D-4)
p=1

By separation of variables, equation (D-3) becomes:

d2 [P;(cosﬁ)l 5 d [Pi(cose)]

cot® +
d62 de
1 1
p(p+l) - 5 P (cosf) = 0 (D-5a)
sin 0 P
2 de df
e = - q -
r drz + 2r ar p(p+l)f HyJr Kp (D-5b)

where the separation constant p(p+l) is an integer. Differential equations

of the form

2
LY 40 L+ ey = R (0-6)
dx s

have no general solution. The homogeneous part of equation (D-5b) has the

form

2
2 &°f df
: dr2 e dr = p(p+t1)f = 0 (D-7)

Equation (D-7) can be simplified by substituting r = e'. Making the follow-
ing substitutions in equation (D-7),

df _ df de _ df (1 N
dr " dt dr " at (r) Y0=8)
b dp (4] og &
sl ge? \dr &t g2
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s P
» '

s T f(_l___) AT | e 8
ar* @t \ e 1% r?
d 1 dzt 1
where at _ S, e wi (Note: £n(r) = t)
dr r dr r
2
ields d d
dt

This has the well-known mathematical solution:

£ w jpePt y g PTLIT (D-10)
1 P p
wvhich after substitution of r = et has the form
£. = AP P D-11
17 AT T et

Thus the general mathematical solution to the homogeneous part of the

azimuthal component of Poisson's equation is

Al =A' = 55 AP+ -—lﬂl——>P1(cose) . (D-12)
LA L) Jp

which is'the solution to the azimuthal component of the vector Laplace's
equation.

The solution to the inhomogeneous equation (D~5b) will now be investi-
gated. It is assumed that the mathematical solution to equation (D-5b)

has the general form

2
for p # q. By algebraic manipulation after substituting into equation
(D-5b) we have:

£ » dpeqt (D-13)
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H,J K
d . , (p#q) (D-14)

p  (p-q) (pra+l)
If we assume that the mathematical solution to equation (D-5b) has the

general form for p = q
£, = dqteqt : (D-15)

It is found after substituting f; into equation (D-5b) that

- 1,Jd K
d =——A— (p=q)

(D-16)
q 2q+1

[« 2}

Since A equals 2: f(r)P;(cose), the general mathematical solution to
p=1

the inhomogeneous equation (D-5b) has the form

1 1
® K P (cosB) K P"(cosB)n(r)
o q o il *
Alle &y = igit [Eq (p-q) (prq+1) 2q+1 ](D i

The total general solution to equation (D-2) consists of the sum of the

homogeneous and inhomogeneous equation.

bt B
Awa’ ¢ M A& + A&' - Egi ( Aprp + ;%;:I)) P:(cose)
¥ (D-18)
o 1 1
K_ P~ (cosf) K P (cosf)n(r)
+ u,Jr (p P . 949
p 1 p-q) (p+q+l) 2q+1
p-

For the problem worked in this report q = 2 and Kp = 0 for even p. Thus,

K2 is 0 and the term involving

2 KZP;(cosﬁ) n(r)
-u,Jr - ~
. 5
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to (see equation (53c) in text of report where Ap = A

[+ ]

B
- A RR P;(cose)

111 * Mqir © 3 8T . o0
pa]_ r

K Pl(cose)
p#2  (p-2) (p+3)

+ uerz

55
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§ in equation (D-18) does not contribute. In this case (D-18) reduces

and B =B -
p p3)

(D-19)




—

APPENDIX E :

CALCULATION OF COEFFICIENTS OF THE VECTOR
POTENTIAL FOR A SOLID FERROMAGNETIC |
SPHERE SURROUNDED BY A COIL
OF FINITE WIDTH ]
|
1
|

In this appendix we derive the coefficients for the magnetic vector
potentials in regions I-IV for a solid ferromagnetic sphere surrounded by
a finite width current band. For a detailed discussion of the ferro-
magnetic problem see the section in the text of the report entitled
"Ferromagnetic Sphere Surrounded by Coil of Finite Width'". The vector

potentials in each region are:

1
Kk = F (Aper)Pp(cose) (E-1a)
p=1

(<<}

B

% % P, P2 _\pl -

App = Ayry )_'jl(Apzr +r( ﬁl))Pp(cose) (E-1b)
pB

oo

B
3 2 P, B3\l
AIII AwIII E (Ap3r + r(p+1) )Pp(cose)

p=1
s M, JK rz 1 ‘
+ Z 2 P (cosf) (E-1c)
p*z (P"z) (P+3) _ P ', .
p=1 |
m Bos 1
AIV = A\JJIV i 21( r(p"'l)) Pp(cose) (E-1d)
p-

The coefficients (Api;and Bpi) in equations (E-la to E-1d) are obtained

by substituting these equations into the boundary conditions (equations
E-2a to E-2f).

AI = AII at r = Rl (E-2a)




A = A

—
[

3 -1 1
(rAII) by r or

M, T or

|1

(rA

2]

3l
E; =~ g%-(rAIV)

III v

R —

atr = R3

1

9 i SO TR &
i 7 1) W, T 3r (rAp;) at r =R

19
r ar

5 (rAI) at r = R

1

2

(rA...) at r = R

I1I 3

(E-2¢c)

(E-24)

(E-2e)

(E-2f)

After appropriate substitutions of equations (E-la to E-1d) into

equations (E-2a to E-2f) the following boundary value equations are obtained.

Apl 1 p2®1 (p+1)

P2 2 P2 2

= A R"+—L——

P -(p+1) P - (pt+1)
A R, +B R Ap3R2 + BP3R2 + uzJR2 K

p -(ptl)
Ap3n3 + np3a

2
JR3 K

p-2) (p+3

: - (p+1)
Bp4R3

X (p-1) _ ~(p+2 (p-1)
™ [Apz(p+1)Rl (P)B,R, (pt+ )] o (p+1)R

1

(E-3a)

(p-z>(p+a))
(E-3b)

(E~3c)v

(E-3d)

B SRR ———

$

R




——
[ S

==~

1

3y,JR.K
(p-1) _ -(p+2) 2800
™ [Ap3(p+1)R2 (p)B_.R +

p3R2 3-2) (5+3) ]= (E-3e)

(=

N (p-1) _ -(p+2)
[A 52 (PR, (P)B R, ]

b A L 7(p4§ﬂ= 1 p-1 -(p+2)
L [-os 2, : gAp3(p+1)R3 -8R,
-F(% UZJR3KP

2
/p-Z) (p+3)>}
/ ;

These algebraic equations provide six simultaneous equations with six

(E-3f)

unknowns, and can be solved for the coefficients (Api

and Bpi) by algebraic
manipulation.
Solving algebraically equations (E-3a) and (E-3d) results in the

following solution for Ap2 in terms of sz.

Ap2 4 [X] Bp2 (E-4)

where [X] = -Rl’(z"ﬂ) [1 +<—-‘;L+1) z_;] (1—%)

The solution for A

- from equation (E-3a) is:

A

5 -(2p+1) i
ol Ap2+B R : (E-5)

p2'1

Also, solving equation (E~3c) and (E-3f) algebraically for mathematical
expressions describing Bp4 giveg #he expression for Ap3 in terms of Bp3
and known quantities after equating the functions fo? Bp4 = Bp4 from each
equation.
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Ap3 = K; (E-6)

-p+2
"l by noJK Ry

P (p-2) (2p+1)

The algebraic solution of Bp4 from equation (E-3c) is: 1

- s (p+3)
u,JR K
L (2p+1) +'8 2° 93 P

B p3%3 p3 ¥ -2 (pF3)

The following expression is obtained for B p2 from equation (E-3b)
after substituting the expressions for A b3 (equation E-6) and A 2 (equa-
tion E-4).

P — B

- " ;
BPZ Bp3 (2] Kp (E-8) .

=-(p+l)
R,

where [2] = -
([x] R) + R, ‘P“))

L

JR K ?
K" P (p=2) (p+3)
([x] R 4R, (p+1))

The mathematical éolution for Bp3 in terms of known quantities is obtained !
from equation (E~3e), by substituting the previously obtained expressions
for A (equation E-6), A (equation E-4), and B (equation E-8). f l

- 0

NS

aha




( -1 3u2JR2K
B o ={-K! [(p+1)R2p )J B (E-9a)
P P (p-2) (p+3)

+{ %] (p+1)Rgp_1)KI:' -(P)Rz_(p+2)Kg }

{(_p)Rz-(P""z) ) [Z] [x] (P+1)R2P-1 + (p‘)Rz'(p""z)[Z] }

By
where _Rl-(2p+1) [1 + (;_%)Ez— ]

(x] = o ey (E-9b)

Pt <

()
. -pt2
e u,JK R i
» (p-2) (2p+1) g
-(pt+l)
g

[z]) = o (E-9d)

([x3aF + n ]

2

uzJRZK + k! RP

k" = (p=2)(p+3 6 B T (E-9e)

AR (151 N e

After a numerical value for Bp3 is calculated on the computer for a specific
problem the numerical values for the other coefficients can be obtained
from the following equations.

B,= BP3 [z]+ K" , (see equation E-8) (E-10a)

p2 P
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L .
\ Ap3 = KI: (see equation E-6) (E-10b) i
|
‘ |
Apz = [X] sz (see equation E-4) (E-10c) |
~(2p+1)
Apl Ap2 + Bp2R1 (see equation E-5) (E-10d)
B, =A_.R (2p+1) + B .+ u2JR3(p+3)KP (see equation E-7) (E-10e)
p4é  "p33 p3 " (p-2) (p+3) . "
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The identity

T p+m

m! m a = '—2( ):
/ Ppn (cos8B) Pp(cosv) sinfd6 (Zo+1) (p-m) | S
0

(43)
was used to determine Kp (equation 42).

Setting Jw(e) to a constant J
we can express equation (42) as:

T
S 22+1 1
“p T 2p(p+D) : PD (cosf) singds (44)

2

Since the current in this problem extends from L ajto Qm%-+ al,
see Figure 4, the expression for Kp (equation 44) may be writt

n as
P LA
2p+1
Kp = 2p (p+1) /2 Prl)(cose) sinfdSs +/2 P;(cose)sinede
T s
2 ]
(45)
By noting that
1 n p-1 _1
Pp(—cos‘) = (-1) Pp(cose) (46)

it follows that the associated Legendre functions Pl(cosq) are even func-
tions with respect to cos® when p is odd.

The express1on for Kp may be
simplified to

P p%p-&-i) _[ P:(cose) sinfd8 (47)

when p is odd (K = 0 when p is even) after utilizing the symmetry of J(B)
in Figure 5. By changing the variable in equation (47) to u =

= cosf, the
integral for Kp may be written as
sina L
2p+1 1 '
K e SRE2_ P_(u')du 48
P plp+l) _/; P i

19




INFINITESIMALLY
THIN SPHERICAL
CURRENT BAND
J(6)

Figure 1-B - Infinitesimally Thin Current Band

Now the solution for AdII (equation B-5b) can be reduced to that for
the filamentary coil and the answer compared with that for the same problem
from a standard text (Jackson,10 page 144, equation (5.46)).

The coefficient JKp for the expansion of the current

1
(0 =D JK P (cos6) (B-6)

P
for the current filament is obtained from the equation (see equation B-5d):
|
|

cos (T)

2p+1 1 1
T, = - S f R s (8-7) | |
cos “ 1
t %f
1 \ 2p(p+1) P
H %
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where J(0) --%— 6(cosf)
1

The special value of the associated L2gendre function is calculated

from the expression (where m = 1)

(P"m)/z ]
P:(O) =‘1:1).< “ptm)l , (p#+m, even) (B-8)
lzp (R;ﬂ) ' (Piﬂ!):
=0 » (ptm, odd)

“his expression may be derived from the series expansion for the
Legendre function (see Smythe)11 and letting cos® = u' approach 0,

Substituting the expression for JKp (equation B-7), into equation

(B-5b). results in the expression for the vector potentials AwII in the

external region for the filamentary coil.

@ U TP (cos®) (R \PHL
o s a3 il ( _1_) pl(0)
ST p=1 (2p) (p+1) r P (B-9a)

Now equation (B-9a) must be multiplied by ﬁg to change from ST units

to Gaussian units, and 1, must be set equal to 1 as u, is the free space

1 1
permeability which equals 1 in the fGaussian system.
After making these substitutions we have
1 p+l
= 9
Koy o wn g il (ﬁ ) P;l,(o) (B-9b)
W1l c 2p(p+1) r

p=1

“ow taking the first term (p=1) for use in the comparison with the result

- 10
in Jackson we have
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A l In R1 3 Pl(cose) | :
P enls * ‘;) 1 (B-9¢)

Equation (B-9c) agrees exactly with the first éerm in the series by
Jackson.lo where Rl = a in his notation, except for a minus sign.

When the (-1) phase factor in the definition of the Associated Legendre
functions Pi(cose) is taken into account, the two expressions are the
same. The general expressions for the Associated Legendre functions

P:(coso) in this work do not contain the (—1)m phase factor used by

Jackson.

The term for the current band problem also reduces exactly
Yp=1)

to Jackson's term for n=0 (Jackson,10 page 144, equation 5.46) for the

potential inside the loop when the (-1) phase factor is again taken into

account.
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