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SUMMARY

A probabilis tic approach to the source encoding problem

requires the specification of a fidelity criterion which measures the
degradation of the source output produced by the encoding transfor-
mation. Historically, the fidelity criteria generated by difference-
type distortion measures have received by far the widest acceptance ,
due in part to their ana lytical tractability. This paper introduces
two new fidelity criteria for discrete-time sources. These are desig-
nated as the “mean incoherence ” (MIC ) and the “mean log-coherence ”
(MLC). Both criteria are functionals of the magnitude-squared 4
coherence between the source output and its reproduction, and thus
do not admit a recognizable time-domain distortion measure repre-

— sentation. Interesting features of these fidelity criteria are indicated ,
and comparisons are made with the classical mean-squared error

(MSE) fidelity criterion . The rate -distortion functions for a sta-
tionary Gaussian source subjec t to constraints on either the MIC or
MLC are derived, and the corresponding optimum encoder behavior

is described. Finally, the applications where these new fidelity cri-
te ria may be advantageous over the MSE criterion are discussed.
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I. INTRODUCTION

A fundamental prerequisite for source encoding is the selec-

tion of an appropriate fidelity criterion for the problem at hand .

The criterion chosen should ideally indicate the true average degra-

dation (produced by the encoding transformation) in the utility of

the source output from th e user ’s standpoint. This must be the

primary concern if the goal is a useful system design. A secondary

concern is the analytical tractability of a given cri terion. In a

prac tical sense , this may involve nothing more than the ability to

estimate the average distortion resulting from a pa rticular encoding

opera tion with a feasible amount of computation. In the rate-

distortion theory sense , howeve r, analytical tractability of a fidelity

cri terion generally implies the ability to obtain either explicit or

parametric representations of the rate-distortion function R(D) for

a class of sources subject to that fidelity criterion.

The two concerns described above remain major obstacles

to the design of practical data compression systems. The general

state of affairs as of 1971 was summarized by Berger [i, p. 6] in

the introductory cha pter of his book:

This is an extremely important problem that has yet
to receive anywhere nea r the attention it merits. In
the absence of a theoretical machinery for synthesiz-
ing suitable distortion measures, the emphasis has
been placed on developing general results for various
classes of dis tortion measures. The rationale behind
this indirect approach is that, as further research
continues to expand the set of distortion measures
that have been analyzed successfully, it become s
inc r easingly li kely that the system designer can
find results that are applicable to the particular
source-user combinations he may encounter.

3
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Little progress of an analytically sat isfying nature has been

made in the interim. The system designer who wishes to make use

of the resu lts of rate-distortion theory (e. g . ,  R( D) functions and

optimum encoder designs) is for the most part constrained to

dif ference - type distortion measures and their corresponding fideli ty

cri teria. The most notable example in this category is of course

the ubiquitous mean-squared error (MSE ) fidelity criterion. The

analytical tractability of this particular criterion has undoubtedly

enhanced its wide acceptance. In some applications , however , the

MSE and related criteria have little or no physical justification, and

can in fact dic tate disastr ous encoding strateg ies , as will be demon-

strated in a later section . Furthermore , the es t imation of MSE and

related average distortion values must be done with great care for

con tinuously distributed sources. For example, perfec tly acceptable

reconstructed waveforms which differ only by a cons tant scaling

factor may yield grossly dif ferent MSE distortion values when com-

pared with the original waveforms .

The pur pose of this pape r is to introduce two new fidelity

cri teria for discrete-time sources. These will be designated by

the terms “mean incoherence ” (MIC ) and “mean log-coherence”

(MLC). Both cri~~ria are functionals of the magnitude-squared

coherence (MSC) y~ (w) between a source (x} and its reproduction

{y}. Interesting features of these fidelity criteria are indicated,

and comparisons are made with the MSE fidelity criterion . The

ra te-distortion functions for a stationary Gaussian source subject

to constraints on either the MIC or MLC are derived , and the cor-

responding optimum encoder behavior is described. Finally, the

application s where these new fidelity criteria may be advantageous

ove r the MSE criterion are discussed.
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Before proceeding, it is appropr iate to clearly define what
we mean by the term “fidelity criterion ,” as opposed to “distortion

L measure. ” A distortion measure, in an infor mation -theoretic sense ,
is a means of assigning a real number to every pair of (finitely or
infinitely long) sequences corresponding to a particular source-
reconstruction realization . A fidelity criterion, however , assigns
a real number to the ensemble of source-reproduction pairs [ii,

sec. 26], and thus represents an ave rage distortion over the
ensemble. The MIC and MLC fidelity criteria dealt with in this
paper assume jointly stationary source-reproduction ensembles.
As Berger [i, p. 126] points out, this is a reasonable ab~umption

- for an ideal system which encodes infini tely long messages from a
stationary sour ce, since the system has nothing to gain by oper-
ating in a time vary ing manner. Indeed, the optimum encoding

-
- which achieves the rate-distortion limit in many situations requires

- infini tely long code words. The practical use of the MIC and MLC
- fidelity criteria implies the estimation of their values from a finite-

length span of data (as is the case with MSE measurements). In
- later sections , we shall briefly mention the manner in which this

is done.

t -
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II. PRELIMINARIES

We shall begin with the definition and a brief review of
2

certain properties of the MSC function Y ( ~~). Proofs of these

properties may be found in [ 2-4 ] .

Definition. The magnitude-squared c oherence ~2
(~~) between two

real ,zero-mean ,discrete-t ime,joi ntl y stationary random processes

{x} and {y}, possessing auto-spectral  densities ~~~(w) and ~~ (w ),

respect ively, and c ross-spec t ra l  density ~~~~~ is defined by

2
I•,~ ““a for ~ (~~) � O , ( 1)

~~~~~ ~~~(w) xy

((4) 0 ~ W~~~~1T .xy
0 for ~ (~~) O , ( 2)

xy

The latter portion (E quation (2) )  of this definition allows

(w) to be determined in cases where either ~ (w) or ~ (u~) isxy 
2 X y

zero  for some . Note that 0 ~ Y (w) ~ 1 for all ~~
,.

xy

Property_2 . 1 .  If {x } and {y} are uncorrelated , then V 2 (w) 0 for

all  ~~
,.

Property 2 .2 .  If L represents a reversible time-invariant linear

operator , and {y} = {Lx), then V
2 (w) a 1 for all w.

From Properties 2. 1 and 2. 2, we see that V2 (~ ) is a normal-

ized , frequency-domain measure of linear correlation between (x}

and {y}, which is generally more informative than the cross-

correlation coefficient p (T) . The latter quantity is defined by

6



L~ ~ xy~~~
P~~~

(T) = 

~~~~~~~~~~~~~ 

‘ 
(3)

where ~~ (i-), ~~ 
(-r ) ,  and ~ (-r ) a re  the respective auto- and cross-

x y xy
correlation functions of {x} and {y}.  Note that P~~~

(T) is no rmalized

with respect to the total average powe r in the two processes , wher eas

(~ ) is normalized foe each w with respect  to the auto-spectra of
xy

{ x) and {y) at that value of (4 . Thus , one may determine the degree

of linear correlation in any portion of the spectrum of two processes

by examining their MSC function.

Property 2. 3. If V
2 ( )  = 1 for all w , then there  exists a uni que

t ime- invar iant  linear operator L such that {y} = {Lx } with proba-

bility one.

This property suggests the use of V2 (w) as a frequency-

dependent measure of the l inear i ty  of a system whose input and

out put a re  {x} and {y}, respectively. However , caution must be
2used when this is contemplated, since V (&4 ) is a function of the

particula r input process. Clearly, there exist systems which

behave linearly with respect to one class of inputs , but not to

another ( e . g . ,  saturating linear ampli f iers) .  Thus , Property 2 . 3

is not a sufficient condition for inferring the l inearity of a system

t having {x} and {y) as its respective input and output .

Note that Property 2. 3 can be extended , in the event

‘Y 2 (w) 1 for all (4E W C [0 , T r ] ,  to the corresponding “band-res t r ic ted”

versions of {x} and {y}.

- - -

~~~~~~~~~~
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Property 2 . 4 .  If (y} = {L(x+n)} where (x)  and {n} are uncorrelated,

and L is a t ime-invariant  linear operator , then we have

V ( )  t
~ 

( )
( ) ~~A XY 

= 
x 

(4)
2 ~~( )1 - V  ( )  n
xy

Property 2. 5. If {y} = {Tx}, where T is any time -invariant oper-

ator (not necessari ly l inear),  then cr( ) (defined in (4))  is the ratio

of the average power in ~y} at frequency ~ which can be represented

as an optimum (in the mean-square sense)  linear estimate of {y}

given ( x } ,  to the average power in the residual of this estimate at

f requency ~~~~.

These last two properties suggest the use of a ( 4 )  as a

frequency-dependent  signal- to-addit ive-noise ratio (SNR), or a

signal- to-quant izing noise ratio (SQR ) in cases where {y} represents

a quantized version of {x}.

It should be obvious f rom the above properties that the MSC

function is useful for statistical comparisons between two processes.

Indeed , it has found wide app lication in many areas of statistical data

ana lysis [2 -4 ] .  The MSC function is easily estimated using conven-

tional spectrum estimation techniques. We shall now briefly discuss

this problem.

Given two real , zero-mean, discrete-t ime randcLn processes

{u } and {v}, let the sequences U.1 
and V .~ represent successive

K-point discrete Fourier transforms (DFT) on segments of a pair

of sample functions from the respective processes, where j is the

time index and I is the frequency index of the transform coefficients .

In practice , one would employ a data window to reduce spectral

f:: ’ 
- 
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leakage, and possibly overlap successive segments if a limited

amount of data were available . Given a finite number of correspond-

ing pairs of DFT coefficients fr om the two sample functions , and

assuming that these are drawn from a jointly ergodic ensemble, we

may form an estimate i’ 
2~~~ of the MSC at the frequency correspond-

th uv
ing to the I coefficient index:

2 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

N N

j~~l HI~=1 i’~i
where the “ *“ above denotes the complex conjugate. Under the

assumptions that {u} and {v} are jointly Gaus sian , and that the

transform coefficients U .1 are independent and perfectly windowed

(i .e . ,  no spectral leakage), and similarly for the coefficients V .1,
Goodma n [51 derived the distribution theory of this estimate . In

particular , the estimate is asymptotically unb iased and consistent,

with probability density function p~~(z), given N and a true MSC

of

p~~(z) ( N _ l ) ( l _ .Y~ )N ( l _ z ) N Z ( l _ Y Z
z)~~~

ZN
2F1

( l _ N , 1-N; 1; Y
2

z ) ,

where 0 ~ z ~ 1, and 2F1 (a, b; c; z) denotes the hypergeometric

function. Several practical aspects of this MSC estimate (e .g . ,  bias,

va r iance , data windowing and overlapping) are discussed in [6 , 7].

Hence, the statistical behavior of this estimate is rather well

understood.

9
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• III. NEW FIDELITY CRITER IA

We now introduce a new application of the MSC function in

the area of data compression theory and practice. To this end, we

- - 
define two fidelity cri teria for source encoding, which are func-

tionals of the MSC V
2 (w) between the source {x) and its reconstruc-xy -

t ion{y} .

Definition. The frequency-weighted mean incoherence (MIC) is

given by

fd~~~W~~~~ [1 -

MIC~~ , (5)

fdw W~~ )

where W(u~) (0 ~ W(~) ~ 1) is an arbitrary user-specified weighting

function. It is tacitly assumed that W (~~) = 0 for all w such that

= 0, but W(~~) ~ 0 for all w .

Definition. The frequency-weig hted mean log-coherence (MLC) is

given by

• 

fd
~~W(w)log V

2 (w)

MLC~~ ~~~~ , (6)

fdww~~
0

with W(w) the same as above .

10
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The weigh~~ng function W(~~) provides the user with the flexi-

bility of assigning a priori significance to the distortion in different

portions of the spectrum.

• Fidelity criteria of the type (5) and (6) imp licitly assume

that the source message and its reconstruction are jointly stationary.

Hence, all of the analytic results herein pe r ta in to the enc oding of

infinitely long messages, and represent lower bounds to that which

can be achieved in practice. In order to evaluate the result ; of

encoding a finite length message, one must estimate the MSC
between the original and reconstructed waveforms, as described in

the previous section. Although these waveforms are inherently

nonstationary, due both to their finite duration and the encoder

structure, one may still obtain useful results which asymptotical ly

(with increasing code word length) satisfy the assumptions made for

the ideal system considered herein. By choosing a block encoding

scheme whose block length is an integer multiple of the DFT seg-

ment length, the nonstationary transitions between successive code

words do not occur within a transform segment , thereby minimizing

the effect of finite code word length on the MSC estimate. This

estimate is substituted into Equations (5) and (6), and the integrals

evaluated numer ically, to obtain estimated values of the MIC and

MLC. These values are subject to two (co~ipled) sources of crror:

(1) the statistical error  in the MSC estimates; and (2) the error

resulting fr om numerical integration. Since our present purpose

is to derive the rate-distortion properties of the MIC and MLC

fidelity criteria, we will not enter into a detailed error analysis of

MIC and MLC estimates in this paper. Briefly, however , we note

that the first  source of error  can be made arbitrari ly small by

4 
increasing N, the number of DFT segments averaged in the MSC

_ 
_ _



estimate, since (see [ 7 ] )  both the bia s and the variance of this

estimate are o(4~). The second source of error can be made arbi-

I 
- 

trarily small by increasing K, and choosing N such that as K 00,
K -‘ 0. Hence, with an adequate amount of source-reconstruction

data , one can evaluate the MIC and MLC to any degree of accuracy.

The following two properties are consequences of Proper-

ties 2. 1—2 .  3 of the previous section . -

Property 3. 1. The MIC distortion ranges from zero to unity, with

zero distortion corresponding to the case {y} = (Lx ) (L a reve rsible ,

time-invariant linear operator) with probability one, and unity distor-

tion resulting when (x} and ty) are uncorrelated.

Property 3. 2. The MLC distortion ranges from zero to infinity,

with zero distortion corresponding to the case {y) = (Lx ) with

probability one, and infinite distortion resulting when 1 2 (w) is zero

over any non-zero-measure subset of [o , a] .

Thus we observe a fundamental difference between the MIC

and MLC criteria and the MSE criterion , viz . ,  any reversible linea r

transformation o~ the source sequence {x} affected by a data com-

pression system results in zero MIC or MLC distortion, whereas

such a transformation may result in arbitrary MSE distortion. The

scaling problem inherent in evaluating the MSE between two

sequences is not present with either the MIC or MLC criterion.

Furthermore, since a number of signal processing ope rations

(e. g . ,  beamforming, spectral detection) are invaria nt to certain

classes of linear prefiltering, there is no justificat ion for insisting

on an MSE type of fidelity cons traint by the user. Of course, no

12
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(4

data compression system will affect a perfect linear transformation

of the source, and any nonlinear operation (e. g . ,  quantizing) will

be reflected in a reduced coherence between {x} and {y}, with a

resulting non-zero distortion.

Property 3. 3. The distortion spectrum of the MIC (i. e., the numer-

ator integrand of (5)) represents, for each value of w, the (we ighted)

fraction of ~~~~(~.ü) which is due to 
~e~

”
~ ’ the auto-spectral density of

the process {y - ~}, where {~} is the optimum linear estimate of

{y} g iven {x}. -

This follows from Properties 2 . 4 — 2 . 5  of the previous section ,

and lends physical significance to the MIC fide lity cri terion.  Thus

the net value of the MIC , g iven by (5), represents the (weighted)

average fraction of the tota l power in {y) which is due to the error

process {y-~~}.

Property 3. 4. The distortion spectrum of the MLC (1. e.,  the nume r-

ator integrand of (6)) represents, for each value of w , the weighted

negative logarithm of the fraction of ~ ( )  which is due to ~~~~~ (t~~). the

auto-spectral density of the process {
~~
) defined above.

Again , we see the similar physical significance of the MLC

fidelity criterion . The user would choose the MLC as his fidelity

criterion if he were unwilling to tolerate the total elimination from

transmis sion of ~~~ (non-zero-measure) portion of the source spec-

• trum • (w) (excepting portions where W(~ ) = 0), since this would

result in infinite distortion.

_  

-

~ :~~~~~~~~ - - 
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Before proceeding to the next section, we mention one

caution which should be observed when using the MIC and MLC

fidelity criteria. As previously noted , neither criterion penalizes

a rever sible linear transformation of the source output {x). In

situations where some such transformations may be undesirable

with regard to the final output to the user , one must transmit the

additional side information needed to invert the first transformation.

This would seldom seem to be a prob lem in practice, since one

would not deliberately design a source encoder which implemented

an undesirable linear transformation of the source output .

14
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IV. RATE-DISTORTION FUNC TIONS FOR GAUSSIAN SOURCES

- 
- In this section, we derive the rate-distortion functions for

a discrete-time stationary Gaussian source under either MIC or

MLC fidelity constraints. We shall make use of the following

results .

Definition. The average mutual information rate I(x; y) between two

discrete-time, jointly stationary random processes {x} and {y} pos-

ses sing joint and marginal n-th order multivariate density functions

~~~~~~~~~ P~~~~~~ (U) and p~~~(v) respectively (
~ 

and v are n-dimensional

vector variables of successive source values), is defined by

I (x;y)  = lin-i ! i ( x ~~ ;y ~~ ) (7)

where

(n)

I (x
(n) ;y (n)) 

~~fJdu dv P (u,v)log

[ 

( )  

~~
].  

(8)

The above definition is sufficient for the Gaussian sources

to be considered iii this section . For a more general definition,

see [i , Ch. 7].

Theorem 4. 1 (Pinsker). Let {x} be a discrete-time Gaussian process
which is jointly stationary with another discrete-time process {y}, the

two processes possessing auto-spectral densities ~~~(w) and ~~ (w),

• respectively, and cross-spectral density 
~‘xy~~~’ 

0 ~ ~ r . Then the

greatest lower bound to the average mutual information rate I(x; y)

is obtained when {x} and {y) are jointly Gaussian.

- 

- 

‘5 

-
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Proof: See [8) or [ 9 1 .

I. Theorem 4. 2. Let {x} and -( y )  be zero-mean, jointly stationary

Gaussian processes. Then there exists a linear ope rator L and a

stationary Gaussian process {z} independent of (x} such that

= Lx k +z k ,

where Xk, 
~k’ and Z

k 
are typical realizations of {x), {y}, and

{z}, res pectively.

Proof: See [i , p. 125] .

Theorem 4 .3  (Pinsker).  Let {x} and {y} be discrete-time, jointly

stationary Gaussian processes possessing respective auto- and cross-

spectral densities ~~~~ ~~~~ and ~~~~(u4 . Then their average

mutual information rate I(x; y) is given by

I (x ;y )  = _
~~~~fdw log [1

~~ 
Y~~~(~~)] .  (10)

Proof: See [9, p. 1 751.
W ith the above preliminaries, we shall now determine the

ra te-distortion functions R 1(D) and R L(D) of a Gaussian source {x}
under MIC and MLC fidelity constraints, re spectively. Specifically,
the fideli ty requirement is of the form

f
- 

0 
~~ D , (1 1)f

0

16 
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where for R
1

(D), K(w) is given by

IK(w) = K1(w) = W(w) - 

~~ (~ ) ~y
(W) (12)

and for R
L
(D), K(w) is given by

2 1

K ( )  KL( )  = — W (w) log 
•~
, ( ) ~ ( )  ] . (13)
x y

By our convention, {y} is taken to be the reconstruction of {x}.

The rate-distortion function R(D) of a source {x} with respect

to such a fidelity requirement is defined by

R (D) = inf I (x ;y)  , (14)
0(D)

where the infimum is taken over the class 0(D) of all conditional

probability measures for which ( 11) is satisfied. Howe ver , since

( 11) is expressed solely in terms of the spectral densities ~~~~
~ (w), and ‘

~~ (w), we conclude from Theorem 4. 1 that the minimumy xy
rate in (14) occurs when {x} and {y} are jointly Gaussian. There-

fore , by Theorem 4. 3, the optimization problem implied by (14) is

equivalent to minimizing the quantity

I(x; y) = ~~~~~f d lo~~[1 
- 

~~ 
(15)

subject to the constraint ( 11) . -

‘7
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The above minimization problem may be approached via the

calculus of variations [10] .  Following an argument similar to

Berger ’s [1 , pp. 126- 129], note that since the optimum {y} is such

tha t {x} and {y) are jointly Gaussian , we may express ~y ( ) ~ by

Theorem 4. 2 , as

= I B( ~14l
2 

~~~~~~ 
+ 

~~~~~ 
(16)

which implies that

- IB( )I 2 .(~
) ~ 0 , (17)

by virtue of the non-negativity of Z (). In these equations, B() is

the t ransfer  function of an as yet undetermined linear operator. In

addition, we have by Theorem 4. 2

~xy~~ 
= B(

~4~~~
( )  . (18)

Thus the kernels K
1
(w) and K

L
(w) may be wr itten as

F IB(w) I24
~

(w)
= W(w) 

~‘ 
- 

2 (19)

L IB(w)I 
~

( ) +
~~

(w)

I B I 2
~x~~ 1

K L(w) = — W ( w ) log 2 I • (20)

~B(w) f x~~~~~z~~ J
Substituting (16) and (18) into (15), and combining with ( 11),

we see that the minimization problem reduces to finding the critical

point of the functional

18
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j  = f~ { 
log (.Y

(
~

) - i B ( (
~)I 2.x ((4)) 

- ~ K(
)} 

, (21)

where X ( ~ 0) is a Lagrange multiplier, and K ( )  is replaced by K1
(w)

(E quation (19)) for the MIC fidelity criterion , or by KL
( ) (Equation

(20)) for the MLC fidelity criterion. Since ~~ ( )  is fixed , the inde-

pendent variables in (21) are the functions $ ( ) ,  B 1(w) ~ R e ( B ( )},

and B2
(w) = Im {B( )) . Setting the variation of J with respect to each

of these three functions equal to zero yields a single equation, an

indication that no unique values of B1
(w) and B

2
() are required in

conjunction with the optimum 4~~((4 ).’ We now consider each fidelity

criterion separately.

MIC Fidelity Criterion. The variational equations in this case

reduce to

= (1 - ~W(w) ) I B 1
2
.X~~~~. (22)

In order t i  satisf y (17), we require that

(1 
- 

XW(w)) ~ 1~~ (23) 1 -
-

else B(w)1
2 = 0 and hence 4’ ( )  = 0 for all (4 whe re this does not

hold true . The optimum MSC y (~ )for minimum-rate transmissionxy
is then given by

‘This can be shown to be a consequence of the invariance of the MSC
function to time-invariant linear transformations of either (x )  or {y) .

19 
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~~~~~~ 

.- 

-

- - .  - a

- .

.1

~ 2 ~B~~~~~~~
2

4 ’ ( )  
1V ( )  = = max (o~ i - 

XW ( ) ) (24)

Having determined the above function , we need only to substitute it

into (1 5) to obtain R 1(D), and thus we have the following result.

R 1(D) for a Gaussian Source. The rate-distortion function R 1(D ) for

a stationary Gaussian source subject to a frequency-weighted MIC

fideli ty requirement is g iven para metrically by the equations

R 1
(D) = 

~~~~~

_ max [o, log( XW ( )) ]  , (25)

and

a 

mm [i . XW( )]
0 

a . (26)

J
0

In part icular , if W ( )  is unity for all w (i. e., no de-emphasis

is placed on the distortion in any portion of the spectrum), then

X = D ’, and we obtain the simple result

R 1(D) = - f log D , 0 ~ D ~ 1 . (27)

This function is plotted in Figure 1 for a base 2 logarithm.

20
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MLC Fidelity Criterion. The variational equations reduce to

$ (w) = ( i  - XW(w ) ) 1B 1
2

4 ’ ( ) ,  (28)

where (17) now requires

(‘ - 

XW( ) ) ~~ 1 
‘ 

(29)

else IB(w) 1 2 = 0 and • (w) = 0 for all (4 where this does not hold true .

In this case , however , the necessity that (29) be satisfied for some

w , coupled with the fact that 0 ~ W() ~ 1, implies that X <  0. Hence ,

(29) is true for all ~~~ . Thus the optimum MSC V
2

(w) is given by

= (1 - 

XW(w)) ‘ 
(30)

and we have the following result.

for a Gaussian Source. The rate-distort ion function R L(D) for

a stationary Gaussian source subject to a frequency-weighted MLC

fidelity requirement is given parametrically by the equations

R L
(D) = -

~~~

.— 

1

T1 

[i - >~W( )] , (31)

and

D = 

log ( 1  - kww) 

(32)

f d w w ( w)

( 22
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If W(~ ) equals unity for all ~ , then ~ = (i - bD) 
- l  

(b is the

base of the logarithm), and
-;

R
L
(D) = — 

f
log (i - b~~~) , 0 D . (33)

This function is also plotted in Figure 1 for a base 2 logarithm.

The results of this section suggest the operation of an opti-

mum encoder for Gaussian sources. Let us assume for the moment

that the weighting function W (w) is unity for all ~‘, as this case is

somewhat easier to visualize. Then from Equations (24) and (30),

we see that the minimum transmiss ion irate under either MIC or

MLC fidelity constraints is obtained when the MSC V
2 

(w) is uniform
- 

xy
fo r all ~, its specific value determined by the allowable distortion D.

Refe r r ing  back to Properties 2. 4 and 2. 5, a uniform value of

implie s a uniform value of SQR cr(~~) for all w.  Thus , from Equation

(4), the error spectrum produced by an ideal enc oder will be a scaled

copy of the original source spectrum, as shown in Figure 2. The

achievement of such an ideal system would, of course , require an

- infinitely long block code. 
-

_ ______________  _  
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Preserved Spectral Density

Error Spectral Density

_

0 w (Radian frequency)

Figure 2. Illustration of pr eserved source and error
- spectral densities for optimum MIC or MLC

encoding .
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V. COMPARISON WITH MSE SOURCE ENCODING
(4,

I ~ It is instructive to compare the results of the previous

section with the corresponding results for the encoding of Gaussian

sources under a MSE fidelity criterion [ii . The rate-distortion

function R
E

(D) in the latter case is g iven parametrically by

it

R
E

(D) = 
~~~ / dw max ~ log ‘

~ 
) , (34)

and

D = dw mm (0 , 1 (w) ) . (35)

In the event that 1 (w) = 1 for all w, i. e•, {x} is a unity-

variance, memoryless source, then we have -

R E (D) = — 4. log D, 0 ~ D ~ 1 . (36)

Comparing this result with (27), we note that the R1
(D) curve is

identical to the R
E
(D) curve for this source. However, the R

1
(D)

curve is applicable to all Gaus sian sources regardless of the magni- - 
I

bide or the shape of their auto-spectral density • (w), whereas the

L R E (D) curve for unity-variance sources with non-white spectrum lies

below the curve in (36). This behavior points out another fundamental

difference between the MSE and the M1C (or MLC ) fidelity criteria. As

illustrated in Figure 3 (similar to Berger ’s [1], p. 122), the optimum

MSE encoding strategy reproduces onlythose portions of the source

25
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Preserved Spectral Density

- Error  Spectral Density

- 

0 w (Radian frequency)  it

Figure 3. Illustration of preserved source and error
spectral densities for optimum MSE

- encoding (see Berger [1], p. 122).
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-I
spectrum 4’ (w) such that 4’ (w) > 0 , where the fraction (4’ (w) - 0) 1

x x x
4’ (w) of the source power in an infinitesimal band centered at w is

preserved in the reproduction {y}. In general, a different R
E

(D)

curve results for each different source spectrum. However , refer-

ring again to Figure 2 , the optimum MIC (or MLC ) encoder repro-

duces all portions of the source spectrum 1 (w) with the same rela-

tive fidelity . Thus , the savings in required transmission rate (for

fixed D) afforded by the MSE fidelity criterion for sources with

memory is not available with the MIC or MLC fidelity cri teria.  A

moment ’ s reflection will convince one that the aforementioned

savings is purchased at the expense of higher relative distortion in

“quieter ” portions of the spectrum.

in (34) and (35) is replaced by IA (w)I
2
~~ (w), we obtain

the rate-distortion function for a Gaussian source subject to a

frequency-weighted MSE (FWMSE) fidelity criterion [ii . The

particular choice

r i’’
I ~~ (w) I , • (w) > 0L x i  x

IA (~)I2 
(37) - 

-

0

make s these equations identical to (25) and (26 ) (for the case
• 

- W(w) E 1), i. e. ,  the rate-distortion function R 1(D) for a Gaussian

source subject to the MIC fidelity criterion is identical to the rate-

distortion function of the same source subject to a FWMSE fidelity

criterion, where the weighting function is the inverse of the source

spectrum. It should be emphasized, however , that the two fidelity

criteria are not equivalent. This FWMSE is still sensitive to a

linear transformation between the source and its reconstruction,

- _  

_ _



4 ’  while the MIC is not. Thus , the encoder-decoder structure dic-

tated by this FWMSE criterion is more rigid than that specified by

the MIC criterion.

As an example of an application in which the MIC or MLC

fidel ity criter ia would be preferred over the MSE criterion, we

cons ider the problem of transmitting the (Gaussian) output {x) of a

remote passive surveillance sensor , where the reconstructed data

is to be (auto- or cross-)  spectrum analyzed. For example, the

user may be interested in detecting the presence of narrow-

bandwidth spectral components against a background of broad-

bandwidth (generally non-white) noise. The results of optimum

encoding of such a source unde r MSE and MIC (or MLC ) fidelity

criteria are depicted in Figures 4(a) and 4(b), respectively.

The MSE encoding produces relatively little distortion of the narrow-

band components which lie in the “louder ” portions of the spectrum,

while totally eliminating components lying in the quietest portion of

the spectrum. It should be obvious that such an encoding strategy

may well be disastrou s from the users ’ point of view. From the

results of the previous section , however , optimum MIC or MI.C

encoding produces a reconstruction process (y} which is related

to the source process {x) via EquatIon (9):

(38)

~k 
Lxk + z k ,

where {z) is a Gaussian process independent of {x}. Moreover,

fr om Property 2.4, the fraction of ~y(W) which is contributed by the

source process Is constant for all w (for W (w) 1). Therefore, if

the reconstruction process is subjected to auto-spectrum analysis,

the relative error contributed by the noise {z} is constant at all

28



____ 
~~~~~ Pr eserved Spectral Density

Error Spectral Density

_ _ _ _ _

-
-

~~~~~~~0 w(Radian frequency) it

Figure 4(a). Example of optimum MSE encoding effects.
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Figure 4(b). Example of optimum MIC or MLC
encoding effects .
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V.

frequencies.  Similarly, if the {y} realization is cross-spectrum

analyzed with another waveform, the relative error in the cross-

spectral estimate due to {z} is constant at all frequencies. If no

a priori information is available concerning the center frequency

and narrowband SNR distributions of narrowband component s of

interest, then a reasonable strategy is to spread the relative dis-.

tortion of the source spectrum uniformly over all frequencies, since

this will minimize the maximum relative distortion in any portion

of the spectrum. This is precisely the effect produced by optimum

MIC or MLC encoding. By choosing an appropriate frequency
weighting function W (w), the user may assign a priori relative signi-
ficance to dif ferent portions of the spectrum.

No claim is made that the MIC or MLC fidelity criteria are

superior to the MSE criterion for all applications. Indeed, any

data compression application in which the preservation of the gross

features of the source output (e. g . ,  electrocardiogram signals) is

deemed important would likely be better suited to optimum MSE

encoding . There are , however , many data compression applications ,

other than the example described above , in which there is little or

no physical justification for such a fidelity requirement. If the

user ’s relative interest in various reg ions of the source spectrum

is not proportional to the absolute power contained in these reg ions ,
then the MIC or MLC fidelity criteria may be more appropriate.

30
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I
VI. CONC LUSION

~ j 
Two new fidelity criteria for discrete-time source encoding

have been introduced. Interesting features of the MIC and MLC

f idelity cr iter ia have been described, and a comparison made with

the mean-squared error (MSE ) fidelity criterion . The rate-

distortion function s for a stationary Gaussian source subject to MIC

or MLC fidelity constraints were derived, and the corresponding

optimum encoder behavior explained. These results indicate a

fundamental difference between the MSC-related fidelity criteria

and the MSE criterion. The remote passive surveillance problem

represents an application where this difference is highly significant

insofar as the optimum encoding strategies are concerned.

Our current efforts are addressing the problem of practical

encode r des igns f o r  these new fidelity criteria, including the per-

formance of these encoders relative to the rate-distortion curve s

which have been derived.
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