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RUSSIAN AND

ENGLISH TRIGONOMETRIC FUNCTIONS

Russian English Russian English
sin sin sh sinh
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Page B.

Were carried out 100 years frcm the birthday of Vladimir Ilyich
Lenin - greatest revolutionary, leader of tie Ccmmunist Party,

founder of the first in the world socialist state.

"With name and Lenin's activity is connected whole revolutionary
epoch in humanity's life. Lenin gave answer/responses to the most
urgent questions, placed by the course of historical development, he
thoroughly developed the theory of the Socizlist Revolution and
building Communist society, it armed russiamp, all the intarnational
revclutionary movement by scientifically sutstantiated strategy and
tactics, it headed the fight of class for the conversion of the
ideals of socialism in life. Socialism, converted by Marx and Engels
frcem utopia into science and enriched ky Lenin Lty new
conclusion/derivations and discoverysopenings, was personified into

the social practice of world-wide historical scales, it became basic

revolutionary force of our time". (Theses of the CC of KPSS [* .

CPSU] to the 100th anniversary from the birthday of V. I. Lenin).

Lenin, the greatest scientist in revolution and revolutionary in
science, gave enormous value to questicns of the scientific-technical
progress of our country. From the first days of the existence of

Soviet state, all possible and cosprehensive development of science
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and technology became one of the most important and systematic
directions of the activity of the Communist Party and Soviet

government.

In heavy 1918, when young Soviet republic in lethal fight
reflected the brightness onset of counter revolution, Lenin writes
the "sketch of the plan of scientific-technical work" for the Academy
of Sciences, in vhich he scientifically assigned the mission of
developing the plan/laycut cf the reorganizaticn of industry and
eccnosic lift of Russia. This plan/layout strikes with its depth,
newness of posing of problems, with organic communication/connection
with life. Under Vl1ladimir Ilyich's management/manual in the sanme
period, vas developed the plan/laycut of the electrification of
Russia - plan/layout GOELEC [ State Commission for the
BElectrification of BRussia], to realization of which Lenin gave

enormous value.

Vladimir Ilyich paid great attenticn tc development of Soviet
aviation and technology. Lenin supported great Bussian scholarly
professor N. E. Joukowski's proposition about the organization of
central aerohydrodynamic institute. TsSAGI [ + Central Institute
of Aerohydrodynamics im. N. Ye Zhukovskiy is the authentic creation
of Great October. Because of the daily concerns of the Communist

Party and Soviet jovernment of TsSAGI, it became the world famous

g
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scientific research aviation center, equipped with modern research
equipment, disposing of the highly skilled scientific

Fersonnel/frames.

Pollowing Lenin's legacy, Soviet people under the
management /manual of the Cosmunist Party carried out an
industrialization of the country, they converted our native land into

mighty socialist power, the reliable stronghcld of peace, progress

and socialisa.

Page C.

Science in our country ever more and mcre is converted into the
direct productive force cf scciety. The Ccmmunist Party takes all
measures for realizing the leninist precept about that, "so that the
science for us would not remain a dead letter or fashionable phrase
es« SO that the science realszactually vwculd enter in the flesh and
the blcod, it was converted into the ccmponent element of mode of
life completely and by present fora". (Coll. works, Vol. 45, page
391).

Published during October 1968. The resclution by the CC of the
CPSU and Council of Ministers of the USSR "about measures for the

increase of the effectiveness of the work of scientific organizations
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and the acceleration of use in the national economy of the

achievements of science and technology” is directed toward further

increase in the effectiveness of scientific investigations.

Soviet scientists, accurate to Lenin's legacy, direct their
efforts for the solution of stated befcre them by party/batch and
government most important problems in further increase in the
effectiveness of scientific investigations for purpose of the

prcvision for technical progress.
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Page 1.

METHOD OF CALCULATION OF FLCW AROUND A BODY OF REVOLUTION OF ANY FORM

DURING AKSITRARY MOTION IN IDEAL FLUID.
L. A. Maslov.

Is proposed the method of calculation cf distribution of the
speed, pressure and potential on surface, and also in any point of
space around the body of revolution, which accomplishes arbitrary
motion in ideal fluid. In ccmpariscn with krcwn methods in this case
tc the form of body of revolution, are superimposed no limitatioas
and sufficient accuracy/precision of calculations is reached at the
considerably smaller expenditures cf time EVM [¢ computer ].
Examples of calculations are compared with known exact solutions and
with the experimental values of pressures cn the surface of different

bodies.

At present the potential flow around tike bodies of revolution of
any form during arbitrary motion can be designed only with the aid of
method [1). However, method [1] it is very laborious, and more
effective proves to be the sethod cf calculation of flow about body

of revolution during arbitrary moticn, presented in works [2] and
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[3]. Method [ 2], furthermore, easily it is spread to the case of the

calculation of three-dimensional body during arktitrary motion [4].

However, during its use on surface are superimposed some limitations.

In this article is proposed the calculaticn method, which
represents by itself the generalization of methecd [2]. In this case,

the method of the assignment to body surface makes it possible to

BT T e ek

examine the bodies of revclution of any fors during arbitrary motion.

1. Fundamental principles. If v, v,, vy - projection of vector
v of the forward velocity of pole A of solid body, and 2,, Q,, Q3 - \

to the projection of angular velocity vector 6: on the connected with

NN, - X T I T < ———

the body axes of coordinates xyz, then for the potential of the

disturbed velocities of liquid it is possible tc wurite

6
w(x,y,z,t)==2:vAtybe,y.zL

]

where are introduced designations v, = J0;,; vg = 10,5 v, = 105 (1 -

length of body).
Page 2.

Por determining each of six single potentials ¥(x, »v 2) it is

required to solve the exterior problem of Neumann

. 00, Sl .
AQ), __()‘ ~;)’;—'- 3 v‘» (l-‘_—l‘Q,,..,()) (l])

A M s A——- g5t —— . Sl e P O . . T T

i g r < g T TR I
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with zero conditions at infinity. Here v, - the velocity of the
points of body surface in the appropriate simple motion; w - surface,
vhich limits solid body; n - normal to the surface w, directed inside
liquid. If we the solution search for in the form of the potential of
the sisple layer

o= [[na@% . | (1.2)

w

the boundary condition (1.1) is reduced to the integral second-order
of Fredholm equation relative to the intensity of layer u

Dn iy R-n(P) i

2m I(P)'*‘J.‘ [N (Q) —~—[€3~—- de = 'U,(P)'II(P), (1.3)

vhere P - an arbitrary calculation point; ¢ - current point of

~7 Ena—
surface w; R = (QP.

Equation (1.3) bhas nnique solution, if surface w belongs to the

class of Lyapunov's surfaces [ 5].

The longitudinal X-axis of the Cartesian system of coordinates
xyz vith unit vectors Y;Ivcoincides with tke axis of the symmetry of
btody of revolution. The origin of coordinates is placed in the
leading edge/nose of body (Fig. 1) . Together with Cartesian system is

examined the system of cylindrical coordinates xré (u = r cos 0, z =

— . . . S el ——— . g WY R T T UV o
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r sin 0). To the calculation point P appropriate themselves
coordinates xr0, to the current point Q - ccordinate £pd; §)= (x-€) i

¢+ (r cos 6 - p sin 3) 3 + (r sin 6 - p sin ) x.

If pole A is selected on X-axis at a distance x, from carrying
body, then for the velocity of the points of body surface during its
arbitrary motion it is possible to write

v = (v, rsin — v rcosh -fu,)t'—%-lfv,(x — Xaq) —v,rsinh — vg|f+—
v, rcos 0 — By (X - Xa) — V] K, (1.4)

vhere the linear dimensicns are referred to the length of body 1.




DOC = 78068001 PAGE ¥
/0

4
2

/..
el

Fig. 1.

Page 3.

Equation of generatrix of body of revoluticn
r==r(x) (1.5)

is represented in the parametric fora:

s

r=r(s); x=x(8), (1.6)

vhere s - an arc length of generatrix, calculated off the origin of
ccordinates. The value of parameter s, characterizing the current

point Q of body surface, is designated by letter o.

Por the representaticn of the differential cell/elements of

surface, are introduced the designations

,___dr_ ;_ OR
r - X = . o (1.7)

. D e . PP R 3 AT R G, e
U AP Y- e — - p B o Ths WS g
gt IR e

L " i
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The element of area of surface is equal tc

do = rdsdf.

At each point of body surface, is introduced the connected with

this pcint rectanjular coordinate system whcse unit vectors are equal

to n= —r'i+x cosbj + x'sin0k;
T = X i"+ r’ cos "/'*— r’sinf E l (1.8)
b= —sin0/-}-cos 0 k:

here n - standard; vector r it is directed tangentially toward
generatrix to the side of an increase in the arc length s; vector-K
lie/rests at transverse planme and foras witk 7 and ;7tiqht-handed

coordinate systea.

Unlike method [2], where the surface is assigned in the form of
‘1.5) and is utilized tle derivative drsdx, in this case form (1.6)
makes it possible to present any the curve, which limits simply

cocnnected region.

As a result of substitutions, fundamental integral equation

(1.3) takes the foras

2rp, (s, 0) = 'v’, ;(s, 6) —
L 2=
& plX'r—r(x—&— x'pcos (5 — 0)] pd3 d
fJ (= 9) [(x &) 4 r? 4+ p* — 2rpcos(h ~pa (1.9)
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vhere L - complete arc length of generatrix frcm forepart/nose point

x =0, £ =0) to the tailed (x =,‘, r =0).

Analogous expressions are obtained for velocities and

potentials.

2. Calculation formulas. as it follovws from the considerations
cf symmetry, for the characteristic cf the arbitrary motion of body
of revclution in ideal fluid, it suffices tc kncw the parameters of

flcv only for three simple motions:

- forwvard/progressive along X-axis with a velocity of v, = 1 (i

- forvard/progressive alcng y axis with a velocity of v, = 1 (i

’2).

- rotary around transverse axis, for ejample the parallel z axis

and passing through pole A, with angular is veloccity vy = 1 (i = 6).
Page &.

The total values of relative velocity and jotential on the body
sucrface of rotatiom it is possible toc preseént in the foras

l) = tiu.,v,-}-u;‘(v,coso f-uysinb) |+ wg. (vycos® v sinh) |
+blu, (v, sinh — v, cos0) « v (v sind 4 v, cosh) o) (2.1)
D= lg,v, + ¢, (v,c080 4 vysinb) | g (v cosb v sinb), (2.2)

 RRE® TR T T e —" — B o A oo o
. % ¢ : .

C
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vhere ui- and 4, - dimensionless components of relative velocities
cn axes v and b. ¢ -~ the dimensicnless potentials in the
appropriate simple motion, which are subject tc further

determinat ion.

Solutiom ¢, of imtegral equaticn (1.9) for the siample motions

indicated should be searched for in the foras
wy (8, 0)==p,(8); pa(s, 0)=mn,(S)cosl; py(s, 0)=rpg(s)cosh. (2.3)

Instead of source strength . (s) it is convenient to exaaine
other unknown functioms g, (s), connected with o, the

relationship/ratios

‘ 1,
glzd."kr'vl . (2.4)

i

and all the calculations of news in a dimensionless form, accepting

as characteristic linear dimension the length of body 1.

After the substitution of values (2.3) and (2.4) into equation
.@.9) and the prolonged conversione, analogcus given in work [2],
integral equations for each simple motion (i = 1, 2, 6) they take the

fornm

L
&i(8) =fio() = [Ri(@) K, o (s, o) do. (2.5)
0

- - . - v o gy —‘m;_‘t’ - e~ ‘:',';_\- ”‘”%'_‘i‘a“w“s‘; R T e S S
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Here for known functions f, (s), egual to the product of the
normal component of the velocity of following tc a radius of body at

the particular point, are utilized the relatiomship/ratios
fo=rr's fuo=—rx; fa=rirr’ +x(x —xa). (2.6)

The nuclei of integrals are designated:

Ko (s, 0) = (BG, + x" G,) A; K.y (s, 0)= Ko (s, ) = (BH, - x'H,) A;

Ame Vg u¥r-—p—rE-y
) (x—E +(r + p)? & —PLir—F
Gy=E(k); G.=K (k) — E (#);
1 " ¢
Hy= - L R E R — 20K (k) _n-
Hy = [0+ 39 K (8)— @B+ K £ (),

vhere K (k2) and BE(k2) - complete elliptical integrals of the first

and second kind with the module/modulus

¥ R e I ’3 %
o i }‘ k — 1 k L

Analogously are obtained calculated relaticnship/ratios for the
ccaponents of the dimensicnless velocities 2nd potentials, indicated

in formsulas (2.1) and (2.2):

PR

B - : e R TR T T
o W ". - _ i.

PO
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e |

is () = f, 1 (5) 4 jg‘mk..(s. 3)da; ‘
0 |

(

i (2.8)
] ”~
Wi p(S)==f2(8) i3 ' £, K,2(s, 3)ds;
0
L
2:1(8) = — | £:(3) Ky (s, 3) do; (2.9)
0
fu=xX: Bi=r5 fa=nx —rx—xqi
Ja=—1; fo=2x--xa
'J
K, (s, °):<CG|+702>A$ Ky (s, 9) = G, A; ‘
(2.10)

Kor(0,) = Koy (5. 9) = (CHy -+ Hy) A K . 0) = Kes 5, 9) = Hy A

where besides the values, determined to forsulas (2.7), are
introduced the designaticns

__‘~2x’(x—5) v (r —_g)

C= '(X b E)! 0r 9)2 ’ Gl = 2K (k’); l

. 2.1
Hy = o 1+ R K (8) — 26 (8], |

It the end points wvhere x =0, r =0, or x = 1, r = 0, are not
difficult to show that integral of equation (2.5) always have zero
soluticn and do not require special exasination, as is done in method
[2). During the determinaticn of the values of the velocities and
potentials in end points, it suffices to calculate the components of
dimensionless velocity durirg transverse and rotary motions (i = 2.6)

aleng y axis

(1):d§
) =c,- f '2|(xﬂ E)’r+ S (2.12)
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and dimensionless potential during the longitudinal flow

L
{ (9)ds .
n== ) e ‘“"’
0
vhere C; = 1, for forepart/rose turn/sharpen one should place x = 0
amd ¢, x4, but for the tailed poimt x = 1 and ¢;—x1 —1. Tha remaining

cosponents of the velocities and potentials in these points are equal

to zero.

Page 6.

The velocities in the points of space, wvhich do not belong to
body surface, are conveniently calculated in cylindrical ccordinate
system 0. For the comgonents of the dimensionless velocity in each

simple motion, it is not difficult to oktain

L
i r)=fia()+ [£() K,y (x, r, 9)ds;
0

L
i, (x,r)==f(x)+ fg,(i)l\'“('t. r, 3)ds; (2.14)
b

L
Wl =fis0) -+ (RO K,u(x, 1, 0) o
0
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In this case, to formula for ., it ccincides with formula
(2.8) for u4,,, and for the nuclei of the integrals of first two

forsulas (2.18) are introduced the designations
2(x—¢) i 1
Kl.‘l —_712_—01‘4' K“:(Q—;.f‘[“0|‘ —r- G,)A,
2(x—

L

Yy a K.,,.—_—KG,:<2-5”?-H,» = H,)A.

Here r2, = (x-£)2 ¢ (r-p)2, and for remaining ;alnes are used
designations (2.7) and (2.10). The dimensiorless components of
velocity of following f,(x) amnd /f,(x) are equal to f;4 = fo, = 1;

f14 = f23 = £43 = 05 foi—x4—x

Por the calculaticns of pressure ccefficients in the case of
arbitrary motion, one should use Lagrange's integral. During the
calculation of apparent additioral masses, it is necessary to bear in
mind, that for a body of revolution independent variables and not
equal to zero are identically four afpparent additional masses: A4,

A22¢ A2¢ and Agg. Py analogy with work [3] it is not difficult to

obtain

L
hy = — 2np, ( rr' g, ds;
0

A ! (2.15)
hgg =~ ~x{'off|rr’ b’ (X xa)l g, ds;

0

-
Aw — npoJ r]rr’ + x' (x — 4\'4)] Pe ds,

0 |

vhere pg - mass density of liquid.

o i i —— A St i . - A —— . i, &% -"‘—"'——W"”'“‘“'A‘«';wa”ffi’é?","‘tmw‘“"‘ .
oo (AR O T .

sl -

TSR
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3. Methods of calculations. The scluticn of the fundamental
integral equation of problem (2.5) is determined in the finite number
of discrete calculation points of Lbody surface. The the intricate
shape of body, the greater the calculation foints it is necessary to
select for the sufficiently precise description of generatrix. So, in
that comprised for computers "Minsk-2" to tle program, according to
vhich were fulfilled examples of calculaticns, can be utilized to 160
calculation points, arbitrarily arranges/located on by generatrix
bodies of revolution. Por example, for smooth kodies sufficient

accuracy/precision is reached at 50 calculaticn points.

Page 7.

The proposed method allow/assumes the (resence of the finite
number of salient points of the enclcsures cf generatrix. At very
salient point for formal satisfaction of Lyapunov's conditions, one
should assume a small bending radius. In the process of calculations,
the rounding is realizes/accomplished automatically applying quadratic
interpclation between calculation points. In the places of an abrupt
change in the enclosures, is necessary the facking/seal of

calculation points.

S I e e e T TRty T ™
" Rk

———
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Basic difficulty is the calculation of improper integrals in
equations and formulas for velocities and pctentials. By analogy with
vork [2] improper integrals are calculated with the aid of the

replacement of variables:

0,5 Lh?

3 — s ==sign (k) 1' - 3.1

Inver se dependence will be determined Lty relationship/ratio

h“~ﬂ<:ﬂznh-s)‘/iqg;_EQ{St;L ; 3.2)
dh 1 . PRERENS bR Lol tn
(15 . 7 ) >hl -_—:,.l:. l }3 778‘(:0-781_*"0'5 L)’ (33)
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Reference point alternating/variakle h coincides with the
special feature/peculiarity of integral, which is located in the
calculation point whose coordinate s projects in this formula as

parameter. Functions (3.2) and (3.3) are continuous and different

frcm zero everywhere, with the excepticn/elimination of most singular

pcint where (3.3) it vanishes as |s-dlY2.

By analogy with work [ 4] replacement is utilized only on the

secticn

|s—a|<0,05L, (3.4)

i.e. near singular point. Integrals are represented in the form

I; 3~~0?5l, I:‘ I/I‘ll
EO)K(s,9)ds—= | g(s)Kd>+ J g (o) Kds |

[ o
0 0 540,06 1 —yVii

g0 K (,fh (3.5)

In formula (3.5) with s £ 0.0S5L first term, but with s > 0.95L

second term they are not considered, since in these cases they are

onalln o

e e e e e il
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included in the third. In this case, thke limits of the third integral
respectively change and are calculated directly from formula (3.2),
vhere cne should place ¢ = C in the first case and ¢ = L in the

second.

The first two integrals of formula (3.f5) dc not have a special
feature/peculiarity and are calculated with the aid of trapezoidal
rule on the node/units of integration, arrange/located in calculation
points. Last/latter integral is calculated frcm trapezoidal rule with
the constant space in new alternating/variable h. In this case
replacement (3.2) provides the symmetrical location of the node/units
of integration relative to special feature/peculiarity with-an
increase of the density of the location of node/units in its
vicinity, which corresponds to the conditicns for existence of
principal value for Cauchy and it makes it fossible to calculate
improper integrals according to trapezoidal rule with the constant
space in nev variables. necessary in this case values g(e), ¢(0c) and
p(e¢) in the node/units of integration, whichk prcve to be between
calculation points, are determined by quadratic interpolation

according to Newton [6].

Integral equations are solved by the methcd of successive

approximat ions according to the follcwing diagrams:

- N—— B - R o o R i 4550 i eree - e g [
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for i = 1

1 g B e iy
B0 = o .fln; g|k’:fl()—'J‘gl.l led’: ik 2 (fs’lk'f f'|,k_|);

&

for i 2.6

8io=Sio Buu="Si0~ Vgt.k—‘Ki“d"

wvhere k - a number of approach/apprcximaticn.
Page 8.

Sclution is considered found, if

’ gk (S) -~ &5 r~1 ‘S) max / 0'““5 “fl 0 maxy

i.e. boundary conditions (1.3) are fulfilled with accuracy/precision
by 0.50/0. The number of approach/approximaticns oscillates from 4

for smooth bodies to 10-15 for the bodies of intricate shape.

Information about body is assigned by the tables of values x and
r calculation points. Derivatives (1.7) are calculated with the aid
of Newton's formulas from values of x and r at three calculation
points [6]. Integrals in the formulas of apparent additional masses
(2.15) are calculated from trapezoidal rule. Space

alternating/variable h was selected as being equal to Ah =

1//1536.

B sew, ¢ = | e B i e o L




DOC = 78068001 PAGE 23

U. Examples of calculations. For purpcse of checking the method
presented on computers "Minsk-2" for ellipscids of revolution are
carried out the calculations of apparent additional masses and
relative velncities for which are known precise analytical
expressions [7). The applicability of methcd to the determination of
pressures in real liquid is shown tased on the example of the
calculation of the body, which has the vertical section of
generatrix, for wvhich could not be ottained the solution by method
{2]), or bodies in the fcrm cf the ccmbinmaticn cf the cone with

cylinder, having a local abrupt change in tke enclosures.

In Pig. 2 and 3 points plotted/applied the results of
calculation by the propcsed method of dimensicnless velocities on the
surface of the elliptical disk, which has tke relationship/ratio of
sewi-axes a/b = &€ 0.1, and the ellipscid which has a/b = 9. By solid
lines are constructed precise values of velccities. Calculation of
velocity field is checked on the example of the flow around the
sphere of single diameter of fcrvard/progressive flow along X-axis.
Table 1 gives corrected values of velocity «,, the points of
vertical diameter (x = 0.5), also, in the pcints of horizontal

diameter (y = 0), arrange/located on different distances from the

surface of sphere.

|
|
l
:
1
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Key: (1). Exact solution. (2). proposed method.

Fig. 3.

Key: (1). Exact solution. (2). proposed metkod.

Page 9.

Results of the calculation of the coefficients of apparent
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additicnal masses for three ellipsoids by ttke proposed method are

given in comparison with precise values in table 2.

The comparison of precise velccities and apparent additional
masses vwith the results of calculaticns acccrding to the proposed
method they testify to sufficient accuracy/grecision of the latter.
The disagreement of precise and calculated values comprises less than

1cy/0.

Pig. 4 and 5, show the comparison of tke calculated and
experimental values of the coefficient cf fressure p in the nose
section of the body surface, wvhich contain the vertical section of
duct/contour. Fig. 4, shows the enclcsures cf bodies of revolution

1-3 and is given distributicn p at zero angle cf attack 1.

FOOTNOTE t. Bodies of revolution 1-3 corresgond to engine nacelles
Bo. 25, 85 and 87, investigated experimentally in work [8].

ENDFOOTNOTE.

In Fig. 5, is constructed distributicn [ according to one meridian of
body of revolution 3 at the angle of attack a = -10°9, when this
meridian is vindvard, and the angle of attack a = ¢ 109, when this
seridian becomes leevard. The agreement of the results of calculation

vith experiment proves to be sufficiently gcod.

X : Lo s i s e i . T ———————— o A R —‘*»__ e e s 5 T S
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table 1.
) &U 3nauenns \ ‘ @ 3naqenns
b ( CKOPOCTH u,, Y { " CKOPOCTH ),
Otctonnne i g O1cronnune 1 - R
0T MOBEPXHOCTH 1O r‘;&nna ' m-unu OF HOBCPXHOCTH | 1O npgu.; ‘éf :
raemoMmy | 3naue- | raemowmy | TUUHN
| metony 1 | meropy | dtrauenwn
(») g I i
Ilo BepTHkaab- !i [loropn3onrann-| j
HOMY AHAMETpY ‘ HOMY nHamMerpy | |
0,01 140 | 1an ’ 0,01 ! 0,067 | 0,577
0,1 { 1.288 | 1,289 0,1 04213 | 0,4213
2,0 ! 1,00 | 1,004 “ 2,0 | 0,992 | 0,92
| ' I

Key: (1). Distance from surface. (2). Values of velocity. (3).
according to proposed method. (4). precise values. (5). According to

vertical diameter. (6). According to horizcntal diameter.

Table 2.
& 1 Py | Ky i K | Kn Kn } Kos
S l’_] {t] mo npennraenouy Merony 3l | (A rouuue waueunu
s ' i
0.1 6,130 0,0751 - | 6184 0,0748 ’
1,0 0,499 0,500 - 0,500 0,500 f -
9.0 0,0244 | 0,950 : 0,860 0,0244 0,954 | 0,864

Key: (1) . according to the proposed method. (2) . precise values.

)» g D GO D o . . . g g . ——— T M RN
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L

L npednazaess
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rig. 6.

Key: (1). the proposed methed. (2). body.

Page 10.

The same good convergence of the calculated and experimental values
of pressure is obtained for the nose secticn of the body, which
represents by itself to the combination of cone with cylinder (Fig.

6) -

It must be noted that the results, given to Fig. 4, for a body
with the vertical sections cf generatrix at zero angle of attack can

be obtained with the aid of methods [1] and [9], vhile the case of

sl —
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flow at angle of attack it can be designed cnly according to method
[1]. In method [9] by virtue of the use of function of current, can
be examined only axial soticn of body of revolution. Examples of the
calculations of the bodies cf revclution, which have the local abrupt
changes in the form of enclosures, given tc Fig. 2 and 6, they are
encountered only of the auvthors of wcrk [ 1]. However, in method [1]
the volume of calculaticns froves to be considerably greater than in

this case.
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Key: (1) . the proposed methcd. (2). experiment.

Fig. 6.

Key: (1) . calculation. (2). experiment.
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Page 11.

HYDRODYNAMICS OF THIN FLEXIELE BODY. (Estimaticn of hydrodynamics of

rippled surfaces).

G. V. logvinovich.

For purpose of the explanation of the mechanism of the floating
of fishes by the method of flat/plane secticns is studied the
hydrodynamics of the fine/thin body teing deformed. Are obtained the
sisple formulas, which make it possiltle to evaluate thrust/rod and
the spent powvwer during the sinuscidal wave strains of the axle/axis

cf body.

Are estimated the hydrodynamic characteristics of fishes. Is
given the comparison of the results cf theory with experimental

materjals.

Hydrodynamics of the fine/thin tody being deformed, which
accomplishes during forward/progressive uniform motion small
undulations, can be sufficiently simply studied via the application
cf the method of flat/plane sections with tle use of a concept of the

"pierced layer” [1]. Twc-dimsensional prcbless cf such kind were

o . \— ———— e . ot e - g A — L T T e G T T e e =

-~
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theoretically examined by Sikman [2], that alsc placed some
experiments, and by V. A. Eroshin [ 3], that developed the theory of
the airfoil/profile being deformed in L. I. Sedov's setting [4].
However, the study of spatial frcblem, apparently, in larger measure
approaches us understanding of the mechaniss of floating of fishes
and marine animals, than tte scluticn of twc-dimensional problenms.
The use in this case of a method of flat/plane sections is justified
by the fact that the bodies of many marine animals are very elongated

lengthuise.

1. Let us examine moticn of slender body in inertial system of
ccordinates xyz, which moves in unlimited vclume of liquid along
axles/axis Ox with a constant velocity of v (Fig. 1) . The longitudinal
curvilinear axle/axis of the body s being deformed weakly differs
from axle/axis Ox, and its strain in plane x0y let us designate
n(x,7). the abscissas of tbe ends of the body let us designate x,; and
X2; the length of body x, « - [, Let us assume that the cross

sectiocns of body are formed by ellipses with the semimajor axis R =

BR(x), parallel axis Oz.

e

R e

v o
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Pig. 1.

Page 12.

In connection with assumpticn about the fineness of body, we assunme
that at the entire length dR/dx there is a value small. L2t us assume
that, passing through certain "penetrakle layer” motionless relative
tc the quiescent liquid, body in this layer gives rise to the
transverse almost plane flow, close toc the flow of ideal fluid. On
trailing edge (on the tail of fish) with x = x, is fulfilled
Joukowski's condition about the finiteness of velocity, and after
bcdy remains the trace, equivalent tc the film cf eddy/vortices with
elliptical circulation distribution according tc spread/scope z =
*B;(xy). This model of flow in essence represents the development of

Jones' known diagram in ccnnection with the low-aspect-ratio wing

being deformed.

- ———— e T s ST TR T < i o S i g T <<V
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2. On element of length of body ds, acts ncrmal force dF, and
suction force dP, which is caused Lty so-called circular pressure dQ.
As is known, the apparent additional mass, which is necessary for
unit of the length of ellipse, is m*{(x) = gwmR2(x), normal to

axlesaxis s the velocity of layer il"l/SZ”

. d
dF, = —— (m*; ; 9
n dt m 'U,,) ds ( . l)

Circular pressure we find as a result cf contour integration of

the cross section of body s* cf overpressure , —p, “? f(s*),

determined only by velocity head. Specific suction force is equal to

1P .
;s¢=~ﬂw'~n)u»m“ndﬁ. (2.2)

Thus, for instance, for a cylinder with circular cross section

cverpressure on its surface at points B, & is determined by

vt ncosf
expression p__pof,{ﬁn (1 4 sin®h) ;“2:’

~ZV(R20) Normal to longitudinal
2 t s
axis force (2.1) gives the integral

2
dF, o ___ a .
ds ——f(p--p&cnsﬂd(Ro)w dt(P"R V),
0
circular pressure -
d() 23 a
- ov?
G = P PSR~ — DR

0

This circular pressure is negative, i.e., it attempts to expand

g < R R T
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cross section. If body is pcinted from the front, then
slope/inclination tovard axle/axis Ox of gereratrix dR/ds ~ dRydx is

alsc negative and on each urit of length acts thte directed forward

(alcng axlesaxis 0s) force

dpP o T AR v dm* (s) e,
BT ETT A (2.3)

Page 13.

It is usually considered that suction force appears as a result
cf the action of infinite negative pressures con infinitesimal leading
ving edge; here it is fcrmed on entire length cf body as a result of
acting the stagnation pressures. Let us note that in service record
for overpressure p-p,, used to the expanded opening/aperture in
layer, is reject/thrown the term (formally infinite), caused by the
symmetrical expansion of cylinder. It is possible to show that this
is admissible during the use of a hypothesis of flat/plane sections

for calculating the forces, which act cn slender bodies [1].

For determining the force in the case cf elliptical cross
section, we will use seccnd-order of Lagrange equation in connection
with kinetic energy in layer ”ﬂ(N)zﬁ' ard as generalized
coordinates and velocities, let us acc;pt for determination of
suction force the semimajor axis of cross section R, while for the

determination of lateral force, - velocity v, As a result for
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elliptical cross section, will be cbtained the same expressions of

force gradients, as for circular: _ JT _  om* v, onR v, dQ
oR . OR 2 % 2 ds '

d JT a o R dF .

dt odv, dt (m*v,) & " R*v,) = ds

Apparent additional mass m* in cur case is a function only x (or
s) . Formula (2.3) is valid for any elliptical cross section, and in
particular for the case vhen minor axis vanishes and ellipse

decenerates in the segment cf line #F (cn tail).

Projections on the axis of the coordinates of the elementary

forces, applied to body, will be

. Ov |
dF , — —dF, { dP;
! dx (

(2.4)

dF, ~dF, dP

v

dy; !

ox
ana

Integralsr, [dl', y /',= fdF/he undertaker alcng the length bodies,
will give resulting forces. During integration is to consider
conditions R(xz) = 0 and R(x;) = R,. Condition R(x,) = R, realizes
the disruption/separation of the vortex sheet from the tail of body
(Zhukovskiy condition). Since the forces are determined for the
elementary pierced layer which rests relative to motionless liquid,
let us note that j’ :L ‘}zf

3. During periodic motion average during period resulting pull
force, caused by "flowing" frcm tail mcmentum/impulse/pulses, it is

possible to calculate without integration (2.4). Actually, liquid on
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unit of the length of trace contains mcmentum/impulse/pulse m*(x,)v,,.
directed along the normal velocity of tail. Prcjection on axle/axis
Ox of the momentum/impulse/fpulse, "which flcu¥s" from tail the second,
urdertaken with opposite sign, gives the instantaneous force, which
acts cn body. Therefore pull force, obkliged ty its origin to the

mosentum/impulse/pulses, left in trace, will be

()q v ‘()1 VoY U}

1=+ mx) v (
Sl 4t ¥ ox ) ax "

£ =X (3.1

Key: (1). with,

Page 14.

For the explanation of the aforesaid, let us give following
reasonings. Let the body be is enveloped by sufficiently distant
ccatrol surface Y, which moves together with kcdy. Another control
surface >, of the same configuraticm, as », is connected with
ltatiohary 1iquid. At certain moment of time t, both controi surfaces
coincide. During period r, ccntrol surface Y, will move along

axles/axis Ox to cut Vr.

Since the flow of liquid inside X, at torque/moments t and t +
v is ident ical, all the increase in the kinetic energy and
momentum/impulse/pulse cf liquid will be caused only by track

segment, vhich remained between the rear walls of control surfaces

A
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Y, and Y, According to the prerequisite/premises accepted, after
"runoff” from the tail of fish each elesent cf length of trace, being
deformed, retains momentum/impulse/pulse an¢ energy; therefore for
calculating the composite force, it is possitle for these values to
take the values of specific impulse m*'v,, which relate to the

torque/moment of descent from tail.

Thus, the average value of pull force, causqd by the left in
w
trace momentum/impulse/pulses, it will be (/|- - (ldﬁ Value I under

integral is calculated for point x,, i.e., for a“tail.

Another portion of pull force is realized in the form of suction

force, which appears as a result of the lateral flow around body,

{‘dm*(x) 1 Jy, on\?
o L) LR b pr S0 q ¢
J dx 3\ 3 t)x) dx. (3.2)

Let us note that the appearance of suctico force P leads to the
fact that momentum vector in the trace is turned on certain angle so
that average total pull force is equal to { I } +« (P }, where
(P~ { pat.

v 0
Average active power of pull forces is equal to ({ I } + (P })

V= ({A]}.

Prom tail into trace on unit of path "flows" the kinetic energy

< Jt ax

X=X

+ m‘(m( o T "”)' Y (3.3)
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The pover, spent on the excitation of pull force, will be ({ N }
= ({(I}+ (P)+ (E})V, and efficiency |y, - m/_!"

The given above formulas, used, for exasple, to delta
low-aspect-ratio wing with spread/scope 2R,, give the known results
cf linear theory. It is reél/actual, at constant angle of attack «,
velocity 7,=— Va and from (2.1) is ottained F,—=mVa = pwR2,V2a,
but frcm (2.3) after integration from x, to x,; we have P = 1/2

l‘,Vzaz.
Page 15.
The integrals of expressicmns (2.4) frcm x, to x, give induced drag

Fo= - m V"z?-«*——-;—-m; |7 O .‘l prRl V2a?
and lift
Fy== F,+ Pi=prR} vfa(n g ot T |

Analogously under the same assumptions can be examined the

general case of the unsteady fluctuation of low-aspect-ratio wing.

4. Undulations of body will be obtainec¢, if law of strain is

——
" AL L PRI - . ~=r. b 0
MRSt e &
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= Ct Xy — X
assigned in the form =S|, — —)- assuming that length of
body X:— X, =L,=2xln(n number of waves, which are placed at length

of body); C - phase wave velccity, progressive back/ago.

The amplitude of tlke strain of the axles/axis of body in the

general case can be represented tocether
Mo =@+ @ (X:—X) + ay(x, — x)* 4 . .

Let us examine below the simplest case, after accepting
n,—const. MWormal velocity will be

V= P-(C - V)cos( - —"—‘?—ii»"),

the period of oscillaticns r = 2-6/9

Generally speaking, the law of the distribution of apparent
additicnal masses m* (x) is essential during the calculation of force
of P. The average value of suction force is calculated fron the
formula . g

S f i dm* 1
(P) = J’ dt | 5@ x, 0 fd:—dx=——»‘~~.[ (v2] dm*.

)

0 Xy n
1

-

1 1 s
In our case average value (”f.}=-:) vidt:"f(’?f) Xo(C=V)2 is
constant in range from x;, to xp; therefore ( P } = (B } =
"«IT(”f.i’"f the law of the distributicn of apparent additional masses

along the length [/, proves to be unessential.
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Page 16.

Substituting these exfpressions in the freceding/previous

formulas, let us find the average values

:n:,}-z-m; (;‘)3 V'—’(—CV - l).

P =t () va(5— 1) o,
[A) = l m; (}‘)2 i [ <—%> — 1 ', (4.1)
(N) =5 m; (1‘) e ‘)}
!np}=Ji (14'%?>-

Fig. 2, gives relative average values { E'] and {'3 } of those

comprise of impulsive and suction force, obtained from (4.1) by
division on »é~m;(wT 72V{ In the conditions/mcde of floating with
high efficiency, vhen (v, 09, the porticn of suction force does
not exceed 200/0 of impulsive force. Fig. 3, gives the kinogram of
the flcating of mackerel, bcrrowed frcm S. G. Aleyeva's work [5]. On
this, photographs it is possible to conclude that C/V ~ 2 and the

efficiency is close to 0.75; vavelength somevhat lesser than the

length of body and ’[' =04,
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Page 17.

If ve consider that the active thrust 1,V { A } overcomes resistance
of friction \v==c;s-f¥i, then the coefficient cf friction drag will
be located from equality W = 1/V { A }. For C/V = 2 and 7fh.oA is
cbtained the following estimation of drag ccefficient: c’:024_"€f

vhere S ~ the moistened bcdy surface.

According to experiments of V. Ye. Pyatetskiy [6] for bluefish
42 cm long with the spread/scope of tail of approximately 8 ca at

velccity V = 0.55 m/s were obtained values C/V = 1.47 and t;::
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0. 19-0.25. Average efficiemcy  x(g4 In tkis case »R2, = 50 cm? and
S ~ 640 cm2; therefore the coefficient of friction drag was obtained

by close to 1.7-3.0e¢107 3,

Calculations according to forsulas (4.1) show that at values C/V
= 1.5, "%[E-WQ the "wave motor™ with spread/sccpe 1 m at velocity v
= of 10 m/s develops thrustrod of approxismately 90 kg, spending

fower cf approximately 11.8 kW.

The methods of the evaluations of the effectiveness of "wave
mctors presented™ can be developed for the configurations of body and
laws of strains, closer to those observed at high-speed fishes. It is
fossible by the same way to consider tte eftect of back and ventral
fins, variable along the length of amplitude and series of other
cbserved in nature factors. Integral estimaticns according to the
trace, left by body, are interesting by their generality. It is
important to note that the used method was checked in the cases of
gliding and motion within the liquid cf solid bcdies where the
results of theory and experiment proved to ke very close. It is
possible to expect that and this estimation cf the propulsive
froperties of fishes is close to reality. Tkis to a certain extent is
ccenfirmed by the satisfactcry convergence of the calculated values of
pull force and frictional resistance for the fishes, inspected by V.

Ye. Pyatetsky.
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Page 18.
THEORY OF UNSTEADY CURVILINEAR MOTICN COF LIFTING SURFACE IN GAS.
V. E. Baskin.

Is examined the general case of the unsteady curvilinear motion

of lifting surface in gas (cn the Ltasis of linear theory).

For this surface are given the formulas, which express gas
velocity through the dersity of distributicr of eddy/vortices. These
formulas generalize Biot-Savart's usual law in such a way that it
becomes suitable for arbitrary transient vertices in gas (in linear

approach/approximation). Generalization lies in the fact that

Biot-Savart's usual forsula is applied to vcrtex elements taking into

account delay in the formations/educaticn of velocity to the transit
time of sound signal, and appear scme supplemerntary "wave" component

of induced velocities.

The numerous methods of soluticn of direct and reverse/inverse
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problems of the flow around lifting surface of gas [1] - [ 3] they are
related to rectilinear moticn. The stationary helical motion of
carrying filament in gas is investigated by Frarkl [4], and lifting

surface - by Maykapar.

Gas velocities during the curvilirear moticn of carrying

filament are examined in [5].

1. Let infinite gas to the torque/moment of time t = 0 be
rested, and then it was agitated by the motion in it of lifting
surface. Of perturbation rates we set/assume much the lower speed of
the motion of the points of lifting surface. During the calculation
of velocity fields, we consider permissible the transfer of the
points of application of force to gas from lifting surface to certain
the closely spaced to it, permeable for gas surface. The vector of
the surface density of the applied fcrces w: set/assume normal to the
permeable surface indicated, continucus at €ach moment of tine within
certain cthat driving/mcving along the surface of region and the equal
tc zero out of this region. Under these conciticns is placed the
problem - to determine the rates of flcw of gas, if the motion of

lifting surface and force on it are knowvn.

Page 19.

Y
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2. Disturbed velocities V and pressure p cf infinite gas, set to
motion by arbitrary field of external volume fcrces toF, in linear

approach/approximation it is detersined by system of equations

Jv ) ST R (2.1)
o o F : /U &
g 5 grad p — o F, ot | ¢* pg div

and by initial conditions

v ) [)ru'()

=0

(po — density of undisturbed air, ¢ - speed of sound).

If we present the velocity and pressure in the fornm

. - a?
v=D 4 grad®, P = P05

the system (2.1) it is reduced to ncnhcmogeneous wave equation for
the potential ¢:
- 1. 0°9 w D
Ve— 5 g div D,
(0
where ) ‘5Fd‘ - the referred to p, vectcr cf the momentum density of
0

external forces.

Potential ¢ is conveniently searched fcr in the form 9= div E,

—>
which reduces to following equaticn for vector E:

s | FE . 97
VIL-___ c:v,(”’~:‘:- U (" )

e
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Solution of aquation (2.3) under the zero initial conditions,
vhich correspond (2.2), is given by Kirchhcff's formula

iy

It(—;(n tvz) ¥ ‘ ’ f

I e \PP i i it
Jwrb(r 6—5)de i=in—ri @4

(integral it is common on the part of the space where integrand is

not equal to zero).

Vector~§, accordingly (2.4), is ccnstructed as delaying
fotential of flows the vectcr equal in momentum density to. Therefore
let us name this vector momentum/ispulse/pulse-potential. Passage to
the limit to the surface field of forces is ccnverted (2.4) to the

form

P, .- 1 - =

Elry. ty) J | 51! (r. ty— — | dS, (2.5)
W
vhere 1(r,f) - the referred to po vector of the surface momentum

density of the external forces, which affected up to torque/moment t

the gas at the points of surface W.

3. Let us examine infirite quiescent gas in which with certain
moment of time begins toc move lifting surface. As has already been
spoken, let us consider that the pcints of lifting surface little are
distant from certain staticrary permeable surface of W. Designating
through Wy (t) region on surface of W for which is design/projected

(along standards) at torques/moment t the lifting surface, let us




W
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identify this region with quite lifting surtface, transferring to it

the points of applicaticn/appendix to gas of external forces.
Page 20.

The part of the boundary of the lifting surface whose points
have different from zerc ncimal tcward boundary composing the rates
cf motion, directed from region Wy, let us cesignate through L, (t),
and inside region - L,(t) let us respectively call these curves
leading and trailing edges. Region Wy can te limited to the pieces of
curves, not having the normal to them comprising rate of motion (by

flank edges).

Let us describe the motion of 1lifting surface by the parametric
equation T = ;(u, v) of surface W by the pcsition of the curves L,
and L, at different moment of time. For convenience we consider L,
and L, at the initial moment coinciding, but in order not %o exclude
the case of the instantaneous emercence (or disappeararnce) of the
section of liftingy surface, let us allow/assumeé the motion of these
lines with infinite velccities. W, (t) and W%, (t) - region on surface
of W, described by the curves L, and L, up to the torque/moment of
time t, but 1,(?), rz(?) - the torque/aoments of the time when the

-
curves L, and L, pass above the point (r) on surface of W.




a
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Let us realize that the points of regicns W, aad W, at the
moment of the passage above them of lines L, and L, continuously emit
the acoustic waves, which spherically diverce at a rate of c. Let us
fix certain point of sgace (;o), not locating cn surface of W, and
the torque/moment of time tg. The parts of regions W, of andes W,,
frcm which had time to reach point (;o) up to torque/moment t,

acoustic wvaves, let us call the auditle forms cf these regions and

designate respectively W, and W)

The condition of the determinatiocn of pcint (;) in region |
(cx Wi will be W, (r,, r ()< 0 (OF W.(r,, r, t,0),where
¥ (r, 1 t)=I", rl—clty—=<(r)) and V¥V -~ W, whem:-7 (i=1,2). The region,
which supplements W. to W) let us designate Wi Region W; can be
named in an audible manner of the film cf eddy/vortices, while region
W, - audibly of lifting surface. We will be restricted to the

regular case when in the ccmposition of boundaries of the region W)

and W, enter the lines, determined by equalities !

Wi (Fg Fo b)) 0, Wo(re £y ty) O, (3.1)

FOOTNOTE !. In the special cases, further nct examine/considered,
equalities (3.1) can occur for the totality of the points, which form

region. ENDFOOTNOTE.
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Let us designate the lines indicated respectively L, I; and
will call them the auditle forms of leading and trailing edges.
Region W, can be also limited by the secticn cf boundary of the
region W which let us designate through /; (Fig. 1). Since the line

L. has different from zerc normal rates of motion its intersection
with curved /' for points (?o): which do nct lie on W, it is
impossible. Region W, besides lines /i and /. can be limited to
the sections of boundary of the region W whcse totality let us

designate /, (see Fig. 1).
Page 21.

4. ﬂ;,o - referred to py vector of density of surface forces,
which act on gas from the side of points of region Wy, in direction
-.*
of standard N to surface of W. Regarding the vector of the surface

momentum density of the forces

!
U(r, t) = [ a(r, tydt,

0

and the vector of momentus/impulse/pulse-pctential of the flow,

caused by these forces, accordingly (2.5 will te
oo, Cr dS. 2 l
E(ro, to) - | ‘ T (r, o — — )

For the determination cf velocity potential ¢, it is necessary

> >
tc know derivatives of vecter E on the coorcéinates of point (r,).
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Let us examine the differential 6% of vector ﬁ, calculated when
Foint (%o) is displaced in the directicn of artitrary unit vector
, in distance 6h, and time t, grow/rises Ly 6t. Since region W/
will cbtain during this variation certain increase 4Wi, then

introducing derivatives under integral sign, let us find

TR raS d [Nt i

8 = o) & - ‘(
lf‘ ir dv, ( [ }, ry c ) f
wi

s {148 (2 ! h ol (48 =y ‘
et e )= 2 ) [T )
wy ‘

¢ dv,

d

Through rﬂﬂ t) is designated the time derivative, a dv,

indicates differentiaticn ir the sense cf the vector + with respect

to the coordinates of peint (?o).
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Fig. 1. Fig. 2.
Page 22.

1 displaced during variation position of line Li, a r-lir
and r  radius-vectors of the arbitrary infinitely close points of
these lines (Fig. 2). Regarding lines '/; and /" we have the

equalities

W, (Fo, 7, V=0, W, (ry -+ v8h, 1 ar, t,-}-dt)==0,

0

difference in which within limit when 37 .(, i¢t—-( gives “he followirng
condition, superimposed cn i,

oV,

o . ¥ g - < A.N, = )
v?:hvn‘l’l-rhrvu\' dt, i dnak

wvhere ¢, and V - Hawmiltor's operatcrs on alternating/variable ;o

and ?.
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S

Since
Vo ll.] ‘ro’ I’; r:, ~f.', \"l.‘t“.(l:“ I:) ‘;'u "r.' t L’Gfad'-,
this condition can be written in tlte fcrIm

(€ + p)or —(e+v)3h — cdt =0, 4.2)

suitable both for a curve /), and for l; mcreover
G ol e I
e==(r—ry)/|r—r,!, p=cGrad . ﬂthe particular case ¢h=3-(0 equality (4.2)
q
gives the following conditicn, superimposed on vector dL of the

cell/element of curves [} or L

(4.3)

Let us introduce in curves L1 and /! the families of the
alterrating/variable vectors':, vhich lie at tangent to surface of W
cf plane, but clear these curves. Assuming that the tangent toward
surface of W component of vector & is directed along the appropriate
vector i, ve will obtain frcm (4.2) with an accuracy to irfinitesimal
first crder

(e-vybh + edt - (4.4)
m (e -+ )

-
or

> >
The element of area dS', constructed cn vectors 4 and dL, wve
consider positive, if ar it is dirzcted frce region Wi (i=1,2), and at
>
with viev along standard N has regiom W, tc the left of its

direction. Them 4§ - —|Nird/) and on (4.8) ve find
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'I /\{ m(/'/.| “‘:

m(e )

ds’ .:)?)IL | cat].

During replacement curved /i by broken line from cell/elements
dz the corresponding areas ds' form the region & W which differs from

o\, to the small second-order quantity relative to 6h and 6t.
Page 23.

Producing in (4.1) the replacement of regica 3W; om ¥ W, (that it will

nct influence the differential i£) we will cttain
» I s ) [ e Gy
OF - - : -1 r - i
hE. 5 F)IIJ.‘ 47‘ 0’0 ( l ) (r‘ tu p / }
%

o i L\ (s b 0L
W, |

J [/(/ntdlZ[

41([”1.(.(’- 1)
Ly

I.‘ /- Vi - ‘ ¥
Lr, t,~ 3 )l(ew)oh - ¢ot|.

The coefficient of 6h in this expressicn gives derivative of

s ; ; > ; : ’ ol B
vector E on the position cf point (ry) in direction v, 1i.e.,
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s1

g dS e [\ 1 ol

: F a8 & [ANEl A N1l
(i)[; (J ";r (){v;< l ) : (r, e ) J, 4xl i L c)c dv,
1

v Wy
 [INmdL|(e-0) l:(; o 1>. (4.5)
Jdnim e+ p)  \ &
L
- o/ .
Since 7(?, t) = 0 with t < r, (r), value rbgn-—i) to curve /, is

/

equal to zero and the third integral in (4.5) is absent. Calculating
with the aid of (4.5) derivatives alcng cocrdinate axes and

determining div‘g, we will cbtain velocity fctential

x - fr.ds ol LN 0y
2o = [ | -Ggn () (n o)+
wi

)

e Al J 1 ) X i
‘,‘J’4nc 7lm,<1 )"("'“"'r ) 9

»
w 0

here I’ and ¢ - projecticn of vectors r and o on the going along
d
0N,
e d 2 - " -

position of poimt (r,) in direction N.

9
them standard N, a - indicates differentiaticn with respect to the

According to (4.6) in all points of space, beyond
exception/elimination which are located on surface W, potential ¢
exists and it is continuous, and gradient ¢ determines the rates of

flow of gas.
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Potential jump ¢ with approach fror the different sides of surface W
to the located on it point (?) on the tasis cf the maximum properties
of the potential of dual layer is equal to I'(r, t); that means

I'(r, /- circulation on duct/ccntour G, which fpierces sarface of W at
this point (positive !' correspond to the intersection of surface of
W in the circuit/bypass of duct/contour G in the direction of
standard ﬁ). In the case of ¢ » = equality (4.6) transfer/converts
intc knovwn expression for the velocity potential of lifting surface

in the incompressible fluid.

S. Assuming that function a(;, t) is differentiated in all
points of lifting surface and it is final cn its boundaries, let us
determine derivatives of potential o with respect to coordinates and
time. For this, preliminarily let us find differential %¢ when point
(:;) is displaced by vector .1, and time increases on 6t. Designating
through W' and #W. the increases of regions W, and W3 iuring this

variation, we can vrite

R e

- salla . .
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] d S 8 NG l / l
Oy (1/ ARE ] i K
i 4 ()4 Jf 41’! ()/V() ( I ()I (.r. [“ l') : c (l t“ ¢ )Jr =const i
" orconst

ds Jd E / . ol dl
' " A oN, ( / )'I("‘ b — c )(')t 5 Cl - ) {
o

©dS d 1 $ [
A ol e e 2 =
. J AR (l >I (\r, l, c) !

&w;
c(dS ) LAF 8L /== l [\/.,, 8h dl}\]
JJ '%l?;‘“ w_(')3{'\/,,' ( l ).l ()(v',c(\r’ fo ¢ )Hl +1s, (r, == ')(OI (ch dv,:)j :
W, L (
" dS d 1 1S o (= [
5 ’(‘ 4z¢ ON, ( / )l: (r by jj ;1\'( ()/(V“ : ) la(r, b (:—)'
ww) i

The entering here integrals on regions &W;, and !W; are converted
into integrals on lines L) and /. analogcus with that, as this was

made during calculation 6E. Fulfilling this ccnversion and taking

into account that to curve L; value I'[r, f, [) turns into zero, we
c
obtain
) $p Y g I Ry 1
" a (,"” ' ‘ 11’! ( )I |(I‘, tu L ¢ ) 1 }‘v»:(r. tu ¢ )J . t
w ==const S
r i dS 0 1 g U Ll s
: ‘ ‘ i dN, ( l ) ‘ c 3’(“ 55 7;“)(8’ Oy, Oh) T
ul’) l \
| o(r p l );" - 1" @ ( )!A\mdll ! 1 |((:-.r‘l o
Rt S 4rec oN,\ I ) ( L L') TR, Gd)

me + @

wvhere [y - the part of the boundary of the region W; which goes

along lines /, and /;, mcreover positive circuit/bypass [, with
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view along N must leave region W, to the left.

Page 25.

o

vy and

Coefficients of 6h and 6t in (5.1) essence derivatives

)
;f— respectively. Calculating with the aid cf (5.1) gas velocity ¥

pressure p, we will obtain

‘ / " 7 5 ¢ [
L 0) gr’ldnJJ‘ 4 0 'V‘, : t (‘rv ’0 P J'V ¢ 7{/‘. ’u ¢ ) -4
l const (i
(’(e\) : '* A AT " e(eN Nmdl [~
J’ Azl ry to c )d.\ 5 ’ ; )I .m(ll.,] wlr Ty - \l (5.2)
drclm(e - p) c)

0
; /& . g
=] ;2 ow; ()| 6 2)+ Lo e )]

((’ \)|1\III(1/ | r ‘A

+p > Al 0 E— . G
’1rhn(p. ') \ : (-) (5.3)

T

The first integral in formula (5.2) can be interpreted what
velocity in point (?o) of the flow of the inccmpressible fluid,
caused by the dipoles, distributed over surface W, with density
Py =1 (7, ¢, - i‘)*‘i ,(g,” -i—) and oriented zlcng the normal. Such
dipoles produce the same velocities, as covering this surface
eddy/vortices with circulation 1+ () [functicnl‘(ﬂ depends besides
? cn the tcrque/moment of time t, and of the pcsition of point UQL
Let us further call |* audible circulation. The corresponding to

audible circulation vortex system consists cf layer on surface W,

Bl e e

G SRSE—
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with the vector of surface intensity f - N » Girad I'* and the going

along lines /), and /; discrete eddy/vcrtices, intensity AG* of
which is equal tc [* on L] and v\r:m i)f' ocn Ly Utilizing for
calculating first term (5.2) Biot-Savart's formsula, we will obtain
the folloving resultant expression for a gas velocity through the

intensities of the eddy/vertices:

»

A o 1 A e % (’--’(/I: 5
1’——)} 4:l‘e'/“ as | / iy Al'*

.

.
“! Lot I]

‘ ‘ e (Ne) . (r-, ‘, f )(!S “ (i(l\"c')[/\'mdl,.] a[r-, ‘, I‘>‘ (5.4)

vJ A4zilct e
v ,‘.' drlem (e + )

Page 26.

-
Expressing element of area dS, standard ¥ and surface gradient
from |* by means of curvilinear ccordinates u, v

dS = xdudwv, ,\/'1 ]r“ e r,.,l Rl (k= 'r; 3% r 8

Grad I'* — %V ([r, < N| TS5 —|r,

v

<N,
ve can present the obtained expressicn for velccity also in the

following form:

() g 0T e [ oeXdL g
v ‘ ‘ infT € 3. 9 dudv j Anl?

.
W Lo+L

1
I (;(/\.'e') g / 3 e,’.(A\T'p')x[mI'vf bdu] ( ¢ ik 55
| e ~:,<r, fo— c)"" ( 4nlc(Aa + Bb) ’(" =) 6B

-
w Ly

\4
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here A--r,e¢ {-¢t,, B=r,e-ct, tut value a and L essence the coefficients

cf vector m on basis ;m ﬁ. As a result of (4.3) to curve occurs
equality Adu + de‘= 0, that ensures the independence of the
determined by formula (5.5) velocities from the selection of
coefficients a and b. That entering in (5.5) jacobian from vector
T(u, v) and scalar I'*(4, v) is easily determined by direct
differentiation of the function I'*(u, v):

a(r, %) 3 o(r, I'(r, t) ! o (_/(f, s(r, t))‘
du, vy  Ou, v) | ¢ d(u, v)

In expressions (5.4) and (5.5) it is pcssible to
transfer/convert to limit, fixing point (?a) tc surface of W. The
"direct/straight™ value of velocity, equal to the half-sum of the
limiting values with apprcach to point (Zo) frcm the different sides
W, will be determined by these expressicns (improper integrals are
taken in the sense of principal values). In the most important for
practice case when W there is a plane and pcint (?;) it lie/rests on

it, the third and fourth integrals in (S.4) disappear.

Pormula (5.4) solves stated protlem of the rates of flow of gas,
caused by the arbitrarily driving/moving in it lifting surface with
the assigned/prescribed final surface lcad. It expresses

Biot-Savart's law, generalized in the case cf the compressed medium.
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According to this law during¢ the unsteady mcticn of lifting surface
in gas Biot-Savart's formula it is required to apply only to that
vcrtex elements from which had time to reachk thke point of
application/appendix scund signals. Besides in addition to this
appear the supplementary "wave™ which comprise of velocities, which

decrease as first degree of distance of eddy,/vcrtices.

6. Example 1. To the quiescent gas frcm the torque/moment of
time »r = 0 at the points cf plane = = 0, ccmes into action the field
of the directed along axles/axis 0z forces with constant surface
density ¢ = p. Let us find the gas veleccity in torque/moment t, in

the point of axle/axis 0z with coordinate z,.
Page 27.

Auditory sensation area w; will be determined b inequality
w-—(_-ct,-0 and will represent by itself circle witu a radius of

-V el :) with center in the beginning of coordinates. The vector
cf mcmentum density is directed alcng axley/éxis 0z and along value is

equal to I'()=pt. Hence

To this circulation corresponds circular eddy/vortex with a

radius of R with intensity - pty. It will excite at point (z,) the
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directed along axis 0z velocity « g - Furthermore, in the

expression of gas velocity accordingly (5.4) will enter component

- [ €(Ne) [Nmdl)
1'I=J ' (6.1)

driem (e + p)
vhere integration it is ccnducted in circle with radius of with a of
R, which limits auditory sensation area. Introducing vectorial angle
6 between the radius-vector of the points c¢f this circumference and
the axlesaxis Ox and assuming that vectcrs 3 are directed radially,

we will obtain
IN;N”.‘I = Rd", Ne = — cos 1, me — sin a, (6.2)

where a -~ a half-apex angle of the cone with circle W as basis/base

and apex/vertex in point (zy). Taking into acccunt (6.2) integral

P,

(6.1) elementary is integrated and gives ¢ = a2 whence
c* 0
),; npH  ty > z’,

(” Z,
0 npu 4 -

Key: (1). with.

This result can be obtained by another way, for example by the

soluticn of one-dimensicnal prcblem.

Example of 2. On the plane z = 0 Cartesian coordinate systen,
evenly moves from infinity the carrying band of final width. From the

side of band to gas, acts the field cf those directed conversely of
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axles/axis 0z of the forces, which have constant surface density @
It is required to determine the gas velccity at certain moment of
time ty in point Q, which is.located on band. 1t is arranged
axles/axis in such a way that up to the torque/mcment t, the forward
edge of band would coincide with axlesaxis Cy, and the positive part
of axlesaxis Ox traversed point Q. The functicns r;, and r,, which
show the transit time of the leading and trailing edges of thé‘band

abcve the point of plane z = C with cocrdinate x > 0, will be

where b -~ width of band, v - a rate of its moticn.

The vector of momentum density for this flow will be

l. k‘” wp (U=t 'ith T < % € TY2¢ t? = "2 "ith t > 72) . Areas H‘ and Hz
are half-plane z = 0, x > 0 and z = 0, x > k. Lines (] and /), are
determined by equalities , .y Lo o and v,/ ”'; M -0;i.e. reprasent

%4

by itself conic sections with focus at point Q, eccentricity p = c/V
and directrices x = 0 and x = b.

Page 28.

Let us examine the case of supersonic speed of motion, when p >

1, line !, - ellipse, and line 1, it is atsent. Areas W] and V|

ol o




pOC = 78068002 PAGE —rr“

ccincide and represent ty tlemselves the intericr of ellipse (Fig.
3) . Audible within ellipse circulation i+ /% . The corresponding to
this circulation vortex systenm ccnéists of the layer of those cover
the interior of ellipse of parallel to axlesaxis Oy eddy/vortices
with a density of p/V and the concentrated eddy,/vortex with an
intensity of px/V, that goes over ellipse. Since (Z i) = 0 for point
C, the rate of flow of gas accordingly (5.4) are wholly determined by
Biot-Savart's formula, used to the vortex systenm pointed out above.
Introducing thé vectorial angle between a fccal radius and the

axleszaxis Ox for the directed alcng axle/axis 0z velocities from the

rectilinear and elliptical eddy/vortex, we will obtain

=0
o ‘ psinldye
2 3 2rV (x — x,)
"—- 19

B0

" ,I_l'
My = ‘ “or vz (cosbdy —sinldy), (6.3)
T

where xo - coordinate of pcint Q.

The first of the integrals is undertaken in the sense of
principal value. Coordinates x and y of the points of ellipse and the

lengths of a focal radius Z are connected with 6 relationship/ratios

Xo

x = Ml, y=1ismb, I= ,where M = V/c. Calculation of integrals

(M — cosh)
R TP M2
(6.3) gives v, - ' ;;M‘ '). v, gg-_ vhence w::“’ngg L Phis result

is well known from the theory of finesthin zirfcil/profile in the
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superscnic flow.
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Page 29.
FLCW AROUND DELTA WING BY HYPERSONIC FLCW.
V. P. Kolgan

Work examines the problem of the flow around delta wing of
hypersonic flow of gas at lcw angle of attack. Is used the method of
the “sources" of the pressure, with the aid of which the problem cane
to singular equation. There is carried cut reqgularization of this
equation, because of which cbtained integral equation with continuous
nucleus. The results of the work are illustiated by examples of the

calculations for pressures for the disturbed zcne of flow.

This problem has already been examined by a number of the
authors [1], [2], vho applied for the determination of solution the
method of expansion/deccmposition in series, reflect/represerting
physical flow plane to certain fictiticus plane. In this article is
froposed another approach tc this prcblem, which ensures obtaining
soluticn immediately in physical plane. Method can render/show useful

for the solution of a series of other problems.

1. Formulation of protlem. Let us examine the lower surface of
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70
the delta flat/plane wing, arrange/located at low angle of attack a
<< 1 in the supersonic flow of perfect gas with large mach number
(M, Il 2yy - angle, formed by leading wing e€dges. Let us assume also
that the parameters M., « and 1 satisfy the following

relaticnship/ratios:

let us search for asymptotic solution for a flow around of the
wing under the made assumpticns. It began the systems of coordinates
xyz was arranged in the spcut of wing sc that the plane xz would
coincide with wing plane, and X-axis ccincided with the axis of the
sysmetry of wing. Let us introduce the dimensionless unknown velocity

functicns, pressure and density

l" ”7)(”" v, ",»); p Por Ir';’,",~; “ for o (1.2)

where /. and . velccity and the density of flow in the
undisturbed flow. By virtue of assumption (1.1) leading wingy edge
vill be supersonic, shock wave - plane and the parameters of flow
after it by constants up to the disturlance cone, proceeding from
spout wing. This zone of flcw with the constant parameters is
designated by index 1 (Fig. 1) and it will ke further called
exterior. The zone of flow, which lies within Mach cone, which
emerges from the spout of wing, let us call/nase internal area (area

2, Pig. 1).
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Page 30.

Let us write out the sclution for an exterior. By virtue of the

made assumptions solution can be presented in the form

w* =1 + auy, -+ 0O(a') p* =arp, 4 O(='); l
v* = 0 (@) p* = p, - O(a?); (13
w* —atw, 4 0 (2'); Y* (x, z) =a¥,(x, 2) + O(a),
vhere y = Y* (x, z) - a surface of shock wave, and values with zero

indices remain the order of one with tendency a toward zero.

Utilizing relationship/ratios cn oblique shock wave, it is

Fossible to obtain the follcwing scluticn fcr the exterior:

| B
Acx--Byz: py=As+ 13 M

(1.4)

; 4 N !
vhere A.,""( 4 : 1+ l(i 4 ) f M2, a2 \ .

0

~

h=1g1y;
1-— adabatic index
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V2d

Let us examine interior. Let us introduce the new unknown

functions and nev variables with the aid of the relationship/ratios’

u* 1 + a?u, -+ o U, 4 O(a%); p*=p, aR, 4 O (a?); l

ot =t ¥, + 00 Y* —ad,x+4-a? ¥ (x, 2*)+ O(@@); |<1 5)
{

w* - atw, + 0(); 2% == 2Zfa; |

p* atp, 1 adp, 4 O(*); yEsya ’
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Fig. 1. Fig. 2.

Page 31.

Then for interior cf the equaticn of g&s dynamics in this

appfoach/approxllation they seem in the fors

{)(, ; ()k ( pg) (py — asR) =0
v, 0 / P (() oV, G (/u: 0: E (1.6)
ox | day* \ 00 h (L\ ()y* T oz

0w, | 3 (P
); (10 .
ox (ll Po Po

Boundary conditions on shock wave for this problem when y*

take the form

il on
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4
U+ A, Vv, Yie Pr=-: r71(1 kAN Y, .
\
oY, 42 ,
w=—0Ll: R i Y, ,; 7
ezt T g ML Ay (.13
AT S R ’
S TN L RS TS A

*

*
If we introduce conical variatles Y-~'¥— and 7 L. and to

a, X a, X

exclude from equations (1.6) U,, V,, w;, then problem it is reduced

tc cne equation relative to p,

7] 7
Kigy o
P (Y ay z oz

under following boundary conditions

on the shock wave AE

A

Y=M pibd : () A0

a,
My 1 ”y (’A“ | 4 A‘, t 3
Pz Ra,Z| "\ a2 4A(A, -

on the arc of unit circle BC

¥ VT =28

on the surface of wing CO

: gy | 9D 7
1><Y aF T2 uz> % 5

(Pige.  2) ¢

’ (1.9)

.‘.\' v ]l I‘l
“)z 1 AZ~
k<2<l po=0; (1.10)
¥ 3 1' My- (\' (1 ]])

vy
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on the plane of symmetry AO

Z2=0; 0LY<M; prz=0. (1.12)

Punction p;, can be analytically ccntinved to entire polygon BDEF

symmetrically, and, if we search for the anelytical solution p, (Y,
Z) in the form of the function, even relative to its arquments, then
conditions (1.11) and (1.12) will be satisfied automatically.
Ccendition (1.9) is spread tc AF and ED bty symmetrical form, and on

the arcs of the unit circle, is retained as tefore condition p, = 0.
Page 32.

2. Information of boundary-value problem to integral equation.

let us search for p,; in the form of the contour integral

po= Vg, Det¥. Z, % %) ds, (21)

where

v 7 . 1 ln“] Y qn—Z0?— (1 -Y? - Z2) (1 —q* 38|
¢ Z o L I , ra)
P, s T ) ' 1 _"._, _r2 1 y 0 Z: T ] y? Z9 (1 ";g &)

g0, ) - the intensity of the "scurces" cf pressure,

arrange/located in a symmetrical manner on EF and ED;

s - arc length.

el i e ST i IR~ S~




DOC = 78068002 PAGE 2T
e
The solution of form (Z.1) satisfies equation (1.8), elliptical
within unit circle, and bcurdary tc ccnditicns (1.10)-(1.12). For
this, in order to satisfy condition (1.9), let us find the limiting
values of derivatives 21y and 7'z with apprcach to shock wave of from

within area BDEF:

i y 7 r (M, Z
piy(M—=0, Zy= | g ODerM, Z, v, J)ds i w8 | ’ - l

& (2.2)
przM—0, Z) vl.g(q, VDyz(M, Z, 1, Jds. i
Substituting expressicn (2.2) under ccndition on shock wave

(1.9), we will obtain fcllowing singular furcticn g (2) :

k k

YA i SRR 115, N PV

T/l k_‘ },'(A) i (Ii| Aié )“ " [ ] “ d (A: ‘)‘\(‘)ll‘ ”v
—R —k L
(2.3
A=A, —ME?, )

o MZ|ZEZ40—2]1Z( - MYtk (B, — A, 29
®(Z, L) (Z2 4T k2 + 4 M? — 220(] + M?) '

Equation (2.3) is related tc the class of homogeneous complete

special integral equations for open circuits.

Let us search for function g(Z) in the class of bounded
functions. Then pressure p,, calculated acccrding to formula (2.1),

will be bounded function.

Let us write characteristic equation fcr equation (2.3):

%
vL ) B2 -7 . : L)dr
o f(Z) -} (B, — A, A")J‘ {( 7 0. (2.4)

-k
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The index of equation (2.4) in the class cf bounded functions x
= 1, and the limited soluticn of equaticn (2.4) is record/written
with an accuracy to constant factor in the form

f(Z) - Vir—Z:b(Z)exp ! (2);
k:(B, — A, Z%

b(Z Ty — ;
YU zre = 2 kB, — A, 2oy =
. (255
I'(2) k2 ' InlZ? — x2| 24, x? (k*—x?)+(B,— A,x?) (k? ‘.’.\'”)d
© ) VR x? X2 (R? — x?) 4k (B, — A, x*)? el

0

Page 33.

Let us conduct now for equaticn (2.3) the usual procedure of
regularization by the sclution of characteristic equation. As a

result we will obtain the regularized equation
L3

g2+ [K(Z. ygdi—f7), (2.6)

0

where
K(Z, Q= a(Z)c{Z) D (Z, C)
Q0(Z)V k- Ziexp ' (Z) ‘f tc (t) D, (x, §)d= )
= o Y RE— 2t (P — Z%exp l'(t)'

0

. ZYVy kR*—- 22

/ . . .
ais) |28 (k2 — Z) - RV (B — A, 2% °
c(”Z) i3

R|ZER - ZY) k(B — A2
D (Z, C) = (Z, D4-D(Z, 0.

When deriving the equation (2.6) there was used the patity of

function g (2). From the theory of special integral equations [3] it
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follows that equation (2.6) represents bty itself the integral
second-order of Fredholm equation with the ccntinuous nucleus which

already can be solved by the approximate numerical methods.

Let us note that the procedure of regularizétion becomes
inaccurate when M.« .co, because is changed the index of equation
(2.4), and coefficient c(Z)and, consequently, also nucleus K (Z,5)

tecome disruptive.

3. Obtaining solution and its standardization. The problem of
finding the distributicn cf socurce strength g(Z) came to second-order
of the integral equation of Fredholm scluticn with continuous nucleus
(2.6) . For finding the solution, let us use the following approximate
diagram. The cut of the integration [0, k] let us divide into n equal
parts As = k/n and on each section As; apprcximately let us count the
function g, of constant. Then, reglacing in (2.6) integral by the
sum and varying n times variable 2, we cbtain fcr g the system of

the linear algebraic equaticns
Ag =7, 3.1)
where the matrix element A takes the form
a; K(Z,, ¢;)As -8,

s L

cclumn element [ . f(Z) Z - the coordinate cf the middle of the i
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cut.

For providing the necessary accuracy/precision during
calculation K(/; °;) the integral, entering the expression for K (Z,
¢) » was calculated from the formulz of rectangles with the number of

separations n2,

Solution g (2Z) , obtained from equation (2.6), is determined with
an accuracy to constant factor due to the artitrary selection of the
solution of the characteristic equation f(Z). Let us note that from
ccndi tions on shock wave (1.7) it follows that along shock wave is
correct the relationship/ratio between w; and p,:

ap, 4 5 Jw, (3.2)

0z " 1 Aopo ol o5 -

Fage 34.

Since during motion along the shock wave AB function w, with
A . :
continuous form changes from zero to w,- ", the with the aid of
relationship/ratio (3.2) ccrdition of the standardization of function

F1,» Can be presented in the fornm

k
b g s 4 Ajp,a '
M. Z g Lo 20, (3.3)
Z 0Z /)I( “ /)ll/‘ T + 1 /

]

Substituting in (3.3) expression (2.1), we will obtain
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standardization conditicn fcr functicn g(2):

3
91 1 M) ‘ Az ‘ k2 (2 Z%) —4M?] g (Q)dl el
U e o2 ) B2 M-z M
) 0
(1 - 17 ; [ 4 Ag
g ¥ dz h A’(:)t ¢ i 08y Uy 1
! : e = — 0 2 (3.4
‘ 2Jz. k? /J‘ ST :
—k '3

The second integral in equaticn (3.4) is located with the aid of
the kncwn formula of the exchange of tte order cf integration in the

dual integrals:

k k
i f dz o gQd. g0 |
2 ) v R ek
—k =
k k
1 r az
I ¢ r{-) C = d .':—
9 J 8 ‘J ZyY =2 — 2) v
k k
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Page 35.

Last/latter integral in equaticn (3.5) is equal to zero, since
internal integral on Z turns into zero. Finally the condition of the
standardization of functicr g(Z) takes the forwm

k .k

i a0 [k2(52— Z%) — 4 M d T
21 +MYy | g(0d ,
o )J 8 S e 2P RH(ZE 422 - A M2 - 4 2200 (1 4 M)
0

0
=g (0) | Agp‘,ll,,
28 -1 ) '

(3.6)

4. Examples of calculations. Employing the given above procedure
was comprised the program of calculaticn fcr ccmputers. During
calculations was set/assumed y = /¥ and A\ = 1. It turned out that

with an increase in the nusker of separaticns (n = 5; 10; 20; 40) the




T
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difference between the consecutively obtained sclutions is rapidly
reduced; for example, at the value of the parameter M, (--| the
difference in the values of pressure p, during calculations for n =
20 and 40 is exhibited only in the fifth sign. By this is confirmed
the effectiveness of the selection cf the calculation method. In Fig.
3-5, are constructed the iscbars p, in the disturbed area
respectively for the values of the parameter M.a-=01; 1; 5. In these
cases the calculations were performed with r = 20. Given data of
calculations are confirmed Lty the results cf [2], in thch the

solution is found in the form cf a series.
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Fig. 4. Fig. 5.
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Page 36.

AERODYNAMIC INVESTIGATICN OF ELEVONS CN LOW-ASEECT-RATIO WINGS.

Vo G. Mikeladze.

Are examined the aerodynamic characteristics of elevons as
crgany/controls of longitudinal and lateral ccntrol on
lcw-aspect-ratio wings. Is fresented the method of calculation of the
aercdynamic characteristics of elevons at subscnic and supersonic
speeds. Are given the results of systematic studies in the effect of
the separate parameters of elevons on their zercdynamic
characteristics. Is given thke flow pattern c¢f low-aspect-ratio wing
with the deflected to large angles elevons &t subsonic, transonic and

superscnic speeds.

METHOD OF CALCULATION OF THE EFFECTIVENESS (F ELEVONS AT SUBSONIC

SPEEDS.

The method of calculation of the effectiveness of elevons on the

wings of arbitrary planfcre at subscnic speeds is instituted on the
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use of a reciprocity theores!. which establishes
communication/connection Lketween aercdynamic wing characteristics in
direct/straight and return flow when tle direction of velocity of

incident flow V4, is regplaced by reverse/inverse.

FCOTNOTE *. The use of a reciprocity theores for the evaluation of
the control effectiveness was suggested by A. I. Golubinskiy.

ENDFOOTNOTE.

The derivatives of the 1ift coefficient r&% of the coefficient

of pitching moment mf" and cf the rollirg-mcment coefficient m* in

the angle of deflection of elevon &, can ke presented as follows:
r;’" f; .fj'/). ds: (1)
Sau
)/1_';"’" == ; f‘ /)'.uzv ds; 2)
mif L'[;P"p.dS; (3)

)

IR

here S - an area of wing;

Page 37.

A
7
of wing, driving/moving at angle of attack withocut rotation, in the

pressure-drop coefficient between lower and suction sides

turned flow;
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Ap.,
P q'v~ pressure-drop coefficient during the rotation of wing

relative to axleszaxis 0z in the turned flow;

Ap.,
q
relative to axlesaxis Cx in the turned flow;

pressure-drop coefficient during the rotation of wing

)
1] V‘-,
o

1/ 9

- velocity head.
For m;" and m," as characteristic linear dimension is accepted

root wing chord b,.

The problem of flcw arcund of the wing in the turned flow is
sclved by the approximation method in which ttke wing is replaced by

vortex/eddy surfacel.

FCCTNOTE 1. S. M. Belotserkcvskiy. Fine/thir lifting surface in the

subsonic flow of gas. M., "science", 1965. ENDFCOTNOTE.

Carrying vortex/eddy surface is simulated ty ccnnected Vikhrev's
series cords. Bach cord is replaced ty several cblique horseshoe
vortices, which consist of the bound vortex with constant

intensity/strength along sgread/sccope I, ard free vortices.
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27\ A
| M(r,,02,)

by

Pig. 1.
Page 38.

Design diagram is represented in Fig. 1. Wing vith the fracture of

leading edge in the examined case of determining the effectiveunss of
elevons was replaced by four Vikhrev by the cords from chord, each of
which was, in turn, was replaced ty twelve cklique horseshoe vortices

along the semirange of wing.

Thus, on each half of the wing it is arrange/located of 48 bound

vortices. In each cell of the formed grid, the bound vortex coincides
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{ with the line of 1/4 chords of cell, and the distance between free
Vikhrev by cords is equal to the spread/scc;é of this cell. The
boundary conditions of nonpassage are satisfied for each cell at the

pecint, arrange/located cn the middle of the line of 3/4 chords.

During the calculaticn of the effectiveness of elevons, it is
necessary to have values of the dimensionless circulation of
eddy/vortex during the mcticn of wing at angle of attack without

rotation 7., dimensionless circulation 7.

=

during the rotation of
wing of relatively axles/axis 0z and dimensicnless circulation Tuny, for

)

the wing, which rotates around axlesaxis Ox.

Satisfaction to boundary conditions gives three independent
systems of equations which make it possible to determine three the

dimensionless circulaticns indicated abcve

m |

zﬂ(wq,l, AWy, ), 2
S % (4
W - AW Vs s 32 A% b )
."T‘ al' W"/)‘ ety
m e
\ 74 o s
r'T(W"'/ i vij) Tox, E (e
' (J L 2y s i M == N,

vhere W, - dimensicnless velocities, caused by the oblique horseshoe

Vij
vortex i at point j,
W"i/ 'Wy(iuuv :u”v /)‘

%o, 0 2, = coordinate of the junctionyunit celculation point j; 7= Vi
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- dimensionless circulation of eddy/vortex; /, - distance
g - Ko
between free vortices (see Fig. 1);' lnB,Az“- dimensionless
-7/11{-0"'"1 3

coordinates of point M; s - sweep angle of the bound vortex;
AW, - additional dimensionless velccities which appear at point j
from the eddy/vortex, which is located on left half wing and

symmetrical to eddy/vortex i,

A W“I/ == W, (E,,’,. AC“i %)

J'

Page 39.

The calculation of all dimensicnless velocities was conducted on

the formulas

e o i
Wy = ‘-)ORA Wy (‘0, e /)v (5)
where
Wy o, So0 D=U, &, S 2) + V(& % 7), (6)

(/,(5. % 7)~ the velocity, caused by the tound vortex at the arbitrary

foint: £y siny — G, cos 7+

1

o cosy -+ Gysiny

cos )

e ; = T
| (:u"\’tﬂ./_" i (l v“)“

(/y (Em "llv /)

€OS ¥

I e
by SINY 4 5p COS ¥,
& : ] : (7)
b By —tg 2) (1 4-Cy)*

V,(, % 7)~ the velocity, caused by ftree vortices at the arbitrary

pcint:

30 I S0ty
:" ' : ‘ (211 H li»’ /)3 i ( l _'n)'
Y B — t2 7 '
1+ ' =1, (%)
1§ | VG — @)+ (14 %ﬂl

Vy ‘Em :!n /) ‘




poCc = 78068003 PAGE 60

After solving system of equations (4)

and after calculating

values /. , P., and p.,_.we determine total wing characteristics with

the deflected elevons on the formulas

2
.

2 i ]
(,V'“ = \ ’ b, dz;

miw =i [ . dz
N % vy
Z
vhere ?«f—g - wing aspect ratio;
: 1 v ;
9573 _ ;\, pa - dx;
; ! = ;
"J""Z 2")7"‘ " ,)"z-- d.\:
Wby
1 3 .
Yo =5 vy X
Phey = 3.57.3 ' Pos—
r*—

m

here t* - coordinate of the leading edge of

flcw; b, - relative chord of elevcn.

Page 40.

(h

(10)

(1)

(12)

(13)

(14)

wing section in the turnaed

Por an example Fig. 2, gives the results cf calculations with

the aid of the computers of the effectiveness of elevons on wing with

the fracture of leading edge. The ccmpariscn of calculated and
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} experimental data shows that computed values of coefficient54f”.m:w
and =™ are higher experimertal. Ore cf the reasons for this
disagreement is the not considered by theory presence of the slots
which are formed between the staticnary part of the wing and the
deflected elevon. The effect of slct on the effectiveness of elevons
is shown on Fig. 3. The introducticn of the empirical coefficients of

k=~ 0.85 into computed values of derivatives ¢, m,» and m," makes it

fossible to obtain the values of these derivatives with an accuracy

tc +50/0.
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Fig. 3.

Key: (1) . III Version of elevon; 4 sections. (2) with

partition/baffles. (3) without partiticn/baffles.

Page 41,
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METHOD OF CALCULATION OF EPFECTIVENESS AND HINGE MOMENTS OF ELEVONS

AT SUPERSONIC SPEEDS.

BEffectiveness of elevons. The method of calculation of the
effectiveness of elevons on low-aspect-ratic wings at supersonic
speeds is instituted on the linear theory of supersonic flows. During
the calculation of the effectiveness of elevcns, it is assumed that
the rotational axis of elevon is supersonic, Mach lines do not

intersect the wing chord and elevon.

Elevon with the adjacent sections of wing is divide/marked off
into zones (Fig. 4): zone I is limited by the Rach lines, which
frcceed from the point of intersection of rctational axis with the
root chord of elevon, and tte trailing edge of elevon; zone II is
limited by the Mach lines, which proceed frcm the point of
intersection of rotational axis with the rcct ard end chords of
elevon, rotational axis and the trailing edge of elevons; zone IIlis
lisited by the Mach lines, which proceed frcm the point of
intersection of rotational axis with the end chord of elevon, and the

trailing edge of elevon.

The pressure-~drop coefficients in these¢ zcnes are equal to
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a—13 Y
61" - 4 : i 5
P = e GICLOS ———— (15)
x ) BT — g%y, 1 of 3(
: 4 <
,)"" S ———————li ‘“,)
L l H‘" — tL’z VAT
n Y
3 —
& 4 e 7
pfﬁ': e HREOR ; (7)
o  Aadly’
L3 N ER TP 1 —a3?
e

here p?" - jumpsdrop in the pressure coefficient between the lower
and upper surfaces of elevon in the i zone during the deviation of
elevon of 1 rad; a==!g€" (vhere tg 7» - sweep angle along the

axis of the rotatiom of elevon); £ = YM'—1; i, - angle of

deflection of elevon, determined in section throughout flow.
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Page 42.

For a low-aspect-ratio wing, including for wings with
alternating/variable swveepback on leading e€dge and the trailing edge,
perpendicular to the axlesaxis of sysmetry, exgression for

derivatives C}ﬂ m'» amd m?- they take the fcra

e A4S [ b 0TS
: 57,3 S Vﬁ" - tgzj,u 8 tg Xsn
_}(b(')ﬂ‘ —*'h:‘ 1] isn)l ) (18)
m“'-- - 25-‘ ['A ‘g : {l l ”‘___l. l:(bn-;u s b;zw) 20 8
571,381V 182y, | e

‘bt; :n hnd 58)
3181
t -L (hI’)n } ‘-!b'. v) 13-} ) “9)

} (bl; 98 { bn’( sl) 25; éU E1] "*—

>

9 -
K. sul;,. T

| I L ’ e l /2 .
m:n =~ 573 [mialn B mi-ﬂ +mon A ¢y (bo o — bx. ) -;A ] , (20)

—
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vhere i, 2 bosSstgiefa 14 V1 a?) b’ (21)

B ba S18 7., V B — 182 7,, :

1 4 boas Satg?e A M e DU
AT sy s domm = (G — b ne) Plue —
o (bo £ h.: au)a =5 bl')'—;n (bl') sn 1 :&b:‘:"”)l; (22)
e (a -4/ T—a? b
MU B T L L ST (23)
& 3 ba Stg Lop l/[ﬁ"’- — 1R % s
~ 2

U _4:SA.,b“ 2h tge ot (l * a- ‘/l "‘“2)- (24)

C =~ s
FH S(g Yop l BQ e 'g‘ Ko

In these foraulas: 4% - lift coefficient of wing from the
deviation of elevons on both halves of wing to cne side on 1°; m’» -
rolling-moment coefficient during the deviation of elevons on both
halves of wing to opposite sides on +19; M?'— coefficient of
longitudinal moment with respect to z axis, passing through the point
of intersection of the root chord cf elevor with its rotational axis
(Pig. 4) during the deviaticn of elevons on koth halves of wing to

one side on 19;.
Page 43.

Ss, bos, ls, ¢« = area, root chcrd, span and sesiagex angle of base delta

ving (Pig. 8);

l;('nu"—_- ?n;; ’

5;"=-3“;’.'-— relative chord, the span and the position of the
A

. 1

30-.-—' l‘,2
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teginning of elevon, in reference to the sesirange of base delta

wing.

In the case vhen elevon has the constant atsolute chord (1,,=0)
of expression for derivatives ¢y, m: apd m substantially they

are simplified: r,_ 8Sabalytge

=""5738 e

b IS bblulBr o 7 os Aoy

’"r e 57'5 5‘1{" (220 EL | I:,n). (2())
s, 4Ssbostgiel, by

Bre=—RnIny (27)

Those obtained by the calculation of tke characteristic of the
effectiveness of elevons are more experimental values. Processing the
results of experimental data and their comparison vith the results of
calculations shovs that for the evaluation cf the effectiveness of
elevons at the moderate supersonic velocities cf the value of
derivatives c, m'», m'» determined according tc formulas (18)-(20) it
is necessary to multiply by the empirical ccefficient of k =

0. 85-00 9.

Hinge moments of elevons. The calculation of the hinge moments
of elevons at supersonic speeds is done with the same limitations,
vhich vere accepted for the calculaticn of the effectiveness of
elevoas. The hinge-moment coefficient relative to the rotational axis

of elevon during its deviation on 1° is equal tc
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m - — w7 (- - m), (28)
'3 r et 1
’"a.;'1= BHEL AT 8’)9 an ‘gi W) [-(l F 4 V _‘),,,_”, - :~> 4
; 380 0490 t€ AT '/ l(” — 182 Yoo = 3
I arccos a .l-_] ""U: \ y (‘20)
L 2% : 2 J
L . L S — —,i~."36-;.1:%i.,.9 — 409 443 (b0 sn — b 30)]
Sss Oass J ! ;1£ — 12 Yen | *

ey (b(; s T bn’A ”)2 Iyau "’4 Efe (bn | h" ”)” B ‘g 7an {/m b(' 98 l,—ﬂ l@ g

= y ; = e o bt e (2 . —
& 'bo..+2(h()9n_’bx 3»” lgn(bnsl_— bx 'm) “3'13531 '+‘(h03n "bn..n) ]"‘
Bose v, o Bran—~Bess)  (Buss =B M] ,.
£ Ll 3 é A v BBY Ly e \ : ‘.50)
3 e
p 8, g e bl—-a* (] a
’"ul“l‘ll Qe 4 ‘. 2 [ ) e - ™ '*_
s Y 1L£ /s ‘ 112' t‘,.{ /on i i
. “r(‘.(,li)s @& ']:T“_J : (31)
T ; -
here S.. s, bAuL‘y“ﬁ' - relative area and the mean aerodynanmic

chord of elevon to rotational axis.
Page 44.

In the case of the constant atsolute chord of elevon, the

hinge—-soment coefficient is equal to
ey 1 __4_>'g'h;; N _‘40;( 3
e TR ("‘ 3nf > s
As shoved the compariscn of the calculated and experimental
values of hinge-moment characteristics, calculated hinge-aoment

coefficients prove to be somevhat overstated. Therefore during the

e

prooe
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estimation of the hinge moments of elevens at the moderate supersonic
velocities computed value cf coefficiemt m *  determined in formula

(28) , must be multiplied by the empirical ccefficient of 4~ 0.85.

Physical flow pattern of wirg with the deflected elevons, obtained by

the method of pressure distribution.

The studies of the physical flow pattern of wing with the
deflected elevons were conducted on the model of low-aspect-ratio
wing with alternating/variaktle sweepback on leading edge (Fig. 5).
The analysis of the effect cf mach number of the incident flow on
flov around of the wing witk the deflected elevcn is carried out
based cn the example of the examination of the air-load distribution
in ving section, arranges/located approximately in the middle the

spread/scope of elevon.

FPig. 6, depicts the diagram/curve of fpressure distribution along
wing chord in the presence of the deflected elevon with Mach number =

0.6.

B

e
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Fig. S.

Key: (1). Section.

Page 45.

It is evident that the deviation of elevon causes the redistribution
of pressure along an entire wing chord both on upper and on lowver
surface. With Mach number = 0.83, deviation of e¢levon of negative
angles is no longer caused the redistrituticn of pressure along an

entire wing chord cn lover surfacel.
FCOTNOTE 3. Analogous results on airfcil/prcfile with control at
transcnic speeds were oktained by G. P. Svishchev into 1948.

ENDFOOTNOTE.

During transition to small supersonic velocities (M = 1.05, Fig.

e




DOC = 78068003 PAGE 18—

fo!

7) the deviation of elevon of negative angles causes the
redistribution of pressure on lower surface only along the chord of
elevon. On suction side of wing, the 2cne of the effect of the
deviation of elevon of fressure distributicn is spread forward, the

further, the greater the angle of deflecticn of elevon.

The analogous phencmencn is ckserved with large mach numbers of
the incident flow. The greater the mach numker, up to smaller
distance elevon is forward frcm spread its effect on the side, turned
tc flow (Fig. 8). During transition frcm the subsonic to supersonic
speeds, changes the form cf the diagras/curve cf pressure on elevon
itself. If at subsonic speeds the form of diagram/curve is close to

triangular, then at supersonic speeds it is clcse to rectangular.

The enumerated above special feature/peculiarities of a change
in the character of flow arcund of the wing with the deflected
elevons explain the reasons for an incidence/drop in the
effectiveness of elevons and an increase in their hinge moments

during transition from the subsonic to superscnic speeds.
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THE EFFECT OF REAL PROPERTIES OF
AIR ON PARAMETERS OF FLOW NEAR AN
ELLIPTIC CONE. AERODYNAMIC
CHARACTERISTICS OF ELLIPTIC

CONES AT LARGE ANGLES OF ATTACK

A+ P, Bazzhin, 0. N. Trusova, and
I. F. Chelysheva

The calculation results of a flow around
a family of elliptic cones by a flow of 1ideal
gas at large angles of attack were presented
in works [1, 2]. Subsequently, several variants
of flow were calculated taking intc account the
real properties of alr, which are 1in a state of
thermodynamic equilibrium. These calculation
results permit one to evaluate the effect of
real gas propertiles, which proves to be in-
significant for the varliants of flow, examined
in works (1] and {2]. The first part of this
paper 1s devoted to this problem.

Calculated aerodynamic characteristics of
elliptic cones over the angle of attatk range
from 30° to 50° in the case of an 1deal gas are
presented in the second part of this paper. The
comparison of these results with the calculated
and experimental results of other authors (3, 4]
has confirmed the valldity of the results ob-
tained by the calculation method with large
angles of attack.

FTD-HT=-23-708-73 1
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THE EFFECT OF REAL PROPERTIES OF AIR
ON PARAMETERS OF FLOW NEAR AN ELLIPTIC
CONE

A calculation was made of the flow around an elliptic cone
having a cross-secticn axes ratio of § = 2, half-angle aperture
of the cone in a horizontal plane GH = 15%, with the angle of
attack a = 30°. The alr was examined as a three-component gas
consisting of 78.08% nitrogen, 20.95% oxygen, and 0.97% argon,
and 1ts thermodynamic functions were calculated according to
the standardized program.

The incident flcw veloclties were equal to 2350, 3356,
and 6713 m/s, which corresponded to the M_ numbers equaling 7, 10,
and 20 (with the speed of sound a_ = 335.6 m/s). The main bulk
of calculation data in works [1] and [2] was obtained at M_ = 7.

Figure 1 shows the position of shock waves near the cone in
the perfect and imperfect gases at velocltles V_ = 2350 and
6713 m/s. The difference in distance from the body to the shock
wave in the symmetry plane of the flow, in the case where M = 7
(Vo = 2350 m/s), comprises about 10%. The absolute shock wave
displacement arising when considering the real propertles of air
has a negligible change through out their duration. The same
thing applies also to the case of the flow with V_ = 6713 m/s,
Transition lines II near the lower surface change together with

the change in the positicon of shock waves; however, the points

>f transition on the body surface are displaced very little.
Change in the relative distance from the body to the shock wave
e/, (6 - distance from the pody to the wave in the symmetry
p.aLE/ ;r* plotted in Fig. 2 as a function of central angle w
(see Fig. 1). The range of angles w corresponds to the
lower surface of the cone. In the range w < 80° all values of
quantity L/lu fall on the line having a width of not more than

FTD=-HT-23-708-73
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0.04. In other words, in the examined area, dependence c/eo = fl(w)
can be represented by a curve pertalining to the perfect gas, with

an accuracy to within 4%.

3 o« =J0% 8,=15% 02,40 \
AV
\ A\
Y \
TIBLE
-4 \
=
2350 my) s A o]
\ —
4 |
-42 87/13 My 5. t !
T
-y = !
U / T
4 y,
2 2 AVAL/
77 77 IR 7% [1
N {7TT71 &/
el AV 7
’/ A7
A
’n, * »4 1 )fl
NNex . i /,,17
P //V
- = =11 rd
7 —t - I [ perfect gas
| i | = — — imperfect gas
Fig. 1.

P
Functions §;=f,(W) and F."=fa(“’) have a simllar nature

(Fig. 3). Values Pg and Py (pressure and density) in the symmetry

plane of the flow (on the wave and body) are referred to varfxax

and p_,, respectively (see Table 1). First of all we should note

the extremely slight effect of the real propertles of alr on the

magnitude of relative pressure whern V, = 2350 m/s (MW_ & 7). The

FTD=-HT-23-708=73 3
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a9 3 50° >
Fig. 2.

relative pressure on the body surface and shock wave, when 0 <

< w < 100°, 1s virtually independent of the real properties of

air. Changes in the Po value of the body, to which the pressure

on the body 1s referred, are also negligibly small. This means that
the values of aerodynamic coefficlents, calculated at M_ = 7 in

the case of a perfect gas, will also be valid with high accuracy

in the case of an imperfect gas as well.

The effect of the real propertles of alr on the relative
density when V_ 2350 m/s (Mm = 7) is also slight; hcwever, the
change in values of these parameters in the symmetry plane, witt
the consideration of the real properties of air, comprises about
8% (see Table 1).

Ch.nge in the relative pressure and relative density on the
body surface remalns slight when consldering the real properties
of air, even at velozity V_ = 6713 m/s (M = 20). This variation
does not exceed several percent. On the shock wave, especlally
on the upper section, the change in the relative values 1s more

noticeable.
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Table 1.
V.[":—] Por Por Pos Pos
2350 0.3501 5,584 0,3362 5,307
0.3598 5.134 0,3339 4,868
3156 0,3692 6,672 0.3497 6,392
0,3698 | 5,633 | 0,3458 | 5,369
6713 0,3759 9,482 0,3627 9,210
0,3778 6,075 0,3351 5,813

Note: The lower numbers pertaln to perfect

gas.
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Table 2,
]
Ve ln ll 250 | 3356 l 6713
.21%‘_:‘ * 0,018 0,840 0,63
—- l 0,915 0,835 0,623
0 pert.

gas

If we assume that the indicated nature of change in relative
values is valld not only for the examined variants of flow, but
also in the case of other variants close to those examined, then
it 1s possible to propose the following method of approximate
calculation of the effect of propertles of an imperfect gas.

Parameters on the shock wave and body surface in the symmetry
plane, when calculating the real properties of air, vary with an
accuracy to within several percent (see Table 1). This variation
is easily obtained when the slope of the shock wave 1s known.
Then, using the distributlon of relative parameters obtained for
perfect gas, 1t 1s possible to obtain the real distribution of
gas-dynamic parameters along the surface.

With regard to the determination of the shock wave inclination
or the distance from the shock wave to the body in the flow of
an imperfect gas, as a result of the calculations it was revealed
that the ratio of distances to the shock wave in the plane symmetry
in the case of an imperfect gas, to the corresponding distance
in the case of a perfect gas, 1s equal, with high accuracy, to the
inverse ratio of densities on the shock wave, as this can be seen
from Table 2. Consequently, if the calculaticn data are avallable
for a perfect gas, then it 1s possible to approximately determine

value €y ~ € on the shock wave in the symmetry plane

0 perf. gas 0
in an imperfect gas; then to find value "0 perf. gas, refine the
P

inclination of the shock wave in an imperrectogas, and find a

it et = i Sl il



more precise value for fo on the shock wave in an imperfect gas
and the new value for < Then, using the avallable dependence
%-m for perfect gas, 1t is possible to determine the location

of the shock wave near the lower surface of the cone in an imperfect
gas.

AERODYNAMIC CHARACTERISTICS OF ELLIPTIC
CONES AT LARGE ANGLES OF ATTACK

Aerodynamic characteristics or ellliptic cones were calculated
for a perfect gas with M_ = 7 over the angle of attack range of
30 to 50°, The error in determining the rlow parameters on the
cone surface, in particular the distribution of pressure according
to the carried out estimations, comprises the value on the orier
of 1%, The error in calculating the aerodynamic coefficients
should be on the magnitude of the same order. The forces acting
on that part of the upper body surface where the flow was not
calculated were not considered, when calculating the forces and
moment, However, it 1s entirely obvious that If the streamlining
occurs without a break in the flow over the upper surface of the
body the forces are very slight.

Aerodynamic coefficlents were calculated using the formulas:”

normal force coefficient

e - 2 ."3. . (1)
58 __3.'“ .8‘- ] ~“
axial force coefficlent
T 2Vau ¥ d
Cp B oy e e 3
WS lﬂ.vl..f"'l'(‘\‘)" i

-~
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coefficient of longitudinal momentum

2

Ca= T =~ 5 L+ ahen, (3)

1
where %-="§-9-V1; S - cone area in the plan.

Limits of integration correspond to the bypass of the cross-
section contour from the symmetry plane to the last point at
which the solution is known, i.e., the change in the variable is
first from zero to b and then from b to n*. In range (2) &(b) =
= 0, In the vicinity of this point the integration was carried
out by means of varlable £, for which the following substitution was

dv, s .
made @? n—:-)-- b -T(Se—) m=n(@) or €=¢t(y)— equations of transverse elliptic

section; £ and n conical variables].

The coefficients of the 1ift and resistance forces were
determined using the cN and Cpt

€y=CNCOS2 = Crsing, ¢, = CySina- Crcosa

Figure 4 shows the aerodynamic coefficlents Cys cy, mn and
aerodynamic quality K as a function of the angle of attack of
cones with opening semlangles 0N = 10°, 15° and 20° and the ratio
of axes of the cross section § = 1; 2 and 3. Values Cys cy, L
and K(6 = 1) are given over the entire range of the angles of
attack from zero to 50°. The solid lines indicate the calculation
data from work [3]) at small angles of attack. Solid lines in the
angle of attack range from 30° to 50° indicate the results obtained
in this work. The experimental data from work [4] are plotted
by different points pertalning to air. The axes 1indicate the

exnerimental data obtained by authors earlier at M, = 6. Such a
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comparison of the various data had one purpose in mind - to arrive
at a concept concerning the nature of change of the aerodynamic
characteristics of elliptic cones over the entire range of the
angles of attack and to determine the validity of the calculation
data obtained by us over the angle of attack of attack range from
30° to 50°. As can be seen, as a whole, there 1s gocd qualitative
and quantitative agreement between all the results presented. The
dashed lines in the intermediate angle of attack range can be
considered as a possible interpolation of the aerodynamic coefficient
values in this area. The remaining curves in Fig. 4 represent the
aerodynamic characteristics of elliptic cones in the range of
large angles of attack at different values of 6.

M= 7
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& '1{7: g !
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-\ Um ey
&Iy A7 b
’ 3] 7T
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-~ R E L
’ 20° W o« ¢
Flg. 4.

The «ffect of & with different constant parameters 1s shown
in Fig. 5. We will note that the aerodynamic quality of cones

FTD-HT-23-708-73 9
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always increases when passing to greater ellipticity of the cone ;

cross section. The coefficient of longitudinal momentum over the

range of large angles of attack changes almost linearly with the 1
. angle of attack. According to formula (3), the position of the

pressure center of an elliptic cone is determined by value (1 + L

+ a2), i.e., only by the opening semiangle of the cone in the

symmetry plane of the flow.
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Page 53.

STUDY CF THE FLOW OF GAS IN A CYLINDRICAL CHANNEL DURING THE SUDDEN

EXPANSION OF SONIC FLON.
G. P. Glotov, E. K. Moroz.

Is carried out the study of flow during the sudden expansion of
scnic airflow in axisymmetric cylindrical channel. Changed relative
length and the area of chanrel in ranges [ = 1.5~4.5; F = 1.5-3.0.
Are investigated the special feature/peculiarities of flow in the
area of the connection c¢f flow to the wall cf channel and is
establish/installed the existence of the single condition of

connection.

The problem of the connection of turbuvlent supersonic flow - one
of the basic with solution of which we enccunter in a series of the
gas-dynamic equipment/devices: air intakes, ejector nozzles, the
camera/chamber of Eiffel, etc. One Of the froblems in this case
consists of the determinaticn of pressure cf stagnation zone. The
exgerimental investigation cf pressure in stagnation zone at the
large lengths of axisymmetric cylindrical channel (in connection with

ejectcrs with the zero coefficient of ejecticn) was for the first
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time carried out by G. L. Grodzovskiy et al. into 1953 [1].
Subsequently similar data were obtained in a series of the works (for
example, see [2] and [3])). The effect of the length of channel on
pressure in stagnation zone was for the first time
establish/installed in the experiments cf G. L. Grodzovskiy and V. T.

Zhdanov whose results were presented in work [3].

The beginning of theoretical studies cf the problem of the ]
connection of the turbulent flow was placed in work [4] and it is

continued in [5), [6]- 4

In this article are investigated the ltasic physical phenomena,
vhich appear during the ccnpection cf turbulent supersonic flow to

vall, and the condition of the connecticn of separating flow line.

For this purpose, was carried out the experimental study of the
flow of turbulent supersonic flow in cylindrical channel with sudden
expansion. The schematic of the model of channel with designations
and the geometric parameters of the investigated versions are given

tc Fig. 1.

In experiments discretely changed the relative length of
channel. The range of the lengths of channel, in reference to the

heightsaltitude of step, the equal to the half-difference of
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diapeters camera/chambers and nozzle throats h =(b - 9»2, comprised
l 1.5-4.5, but the area of channel, in reference to the area of

critical nozzle, changed in the range F = 1.5~3.
Page S4.

Boundary layer thickness in nozzle throat, referred to the

height/altitude of step, it was equal to 6 = tc 0.10-0.25. Reynolds
number, calculated according to critical throat diameter, comprised
Re = (2-7.2) x 10%. Testings were conducted at the pressure air flow
in precombustion chamber, equal to 3-8 atm (aks.), and to temperature

10 = ‘ 2909Ka

During testings, besides the total pressure in precombustion
chamber, were measured thte fressure in stagnaticn zone p, and the
distribution of pressure according to the well cf channel p with the
aid pf static-pressure gprobes 0.8 sm in diaseter, arrange/located
with space 1.5 mm. The accuracy/precisicn of the determination of

relative pressure was +10/0.

The picture of flow at output/yield frcm channel was
photographed by Toepler's irstrument. With the aid of oil film
(mixture of o0il and carkon klack) was visualized the picture of flow

cn the wall of channel and in the meridian jlanre of stagnation zone.
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Fig. 2, gives the typical dependence of relative pressure in
stagnation zone p; (P: = Pi1/Pes Yhere p, - averaged according to
expenditure/consumption total pressure flow in the section/shear of
sonic nozzle) on relative nczzle pressure fg (Fo = Po/P2, Where p, -
ambient pressure). Are isolated three characteristic
conditions/modes: 1 - ccnditions/mode of the ccnnected flow, which is
characterized by constant quantity of relative pressure in stagnation
zone, 2 - tramsient conditicns/mode, 3 - separating conditions/mode.
Further analysis of the obtained experimental data is conducted for

conditions/mode 1.
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The generalized dependences /i [(/) at the different values of

the relative areas of channels F are¢ given to Fig. 3. As can be seen

frcm this curve/graph, the value of relative pressure in stagnation
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zone p,; remains constant/invariable fcr this value of P during the

decrease of the relative length of channel / to certain value which

let us designate /. We will call the area cf the lengths of channel
/! /. the region of self-similar flow alcrcg the length. During

further decrease of the relative length of chanmnel to /- /, value

p; begins to decrease (regicn of ncn-self-simulating flow). Pig. 3,

gives the boundary of the region of self-sisilar flow.

Ccmparison showed that our data on pressure in stagnation zone
for the region of self-similar flow will agree well with other
authors's data, obtained during the discharce of sonic flowv into

cylindrical channel.

Was also carried out tlke estimaticn of the known criteria of the

connection of turbulent flowu.

One of the most successful criteria is the examined inr works
{5), [6] condition for the angle of the ccrnrection of flow WV -w(Miy),
vhere Mg - mach number cn the boundary of inviscid jet. At angle
is understood the angle of incidence with the wall of the channel of
the boundary of the inviscid jet, constructed by method of
characteristics according to the measured in experiment sense of
pressures po/p; (see sctematic in Pig. 4). As is shown comparison,

the values 1 (M), calculated according to the results of this work,
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in the region of self-similar flow virtually coincide with the values

V. given for the appropriate flow in work [S5] (Fig. 4). However, in
the region of non-self-sisulating flcw, angles v grow/rise and for
each value of F is obtained its dependence v -yM, Thus, in the
examined case the criterion of the ccnnecticn cf turbulent flow in
the form of single dependence v -yM, is valid cnly in the range of
self-simulating flow and is not spread to tke ncn-self-simulating
region (this observation is related also tc the correlation parameter

7. imtroduced in work [5]). Therefore is necessary the search of

other more common/general/tctal criteria of ccnnection.

For purpose of the explanation of the physical picture of flow
in the region of the conmnection of flcw to the wall of cylindrical
channel, was carried out the visualization of thke picture of flow on
the wvall of channel and in the zcne of mixing with the simultaneous
smeasurement of static pressure distribution on wall and the
photographing of flow at ocutput/yield with the aid of Toepler's

instrument.

The examination of the obtained photograpks of oil film and
their comparison with tte diagram/curves of the distribution of
fressure on wall made it possible to present the real picture of flow
in the region of connection (FPig. Sa). In photographs are visible

three zones. In zone I (ve examine frcm nozzle edge) oil remained
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intact. The comparison of this zone with the air-load distribution on
wall which in this zone it is constant, shcus that the flow here
either entirely is absent cr so weak that it dces not act on oil
file. In zone II, are oltserved the longitudinal overflows of oil and
an insignificant change in the pressure, which indicates the presence
cf weak current in the limited region towards nozzle. In zone III o0il
is washed off completely cn an entire wall, except the narrow
transverse band with a width approximately 1 mm (line of the
connection P). Flow in this zone is accompanied by sharp pressure

increase on wall tc certain maximur value p,.pn.
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This testifies to the presence of powerful flow with interface (line
II), to the left of which flow is directed toward nozzle, and to the
right - towvard the section/shear of chamnel. It is logical to assume
that the interface represents by itself the pcint of rendezvous of

separating flov line (line E) with the wall cf channel.

Pig. 6, gives the photograph of oil film to longitudinal plate

- and the corresponding schesatic of flow. On figure are noted: 1 -
separating flov line, 2 - boundary of zero longitudinal velocities, 3
- boundary of flow, 4 - boundary of inviscid jet, 5 - point of the

ccnnection, by 6 - duct/contour of the plate. In photograph clearly
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is cutlined the rotation of flow line in viscous layer,
arrange/located lower than separating line, into stagnation zone and
the formation/education of the reverse/inverse flow near the wall.
The mass of the reflux gas returns to the mein flow, forming the
local eddy/vortex between wall and toundary of flow. The longitudinal
size/dimension of this eddy/vortex virtually ccincides with the

extent of zone II (FPig. 6).

The part of the viscous layer, arrangeslocated higher than
separating flow line after meeting with wall turns to output/yield
frcm channel. During this rctation in flow, appears the system of
characteristics. Intersecting, they create the oblique shock wave,

seen at output/yield frcm tle channel (see Fig. 5).

Is of interest the ccafparison of calculated and determined in
exjeriments in the positions of separating flow line. In work [5) as
separating line is accepted the boundary of inviscid jet. Por the
region of self-similar flow, it is possible tc note the satisfactory

ccnformity of the calculated and experimental results (see Fig. 6).
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Fig. 5.
Page S7.

Only of wall itself begins their disagreement, as a result of which
the calculated boundary of inviscid jet leeté tte wall of channel at
the point, which lies approximately tc 7-10c/c further from nozzle,

than the real line of connection.

In the case of small length of channel (ncn-self-simulating zone

of flow) the calculated boundary of the inviscid jet A (Fig. Sb) can




DoC = 78068003 PAGE ,3272'5
even exceed the limits of channel, althougbh in actuality the flow is
that ccnnected. Por such channels, as shows the visualization of flow

in seridian plane, separating flow line B ccnsideratbly differs fronm
line of demarcation of inviscid jet and more steeply it turns to wall

(Pig. Sb).

The specific in experiments positions cf the line of connection

on the wall of channel sade it possitle by the measured
diagram/curves of pressure to determine the pressure at attachment
point, equal to the total pressure cn separating flow line (Fig. 5).
The comparison of this value of pressure with fressure in stagnation
zone shovws that their sense for all investigated values of relative
areas and lengths of channels apprcximately is constant and is equal

tc /u/pi= to 1.9 & 0.05 (Fig. 7a).

The results of processing given works [6) - [9] show (Fig.
7b) that during the flow around flat/plame step is observed certain
tendency tovard an increase in value  /u/pi (Pu/py = 1.7-2 with Mgy =
2.1-4.4). In the first apprcximaticn, this semse can be accepted
equal to 1.9. A change of the relative smaxisus fpressure on wall
depending on number M, both for the flow in channel and during the
flov around flat/plane step does not in practice affect value /u/n,

(Pig. 7).
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Fig. 6.

Key: (1) . Region of self-sisilar flow. (2). Zone.
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The relationship/ratio ru/p, 19 0btained fcr flov in axisymmetric

cylindrical channel and during the flow around flat/plane step, can

te used in the analysis of the connecticn cf supersonic turbulent

flcw on wall in the range of numbers Mo = 2-3.5.

The conducted investigations made it fpcssible to also explain

the mechanism of the effect of the length of channel on relative
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pressure in the stagnation 2one (s€ee Pig. S). In accordance with a
change of the basic flow parameters in the regicn of connection, it
is possible to isolate three reference lengths cf the channel:
l ::h$ n:dluﬁ Ly, (this tc some degree of analogous the
introduction critical pcints for the case of the flow around
flat/plane step [5]). The specific akove relative length of channel
!, (see Pig. 3) it corresgcnds to gaximum ;:essufe increase on wall
in the region of self-similar flow. During the decrease of the length
cf channel to /, (position of the section/shear of channel 1 and 2,
Fig. 5a) relative pressure in stagnaticn zcne rempains éonstant. In
this case, remain without change the positicn cf the line of
connection, maximum pressure on Qall and the angle of the slope of
the resulting shock wave, okserved in output/yield from the channel
(see Fig. Sa), it which indicates the invariability of flow
disturbance in local regicn after the line cf the connection (the
value cf slope angle very weakly depénding cn value of F). The
observing when [/ [, decreases of fressure on the wall (see Fig.
Sa) testify to the presence on this section of the accelerated

superscnic flow.

@ith the decrease of the length of channel into the region of
non~self-simulating flow [/ /, tc certain value which let us
call/name critical /,, the form of the distritution curve of pressure

and the position of the line of connection remain without change. In

deduntion
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this case, maximum pressure on the wall of channel and the angle of
the slope of the resulting jump at output/yield decrease. The
decrease of flow disturktance after the line of connection leads to
the decrease of relative pressure in stagnaticn zone. In this case,

saximum by pressure on wall is greater than pressure environment
(Pwas/pa > V).

During the decrease of the length of ctannel [/ -/, (position

I
4, Pig. S5Sb) occurs the shift/shear of the air-lcad distribution and
line of connection to nozzle, as a result cf which the length of

stagnation zone it decreases.
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Key: (1) . Axisymmetric flow.
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On section from attachment foint tc the point, which corresponds to
critical length (/u /- 1,), flow in wall viscous layer subsonic [9].
Therefore when [ / the picture of flow either must be brcken as a
result of the ropott/coplunication of stagnaticn zone with
environment or, at the sufficiently large pressure flow, the line of
ccnnec tion must move from the section/shear of channel, that also is
ckserved in experiment. In this case, maximum fressure on wall
continues to decrease, remaining mcre than fressure environment, and

with respect it decreases pressure in stagnaticn zone.
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Thus, for the investigated corditions/modes of the connected
flcw pressure environment does not affect value p;. Pressure in
stagnation zone depends cn maximum pressure on the wall of channel
after the line of connecticr, that it is necessary to consider during

the development of the calculation method.
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Flov of gas in a flat duct, caused longitudinal gradient of the

temperature at Knudsen's artitrary number.

M. N. Kogan, N. K. Makashev.

For the kinetic model equation of Boltzmanp in linear setting,
is solved the problem of temperature creep in flat duct for the

arbitrary values of Knudsen's number.

Cbtained approximate analytical scluticn. On the basis of this
soluticn, are made evaluaticns of fpossible faults of measurement of
fressure, for example, the heated gas with the aid of "cold"

instrument.

As she was noted already by Maxwell [1], if along wall is a
gradient of temperature, then the ccming intc ccntact with it gas
moves relative to wall. This motion calls thermal slip or creep. The

gas flow in this case depends on tte number of Knudsen Kn, equal to
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the ratio of mean free path A to the width cf channel or the diameter
of tube d. If by the unevenly heated tuke are ccnnected two
containers with different temperature, then the equilibrium (zero
expenditure/consumption through the tube) stcps at certain the

pressure differential which also depends on Knudsen's number.

These phenome2na can exert the essential influence, for example,
during low-pressure measurement the heated gas by "cold" instrument;

in the porous media they can cause flow or the fressure

differentials.
Varioes coses of the flew ot a jd.,, 6:{/7/ essed b\/ Che 1emne/ dture
c:'«/f//m'f ct the walls ,are examimped (v [21- [L£97.

Different cases of the flow of gas, caused in flat/plane duct by
the gradient of the temperature at the arbitrary values of Knudsen's
nusber. Approximate soluticr <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>