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j EXECUT IVE SUMMARY

THE MAGNETIC INDUCTION OF THE SYSTEM CONSISTING
OF A COIL AND A FERROMAGNETIC SPHERICAL BODY

OBJECTIVE

f ‘ The objective of this work was to derive solutions to static ferro—

magnetic problems that included both current—carrying coils and linear

ferromagnetic bodies. The solutions are intended for comparison with

solutions to ferromagnetic problems obtained by various numerical

techniques such as the finite difference method, the finite element method ,

and the integral equation iterative solution method .

[ APPROACH

After deriving the governing differential equation from Maxwell’s

I equations for classical magnetestatic field theory, the method of separation

of variables was employed to obtain the problem solution.S

I RESULTS S

The magnetic induction was calculated for two geometries (configura—I tions) of a ferromagnetic spherical body surrounded by a current—carrying
conductor. The first case was for an infinitesimally thin current band

I carrying a stationary current and surrounding a spherical shell. The

second case was for a current band of finite width carrying a stationary

I current and surrounding a solid sphere. The ferromagnetic bodies were

assumed to be linear and homogeneous. The reduction of the solution of the 
S

I dipole term to that of a filamentary, circular, current—carrying conductor S

is shown for the first case when the permeability of the ferromagnetic
S spherical shell is allowed to approach that of free space.

RECOMMENDATIONS . 

S

S It is recoimnended that the derived solutions be programmed on a

dig&tal computer for direct comparison of these results to those obtained

by various numerical methods . There are plans to implement these recoin—
I mendations during the fiscal years 1979 and 1980.

- _ _ _ _ _ _ _



Ii 
ABSTRACT

The magnetic induction is calculated for two
configurations of a ferromagnetic spherical body
surrounded by a current—carrying conductor. The
first case is for an infinitesimally thin current
band carrying a stationary current and surround—

I ing a spherical shell. The .~ .c, nd case is for a
I current band of f inite width carrying a stationary

current and surroundfn ~ a solid sphere . The ferro—
magnetic bodies are assumed to be linear and homo— S

geneous. The reduction of the solution for the S

dipole term to that of a filamentary circular
current—carrying conductor is shown in the f irst
case when the permeability of the ferromagnetic

( spherical shell is allowed to approach that of
free space . S

I S

ADMINISTRATIVE INFORMATION

This work was performed under Program Element ll2lN , Project B0005 ,

Task Area B0005—SL—OO l , Work Unit 2704—1 10 . The project director is

I Mr. J. L. Corder , David W. Taylor Naval Ship Research and Development

Center.

I INTRODUCTION
In the past, exact analytical solutions of Maxwell’s equations using S

I classical formulations have been limited to body shlpes and inhomogeneities
that conform to a few separable coordinate systems. With the advent of S

I modern digital computers with large computational and storage capabilities,
many electromagnetic field problems of importance in engineering practice

can and have been solved by using a numerical solution to the governing

1 differential or integral equations under a suitable choice of boundary

conditions. Such numerical solutions of Maxwell’s equations, when used $
with a complete description of the electric and magnetic sources and the

constitutive laws of the media, can be used to describe completely the

f electric and magnetic fields produced by the source, including nonsyninetric
I geometries , nonsyimnetric source distributions, and spatially varying

media parameters.

n 1
II 

-- — -- — _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -S
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The literature~~
6 contains numerous examples that demonstrate the

power of using numerical techniques such as the finite difference method , S

the finite element method, and the integral equation iterative solution

method. Both two— and three—dimensional electrical engineering problems

have been solved. Authors have tried to validate the numerical methods 
j

and calculations by comparing numer ical results to:

1. Simple problems using engineering approximations .
2. Other numerical method solutions of the same problem.
3. Laboratory experimental results. 

-

4. Problems that have analytical solutions .
Another technique that could be used but which the authors of this report
have not seen very widely used in the literature is a comparison of two
theoretical formulations fo r a given problem so lved by the same numerical

method. An example might be a vector potential formulation compared to S

a scalar potential formulation.

The motivation for this work arose out of the need for solutions to

static ferromagnetic problems that could be used for comparison with 1
numerical methods . The capability exists to calculate the magnetic field
due to a fe rromagnetic body immersed In a constan t Inducing field for the

following bodies: solid sphere , spherical shell, solid prolate spheroid,
prolate spheroidal shell, solid general ellipsoid , and general ellipsoidal -j
shell.7 Also, the capability exists to calculate the magnetic field caused S

by a single or combination of current—carrying coils.8 However, the S

capability did not exist to calculate the magnetic field caused by a ferro— S

magnetic body In the presence of the field created by a current—carrying coil.

BASIC EQUATIONS
We can start with Maxwell’s equations for classical magnetostatic

field problems

complete listing of references appears on page 63.

S 

- 
- .
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I
V x H = J  (la)*

-~~~ .~~I V~ B = O  (lb)
1

where H magnetic field intensity (A/m)**

S magnetic flux density (T or Wb/m 2 )

- 
electric current density (A/m 2)

In the general case for ferromagnetic materials is a nonlinear function
of H

I -~~~ -~~~B =  f Ol) (2)
S 

where as shown in Figure la ?is not a single valued function of it The

- function f (H) depends on the magnetic history of the material, that is
how the metal attained its magnetization. This is referred to as hysteresis.

F It is also noted that any property of a ferromagnetic material has meaning

only if it is considered together with its complete magnetic history.

[ In certain practical engineering problems, the variation in the

magnetic intensity is small , and the functional relationship between B and

‘ 
H is approximately linear (see Figure lb). For the linear case where the

material is isotropic , the magnetic induction DiS related to the field
-~~~

I intensity H by the relationship S

p (;+1) it= p p t= ~~~ 
(3)

0 o r

where Xm
magnetic susceptibility (dimensionless)

r p magnetic permeability (henry/meter)
1 (;+l) = p relative permeability (dimensionless)

p free space permeability (4irxlO 7 henry/meter)

fl *The del operator is defined with respect to the rectangular coordinate

S I system and is strictly valid in a rectangular coordinate system only.
Very often~~x and ~~~~. are used as equivalent symbols for curl and divergence

fi generally. This use is followed in this report. S

S 

~ 
**Definitions of abbreviations are on page v.

~~~~~~~~~~~~ S~~~~~TS f l~~~~
S • 

_ ____
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(a) Curve for a Ferromagnetic Material

FLUX DENSITY
(WbIm2)

I S

I I MAGNETIC FIELD INTENSITY H 
S

/ 
(A/rn)

_ _ _ _  

) 
5

S
5~

(b) Curve for a Ferromagnetic Material
at Low Inducing Fields

S 
FLUX OINWV S~ W,b/m~I 

S

MAGNETIC FIELD INTENSITY N (Win)

Figure 1 — Typical Magnetization
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This report assumes that the ferromagnetic body has isotropic and

linear material properties. The divergenceless nature of the magnetic flux

I density in conjunction with the fact that the divergence of the curl of

any vector function is zero allows the introduction of the magnetic

- vector potential field (A)

-~~ 
.
~~
. -* S

S B = V X A  (4)
I -

~~I where A is the magnetostatic vector potential function in veber/meter.

The substitution of equation (4) into equation (la) gives the fundamental

equation of the vector potential of the magnetostatic field.
S 

l~~ -~~~-~~ -
~~~~~~~ 

-~~l ~~
~jVx(VxA)- (~

7xA) xv~~~~~J (5)

S For homogeneous materials as assumed in this report the magnetic permeability

S 
j 

S is spatially invariant. Hence

(6)

S and equation (5) reduces to 
I

S 
- V X V x A PJ (7)

Using the vector identity
_ 

~~~ ~~~~
. 

~~~~~~~~~
S V x 

~ 
x A = V (V A) - *A (8)

1’ * 
-

equation (7) becomes I 
- 

-

(9)

The magnetostatic vector.potential is characterized by the important

property that its divergence can be conveniently chosen to be zero.

S V . A = O  (10)
S 

Equation (9) reduces to the vector Poisson’s differential equation .

I — 
5
’ (11)

This is the governing equation for our calculations.

11 5
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1
The general boundary conditions to be satisfield at the interfaces

of stationary dissimilar media stay be derived from the limiting integral

forms of Maxwell’s equations and are given by

n12 . (1—tj ) = 0 or B~1 = B~ 2 (12a)

-~~~ 
-~~~ 4. -~~~

n12 x (H
2—R1

) J
5 or Ht2

_H
tl = J (l2b) 

S

where the subscripts 1 and 2 indicate the media under consideration, and

denotes the unit normal vector to the interface and is directed from

medium 1 into medium 2. In the case where the materials are linear and

isotropic equations (l2a) and (l2b) become 
. ~S1

n12. (p2H2—p1H1) = 0 (l2 c) S

.0. (
~ 

Bl\  .~— 

~~
—j  = Js (12d) 

J
J is a true surface current density that may exist at the interface. At

an interface where J5 is 0, equations (l2b) and (12d) need to be modified
accordingly.

S I  S

THIN COIL SURROUNDING A FERROMAGNETIC SPHERICAL SHELL

GENERAL SOLUTION 
-

We now proceed to solve the boundary value problem of a ferromagnetic

spherical shell of outer radius R2, Inner radius R1, and a homogeneous -

permeability ji2~ 
surrounded by an infinitesimally thin current band of

radius R
3 

having a current density A constant current density is
assumed. Figure 2 identifies the four regions of interest. Regions 

-

I, III , and IV have a permeability equal to the permeability of free
space 

~~ 
which for convenience will be labeled p1. The problem’s

spherical symmetry suggests that a spherical coordinate system such as

that shown in Figure 3 be used in the problem solution.

6 r
~~~SS~~~~~~~~~ I ‘S 5

-S — - 5— - —
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Figure 2 — Ferromagnetic Spherical Shell
Surrounded by an Infinitesimally Thin

- S Current Band
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L

S Ampere ’s law states

I ~xt.T (13)

and since V•B 0, the induction tmust be the curl of some vector field t

The governing differential equation for A when homogenous and linear mate-

rial are considered is from equation (11).

— (14)

r . 2*We note that a distinction is drawn between the operator V called the
I: scalar Laplacian operator and the vector Laplacian operator designed by $.

The vector Poisson’s equation In rectangular coordinates can be treated
S 5 as three uncoupled scalar equations as shown below.

= 

~ [ ~~~~ 

+ +
~~~~ 

] + 

~~ 1:> 
+_ +  

~~~2] 
S 
+

+ ‘-

~~~~~~~~ 

= + +

where $A j  — V 2A1 = g .t J~ for I = x,y,z. However, if the vector Poisson ’s
equation is resolved Into orthogonal components in other coordinate

I systems the differential operation mixes the components together giving SS 
coupled equations as shown below for spherical coordinates.

~~ 
+ 

~~~ 

-

~~~~~~ 

- 

~~ 
A + 

r2 
~ O 2 + +

2 2 ~~~~~2 ~~~ 
2 cot O A _  

2 
2

r sin e ~~tj~ r r r sin 0

S 

t 
_____ 

2 ~A0 A0 ~ ~
2A0 cot e ~A0 1 ~

2A00 L ~r2 + — 

r2 sin2 o 
+ + 

r2 
~ ° 

+ 
r 2 sin2 e ~~ 2

+ 
2 ~~r - 2 cot ~ ~~~~~~~~ 1 +-

~~~ + 2. - 
1 A + — —

~~~~ S

r2 a° r2 sin 0 
~~ 

j  e
~,L ~r

2 r ~r r
2 
sin29 ~ r2 ~o 2

II

- =  ~~~~~S S 5 - 5 _S  

- :

5

_ 

S S~~S SS ~



1
j

+ cotO 1 
_____ 

2 ~A 2 cotO ~A0 1
r2 ~~ 

+ 
r2 sin29 ~~2 

+ 
r2 sinG ~~ 

+ 
r2 sin G 

~~~~~ J S

-0. -~= J e  + J e  + J e  Sr r  0 0  ~~~~~~~ S

The general expression in spherical coordinates for a current density is

J e J  + e J  + e J  (15)
r r  00  ~P~

)

where the tare the unit orthogonal vectors. For stationary currents S

in vacuum the vector potential function that satisfies equation (14) is S

given by S

A = 7 ~~f 
1,dv (16) 3

where dv = elemental volume in the current—carrying region 
- 

-
-~~~= distance between the field point where A is being determined

and dv at the source point.
-0•

From equation (16), we see that the elemental vector potential dA S

-0. -0.

due to a current element Jdv is in the same direction as J. It is well S

-~~~known from this that the lines of the magnetic vector potential A are S

circles centered about the coil or loop axis. The magnitude of talong 
S

such a circle is constant, which means that tis a function of the S

S 

spherical coordinates r and 0 only. Therefore, we know in advance for this -

problem that A
* 
is the only compoflert of texisting at the field point.

The infinitesimally thin band of current shown in Figure 2 has only an

azimuthal or 4 component , which is a function of r and 0 , and lies on the 
-

boundary between regions III and IV (i.e. r — R3) .  For this current,

equation (15) reduces to

if 0(0 or O>0
0 1 2

(17) -

, if ~~ ~2 
S

Therefore, equation (14) has only an azimuthal component and can be

S 
expressed as:

10

—S __5 5 5 _ 5 - -  _ S S S
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~~ A~ = $A~ (r ,0) = 0 (in regions I through IV) (18)

When the vector Laplacian O is expanded in spherical coordinates, equation

- 
(18) can be written as

S a2A 2 ~A 1 ~
2A cot 0 ~A A

+ — —i + — —~~ + - = 0 in regions I
~r 2 r ~r r 2 ~~~ r2 

~o r2sin2O through IV (19)

In order to solve equation (19), it is necessary to obtain the general

solution in regions I through IV. Thus , by multiplying equation (19)
by r2 we obtain

r2
~

2A 2r~A ~
2A ~ A A

~ + cot 0 — ~~— ~ 0 (20)
~0 sin G

11 Applying the method of separation of variables, let us assume that A~,

- 

can be expressed as a product of two functions

S 

A~, = R(r)0 (0) (21)

where R(r) is a function of r only and 0(0) of 0 only. Substituting

this form of the ve.ctor potential A,~, into equation (20), we have after

separation of variables

d
2R(r ) 

+ 
2 dR(r) P(p+1)R(r) 

= 0 (22a)

S 
d20(G) + cot e d0~8)~ 1p(~ l) - 

1
2 10(0) - 0 (22b)

dO 2 d L s in o J(Si S S

where the separation constant is p(p+l) and p is an integer from one to

infinity. The differential equation S 
S

S 

— - - - — 

5—. 

— - - 

~ S 

— - - — -



S 

S 

5 

1
S ~~~ r 2 i

+ cot 0 ~~~
— + Ip (p+l) — J O = 0 (23)

dO dO L s i n0 J

has as a general solution

0(0) = O~(o) = Cp Prn (cos0) + D~Q (cos O ) ( 24 )

Comparison of equations (22b) and (23) shows that in equation (23) m2 is

equal to 1. This requires that m always be unity . The solutions of 
-

equations (22a) and 22b) are then expressed as

R (r )  = R (r) = A ’ r~ + B ’ ~~~~~~~P p p (25)

0(0) = O~ (O) C P’(cosO) + D Q 1(cos0) 

1
The associated Legendre functions of the first and second kind are designa—

ted as Pm(cos0) and Qm (cos0), respectively. Therefore , the general
solution of equation (19) in regions I through IV may be formt~d from the

product of the solutions in equation (25) which y ields

A = R(r) O (0) = R (r)0 (0)
p=1 P P

(26)

S 

= 
(A

I
prP + 

~~~~~~ 
)(~~P~~ cos0 + DpQ~~(cos0))

In the spherical case, associated Legendre functions of the second kind -
are infinite at cosO = ±1, and thus cannot be included when the region S

under consideration includes the symmetry axis. Therefore, the constant S

D must be set equal to zero , and equation (26) reduces to S

A
* 

— ~~~ ( A r
1) + 

~~~~ 
) s P~ (cosO)

where A A ’ C S

p p p  5

(27)r B — B ’C 5
p p p

12. 5 5
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S 
BOUNDARY CONDITIONS

S 
The form of the potential in each of the regions (I through IV) is

I determined from equation (27) . These magnetostatic vector potentials in
regions I—IV are:

A1 = Aq1 = 

~~ 

(A~1r~ ) P~ (cos0)

B_A11 = A~11 = ~~ [A p2 rP + __
~P+l)]  

P~ (cosO ) (28)

S 
p=l

- 

1 
A111 = = ~~ [A 3rP + 

~~~1) ] p1(cosO)

F
B 4Aiv = A1piv = 

p=l{r 
] P~,(cos0)

where for the A~,1 component B 1 = 0 because at r = 0 the potential must be

F - f ini te  and for the A
~,IV component A 4 = 0 because as r approaches inf ini ty

the potential must remain finite.
S At each interface, the basic laws of magnetostatics in equations (la)

S .~. -0.-
S and (lb) reduce to boundary conditions on B and H that can be used co

S evaluate the six constants in equation (28) . From equation (lb) , the normal
5 5 -~ -~ -ø~~~_~~ Sc component of B across each boundary must be continuous, i.e., (B2 

— B1).n12=05 

where the quantity n12 is the unit outward normal to the surface . This S

S provides the following boundary conditions which must be satisfied by S

1 the solution in equation (28) for each region.

It B — B  a t r = R  
S

i t  rI n I  1

B 11 — B 111 at r R 2 (29)

II B 111 — B iv at r — R3

_ _  — —  _ _ _ _ _ _ _ _  ~ S 5 - S S 5 S
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The normal component of the magnetic field Br is expre ssed in terms of

- the vector potential as

S B = ( V x A ) 
-

1 J
Br = rsinO ~~~ (sinO A~,)

where
-0. 0.-
e e0r e~rsinO

S 

~ —~
- -0.- 1B = V x A = 2 —~— __I.

r sinO ~ r ~~~s3 
S

S . S

O 0 A~r sinO

However, since the vector potentials in each region are functions of -

P1(cosO) we can simplify equation (29) to constraints on A~, -. S

A1 = A11 at r = (3la)

A11 = A111 at r = R 2 (31b)

A111 = Aiv at r = R3 (3lc)

The second set of boundary conditions is obtained from equation (12b). 
S

The tangential component of H across each boundary must satisfy the

relat ionship
S -0. -0. 0 -

S 

‘~i2  x (H 2 
— H1) = J5 (32)

S -~ 
-~S where (which equals J (0)) is the real surface current density in the

limi t of van ishing width between the two regions. Using the relationship S

-0. -0.
B = Ull , equation (32) may be expressed as

B02 Ba,,
— ---~-1 = J(O) (33)

S 

P 2 P 1

-~~~ 
14 fl~¶

- -  — 5 -  - - - -



I Referring to the curl in equation (30), we can write B
0 as

I B0 = (VxA ) 0 = — !  ~~- [ r A ~,] (34)

S r From equations (32), (33), and (34) the tangential components In

regions 1—IV must satisfy the relationships.

— -~~
_- I 

~~~~
- (rA11) + ~~— -~ - 

~~
-
~

— (rA 1) = 0 at r = R1 (35a)

- 1 (rA111
) + ~~ (rAfl) = 0 at r R2 (35h) 

S

~~~ -

~~

- (rA 1~ ) + -
~~

_- -
~~

- — (rA111) = j( O) at r = R
3 

(35c)

¶ The general expressions for the potentials in each region (equation (28))

5 are then substituted into the boundary conditions (equations (31) and (35))

S and solved for the constants A
i 
and B 1. There are six algebraic equations

with six unknowns and the potential in each region can then be specifically

I determined. The six boundary value equations that must be solved for the

coefficients  are given below (where the index p is odd only and understood

to take on values from 1 to ~ ) .  It is noted that the current J~ (0) must be
S expanded into a set of associated Legendre functions in order to evaluate the

constants A~1 and b~1. The detailed expansion is in the next section

enti t led “Expansion of the Current (J~, (0)) in Associated Legendre Polynomials ” .

A 1R1
P = [A 2R1

P + B 2
R
1~~~~’)] 

(36a)

[A P 2R 2
P + B 2R 2 ~~1)] - [A 3R 2~ + B~ 3R2

_
~~~ ”] ( 36b)

[1 [A 3
R3
P + B 3R3~~

1)+1)] — B 4 [R 3~~ 1’4~~~]

I
S II 15

_ _ _ _ _ _  -~~~~~~~ S~~~~~S~~~~55-SS 5 S S 5S~~S~~~~~~- S S S 5 S

- -~~~~~ 5



- -. S SS •s_ S SS 5 S C5 s 5~ 
SS S S S — - •S SS5 •S*~~~~~ _S__SSSS___•5 _S S

“

S 

1
- ~~~~~ 

[A 2~~
+ 1 R

1
P
~~ 

- PB~2R1 P2]+ ~~~[A ~1
P÷1 R

1P1] 
= 0

(3M)

- 
~

— 

[
~~ 3~~

+i R
2 

- PBp3 R2
P
2]+ -~ _ [ A~ 2 P+n R2~~

1

- PB~2R2~~~
2 J = o (36 e)

- ~~ — 

[
~~PB~4R3

P
2]+~~~ [A~ 3 P+1 R 3

P_’ _ P B~ 3
R
3 P2 ] = 

J (0)

1 1 P (cosO)p

(36f)

The solution of these equations to obtain B 3 
in terms of known quantides

is performed in Appendix A. In summary :

- 
1 J ” (o ) (  {x] (~~1)R (P 1) (p)R

2~~~
2 

)+  ~~ J t (O ) (p+l) R 2~~~
1
~

B 3 

~~~~~ 
(p)R 2~~~ 2)+ 

~2 (
[z] [x] (P+l)R2~~~~~

) 
- 

~~ 
( {z] (p)R2~~~2)]

(37a)

where 
—R~~

2”
~
’
~ E~i + I _.2— \ ~~~~ 1

[x ]  = 1 j_ ‘~Y~~/ ~2 J_ (37b)
( i _ u1 S

\ ~2 
S 

-

[zJ - 

( i  xj R2~ + R2~~~~fl) 
(37c)

S 
S

_-  -__ 

1

~ - - -

S -



S 

J ‘(0) R —

S 

~~.: (0) 

(rx R2 + R2
(1
~~].)) 

(37d)

j J J  (0)
J ’(B ) ip  (37e)

- p P i(CoSO)R3
(1
~~~~(2P+l)

S The numerical values fo r the other five coefficients can be obtained from

the following equations:

55 B
2 

= B
3 [z] + J~~ 

(0) (38a)

S

- A = J ‘( 0) (38b)

S
I 

p3 p

S A = [x ] B (38c)
p2 p2

I A = A + B R —~2 l ~ (38d)
H p1 p2 p2 1

B 4 = A 3R3~
2
~~~~ + B 3 (38e)

Since the coefficients A and B can be determined from equationspi pi 
S

(37) and (38), equations i.28) can now be used to completely specify the

potentials A
1, 

A11, A111, and A1~ in regions I through IV. Then the normal

(B
r) and tangential (B0) components of the magnetic induction in regions

I through IV can be determined by using equations (30) and (34), respec—

tively.

In Appendix B the magnetic vector potentials 
~~I 

in the inner region

1 and A~,11 in the outer region are derived for the infinitesimally thin

S current band in a homogeneous medium of permeability p
1 (see Figure 1—B

in Appendix B). Also, the dipole potential term in the outer region

(r>R1) for the infinitesimally thin current band is reduced in a special

r II case to the dipole potential term for the circular filamentary current loop .

S fl 17 
- 

S
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In Appendix C the coefficients A 1 
(i = 1,2,3) and B 1 (1 = 2,3,4)

L for the vector potentials for the present ferromagnetic shell problem reduce

to the potentials in the two regions of the simple current band problem

when the permeability of the ferromagnetic shell p2 approaches that of

the surr ounding medium p
1
. This shows that the solutions of the above

ferromagnetic current problem have the correct mathematical form.

EXPANSION OF THE CURRENT (J~(O))IN ASSOCIATED LEGENDRE POLYNOMIALS

Any function that can be expanded using a Fourier ’s series in a given S

interval _l<p f< l  can also be expanded in a series of associated Legendre

polynomials in the same interval using similar methods. The associated

Legendre functions are defined by the equation g
‘2 ‘ 

dmP (~~)~m 
~~~~ = (1 )~m p (39)

p 
du

lm

where p ’ = cosO and —1~p’�l. Also, the function P (i’’), which is valid

whatever the range of the variable p ’, is defined as

1 d~ ‘2P (p ’) = (p -l)~
’ (40)

21’p! dp ’1’

Let us assume the expansion is similar to Purczyt~ski’s
9 S

J (0) = j  K p1(e )  (41)

S 

p=l 
p p  1

The coefficients are determined from equation (41) by multip ling 
S

both sides by P1(cos0) and integrating over sinOdO from 0 to ir .

S K - 2p (p+l) ~ ~~~ f J~(e) P’ (cosO) sinOdO (42)

S -

18
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j
‘S

S The identity

S [ f  Prn,’ (~~ 5O) pTh (cosO) sinOdO = 
~~~~~~~~~~~ ~~~~

‘ 

S

1 (4 3)

- 
was used to determine K~ (equation 42). Setting j,~(O) to a constant J

we can express equation (42) as:

IC = 2p(p+l) f  P1(eosO) sinOdO (44)

Since the current in this problem extends from(~~- — c~)to (-~ 
+

- 
see Figure 4 , the expression for K (equation 44) may be writt~n as

I K = 
2~~~~1) [ f2 P1(cosO) sinOdO + J2 P1(coso)sinede]

(45)

[ By noting that

S p1(—coso) = (_1)P l  P1(cosO) (46)
S P p

It follows that the associated Legendre functions P~ (cosO) are even ~unc— 
S

S tions with respect to cosO when p is odd . The expression for K may be -S simplif ied to
5 

1 
K = 

~~~~ I P1(cosO) sinOdO~ (47)

S 
when p is odd (K = 0 when p is even) after utilizing the symmetry of J(O)
in Figure 5. By changing the variable in equation (47) to p ’ = cosO , the

integral for K may be written as

sinn S

= (~4~]~) 
f P~ (p ’)dp ’ (48)

~

f

~ 5 
S 
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The values of the coefficients K~ for P odd were worked out by

Pu r czynski and are :

S K1 = (sinacosct + a) (49a)

K
3 = ~~~~~ [sinctcosa(lO sin

2
a—9) + a] (49b)

K5 = {sinacosa(56 sin~a—7O sin 2a+l5) + a] (49c)

K7 — 
32768 [sinacosa

l3728 sIn6a—23408 sin4a j
+ 11060 sin2a—1330) + 50 a] . (49d) I

1(9 32~~ 8O [
sinc~cosa(31116S sln

8a-679536 sin 6cz

+ 488488 sin4a— 128590 sin 2a+8715) + 245 a~ (49e)

S

. 

_ _ _ __ _ _ _

S 

~~~‘-(!.. + a) - S2

Figure 4 — Spherical Coil Cross—Sectional
View — Definition of Angle Alpha
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1

S 

(0)

J~, (O )= J~~~K~ P~,(cosO )
i S p — i

S. 

-

_ _ _ _ _ _ _

~

[ (_ f _ a )  (_ .~.+ c~) 
0 @-

~~) j

Figure 5 — Coil Current as a Function

F of the Polar Angle Theta

- FERROMAGNETIC SPHERE SURROUNDED
- BY A COIL OF FINITE WIDTH

GENERAL SOLUTION

We now proceed to solve the boundary valve problem of a solid ferro-~
magnetic sphere of radius R

1 
and homogeneous permeability p

1 
surrounded

( T  by a current band of finite width having inner radius R and outer radius
u 2

R.) as shown in Figure 6. A constant current density is assumed. A linear S

•*- -4-
5 5 relationship between B and H is assumed. Regions II, III , and IV tave S

S homogeneous free space permeability designated as p
2
. The permeability - -

of the conducting coil in region III is assumed, also, to be equal to
• The geometry of the problem suggests spherical symmetry as in the previous

problem. S

The partial differential equation that governs this problem is again
S 

equation (11) ,

( S  
-4. -0.

5 

~~~A = — pJ (50)

where t = ~~,A~,(r,O)

I )  J = t ~J~ (r ,0) S

LI
fl 21
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FERROMAGNETIC MATERIAL

~~~~~~~~~~~~~ ~~L— -- 
S

Figure 6 — Ferromagnetic Sphere Surrounded S
by a Coil of Finite Width (yz Plane) S

As before, It is necessary to solve equation (50) and use the appropriate S

boundary conditions to evaluate the constants. Equation (50) reduces to I
~~ A~ — — pJ~,(r,0) (51) ‘

where

J~ (r,0) — J~,(0) in region III If 81~
0�32 and Rtr�R3

S J4,
(8) — 0 if 0<0

1 or. 
0>0

2 f or all r (0
1 
and °2 are defined in

Figure 6). -
S 

-
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L S

Expanding the vector Laplacian in equation (51) in spherical coordinates
results in the expression:

_

• ~ r r ~ r r ~ 0 r ~ 0 r sin ~
(52)

S 

— pJ~,(0) in region III

- 
0 in regions I, II , and IV

Thus, the solutions in regions I, II , and IV are solutions of Laplace’s

E equation and are obtained by the method of separation of variables as in

the previous problem. The potential solution in region III, however, is

I 
the solution of Poisson’s equation. 

S

The potentials in regions I, II , III , and IV are:

1A
1 = 

‘P 1 p=l 
(A~1r”) P~ (Icos0) (53a)

{ A
11 = A

’PII 
p=l 

(A ~2r
P +

r(;
I.l) ) P~~(cos0)

I 
A111 = %III = ~ 

(
~~~ rP + 

~~~~1) 
) P~ (cos0) +

p=1

S 

PJ r~I(

- P,12((P 2) (P1.3) ) P~~(cos0 ) (53c)

p—i S

H Aiv — A
’PIv 

~~l 
(r~~~

1) )P
’(cos0) (53d)

Equation (53c) , the azimuthal component of Poisson’s equation in

II spherical coordinates , is solved in detail in Appendix D. When the current

S 
is expanded in associated Legendre functions we have

~~~~fl 23
i:-. ~~~~~~ ~
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S_ i

J (r ,0 ) — J(0) — J E K p1(cosO) (54)
‘P p=l ~‘P

where only the odd coefficients contribute since the even coefficients
S 

are zero. The coefficients for the current were derived previously (see

equations (49a through 49e)).

BOUNDARY CONDITIONS

S This solution must satisfy the boundary conditions developed in

equations (29) through (33). Because there are no surface currents on

the boundary between the regions in this ferromagnetic problem, J is zero
and the tangential boundary conditions for regibns I—IV become 

S

1 (rA11(r ,0)) = ~~
— 

~~~~
- (rA~(r,0)) at r = R

1

S (55a) I
I ~~~ (rA111(r ,0)) = I 

~~ (rA
11

(r ,0)) at r - R2

(55b) 
S

I 
~~ 

(rA
1~
(r,0)) = ~~ (rA

1~~ (r ,0)) at r = R3

(55c)

The general expressions for the potentials in each region (equation 
S

(53)) are then substituted into the boundary conditions (equations (31) and

and (55)) and solved for the A , and B , . There are six algabraic S

pi e pie
equations with six unknowns and the potential in each region can then be

specifically determined. The six boundary conditions that must be

solved for the coefficients are (where the index p is odd only and

understood to take the values 1 to aD):

— A 2R1~ + B
2
R
1~~

’~~
’
~ (56a)

L~~~~~~~~ . S A  s~~~~~~~~~~~~~~~~~~~~~~~~ s 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

S~~~~~~~~~~~~~~~~~~~~~ I



A~2
R2
P 

+ B~2R2~~~~
1) 

= A 3
R2~ + B 3R2~~~~~

) + 5-(~~~)(
P
3)

(56b)

A~3R3
P + B 3R3~~~~’~ + = B~4R3~~~~

1
~ (56c)

1 
1 

[A~2 P+l R 1
P_l _ P B ~2R1 P 2 ]  = ~~~ [A~l l R

1
P
~~
]

S 
S (56d)

I-
1. -~- 

[A 3 +1)R2~
’
~~

- (p) B R ~~~~
2
+ (p_2)~ p+3)] =

S -

-i-- [ A 2
(p+l)R

2~~
1 _ P B~2

R
2
—1
~~2] (56e)

I S [_ PB P4R3 P2] = ~— [A~3 p+l R 3
P ’  _ ( P)B~ 3R 3

” 2  
+ 

S

I 3P2JR
3
K~ 1 :

(56f) 
S

I The mathematical solution for B in terms of known quantities
I S  

p3
obtained in Appendix E and is given by

B
3 
=~-K ’ (p+l)R2~~~~ 

- 

(p-2)(p+3) (57a)

L 
+ [xJ (~~ l)R

2~~~K~
” - (p)R~~~~

2K~~ 
S

(-p)R 2~~~
2 

- [z) [xJ (~~l)R
2~~~ +( z) (p)R2~~~

2
~

r U 5

5

•
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[

Si 

- 
5 [x ]  - 

- R
1

2
~~~ L _  

~~~~ 

- 

(57b

U JK R
K ’ — — 2 ~~3 5 (57p 

— 

(p—2)(2p+l) 
S C

R 
— (p+l)

[zJ  =

(~~~~i ~2
P 

+ ~~~~~~~ )
~ 

(57d) -

2
1-’ JR K2 2 p  i p

i s  (p—2)(p+3) + K~ R2K = 
(Ix ] R

2~ 
+ R

2~~
’
~~)) 

(57e) 
S

The numerical values for the other coefficients can be obtained from the

S equations

P 5 (58a)

B 2 = B 3 [z] + K ” (58h)

A 2 = [x] B 2 (58c)

A A + B R -(2p+l) (58d) A 
-~ -p1 p2 p 2 1

(p+3) S

= A~ 3R 3
(2P

~~
.) + 5p3 + 

P (58e) 

~

IS
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CONCLUSIONS AND RECOMMENDATIONS

The method of separation of variables has been applied to determine

I the magnetic field of the systems consisting of an infinitesimally thin

I spherical coil around (outside) a ferromagnetic spherical shell and a

1• spherical current band of finite width around a solid ferromagnetic sphere.

J The resulting formulae can be used in the analysis of magnetic induction

- 
of ferromagnetic bodies due to current—carrying coils.

I The magnetic vector potentials in the inner and outer regions are

derived for the infinitesimally thin current band in a medium of homo—

S [ geneous permeability . The dipole term for the potential on the outer

region for the infinitesimally thin current band is reduced in a special

[ case to the dipole potential term for the circular filamentary current

S loop. It is also shown that the vector potential for the ferromagnetic

shell surrounded by a infinitesimally thin current band reduce to the

- 
[ potential in the two regions of the simple current band problem when

- 
the permeability of the ferromagnetic shell approaches that of the

F surrounding medium.

It is recommended that the solutions derived in this report be
programmed on a digital computer. The resulting calculations should then 

S

S 
be compared to solutions obtained by various numerical methods In order
to validate the numerical methods and calculations. There are plans to
implement these recommendations during the fiscal ye~rs 1979 and 1980.
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APPENDIX A
S CALCULATION OF COEFFICIENTS OF THE VECTOR

S f POTENTIAL S FOR A THIN COIL SURROUNDING
S A FERROMAGNETIC SPHERICAL SHELL

In this appendix the coefficients are derived for the vector poten—

I tials in regions I—IV for a ferromagnetic spherical shell surrounded by an
infinitely thin current band . For a detailed discussion of the ferro-
magnetic problem see the section in the text of the report entitled “Thin

Coil Surrounding a Ferromagnetic Spherical Shell”. The magnetic vector

potentials in each region are given by:

= 
p=l (A~1

r’)P~~cos0 (A-la)

A
’PII 

= 
~~i(Ap2

rP + 

:~P :l))P P
cos0 (A-lb)

[ A
’PIII 

= E
1 (Ap3

r1’ + (~ )) 
P~~(cos0)

I A
’PIV 

~ (r~
’
~~~ 

) P1(cos0) (A—id)

p 1

The coefficients (A 1 and B
~i) in equations A—la to A—id are

I obtained by substituting these equations into the boundary conditions

S 
(equations (A—2a to A—2f))

S 
S$ S

=

I S

A11 = A111 at r — R2 (A—2b)
S 

A
111 - Aiv at r — R

3 
(A—2c )

29
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L’
- 1 

~~~~~ (rA11) + ~~~ (rA
1) = 0 at r = R

1 (A-2d)

~~~~~ -~~~~ A111) + ~~-~~ - (rA11) = O a t r = R
2 (A-2e)

- (rA
1~
) + 

~~
— 

~~ ~~~ (rA 1~1) = J(0) at r = R3 (A-2f)

After approprIate substitutions of equations. A—la to A—id Into equations

A-2a to A—2f , the following boundary value equations are obtained .

(A
1
R1

1’) = (A 2R1
1’ 

+ 

R~~~
+l 

‘
~ (A—3a) J

1 /

(A P2
R2
P 

+ 

R
2~~~~
)) =(A~3

R2
P 

+ 

R
2~~~~~) 

(A-3b) 
I

(A 3R
P 

+ 

R
3~~

÷1)) 
= ( R (~~~)) (A-3c) 

S

- ~~— [A~2 p+ l R
1
P_1 

- (p) B~2R1
_
~_2] 

S

+ ~~— 

[&~1 P+l R1
P_1] = 0 (A-3d)

- ! 
[A~3~~÷1)R2

P_1 — (p ) B~3R2
_T)_2] 1

+ 1— [A 2 (p l)R
2

1
~~’ — (p) B~2R2

_P_2
] = 0 (A—3e) 1 ~
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- ~~~~~ 

[
~~P)B~4R3

_P_2

] 
+ ~~ [A~3 P+1 R

3
P_1 

_ (P)B~3
R
3
_P_
2]

J (0)
= (A—3f) S

p ’(cosO)

- These algebraic equations provide six simultaneous equations with

six unknowns, and they can be solved for the coefficients A . and B by
- 

~ 1 p1
tedious algebraic manipulation.

S Solving equations (A—3a and A—3d) algebraically results in the

I solution for A in terms of B
p2 p2.

1 A 2 = [x] B 2

where 
- R1~~

2
~~
1
~ 
[1+ ~~T) ~]

[x] - 

(~~~
_
~~i\

The solution for A~1 from equation (A—3a) 
is S

f A 1 = A 2 
+ B 2R1

2
~~~~ (A-5) 

S

Also, solving equations (A—3c) and (A—3f) algebraically for B 4 gives the

expression f or A~3 in terms of known quanitities after  equating the
functions for B to B from each equation. Thus,p4 p4

S 

A~3 
— J (O) (A—6)

where gi 1J (0)
S I ~~P 

SJ O )  = 
P 1(cosO ) R 3~~~~~ (2~+l)

15
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5. 1
The algebraic solution for B

4 from equation (A—3c) is

B 4 = A~~R3~
2
~~~ + B

3 (A-7)

The following expression is obtained for B 2 from equation (A—3b)

i~ ter subs t i tu t ing the expressions for A~3 (equation A—6), and A 2 
(equa-

t ion  A— 4) .

B
2 = B 3 [z] + J

”(O) (A-8) S I

whe re R2~~~~ ’~ 1
R2~ + R2~~

’
~~~) 1

and J
J ’(O )R ~‘

j”(0) — P 2

~ ([x] R2~ + R2
1)) I

The mathematical solution for B in terms of known quantities is obtained S

p3
from equation (A—3e) by substituting the previously obtained expressions

for A
p3 (equation A—6), A 2 (equation A—4), and B 2 (equation A—8). S

— — !~~ JlI(0)([X] (p+l)R 2~
’1

~ — (P)R2~~
_
2)+ —~ J ’(O) (p+i)R2

1
~

~~ [(~1 p R
2
_P_2)+ L_ ([z][x ] (P+l)R2

(
~~O) 

— ?~._([z] 
pR2 

P 2  )]
S 

S (A—9a)

where r ~ 1
I ~~ p \ P 1 I S

- R -(2p+1) L’ + 

~~~~~~~~~~~

-- ] }
[x] — 1 (A—9b) S

(l_ ~~i)

1-: 32
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-(p+l)

S 

[ z]  =
(~
[ x

l
2

R
2
p 

+ R2~~
1’
~~~

) 

(A-9c)

I 

J~”(0) 
([x] R;P + R2 1)) 

(A— 9d)

P. J (0)
( J ‘ (0) = ( 1) (A—9e)p 

P~ (cos9)R
3~
’~ (2p+l)

After the numerical value for B~3 is calculated on the computer for a

specific problem, the numerical values for the other coefficients can be

obtained from the following equations:

I B 2 = B
3 [ z] + J ”(8) , (see equation A— 8) (A—l0a)

S A 3 = J ’ (0) ,  (see equation A-6) (A-lob)

1~ S

A 2 = [x] B 2, (see equation A—4) (A- lOc)

= A~2 + B 2R1
(2P

~
1), (see equation A—5) (A—lod) 

S

B~4 
— A

3
R
3~
2
~
’
~~ + B~3 (see equation A—7) (A—l0e)

1~~~~~~~~~~~~~~~~ 
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S APPENDIX B

DETERMINATION OF POTENTIALS FOR INFINITESIMALLY
- THIN CURRENT BAND AND INFINITESIMALLY THIN COIL

1:
S In this appendix the potentials A in the inner region and A in

the outer region are derived for the infinitesimally thin current band in a
S homogeneous medium of permeability ii~ (see Figure 1—B). Also, the potential

in the outer region (r>R1) for the infinitesimally thin coil is shown to
S reduce to the potential of the circular filamentary current loop.

The potentials in the inner region A
~pI and outer region A’PII 

of the

infinitesimally thin current band problem are solutions to the vector

- Laplace ’s eq ua tion ~~A = 0. These solutions can be expressed as:

-~ 
A
’PI 

= E (A
1
r~) P1(cos0) (B—la)

S O ~~~~~~~/ B \
t, v’ i p2 i l  

~B—lb’~‘II p l  
~ r~~

F
~~ 

P (cosO)

- The coefficients A 1 and B 2 are determined from the boundary conditions of

the problem. After algebraic manipulation such as with equations (31) and

~I1 -~1~ 
(35) in the text, the boundary conditions for the normal component of B

-~~~

and the tangential component of H become:

= at r R1 
(P—S~~a)

1 1 ~ 1 1  ~- 

~
j— -

~~ ~~
— (rAfl ) + jj— — ~— (rA

t
) = at r = R1

(B—2b)

I 

Substituting the expressions for A
’PI 

and A
’P11

(e~uations B—la and B—lb) into

the boundary value equations (equations B—2a and B—2b) provides us with the

following algebraic equations for the coefficients:

S - 

A
1
R1~ — B~2R1~~~~

’
~ (B—3a)

fl~~~~ 
S 

_ _ _ _ _ _
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II’ 5 
— -
~
-— [ (_ p)B~2R1

_
~~2] (B—3b) J

S 

S 

~~~~~~~~~ 
[A~1 P÷lR 1

P_1] = Jp(0)/P~(cos0) I
where J (O) is the ~~~ term of J

’P
(O) (see equation 41) . These equations

are solved for A 1 and B~2 by simple algebraic manipulation. 
S

2A
1 = B 2

R 1 
p—l 

(B—4a)

B 2 = 
P1J~ (O)JP~ (cos0) 

(B-4b)
R
1 

(2p+i)

The potent ia l  A
’P II is dete rmined by subst i tut ing the expression for

B 2 (equati on B—4b) into equation (B—lb ) .

~ (0) P1(cos0) 1 1A,~11 = 
~ 

p ~ 
p 

P
2
(cos0) (B—5a)

p=l L r ~
1
~~(2p+l)R 1 

2 J
51

~: 
p
1

J K P 1(cosO)R
1 (

~~.)P
4l 

S (B—Sb)
p=] . (2p+l) r

S 

:~~~~~~~~ 

J (0) - ~~~~~~ cos0) (B-5c)

JK 
2
-
9~~l) J0 J(0)P 1 (co~0) sinOdO (B—Sd)

is the potential in region 2 which is external to the coil (see

- Figure 1—B) .

S 
- 
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~ I ~ IN FINITES IMALLY
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/ CURRENT BANDI 
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’

I I
Figure 1—B — Infinitesimally Thin Current Band

- Now the solution for A,~~ (equation B—5b) can be reduced to that for

- the filamentary coil and the answer compared with that for the same problem
S from a standard text (Jackson ,1° page 144, equation (5.46)).

1 
The coefficieat JK for the expansion of the current

S S 

3
’P
(0) =~~ JK~P1(cos 0) (B— 6)

S p

for the current filament is obtained from the equation (see equation B -5d):

- - 2p(~~1) ia::: ~~ö(cos 0) P~ (cos8)d(cos8) (B-7)

S 

— — 
I ( 2p+l \ P~ (O)
1 ~ 2p(p+l) /

-S 4~~ fl 37
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S 

JK = {-~~~ 

~ {
~~ 

Pi(O)]

where J(O) = 
~~~~

- ó(cos0)
1

The special value of the associated L.~gendre function is calculated

from the expression (where m = 1)

P
m
(O) ~~~~~~~~~~~~~~~~~~ , (p+m , even) (B—8) -Ip 

k p 1
l
~~: ! !\, I

1
2±~~\,  -

= o 

\ 2 \ 2 
, (p+m , odd) J

This expression may be derived from the series expansion for the
Legendre function (see Smythe)~~ and letting cosO = p approach 0. JSubsti tuting the expression for JK (equation B—7 ) ,  into equation

- S (B—S b ) results in the expression for the vector potentials A4,11 in the
external region for the filamentary coil.

aD ~J IP1(cos0) ‘R ~~~
A. 1 p P (O)

p=l (2p) (p+l) ‘ r / (B—9a)

Now equation (B— 9a) must be multiplied by to ehange from si units 
S

S to Gaussian units, and must be set equal tp 1 as p
1 is the free E.pace Ipermeability which equals 1 in the Gaussian system.

After making these substitutions we have 
S

%II = - —

~~~~~ ~~~ 

Ip
~:~~so) (R i 

)

P41 
P1(O) (B—9b) I

Now taking the f i rs t  term (p—l) for use in the comparison with the result I
In Jackson 1° we have S

ISI
S S

5
5 

38
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‘(p’l) = - 
J~~

(R l)

2 
P~ (cos0) (B-ge)

ISS 
This expression agrees exactly with the expression in Jackson1° for the

t first term in the series where = a in his notation)0 The magnetic
fields far from the loop for the p=l term are dipole in character. 

S
The A ,1 term for the current band problem also reduces exactly to

1 
Jackson ’s term with n 0  (Jackson ,1° page 144, equation 5.46) for the

¶ potential inside of the loop.

t I  
-

- S I  
S

I
S F

I I 
-

i. - 

S 

S
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APPENDIX C
S REDUCTION OF THE MAGNETIC VECTOR POTENTIAL

FOR A THIN COIL SURROUNDING A FERROMAGNETIC
S SPHERICAL SHELL TO ThAT OF A THIN COIL

IN FREE SPACE WHEN IN THE LIMIT S

S EQUALS

I - In this appendix, the coefficients A~1~ 
A~2~ A 3, B 2, B 3, and B 4 S

5 for the pQtentials are evaluated for the system consisting of a ferro—
magnetic shell with permeability 

~2 surrounded by an infinitesimally thin
current band in a homogeneous medium with permeability p1 in the limit as

I P~ ~~~ 
These coefficients are utilized in equation (28) in the section

of the report entitled “Thin Coil Surrounding a Ferromagnetic Spherical

I Shell”. The variables are defined in Figure 2 located in the text of
this report . When p1 is set equal to p2 the problem reduces to that of
finding the potentials in the two regions of a simple current band (see 

S

I: Figure 1—B in Appendix B), since the ferromagnetic shell will now have
a permeability p1 equal to that of the homogeneous medium with permeability S

1
In this limit the coefficients should assume the following form:

F A
1 

A
2 

A 3 (C-la)

I, 
B 2 

— B
3 

= 0 (C-lb) 

SI and where A and B should reduce to the coefficients for the potentialsp1 p4
in the two regions for the spherical band problem (see Appendix B). If

the coefficients assume this mathematical form it will prove that the

mathematical form of the coefficients for the spherical shell surrounded

by a thin current loop are mathematically correct.

The mathematical solution for B in terms of known quantities was

derived in Appendix A and was reported in . the text of this report (see
equation (37a)).

J — -
~~-- J~’

_
(O)([X] (p+l)R2~~~ — (p)R

2~~~
2 + *_J

I (O) (~4l)R2~~
1 

(C—2a)B~3 
— 

[(~~~i 
(P)R

2~~~~ )+ 
.
~._([z)[x~ (p+l)R2~~

1 — F([z) (P)R2 ’
~~2)J

5. 
—

S 
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5, 1
where

S 

- R~~
(2
~~
1) 
[
1 

~~~~ I
[x ] = - (C—2b)

~

R —(p+l)

{ z  = 
2 (C—2c)

([x] R
2
1’ 

+ R
2

(1
~~) 

S

~0’R ~
j  II(~~) — 

p ‘ ‘ 2 (C—2d)
— 

(~
x~ R2~ + R2

_ (T
~
+1)

) S

p J (0) S

J ’(O) = 1 
~ P 

~ 
1) (C—2e) Sp P ( cosO) R

3 ~~ (2p+l) -

The coefficient B will now be evaluated when the limit is taken withp3
= which cause [x] to approach infinity (aD). Also, the expression S

for J~
t (O) is substituted into equation (C—2a) .

I 

S

S~ S S 5

_ 
_

) 
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I
The expression for A~ 2 (see equations (38c) and ( 38a) in the text Is:

S A
2 = [x] B 2 [x] B 3 [Z] + [x) J” (0) (C-4a) I

where B 2 = B 3 [2) + J” (0) (C-4b) 1
The expression for A

2 when p1 
equals p 2 can be expressed as I

A
p2 =

[
1i~ it ([X] 

[~
p3 J (C—5) .1

\ L ~ 1~~2 ’J J 1+ limit ([xl j
U (0)~ -p

I
A 2 = J~~ (0) 

S

[x] R -(p+l)
where 

[XJ-+.W 
[xJ [z]). ~ [X] R:P + R2

_ (1
~~~) 

-

limi t / R
2~~~~~ - R ~ (2P+l)

R 
2

2 5

\\2 [x]
and iimit Qx ] j hl (e))_ 

-‘

/ [x] J ’(e)R21’

(
~~x~ 

(~~~~~~~ 

+ .~7±i) _)) - J ’ (O) 
(C-6) 

-

and 8 3 — 0 , (see equation C—3) . 

~
-i

55
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5,

The expression for A 3 J equals J ’(0)  (see equation (38b) in

I- (p
1—p2)

I the text of this report). The expression for B
2 (see equation (38a) in

S text of this report) is:

I 
B 2 = B 3 [z] + J~(0) (C—7)

The expression for B~2 when p1 = p2 can be expressed as:

B 2 [x]....04 [I~
3 [z )

~~

I, J’(0)R~~( [x) R2~’ + R
2
_ (l

~~1)) 
(C—8)

S B 2
I (II P )

S 1 2

- 
where limit [z’j = limit 

(j~~~~~ R + R (~~l~~ 
—

S 

[x]4- aD [x ]+ aD 2 2 , /
1 J”O’ K 1’

and limit p’ / 2

and B 

[X]+co R2~ + R
2~~~~~~) 

= 0

p3

(ii ,.P )1 2

II The expression for A~1 is (see equation (38d) in the text)

r II A
1 

— A~2 + B~2R1
(2P

~
’) (C—9) S

S )~~ 5 45
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S I
The expression for A 1 when = p

2 is

A 1 = A~2 +fB 2 R1~~
2I~

+1)

(ii1—u 2) ~ (u 1=ii2) -

S i
A
1 = J ’(O) 

I(C—b )

where B 0
p2

I
The expression for B

1’4 
(see equation (38e) in text) is:

B
4 

— A
3R3~

2’
~~
1
~ + B

3 (C—li) ]

The expression for B
1’4 

when p1 = p2 is

B
PA -[A1’3 

R3~
2
~~~ + 

~p3 
(C-12)

(u1—’i~2
) 

11
S 

~iIN~ 
— F’p1 1R 3(2

~
i5) 1

~ I ~1—~2~J S

where B — 0 .p3

r IS 
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S 
This means that in the four regions , the potentials used in equation

(28) of the report are S

aD- A
4,I = 

~~ 
(A

1
r1’) P1(cos0) (C—13a)

p=i

I 
A
4,11 = j (Ap 2t~P 

+ :~+~
) P~(cos0) (C—l3b)

~~
=1 
(%3

r1’ + 

:(P+l) ) 
P~ (cos0) (C-l3c)

I
I A

4,IV = 

~~l 
(r (1

~~~)) 
P’(cosO) (C-l3d)

reduce when = ji
2 
to the fo rm

A

A4,1 11,111 = 

p=l(
[ 

P 1 J ~~~~~

P) 
P~ (cos0) (C-i4a)

aD 

B 4

S A4,IV 
- 

~~i([ 
(U)=P2)]) 

- P1(cosB) 
(C-14b)

I These are the solutions for the potentials of the current band in a region
S of space with homogeneous permeability p1 (see equations (B—la and 8—ib).

We now have the solutions for the two potentials in regions I and II

~~~I,II,III, 
and 

~~~~ 
respectively) for the simple current band problem.

11 This indicates that the form of the coefficients A and B are matheinati—pi pi
~~5 5 S 5  caily correct.

0
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S 

The mathematical expressions for A 1 and B 4 will be evaluated in
S the limit as = 

~2 
These values will then be compared with the coeffi— I

cients A~1 and B~ 2~ respectively, for the two regions of the current band
problem (see Appendix B). 8

4 (see equation (38e) in text) is:

B = A R (2p+l) 
+ B (C—b5) I

p4 p33 p3 1

When p
1 = p2, B~4 is: 

S

8 4 = A 3 R3
(2
~~

1) 
+ B

3 

- 

S

(P
1

=IS!
2
) 

I
where A = J’(0)

1S 

~~~~
S 

S I

and B = 0  5

p3

(u1=it 2)

B
4 

- 
~l
Jp(o)A(coso)R3

P 2 (2
~~
l) (C-l6) 

S

The form of A is: S
p1

A
1 

— ~B 4 
R3

2l’
~~ 

(C—li) 9
( ~~~~~~ -

r S 

‘I

-T  T _ _ _ _



The mathematical expressions for A 1 and B 4 (equations C—17 and C—16 ,
1 , respectively) for the ferromagnetic spherical shell surrounded by a thin

current band in the limit as 111 
— p2 are the same as the coefficients

- A
1 

and B
2 (see equations B—4a and B—4b), respectively , for the vector

potentials in the regions of the current band in free space (see Appendix
B). It is noted that when making the comparison R

3 must be set equal to

For comparison , the coefficients for the current band problem are :

A
1 

= B 2
R
1
2
~~
1 

(C—b8a )

I p
1
J (e) ,/P

l(eOsO)
IS B = 

p 
(C—1 8b)p2 R

1~
’’2(2p-4-l)

I

and the coefficients for the ferromagnetic shell problem with p1 = p2 are :II
~ [ 

A~1 
— B

4R3
2
~~
1 

(C—19a)

1 
5 

p j  (0)/P’(cosG) S

I - B “ 
P (C—19b)p4 R

3~
’2 (2p+l) S

I i

Ii
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APPENDIX D

SOLUTION OF THE AZIMUTHAL COMPONENT OF THE VECTOR
POISSON’S EQUATION 5~~A,1, - -pJ4, IN

SPHERICAL COOIthINATES

I For the benefit of the reader , the azimuthal component (4, component)

of the vector Poisson’s equation in spherical coordinates as originally

derived by Purczyr~ski
9 is presented in detail as related to the problems

addressed in this report. Because of the spherical symmetry of this

problem , only the 4, component of the vector Poisson ’s eq uations is needed .

1 Following in an outline of Purczyt(ski’s development, the general form of

- the component of the current is:

S i  
S

J (r ,0) = j~~~~~~~~
2 

~~~‘ K P1(cos0 ) (D—1)

1 
4, p=l ~~~

- wh-ere the case q = 2 is of primary concern in this work. The general 4,

I component of Poisson’s equation is written as

___ 
- 

A
4, ~L ~~~jL~~~cot0 ~~~~~~~~ - 

S

I ~~ ~ r 2 r ~ r r2sin20 r 2 
~ e2 r 2 

~ 0

in current region 
S

S o otherwise (D—2)

ç S  S 5,
S 

Multiplying*&,, by r ’ and substituting the general expression for
J4, (r ,8) in equation (D— l) gives the expression

r2 
~~~~ 

+ 2r - 

A
4, + 

~~~ 
+ cotO 

(D-3)

H or
2 sin2O ~o 

S

— — p 2Jr~ E K P1(cos8) S

Ii p—i P 1 ’

which is assumed to have a solution of the form



- 55 - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S - - - -.5

I
(

S S 
-

aD
S 

A — A — E f(r)P~(cosO) (D—4)

p—i

By separation of variables, equation (D—3) becomes:

d
2 
[P~ (cos0)] 

+ 

d [P’(coso)i 
cotO +

I p(p+1) - 2 1 P1(cos0) 0 (D-5a)
- L sineJ 1’ 

51

r2 d~~ + 2r - p (~~l)f = — p2sj~~~~~~~ (D 5b)

IS
where the separation constant p(p+l) is an integer. Differential equations

of the form I

+ p(x) + Q(x)y — R(x) (D—6)

have no general solution. The homogeneous part of equation (D-5b) has the

form
S 5

5

S 2 d 2 f dfr —~ + 2r .
~— — p(p+l)f — 0 (1>-i) 5 -

dr r

Equation (D—7) can be simplified by substituting r — et . Making the follow—

Ing substitutions in equation (D—7), 
S

df df dt df Ii~
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

(D-8)

~~~~~~~ 
~~~1f I

52 
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- I

S I d
2f d2f / 1 \ + df / 1

l dr 2 
— 

dt
2 (~~2) dt (

~ r2

1’ 
where = I L = — .i~. , (Note: £n(r) — t)

I yields 
+ —p(p+l)f = 0 ] (D—9)

ii
S 

This has the well—known mathematical solution:

f — A ePt + B e~~~~~~
t 

(D-lO)1 p p -

S ~.ihich after substitution of r = et has the form

= A r 1’+ 
r 1’~~~ 

(D—ll)

Thus the general mathematical solution to the homogeneous part of the 
S

azimuthal component of Poisson ’s equation is

1~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

F A’ = A,~ — ~~ (A p
rP + 

r (T
~

i) )P
1
~cosO) 1 (D—l2)

which is the solution to the azimuthal component of the vector Laplace’s

equation.

The solution to the inhomogeneous equation (D—5b) will now be investi—

gated. It is assumed that the mathematical solution to equation (D-5b)

has the general form

D—13

I for p ~ q. By algebraic manipulation after substituting into equation

I II (D—5b) we have:

S 
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,

d~ = (p— q)(p+q+l) (i ~‘ q) (D—14)

If we assume that the mathematical solution to equation (D—5b) has the S

general form for p = q

= ~~~~~ S (D—15)

it is found after substituting f~ into equation (D—5b) that

P2
S J K

d = ci 
, (p_qs) (D—l6)

S 
q 2q+l -

Since A equals E f(r)P1(cosO), the general mathematical solution top

the inhomogeneous equation (D—5b ) has the form

aD K P1(cos0) K P1(cosO)2,n(r)1
A ” = 4’ — ~2Jrc{E

,
~ (p—q)(p+q+l) - 2q+l j

(D_17)

The total general solution to equation ~D—2) consists of the sum of the
homogeneou8 and inhomogeneous equation .

A = A’ + A” — 4 + ~~~~

‘ — 

p—l 
(A + 

r~~
+1)) 

P~ (cosO) 

S~

(D—18) ~~~~~~~~~~~~

f o o  K P1(cosO) K Pl( O ) ~~ (r~
+ 3 q 1r ~~ — 

g q
2 (p—q) (p+q+l) 2q+1 J S 

j
p.

For the probleei worked in this report q — 2 and — 0 for even p. Thus,

K2 is 0 and the term involving

2 ~ 
K2P~ (coaO) Rn (r ) 1

~
‘2’~ 

S

5- S~~~~~~~~~~
p 
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I~~~~- ~

- f in equation (D—l8) does not contribute . In this case (D— l8) reduces
to (see equation (53c) in text of report where A A and B — B ).

t A111 = A
4,III 

- E~~A r ~~4. r~~l] 
P1(cos0) 

p p3

2 ~~ K P1(cosO)
+ p2J~ p#2 (p—2) (p4.3) (D—l9)

p=l S

I
J S

I 

S 

-

S 
I

, 1

Li’

I
SS ~

q .
Il

J
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APPENDIX E 

S

- CALCULATION OF COEFFICIENTS OF THE VECTOR
POTENTIAL FOR A SOLID FERROMAGNETIC

S SPHERE SURROUNDED BY A COIL
OF FINITE WIDTH

In this appendix we derive the coefficients for the magnetic vector
potentials in regions I—IV for a solid ferromagnetic sphere surrounded by
a finite width current band . For a detailed discussion of the ferro-
magnetic problem see the section in the text of the report entitled
“Ferromagnetic Sphere Surrounded by Coil of Finite Width”. The vector

potentials in each region are: 
S

S ) A1 
— A

4,1 
— E (A 1r1’)P’(cosO ) (E-la)

p—l

aD
1. 

A11 
= A~,p]] — E (A 2r

1’ + 
B
~~+l))P~

(cosO) (E—lb)
p=l r

3 I~ A
111 = A

~III = 

~~l (
~~~3r + 

:~~~
l) )P~~cosO

~ 11 - —

+ 
j

~~ ( (p.. 2) (p+3) ) 
P~ (cos0) (E— l c) 

S

S 
p~l

r aD

S 
S 

AIV ~pIv 
— 

~~ 
( (p4.1)) 

P~ (cos0)

: 1 p—l

S The coeff icients (A
i and B~~) in equations (E—la to E—ld) are obtained

by substituting these equations into the boundary conditions (equations

E—2a to E—2f).

S 

A1 
— A11 at r - R1 (E-2a)

II A11 A111 at r - R 2
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I 
-

I - 
-

- A111 — AIV at r — R
3 

(E—2 c) 
S 

-
1 — S

- _ 1
i 

~- (rA
11) — -~— ~ ~- (rA

1) at r — K
1 (E—2d)

- I
~~ (rA

111) — F -~ ~ - (rA~1
) at r — K

2 (E—2e) }
S 

I
~
— -

~~ 
~~~. (rAp,) = ~— ~ ~~ (rA111) at r = K

3 (E 2f )  
j

After appropriate substitutions of equations CE—la to E—ld) into i
equations (E—2a to E—2f) the following boundary value equations are obtained.

S 

A~1R1
P A~2R1

P + 
:i~~~

l (E—3a)

A
2R2~ + B 2

R
2~~~~

’
~ — A

3
R
2~ + B 3

R
2~~~~

’
~ ~~~~~~~~~~~~~~~~~~~~~ 

S

(E—3b) 4.

A 3R3~ + B
3
R
3~~~~~ + (~~ )(~~) 

- B
4
R
3~~~~

’
~ (E-3c) 

S

S 

~~ — [A 1’2 i)g1 1 ’ ’~ _(p )B R _(P+2)
J - L- A 1(p 1)R 1~

1’
~~~ (E-3d) - 

S

- - 
S ;-~ 

S ;I ~
5 

-I 5 4
S 

S

~~~~~
5
~~~~~~~~~~ S
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-
~~-- [A~3~~÷ 1 R 2

(P
~~

) -(P )B~ 3R P+2~4. 
(p—2)(p+3) ] — (E—3e)

~~ [A 2 ( + l)R 2~P ”  _ (p ) B
1’2

R 1’+2)] 
-

~~ [
_(P)B~4R;~~~

2)]= ~~ ~ A 3
(~~ l)R

3~~~ ~
(p)B

1’3
R~~~~~

2
~ (E-3f)

I + 
(3 

P
2
JR
3
K
,
,/
’
(P_2) (P+3))~

These algebraic equations provide six simultaneous equations with six
S unknowns, and can be solved for the coefficients (A

i 
and B

~~
) by algebraic

manipulation.
S 

Solving algebraically equations (E—3a) and (B—3d) results in the

S following solution for A in terms of B . S

p2 p2

I’ A~2 — [xIB ~2 (E—4)

where [x] - ~Rl~~
2
~~~~ [i +(

~~) U l

]/(
1 P l)  - 

S

The solution for A 1 from equation (E—3a) is:

A
1’1 

A
1’2 

+ B 2R1
2P+I ) 

S (E—5) 
S

~ •S) - 
S

Also , solving equation (E—3c) and (E—3f) algebraically for mathematical S

expressions describing B~4 gives the expression for A~3 in terms of B~3
and known quan tities af ter equating the func tions for 8

p4 
— B~4 from each 

S

eq uation .

S 5-~5~~5 S 5 

S 

S

~
‘i. 1
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L 
A — K ’ (E—6)p3 p

—p+2 -

2 p 3
p (p—2) (2p+l)

The algebraic solution of B~4 from equation (E—3c) is:

JR ~
‘
~
3
~K 

S

B 4 = A 3R3
’21’

~
1
~ + B

1’3 
+ (p 2)(p+3) CE—i)

The following expression is obtained for B
1’2 

from equation (E— 3b)

after substituting the expressions for A~3 (equation E—6) and A~2 (equa-
tion 8—4). 5 

5 -

B 2 
— B

3 [zJ 
+ K ” (E~-8)

— (p4.1)

where [zi —
‘ 

( [x l + R2~~
’
~’)) 

S 

S 

~~~ 

S

2
S 

K R ~ + 
P2JR21C

2 (p—2) ~~~~ 
S

S 

S 

K 
‘((x ) i4 + R2~~M))

The mathematical solution for B
1’3 

in terms of known quantities is obtained S

from equation S(E—3e), by substituting the previously obtained expressions
for A~3 (equation 8—6), A1’2 

(equation 8—4), and B
1’2 

(equation 8—8). j

S 

[
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I S  
S

S 

_ _ _ _ _ _ _ _

S 

B 
~ ~

t_K I 1(P+l)R
~

1’
~~1 — 3p 2JR 2K 

(E— 9a)
1’ 

1’ L

+ [ X I ~~~~l R ~P~
l K~ I -(p) R P

~
2) KIS

{ (-p)R~~~1’~2~ - [z] [x] (p+1)R 2
1’’  + (~)R2~~~~

2
~[z] }

S where 
-R1

21’
~~~ {•~ 

+

I [x) — —
~~~~~~~~~~ (E—9b)

-p+2

S K; — — 

(p—2) (2p+l) (E—9c)

S 

( C 2 R2~~~~’~) 
(E-9d)

1 K ’s — 
(p—2)(p+~~ ~~R2 (E—9 )P 
([i) R2

T’ + R2~~
1’+’)
)

- 

S

After a numerical value for B
3 
is calculated on the computer for a specific

LI problem the numerical values for the other coefficients can be obtained

from the following equations.

B 2 — B
3 

[z) + K ” , (see equation E—8) (E—lO a)

~~~l

5 -  

I S



I 

- 
A 3 

- K ’ (see equation E—6) (E-lOb) S

A
1’2 

= [x] 3p2 (see equation E—4). (E—lO c) I

S A 1 
— A 2 + B 2R1 

(2r +l) 
(see equation E—5) (E—lOd)

J.L JR
B 4 = A 3

R
3

(2
~W + B~3 + (~~2~~~~3) ~ (see equation E—7) (E—lOe) I

I S S

S I

‘ it S

S ii,
‘,

ii

- ; 
i
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The identity

J P
tT
~~(~0~9) Pm (COS9) sinOd8 — (2p+l)(p ) ’  6

p’p

(43)
was used to determine K (equation 42). Setting J~ (O) to a constant J
we can express equation (42) as:

K = 2p(p+l) •f P
~ (cosO) sinede (44)

Since the current in this problem extends from (~
7L — a)to (-

~ 
+

see Figure 4, the expres’~jon for K (equation 44) may be writt~n as

K = 
2p~~+l) 

[f 

2 
P~ (cose) sin8d8 + J2 P~ (cose)sinedeJ

(45)

By noting that

p’(—cos9) = (_1)P 1  P1(c se) (46)

It follows that the associated Legendre functions P~~(cose) are even func-
tions with respect to cos9 when p is odd . The expression for K may be
simplified to

K = 
( +1) 

f P1(cos~) sinede (47)

when p Is odd (K 0 when p is even) after utilizing the symmetry of J(e)
in Figure 5. By changing the variable in equation (47) to = cose, the
integral for K~ may be written as

S ino~
K ~p+l P1 (~ ’)d~j’ (48)p p(p+l) P

19
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Figure 1—B — Infinitesimally Thin Current Band

Now the solution for (equation B—5b) can he reduced to that for

the filamentary coil and the answer compared with that for the same problem

from a standard text (Jackson ,1° page 144 , equation , (5.46)).

The coefficient JK for the expansion of the current

J~ (G) =~~~~ JK~P~ (cos O) (B—6)

for the current filament is obtained from the equation (see equation B—5d):

cos(~T) ~ 1
= — 2p (p+i) f ~~ d(cos O)P~ (cosO)d(cos8) (B—7)

cos (0)

— 1.. ( ~p~I-1 \ ~
]

(Q)
1~~ 2p (p+l) / 1’
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1K [~_~.~f J {
~

_ P1(0)J

where J(O )  6(cos8)- 1 1

The special value of the associated L.~gendre function is calculated

from the expression (where m = 1)

P~ (o) = L-P~ . 
m)/2 

~~~~~~ , (p
~~

, even) (B-8)
(2
~ (P

.1~
) 

‘ 
(
P,±!!~) 

:
= 0 , (p4-rn , odd)

‘his expression may be derived from the series expansion for the

1. ’ • n dr e  function (see Smythe)” and letting cose = p t approach 0,

Suhstltuting the expression for JK (equation B—7), into equation

(B—Sb). results in the expression for the vector potentials A~,11 in the

external region for the filamentary coil.

U 1P 1(cos O ) ,s R ~P+l 
~A , ~ j~~~p ( J _ j  i’ (o)

.11 
p=l (2p)(p+1) “ r F (B—9a )

Now equation (B—9a) must be multi plied by ‘
~~

—
~~ to change from SI units

to C.iussian units , and must he set equal t9 I as p 1 
Is the free space

* :1L:’~ e1hility w h i c h equals  I in the (~aiissi an ~~stem.

Ar ter maid nc~ these  suhs t  i t  ~~~t i ms we have

A 
P1 (cos~) ( R 

)

P41 
‘~~(~~) (B—9b)

~Il C 

1~=~~ 
2p (p+l) r

‘~- w  ta1d n~ t h e  first term (p=l) for use in the comparison with the result
I f )

! f l -~~ h r ~~,(’fl We
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p 
I

/
A~ 11~~~ — ( R )

2 
P~ (cos$) 

- 
(B-9c)

Equation (B—9c) agrees exactly with  the f i r s t  term in the series by
* Jackson,’° where R1 = a In his notation , except for a minus sign.

When the (—1) phase factor in the definition of the Associated Legendre

f u n c t i o n s  P~ (cos9) is taken Into account , the two expressions are the

same. The general expressions for the Associated Legendre functions

Prn (cos9) In th is  work do not conta in  the (_1)m phase factor used by

Jackson. -
The term for the current band problem also reduces exactly

(p— i)

to Jackson ’s term for  n=0 ( Jackson ,1° page 144 , equat ion 5.46) for  the
p o t e n t i a l  Ins ide  the loop when the (— 1) phase f ac to r  is again taken into

account.
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