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Page 1.

Were carried out 100 years frca the bitthday of V ladim ir Ilyich

Lenin — greatest revolution ary, lea der of t ie Ccmnunist Party,

foun der 0! the first in the world socialist state.

“Wi th na me an d Lenin ’s activity is connected whole revolutionary

epoch in humanity ’s life. Lenin gave answer,res~onses to the most

urgent questions, place d by the course of historical development , he

thoxoughl y de veloped the theory of the Socialist Revolutio n and

building Communis t society, it arme d russian, all the intarna t ional

re vclutionary move ment by scientifically substantiated strategy and

tactics, it headed the fight of class for the conversi on 3f the

ideals of socialism in life . socialis m , converted by Mar x and Enge ls

trc. -utopia into science and enriched by Lenin ~y new

conclusion/derivations an d discovery /openingE , was personi fied into

the social practice of world—wide historica l scales, it became basic

revolutio nary force of our time ”. (Theses of th€ CC of KPSS [‘

CPSU J to the 100th anni versary from the birthday of V. I. Lenin) .

Lenin, the greatest scientist in revolu tion and revolutionary in

science, gave enormou s value to questicns of the scientific—technical

progress of our country. Pro. the first days ot the ex iste nce of

Soviet state , all possible and coa F rehen sive develo pment of science

— — — — — — — — — — —  —— —— — ~~ — — 
~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~— 

_
~~ _ — 

~~~~~~~~~ ~~~~~~
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an d techno logy became one of the most important and syst emat ic

directions of the activity of the Communist Party and So viet

government .

In heavy 1918 , when youn g Soviet republic in lethal fight

reflected the brightuesE onset of counter revolution , Lenin writes

the “sketc h of the plan of sc ientific— technical work” for the Acade my

of Sciences, in wh ich he scientifically assigned the mission of

developing the pla n/layou t cf the reorganization of industry and

economic lif t of Russia. Th is plan /layout strikes with its depth ,

newness of posing of problems , with organic communicat ion/connection

with life. Un der V ladimir Ilyich’s manage ment/manual in the same

period , was developed the plan /layout of the electrifica tion of

Russia — plan/layo ut G0~L~ C [. Stat e Commission for the

Electrifica tion of Russia], to realizat ion of which Lenin gave

enormou s value.

Vladimir Ilyich paid great att ent ion tc de ve lopment of Soviet

aviatjon and technology. Lenin supported great Bussian scholarly

professor N. E. Jo uko wski ‘s proposition about the organization of

central ae r ohyd r odyna mic institute . TsAGI (~ 
• Central Institute

of Aerohy drodynamics im. N. Ye Zhukovskiy is the authentic creation

of Great October. Because of the daily concerns of the Com m unist

Party and Soviet ~overn aent of TsAG I , it became the world famous

4 - -- —- — ---~-•--r-——--—---— - — — - -—-— -
~~~~~~~~~

-- ----‘~~ - - - - • —• - ~ — .~~T — -;—-— — -

~~1. a



DCC = 78068001 PAG E .fr

scientific research avia tion center , equipped wit h modern research

equip.ent , disposing of the highly skille d scientific

çe rson nel/fram es.

Follo wing Lenin ’s legacy, Sov iet p eopl€ under the

management /manual of the Co m munist  Pa t ty  carried out an

industrialization of the country, they convert ed our nat ive la nd into

might y socialist power , the reliab le stronghold of peace , progress

and socialism.

Page C.

Science in our country ever more and more is conv erted into the

direc t pro ductive force of society. The Communist Part y takes all

measures for realizin g the Leninist precept about that , “so that the

science for us would not remain a dead letter or fashion able p hrase

so that the science real/actually uculd enter in the flesh and

the blood , it was con verted into the cc•pon ent element of mode of

life completely and by present form”. (Coil, wotks, Vol. 45, pa ge

39 1).

Published during October 1968. The resciutio n by the CC of the

CPSU and Counci l of Mi nisters of the USSR “about measures for the

increase of the effec tiveness of the work of scientific organizations

— - — — _
~~~ 
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and the acceleration of use in the nat ional economy of the

achievements of science and technology ” is directed to wa rd f u r t h e r

increase in the effectiveness of scientific investigat ions.

Sovie t scient ists, accura te to Lenin ’s leg acy, direct their

efforts for the solution of stated before them by part y/ba tch and

govern ment most important p ro b lems in fur t her increase in the

effect iveness of scientific investigation s for purpose of the

~rcvision for technical progress .

—- ———— - --•
~~~~~~

- 
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METHO D OF CA LCULATION OF FLO R AROUND A BODY OF RE VOLUTIO N OF ANY FORM

D U R I N G  Ak Bi T R A R Y  MOTION IN IDEAL FLUID.

L. A. flaslov.

Is propose d the method of calculatio n cf distribution of the

speed , pressure and potential on surface , and a lso in any point of

space around the bod y of revolution , which accomplishes arbitrary

motion in ideal f luid.  In ccmpariscn with krown method s in this case

tc the for m of body of revo lution , are sup er im çosed no l imitat ions

and sufficient accuracy/precisio n of calculations is reached at the

co nsiderably smaller exp enditures Cf time EVM (~ computer ].

Examples of ca lcu lations are compa re d with known exact solutions and

with the e xperimental values of pressures cn the surface of differen t

bodies.

At present th e potential flow around th e bod ies of rev olut ion of

any form during arbitrary motion can be designed only wi th the aid of

me thod (1]. However , me thod [ 1 ] it is ver y laborious, and more

effective proves to be the method cf calculation of flow about bod y

of revolut ion during arbitrary motic n , p resented in works ( 2 ]  and 

- - - -

- a
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(3). Me thod (2], fur thermor e, easily it is spread to the case of the

calculation of three—dimension al body durinç arbitrary mot ion [4).

However, d uring its use on surface are superimposed some limitations.

In this article is proposed the calculation method, which

represents by itself t h e  gen e ra l i za t ion  of ae thod (2 ] .  In  th i s  case ,

the method of the a s s i g n m e n t  to bod y su r f ace  makes it po ssible to

examine the bodies of revo lu t ion  of a n y  f o r m  d u r i n g  arbi t r a r y  mot ion .

1. Fundamental  principles . If v 1, v~ , v 3 — projection of vector

v~cf the forwa rd velocit y of pole A of soliô body , and Q 1, Q2, Q~ —

to the projection of angular veloc ity vector ~~~

‘

, on the connected with

the bod y axes of coordinates xy z , then for the potential of the

d istur bed velocit ies of liquid it is possib le to write

~ (x , y, z , t) ~~v1 ( I ) ~~1 (x , y. z),

where are introduced designations v4 = 30 ,; V g = 122; v6 = lc~, (3. -

lengt h of body).

Page 2.

For de te rmin ing  each of six s ingle  potentials ~1(x , y ,  z) it is

required to solve the exterior prob lem of Neumann

A ‘
~j j .f l

~ = ( ;  

~~ 
(i~ = 1 , 2 6) (I i)

— 

l~ 
_

~~~~~

_ 

~~~~~~~ 
-i-------i: — —----- — —— —  -

~

--..--

~~~~

-

~

--— — 

~~~~~~~~~~ T ’~
-
~ ’ ~
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with zero conditions at infinity. Here v, - the veloc ity of the

points of body sur f ace in the appropriat. simple motion; ~ - sur face,

wh ich limits solid body;  n — normal to the surface u, directed inside

liquid. If we the solution search for in t h e  f o r m  of the poten t ia l  of

the sim p le layer

~~, ( P ~~= 1~~~(Q)~~
. 

- ( 1 . 2 )

the boundary condition (1.1) is reduced to the integral second—order

of Fredholm equation relati ve to the  intensity of layer ji

2?t
~

s ( P
~+1~t, (Q) dw ==v~( P) . t~

’(P), ( 1.3)

where P — an arbitrar y calculation point : Q — current point of
— 7 —5—-,

surface w; H = QP.

Equation (1.3) has unique solution, if surface ~ belongs to the

class of Lyapunov’s surfaces (5].

The longitudinal I-axis of the Cartesian system of coordinates

xyz wi th unit vectors Tjk coincides with the axis of the symmetry of

body of revolution . The or igin of coord ina tes  is place d in the

leading edge/nose of body (Fig.  1) . Toge ther  w i t h  Cartesia n system is

examine d the system of cylindrical coor dinates xre ( U  = r cos 9 , z =

_ _ _  

‘

1

~~~~~~ _ _ _ _



DOC = 7806800 1 PAGE ..~4

r sin 9 ) .  To the calculation point P appr opriate themselve s

coordinate s xr e , to the current point Q - ccordinat e ~p b ; B = ( x— ~~) i

4 (r cos 9 — p sin •) j  + (r sin 9 — p sin I ) k .

If pole A is selected on I— axis at a distanc e XA from carrying

body, then for the velocity of the points of body surface during its

arbitrary mot ion it is posmibi. to write

‘V (vP. r siii 0 — -  VI~ r COS 0 - v1) 1+ 1v~ (x — x.%) - — r sin 0 — v~j  +
-f - Iv 4 rcos 0 — v ~(x - xi,) - v3lb , (1.4)

where the linear dimensions are referred to the length of body 1~. .

-~ — — —5—--- -— ---~~~~~~~~ — I - 

~~~~~~~~~~~~~~~~~~~~ ~ 
-
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Fig. 1.

Page 3.

Equation of ;•n•ratriz of body of revolution

r . : ~~r ( x)  (1. 5)

is represented in the parametric form:

r — = r ( s ) ;  x = ’ X ( s ) ,  (1.6)

wher e s — an arc lengt h of gon.ra trix , calculated off the origin of

ccordinates. The value of parameter s, characterizing the current

point Q of body surface , is designate d by lette r ..

0 For the representation of the differential cell/ele ments of

surface , are intro d uced the designations

citr This ’ x 
~~

- - -

~~~~

-- . (1 .7)

— — ——-5 —~ -~~~ — -5— 
- —
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The element of area of surface is equal to

do r—~ rdsd0 .

A t each point of body surface , is introduced the connected wi th

this pcint recta ng ular coordinate system whcse unit vect or s are equa l

to it = —r ’i +x ’ cos 0j +- x’ s1n 0~~
r’ cos r’ sin Ok;  (1.8)

I;— — sIn Oj-f- cos 0 k:

here i’— standard ; vector ~
‘it is directe d tangentially toward

ge ne ratri x to the side of an incre ase in the  arc lengt h s; vector
—7 —7

lie/rests at transverse plane and forms w it h n and r rig ht—hand~d

coordinate system.

Unlike metho d ( 2 ] ,  where the surface is assigned in the  f o r m  of

(1.5) and is utilized t h e derivat ive d r/d x , in this case form (1.6)

ma kes it possible to present any the curv e , which limi ts s imply

connected region.

As a result 3f substit utions , fundamental  integral equation

(1.3) takes the form

2iq*, (s . 0) =. v~n (s , O )_
L 2.(• f 

~ 
(3 4~) ‘~ (x - — X ’ p COf (0 — O)j pd~ dO

J ‘ ‘ I(x - — 
~)‘ ± r2 - f - p 4 -- - 2rp cos (0 - 0)13/2 (1.9)

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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,

where L — complete arc length of generat r ix f rc .  forepart /nose point

x = 0, r = 0) to the tailed (x = ,(, r = 0)

Analogous expressions are obtained for velocities and

potentials .

2. Calculation formulas.  as it fol lows f ro .  the consideration s

of symm etry, for the character istic of the arb i t ra ry  mot io n of body

of revolut ion in idea l f lu id , it suffices tc know the parameters of

f l c w  only for three simple motions :

— for var d/pr8 gteasiv e along i—axis w i t h a ‘elocit y of v~ = I (i

1) .

— forw ar d/progressive along y axis  w i t h  e velocit y of v , I ( i

= 2).

— rot ary around t ransverse a i ls , for e a ap i e  the pa aIlel z axis

and passing th rou; h pole A , with angular  is v . lc c i t y  v~ 1 (i 6 ) .

Page *.

The total val ues of relat ive velocit y sad 1ot .n t ial on th .~ body

rfac. .1 rotcUom it i.~ possibi. to present in th. for m

U_
~_ t I u i , v 1 1-- U,.lt’ .~~os 0  ( - v ~~i nb )  Ms. (v . o~~ v .~ n~ iI
+ bIu~ ~ IV .~ s in b — V1 os S) .. • (V 1 sin + U t O % b~ rt’ .I, i2 1)
• = I ~~~~, V1 ,~ (V 4 cos 0 V1 sin 0) ~ 0 v. ~in •fl 2)

• - -~~~ —~ —- -~~~- ‘—- —-—‘r— -5.— 5—— .—-— —— 5 - - —5-—— — — LrsJ q ._ - 
~~~~~~~~~~ ~~~~~~~ 

- 5—— -V. ~~~~~~~~~~ ~~~~~~ — -—
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where Ui-i and u~1 — dimensionless components of relat ive velocities

cm axes v and b. ~~, 
— the dimen sicnless potentials  in the

appropriate simple motion, which are subject tc further

determinat ion.

Sol*tio~ i~ of integral equation ( 1 . 9 )  for the simple notions

indicated homld be .arcb.d for in the for .

~~~ (s , 0) = 
~
-&

~ 
(s) ; ~~~. (s, f i)  = ~~ (s)  cos 0; t~1 (s , 0) = ‘i~ (s) cos  0. (2.3)

Instead at somrcs strength , ( s) it is convenient to exami ne

other un kn o a  fmn ctioms g d (s),  connected with ~ the

r.latiosabip/ratioa

• (2.4)

and all the calculations of news in a dimensionless form , accepting

as characteristic linear dimensio n th e length of body ~~..

Afte r the substitution of values (2. 3) and (2 .4)  into equation

~ I.9) and the prolon ge d conversion s , a na logcus given in work [2 ] ,

integral equat ions for each simpi. motion (i = 1, 2, 6) they  t a ke the

form

gL (s)_ f ~o(s)_ fgl (a)KJo (s. a)d~. (2.5)

- TTii~T~ 
~~~~~~~~~~ 

- 

-

~~~~~ 

_ _ _ _ _ _ _ _  
_ _ _ _
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,~1

Here for known funct ions / ,0 (s) , equal to the product of the

noraa .l com ponent of the velocitl of following to a radius of body at

the pa rtic ul ar point, ar e utilize d the relatio nship/ratios

= rr; f~o — — rx ’; 160 rIrr ’ -4- X ’(X — xA ) ) .  (2.6)

the n uclei of integrals are designated:

K10 (s , a) = (BG~ + .~~
‘ G~) A; K~ (s , a) = K,, (s , a) = (B111 -4- x’/1 2)A ;

A =—  ~~~~ - —--- - .- - B _~~ 1x (  - p ~~~ r’( x —  ~)I .-— 

(X~~
s
~~~)2+(~~Jp)2 ~~~~

‘

G,=E(k’); G~~~K(k2)—E(k2);

I1~ = - ((1 + k ”) E( k ’)  — 2k” K (k2)1; (2.7) -

H 2 _L [(1 + 3k’2) K (kO )~ _ ( 3+k ~2) If (k2)I ,

where E (k Z ) and E ( k 2 )  — complete ellipt ical integrals of t h e  f i r s t

and second kind with the aodule/Iodulus

4rpk’ = --— - - -- --._— . _.. k ” — l k’(x — ~ ) ’ I (r+p)’ )‘
Page 5. 

-

Analogously are obtained calculated relationship/rati os for the

components of the dimensicaless velocities ~nd potentials, ind icated

in formulas (2.1) and (2.2):

—S 1~ l~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +- ~~~~~ 
.5—.

S . - - . _ __ - - - -
~~~~~~~~~~~~~~~~~~~ 

.5 —
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u,~(s)=f,1 (s) I Jgi (a)K ii (s • a)da;

(2.8)

I _
~

-_
~~g,(3)K,2(s , a)da;

~ , (s) .
~~~ 

. .— f g, (a) K ,2 (s , a) da: (2 .~~)

f11 =x ’; f.,=r’; f61 =rx ’ —-r ’(x—x ..1);

f22 =~~ 1 , f62=x —x 4

K~1(s. a)= (CG1 + ~ Go) A; K12 (s , a) -
~-G ,A;

(2.10)
!(,~(s , a) = K,1(s , a) (cu 1 +-~

- H2) A;  K22 (s , a) =K ,9 (s , a) =- HI A .J

where besides the values, determinEd to formulas (2.7). are

introduced the designations

C = 5 ~~(~~~~ )~~ ; G,—2K (k’);
(2.1 1

II, = Ri - -f-- k ”)  K (k 2) — 2E (k 2) I .

1.t the end points where x = 0, r = 0, or x = 1, r 2 o , are not
diff icul t  to show tha t integral of equat ion (2 .5 )  alwa ys have zero

solution and do not requi re special examinat io n , as is done in method

(2]. Durin g the determinati on of the va lues of the ve locities and

potentia ls in end points, it suffices to calculate the components of

dimensionless velocity during transverse and rotary notion s (i = 2.6)

alcag y axis

I g~(’)~ da
‘‘ ~~1 j 2 f ( x  — ~)2 

(— - )

__________________________________ — — —  - ~~ -~~~ ~~u 
—.——  - 

~~~ _ .rc. -
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and dimensionless potential during the long itudina l flow

L
g 1(~)d a (2 13P1 — 

~~~~~ ~)‘ ~ 
.

where C , • 1 , for forepart /nose tur n/sharpen one shoul d pl ace x = 0

aad c6~~ x4 but for the tailed poin t x 1 ,~~d c6 =x .i—l . The remaining

co.poa nts of the velocities and potentials in these point s are equ a l

to zero.

Page 6.

The veloci ties in the  points of spac e , w h i c h  do not belong to

body surf a ce , are conveniently calculated in cylindrical ccor d inate

system ‘,., 9. ?or the components of the dimensionless velocity in each

simple mot ion, it is mot difficult to otta ia

u~ 1(x , r) = f ,  (x ) -i - f g ~(a) K, , ( x , r , a) d ~;

u ,(x, r) =f , 4 (x) - - j —j g , ( ’) K , 4 (x , r , ~) da; (2.1 4)

u~~(x , r) =f ~,(x) -~_ J g~(~) K~2 (x 1 r , o)d ~.

L 
_ _ _ _ _ _  _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _  

_ _ _

- - .~ .-—- ~~~~~~~~ . . -~ - -
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In this case , to formula for u,~ it coinci des with f o r m u la

(2.8) for ~~~~ and for the nuclei of the integrals of first two

formulas (2.1*) are introduced the des I~~i.t ione
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .4 1G) A ;

1 H2) A.

Uete r~ 1 = (I— ~~)2 + (r—p) 2 , and for remaining values are used

designations (2.7) and (2.10). The dineosiorless components of

velocity of following f, ,(x) and f , 4 ( x)  ar e equal to f 1~ = f2, = 1 ;

= f 23 = • 0; f6l~~~~XA X.

Por the calcu lations of pressure ccefficients in the case of

arbitrary notion, one should use Lagrange ’s integral. During the

calculation of apparent additio na l masses , it is necessary to bear in

mind , that for a body of re volution independent variables and not

equal to zero are ident ically four a p parent  additional mas ses: X , , ,

~~~~ X a~ and X~~~. fly analogy with work (3] it is not di f f icul t  to

obtain
= — 2~p 0 c rr ’~~ ds;

~ Po ç rx’ ~2 ds;
0 I . (2 .15~

x’(x - x4~p 4 ds ;

- . 
~~oj r f r r ’+x ’( x_ x A) J p , ds ,

where p~ 
— mass density of liquid.

_  

- 

_ _ _ _ _  _
— — 5,- -.— — —-— - - ~~ .---‘~~~- r r~~ v~~~~ - ~~~~~

-
~~~
- 
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~1

3. flethods of calculations. The scluticn of the fundamental

integral equation of prob lem (2.5) is deteriined in the  f i n i t e  num ber

of discrete calculation points of tody surface. The the intricate

shape of body, the greater  the calculat ion poin ts  it is necessary to

select for the sufficiently precise description of generatrix. So, in

that compr ised for computers  “Ninsk—2” to t1~e program , according to

which were f u l f i l l ed examples of calculat ions, can be utilized to 160

calculation points , a rb i t r a r i ly  arrange/ loc a ted on by generatrix

bodies of re volution. For example , for smooth bodies s u f f i c i e n t

accuracy/p recision is reached at 50 calculation points.

Page 7.

The proposed method allow/assumes the ~resence of the finite

num ber of salient p ’.int s of the enclcsures cf generatrix. At very

sa lient poin t for formal satisfact ion of Lya pun ov ’s cond itions, one

sh ould ass ume a s.all bending radius . In thE process of ca lculation s,

the rounding is reali ze/acco .plish€d automatically applying quadratic

interpolation between calculation points. In the place s of an abrupt

c hange in the enclosur es, is necessary the ta cking/sea l of

calculation points.

- -~~~~~~~~~.——- - - --  - .  —5--- --- 
~~~~~~~~

- - - - - -~~~~~~r~~~~~~ ;~~~~~~~~~~~~
_ _

~~~~
_‘_ - -
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Basic d i f f i c u lty is the calculation of im p r o per integ rals in

equations and form ulas for velocities and potentials. By ana logy with

work ( 2 ]  improper in tegra ls  are calcula te d ~ii th the aid of the

replacemen t of var iables:

a --- s == sign (h)  O,5 L h  (3.1)

Inver se dependence will be determined ty relation sh ip/ratio

h(s . a) =sign (a — s )  V —~rT~ L (3~ )

da ~— .~!!-; ‘ - = ~ (~a — s l - f O,5 L) 0 . (3.3)

— —-— - —— —. — .—-—..- — — - -—-- — — -
~~
---— — - - - - — —5 - —  — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~~~~~~~~
— 

~
-

S t.. - - _ _
5

-



Reference point a l t e rn a t ing/v ar i aU e  h coin cides w i t h  the

special feature/peculiarity of integra l, which  is loca ted in t he

calculation point whose coordinat e s p ro j ec t s  in th is  f o r m u l a  as

parameter. Functions (3.2)  and (3. 3) are c o n t i n u o u s  and d i f f e r e n t

f r cm zero ever y where , wit h the exceptio n/ e l i m i n a t i o n  of most s i n g u l a r

point where (3.3) it vanishes as

By an alogy with work (4] replacement is u tilized on ly ~n the

section

s - a 0,05 L , (3.4)

i.e. near sing ular point. Integral. are represented in the form

L s — 0 05L 1. I / I l l

g (a) K(s , a) da = g i-i) Kd’ + J g (a) Kda I g (a)  K ~~~~~
. (~~5)

I) 0 c + 0 O ~,F —1 1% Ii

In formula (3.5) wit h s ~< 0.05L first term , but wit h s >, 0.95L

second term they are not considered, since in these cases they are

— - — - -  — —  
.

_ 
- - 

_ 
- 

~~~~~~~~~~~~~~~~~~~~~ —_ 
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included in the third. In this case, ti~€ limits of the third integra l

respectively change and are calculated directly from for mula (3.2)

whe re cne should place . = C in the first case and a = L in the

second .

The f i r s t  two in tegra ls  of f o r m u l a  (3 .5 )  do not have  a specia l

fea ture/pecul ia r i ty  a n d  are ca lculated wi th  the aid of t r ap e z o i d a l

rule on the node/units of integrat ion, arrange/located in calculation

points. Last/latter integral is calculate d frcm trapezoida l rule with

the constant space in new alternating/variable h. In thi s case

replacement (3.2) provides the symmetrica l location of the nod e/units

of integration relative to specia l feature/~ €culiarity wit h an

increase of the densit y of the location of node/units in its

vicinity, which corresponds to the conditions for existence of

principal value for Cauchy and it makes it ~ossible to calculate

improper integrals according to trapezoidal rule with the constant

space in new variables,  necessary in this case values g(.) , ~~n and

p( .)  in the node/units of integrat ion , w h i c k  prcve to be between

ca lculation points , are determined by q u a d r a t i c  in te rpo la t ion

according to Ne wton (6] .

Integral  equations are solved by the i € t h c d  of successive

approx imat ions according to the  f o l lcw i n g  d i ag rams :

~~~~~ 
• 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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f o r i = 1

~~in = — - f ~; g , R  110 — Jgi, k -  K~ da; g1~ ~~
- (g k ~~ 

~
‘

I .  k_ I ) ;

for i = 2.6 -

~~~~~~ g1~~==f~0 —~~~gI.k_ IK~~fl da.

wh ere k — a number of app roach/appr ox inatic n.

Page 8.

Solution is consi dered foun d , it

~~~~ 
(s) — i (- ‘i) ,, ,, — : O~~)05 J~ ~

i.e. bound ar y cond itions (1.3) are fu l f i l led wi th  accuracy/precision

by 0. So/o. The n u m b e r  of approach/ appr ox ima t i cns  oscilla tes f r o m  4

for smooth bodies to 10—15 for the  bodies of intricate shape.

Infor mation about body is ass i gned by the tables of value s x and

r calculat ion points. Derivatives (1.7) are calculated with the aid

of New ton ’s formul as from values of x and r at three calculation

points (6]. Integrals in the formulas of apparent additional masses

(2.15) are calculated from trapezoidal rule. Space

alteraating/vo:&able h was selected as being equal to ~h =

11/1516.

I

- — — - - 5 5 - - - ~~~ ‘~~- .- — -- 
~~~~
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4. Examples of ca lculations.  Pot pu rpose  of checking the method

presented on computer s “M in sk—2 ”  f o r  el lips~ ids of r evo lu t ion  are

carried out the calculations of apparent additional masses and

relative velocities for wUch are known prec ise analytical

expressions (7]. the applicability of methcö to the determination of

pressures in real l iquid  is shown based on the example of the

calculation of the body, which has the  ve r t i ca l  section of

generatrix , for wh ich could not be obt ained the  solution by metho d

(2], or bodies in the form cf the combi.naticn of the cone with

cylinder, having a local abrupt change in tbe enclosures.

Zn Fig. 2 and 3 points plotted/applied the results of

calculation by the proposEd method of dimension less  ve loci ties on the

surface of the elliptical disk , which  has tbe  re la t ionship/ra t io  of

semi—axes a/b = ~~ 0.1 , and the eli ipscid wh ich  has a/b = 9. By solid

lines are constructed precise values of veiccities. Ca lculat ion of

velocity f ield is checked on the e x a m p l e  of the  f low around the

sphere of single diameter  of fcrwar d/prog ressi ve flow along I—axis .

Table 1 gives corrected values of velocit y a ,,, th . po ints of

vertical diameter (x 0.5), a lso, in the pcints of hori zontal

diameter (y = 0), arrange/located on different distances from the

surface of sphere.

5 - -  _.—_.,. - 5 5 —  —- — ——_-—_~~ 
_ —~~~~~q- - - 

- -— ~~~~~~~~~~~~~~~~~ — —5-— — -  
.~~~~~~__,- ___ ___ ..-a• • -..‘- .
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‘Zr N~,ç 
_________________

- 

~
____ i ~~ 

~~
i _ _ 

“Jl
I ~--~— - - -- 4

Pig. 2. Fig. 3.

Pig. 2.

Key: (1). Exact solution. ( 2 ) . proposed method.

Pig. 3.

Key: (1).  Exact solution. (2) . proposed meth od .

Page 9.

Results of th e calculation of the coefficients of apparen t

‘I.. 
-

~~ 

— — — — ‘— - — — _ —— — - - - -  —. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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additicnal masses for three ellipsoids by t h e  proposed method are

given in com parison with precise va lues  in  table 2.

The com parison of Frecise veiccities and apparent add itional

masses with the results  of calculaticns according to the proposed

method they testify to sufficient accuracy,ptecision of the latter .

The disagreement of precise and calculated values comprises less tha n

lo,o.

Fig. 4 and 5, show the comparison of the calculated and

experiment al values of the  coefficient of piessure ‘
~ in  the nose

section of the bod y surface, which contain the vertical section of

duct/contour . Pig. 4, shows the enclosures cf bodies of re volution

1—3 and is given distribution ~ at zero angle  of a t tack 1•

FOOTNOTE S . Bodies of revolution 1—3 correspond to eng ine nacelles

No. 25, 85 and 87, investigated experimentally in work (8].

ENDPOOTNOT E.

In Pig. 5, is constructed d istributicn p according to one meridia n of

body of revolution 3 at the angle of attack a = —1 0 ° , when this

meridian is windward , and the angle of attack a = ‘ 100, when this

meridian becomes leeward. The agreement of the results of calculation

with  experiment proves to be su ff i c i en t ly gcod.

!V.. 

— -— -- - — - - - . —
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table 1.

i l ’  3HaqeHn ,I
k I CKO POCTH U~~ cKop o cTn U,1

OTcTo A ,,He - - (q i OlcTo ,I,,He I -

Or fl ORC~)XI l OCTf l  III) ftp€ :t.~a- T WIll I.l(~ 1 I IOI4 ( ’ IJX IIOCT K III) 11 1 11 u -ia -
rae~~o~~y 3H8’ 1c- ~~~~~~ - 

II) H~~I

- MOT O:t y 111111 Mt ’1 l I . I’ ~ 
.1113 It h Ull

- 
~

- (
~
o)

lb RepT UKaJIb- - i  h a  rO phI3 O hhTaui I.-~
. O M y  ui Ha Mer py - - 

- hIOM~ j zu a~~eipy

0 ,01 1 , 470 - 1 , 47 1 0 ,01 0 , 05’47 0 ,577
0 , 1 1.288 1 , 289 0 , 1 0,4213 t ) , 42 13
2 ,0 1 , 004 1 ,004 2 ,0 0, 9920 0 ,9920

Key: (1) .  Distance f rom surface.  (2) . Values  of veloci ty.  (3) .

according to proposed method. (1 $) . precise values. (5) . According to

vertical diameter. (6). According to borizcntal diameter.

Table 2.

~ 
K,I~~~~~~~~~K,, K, K,, 

- 
K,,

b j ~~ g) uO npej~~~r1e~ op4 y MeTo Ay 
-~ (~~~TouiIIhIe 3IIa~ eunii 

-

0. 1 6 . 130 0 , 0751 — 6, 184 0 ,0748 -

1 ,0 0 ,499 0 ,500 — 0 , 500 0,500 -

9.0 0 , 0244 0 ,950 0 ,860 0 ,0244 0 ,954 0 ,864

Key: (1). according to the proposed method . (2). precise values.

— — - -— —_ _ —  — - —~~~~~~~~~— , - - _ __________________________________________________________
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- - .LJ FTJ

‘t~~ ~~~~~~- 
— -  I_n

I

Pig. 4.

Key: (1) .  the propose d method.  (2) . body.

Page 10.

The same good convergence of the calculated and experiment f. values

of pressure is obtained for the nose secticu of the body, wh ich

represents by itself to the combination of cone with cylinder (Fig.

6).

It must be noted that the results, given to Fig. 4, for a bod y

with the vertical sections Cf gene ra t r ix  at  zero angle of attack can

be obtained with the  aid of methods ( 1 )  a n d  (9 ] ,  whi le  the case of 

- - - a -‘ a. - - - -a-.-- — - -.~ - -
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flow at angle of attack it can be designed cnly accord ing to method

[1]. In me thod (9] by virtue of the use of function of current , can

be examine d only a xial ro t i cn  of body of revolu t ion .  Examples  of the

calculations of the bodies cf revolu t ion, which have the  local abr upt

changes in the form of enclosures, given to Pig. 2 and 6, they are

encountered only of the author s of wcrk ( 1]. However, in met hod (1 ] -

the volume of calculations proves to be considerably greater than in

this case.

— 
‘V~~~~~~~ 4~ ’ 

— .—— ,-—,
~~~

—— —— - — - — - - ‘~~ ~~~~~~~ ~~~~~~~~ 
- —
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~~~~~ ~~~~~~~1L4t
1 __ i - -- - I I }~~A~ ~ - -  If) — - --

~~‘ Ht~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

8~~~~~~~~~~~~~~~~ -4~~~~~~

~ J~ -i i it ~ o

Pig S - - Co.

Pig. 5.

Key: (1). the proposed methcd . (2). experimEnt.

Pig. 6.

Key: (1) . calculation. (2) . exper imen t .

I
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Page 11.

HYDRODYNAMICS OF THIN PLEXIELE BODY. (Estisaticn of hydrodynamic s of

rippled surfaces).

C. V. Logvinovich.

For purpose of the explanat io n of the xechani sn  of the  f l o a t i n g

of fishes by the method of flat/plane secticns is stud ied the

hy drodynamics  of t he  f i n e/ t h i n  bod y being d€fo r .ed .  Are ob tained the

simple formulas, which make it possible to evaluat e thrust/rod and

the spent power during the sinuscidal wave strains of the axle/axis

cf body.

Are estimated the hydrodynamic characteristics of fishes. Is

given the comparison of the results cf t h e o r y  %dth experinental

mater 3.al s. -

Hydrodynamics of the fine/thin body being deform ed, which

accomplishes during forwacd/progressive unifor, motion small

undulations, can be sufficiently simply studied via the application

of the  method of f l a t/p l ane  sections wi th  t k e  use of a concept of the

~pierced layer ” [1]. Tw c — d i u e n s i o n a l prcblem s of such k in d  were

_ _ _
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theoret ical ly examined by S ikman  (2], that also placed some

ex periment s, and by V. A. Eroshin ( 3], that developed the theory of

the airfoil/profile being deformed in L. I. Sedov ’s sett in g [li ).

However, the study of spatial problem , apparently, in larger measure

approaches us understanding of the aechanisa of floating of fishes

and marine anim als, than tie soluticu of twc—dime nsional problems.

The use in this case of a method of flat/plane sections is justified

by the fact that the bodies of man y marin e animals are ver y elonga ted

lengt hwise.

1. Let us examine .oticn of slender body in inertial system of

ccordinates xyz, which moves in unlimited vc lume of liqu id along

axle/axis Ox wi th  a constant  velocity of v (F ig .  1) . The longitudinal

curvilinear axle/axis of the body s being deformed wea kly differs

from axle/axis Ox , and its strain in plan e rOy let us designate

rh (rM. th. abscissas of tbe ends of the bod y let us des igna te  x 1 a n d

1
~

; the l.ngth of bod y ~ ~~~~~~~~~~ 
Let us assume that the cross

sections of body are formed by ellipses with the semimajor axis R =

8(z), parallel axis Ox.

- _,
~~~~

_
~~~~~~~~~~~~~~~~~~~ ‘—

-- -~~— -_~- -,-_~~ --i-—._--..
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I 1 / 1 ( r )

Fig. 1.

Page 12.

In connection with assumption about the fineness of body , we assume

that at the entire length dR/dr there is a value small . Let us assume

that, passing through certain “penetrable layer ” motionless relative

to the quiescent liqui d , body in this layer gives rise to the

transverse almost plane flow , close to the floii of ideal fluid. On

trailing edge (on the tail of f i sh)  with x = x 1 is fulfilled

Joukovski ’s condition about the finiteness of velocity, and after

bcdy remains the trace, equivalent to the film cf eddy/vortices with

elliptical circulation distribution according tc spread/scope z =

•R 1(x ,) .  This model of flow in essence represen ts th e developmen t of

Jones’ known diagram in ccnnection with the low-aspect —rat io wing

being deformed.

—- 
-_ _-.—— . -.—-- —. — —~
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2. On element of lengt h of body ds , acts ncraa l force df-~ and

suction force dP, which is caused by so—called circula r pressure dQ.

As is know n, the apparent additional mass, which is necessary for

unit of the length of ellipse, is m * (x) = piN2 (x), normal to

axle/axis a the velocity of layer - v,, - 
(h~ - - 

-Of

dF 4 = (m e -v,,) ds. (~ . I)

Circular pressure we fin d as a result of contour integration of

the cross section of body s* cf overpressuce p— p ,=

determined only by velocity head. Specifi c suction force is equal to

(IP
- ~~~- — 

~
(p /)1)COS (fl, x) ds *. (2 . 2 )

ds

Thus, for instance, for a cylinder with circular cross section

overpressure on its surface at points N, 8 is determin ed by

expression p -p, -
~ 

I II  (1- i s~n 1’i ) -- ~ 
S 

~~ 
( Wv ~). Normal to longitudina l

axis force (2.1) gives the integral

(11~ _ p0)c~~’id(RO)~~ 
- -  (~~~R2 Vn) .

circular pressure -

~ ~J(~ -- p,)d(R’J) 2~R

This circular pressure is negativ e, i.e., it attempts to expa nd

- ,—~--- 
—---

-g
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cross section. If bod y is pointed from the front, t h e n

slope/incl ination toward axle/axis Ox of gereratri x dR/d s z dR/d r is

also negative and on each utit of length acts tie directed forward

(along axle/axis Os) force

dI ~ - — ‘itR 
PL’ ; dR 

- 
V~ (/ (fl * (cj 

-)

~Is — 2 ds — 

2 
- (_ - -

Page 13.

.It is usually considered tha t  suction force  appea rs as a resul t

of the action of infinite negative pressures on infinitesi ma l leading

wing edge; here it is fcrme d on entire length cf bod y as a result of

acting the stagnation pressures. Let us note that in service record

for over pres sure ~~~~~ used to the expanded opening/aperture in

layer, is reject/thrown the term (formall y infinite) , caused by the

symmetrica l expansion of cylinder. It is possible to sho w that this

is admissi ble during the use of a hypothesis of flat/plane sections

for calculating the forces, which act cn slender bodies C 1 ].

For determining the force in the case cf ellipt ical cross

section, we will use seccad— order of Lagrange equation in connection

wi th kinetic energ y in layex r - ,,,* (/?) ~~~ ard as generaliz ed

coor d ina tes an d velocities, let us accept for determination of

auction force the se.imajor axis of cross s~cticn R, while for the

deter.ination of lateral force, — m.locity v~ . Is a resul t for

- —_*. .— - —
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elliptical cross section, will be cbtained the same expressions of

force grad i.sts, as for circular: (37’ (3111* Y~’~ 
P V~ dQ

OR - 111? 2 — 2 - d.s

d (IT (I 
~~~

- (II
lI t 4)1’,, ~ 

(,,, •v ,,) 
di 

aT ~ P2 v ,, ) -

Apparent additional mass m~ in cur case is a function only x (or

s). Formula (2.3) is valid for any elliptical cross section, and in

particular for the case when mino r axis vanishes and ellipse

deçen€rates in the segment ct line ~B (cn tail)

Pro jections on the  axis of the  coord inates  of the  e l e m e n t a r y

forces, applied to body, vi ii be
dl’ ~ —dF ~ dP;(IX 

(2.4 k
(II~~-~dl ,,-j  dP -~ ” -

Zntegralsf~ -- •r dl- , ~~~ r ,=- -f d r J ~1e undertaken aicng the Length bodies,

will give resulting forces. During integration is to consider

conditions R (x2) = 0 and R (x ,) = R~. Condition R~x 1) = R 1 realizes

the disruption/separation of the vortex sheet from the tai l of bod y

(Zhukovskiy condition). Since the forces are determined for the

elementary pi.rcsd layer which rests relative to motionless liquid ,

let us note that d (I
(If (It (IX

3. During periodic motion average during period resulting pull

force, cau sed by “flow ing ” fr~. tail mcmentum /impulse/pulses, it is

possible to calculate without integration (2.ts). Actually, liquid on
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u n i t  of the length of t race  con t a in s  m cu e n tu m/ i ap u l s e/ p u lse ’n~ (x~~~, .

directed along the normal velocit y of tail. Projection on axle/axis

Ox of the momentum /impulse/pulse, “wh ich f lcws ” from tail the second ,

urder taken with op posit e sign , gives t h e  i n s t a n t a n e o u s  force , which

acts cn body. Therefore pull force, obliged by its origin to the

mo sentum/impu lse/puls es , left  in trace , will be -

i~= + m~ (x 1) ~~~~~ — v ~ ) ~~~ x x 1.
di Ox Ox

Key: (1). with.

Page  11$ .

For the  e x p lan a t i o n  of the afore sai d, let us give following

reasonings. Let th.  body be is enveloped by s u f f i c ient ly  d i s t a n t

cc;trol surface ~~~~. which moves together with bcdy . Anot her control

surface �~ of the same con fig ura t ion , as ~~ is connected with

stationary liquid. At certain moment of ti.c t, both control surfaces

coincide. During period i , con trol sur face ~~t will move niong

axle/axis CI to cut Yr.

Since the flow of liquid inside ~~~, at torque/momen ts t and t +

v is ident ical, all the increa se in the kin e t ic ener gy and

mo men tum/impulse/pulse of liquid will be caused only by track

segmen t, which remained between the rear walls of control surfaces

-~~~- - - - - . - -—--— -- —~~ - .-
~~~~~~~~~ -— — —- - -



COC = 78068001 PAGE 39

~ and ~. According to the prerequisite/premises accepted , aft er

“runoff” from the tail of fish each element of leng th of trace , beiny

deformed , retains momentum /impulse /pulse anc  energy ; therefore for

ca lcula tin g the composi te force , it is possible for these values to

take the values of spec ific impulse 4ii *~~f l )~ which relate to the

torque/moment of descent from tail.

Thus, the average value of pull force, caused by the left in

trace aomentum/impulse/pulses, it .ill be (/~ id! Val ue I under

integral  is calculated for point x~~, i.e., for a tail.

Anoth er portion of pull force is realized in the form of suction

force, which appears as a result of the lateral flow around body,

- 
(d m~ (x)  I (o; Oi~ \2

~ ~~~~~~~~~ al (‘~~~) 
dx. (3.2)

Let us note that the appearance of suction force P leads to the

fact that momentum vector in the trace is turned on certain angle so

that average total pull force is equa l to ( I ) + ( P ) , where

~P H J - S P d t .

Avsrag• active power of pull  forces is equal  to ( [  I ) + ( p

( A J.

Pro. tail into trace on unit of path “flows” the kinetic energy

m’ (x i)  
( -

~~~~~ 

-- V ~~

, 

L. (3.3)

I 
-

~~~ -~~ - -~
- — --- -~~~--~~~~ 

— — -‘
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The power , spent on the excit ation of pull force, wil l be ( N ~
= ( (  i + ( p ) + ( E ) )  V , an d e f f i c i ency  ~~~ -~~~

The given above formulas, use d, for ex a mp le , to delta

low-aspect—ratio wing with spread/scope 2R 1, give the kn ow n results

cf lim.ar theory. It is real/actual, at constant angle of attack u.

veloc*ty o~=~— t~ and from (2.1) is obtained F,, — In V22 = p.R21V 2 z,

bu t frcm (2.3) after integration from x~ to 12 we have P = 1/2

Page 15.

The integrals of expressions (2.14) ftc. x1 to I~ give induced drag

F,, = -
~ m V2 82 + m V2 22 - - p~R

2 t,’2 ~ 2

and l i f t

-
~ 

_

~~~~~~

‘ -

~~ 

...).

Analogousl y un der the same assumptions can be exa mine d the

general case of the unstead y fluctuation of low—aspect—rat io wing.

L Un dulatio a s of body viii  be ob tain ec , If law of strain is

P

~ 

- k— -
~ 

— - 
~~~~~~

~~~~~ 

_ -_-•_
~

-_ - -__ ‘__ __ _
7 _

_ _  
.‘ - - - 

.. -
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assigned in the form T~=~~~~~L f l ( -~~~~- — 
x~ 
;
x~). assuming that length of

body x~ — x i ’.~ L~~--= 2 i tLn (n num ber of vaves , which are place d at lengt h

of body) ; C — phase wave velccity, progressive back/ago.

The amplitude of the strain of the axle/axis of bod y in the

general case can be represented together

=a ~ - -  a j ( .~~— —x) + a 2 (x9 _ x) 2 -f .

Let us examine below the simplest case, af ter acce pting

1~0--- ionst. lormal. velocity will be

va — -~~ - (C — V)cos
( 

Ct

the perio d of osci llaticns T = 24/C)

Gener ally speakin g, the law of the distribution of apparent

ad ditional masses m~ (x)  is essential d u r i ng  the calcu lation of force

of P. The average value of suction force is calculated fron the

form ula
~P~= _ 4 J d t j  -~-v~ (x , t) -

~~~
_ dx =_

~~~ 1 
(v~I d m *.

I) x~

In o.r case average value ~~~~~~~~~~~~~~~~~~~~~~~~~ (C_ V) 2 is

comatant iii ran ge from z~ to x,; t h.r.fcr . ( P ) 
~ 

( E ) •

the law of the d ist r ibutic u of apparent additional masses

along the l.mgtk I.~ proves to be unessential.
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Page 16.

Substituting these expressions in the ~receding/previo1Is

formulas , let us fin d the avera ge va lue s

Ci~~~~~~m i ( ~~ )  (
~

— ‘),
P)  ,n~ ~~~~ — 

~~~

~ 
~~~ ~K~

-)2 - - - ‘~~ ( 4 1 )

V} ‘ nz.(~~~~~~ v2~ 
~~~~~~~~~~~~~~~~~~~~

k~) = 2 (i

Pig. 2, gives relative average va lues ( I) and ( P ) of those

comprise of impulsive and suction force, obtained from (14 . 1) by

division on ~~~~~~~~~~~~~~ In the conditio’~s,/mcde of floating with

high efficiency, when ,, -~~~;, the porticn of suction force does

not exceed 200/0 of impulsive force. Fig. 3, gives the kinogra m of

the floa tin g of mac kerel , bcrrowed from S. G. Aleyeva’s wor k (5). On

this, photographs it is possible to conclude that C/V .~~ . 2 and the

efficiency is cb s. to O.~~5; wavelen gth somewha t lesser than the

length of body and ~~ , i .

Ji 

-

~~~~~~~~~~~~~~

-

~~~~~~~~~ 

- - 

~~

-

~~~

-

~~~~~~~~~~

. - _
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. 

~~~~~~~~
•1~

~~~~~~~~~~~~ 
-j

~~~
-

~~
’-

~ -

/

/ ‘k 7 1  .

L~~~’

8 4-::~:::~ I ,— - -  11T h .-$

~~ 
.~2 ~1 ~d C/ v .

Pig. 2. Fig. 3.

Page 17. -

If we consider that the active thrust 1/V ( A ) overco mes resistance

of friction W =C ,S - ~-~
’—- , then the coeff ic ie i~t of fric tion drag will

be locate d from equalit y W ~ 1/V ( A J- . For C/V = 2 an d  ~ ° ~~o,4 is

obtained the following estimation of drag cc€ffic ient :  C,~~ O24

where S -. the mois tened body surface.

According to experiments of V. Ye. Pyatetskiy ( 6 ]  for  bluefis h

42 cm long with the sprEad/scope of tail of approximatel y 8 cm at

velocity ~ = 0. 55 m/s were obtaine d values C/V = 1.47 and =

-11

_ _ _ _ _ _  _ _ _ _  -~~~~ - -~~~~~~~~ _ _ _ _- -

~

-_ _ _ _ _ _
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0. 19—0.25. Average efficiency 
~~~~~~~ 

In this case ~~p2~ = 50 cm 2 and

S ~ 640 cm 2; therefore the coefficient of friction drag was obtained

by close to 1.7— 3.0.1O~~ .

Calculations according to formulas (14.1) show that at values C/V

~ 1.5, 
~ O 0,2 the “wave motor” with spreac/scope 1 m at velocity v

of 10 n/s develo ps thru st~rod of approximately 90 kg, spending

po wer of approximatel y 11.8 kW.

The method s of the evaluations of the effectiveness of “wave

motors presented” can be developed for the configurations of body and

laws of strains, closer to those ob served at high—spee d fishes . It is

possible by the same w a y  to consider the effect of bac k and ventra l

tins, variable along the length of amplit ude and series of other

cbserved in nature factors. Integral estimaticns according to the

trace, left by body, are interesting by their generality. It is

important to note that the used method was checked in the cases of

gliding and motion within the liquid of solid bodies where the

results of theory and experiment proved to te very close. It is

possible to expect that and this esti.ation cf the propulsive

proper ties of fishes is close to reality. This to a certain exte nt is

ccnfirmed by the satisfactcry convergence of t h e  calcu lated values of

pull force an d fr ict ional  resistan ce for  the fishes, inspected by V.

Ye. Pyatet sky.
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Page 18.

THEORY OF UNSTEADY CURVILINEAR MOTION OF LIFTING SURFACE IN GAS.

V. E. Haskin .

Is examined the general case of the unsteady curv ilinear motion

of l i f t ing surface in gas (on the  basis of l i n e a r  t h e o r y ) .

For this surface are given t h e  f or m u l a s , which  ex press gas

velocity t h r o u g h  t h e  d e t sit y  of d i~ tr1butict of edd y/vortices. These

fo rmulas  generalize B i o t — S a v a r t ’ s usua l  l a w  in such a w ay t ha t  it

becomes suitable for arbitrary transient vortices in gas (in linear

approach/ approximation) .  General izat ion l i € s  in the fact tha t

Biot—Savart ’s usua l for .u la  is applied to vcrt e x e l emen t s  t a k i n q  into

account delay in the formation/education of velocity to the transit

t ime  of so und signal , and appear some suppleme rtary “w ave” component

of induced velocities.

The numerous m e t h o d s of solution of direct and reverse/inverse
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problems of the f l o w  a round  l i f t i n g  s u r f a c e  of gas [ 1]  - [3] they are

related to recti l inear moticn.  The s t a t i ona ry  h€ l ica l  notion of

carrying filament in gas is investigated by Fratkl [4], and lifting

surface — by Naykapar.

Gas velocities during the curvilirea r moticn of carrying

filament are examined in [5.

1. Let infinite gas to the torque/moment of tine t = 0 be

rested , and then it  was ag i ta ted  by t he  not ion  in it of li f t i n g

surface. Of pe r tu rba t ion  ra tes  we se t/ assume much  the  lowe r speed of

the motion of the points of l i f t i n g  s u r f a cE .  D u r i n g  t he  ca lcu la t ion

of velocit y fields , we cons ider  pe rmiss ib le  the t ransfer  3f the

points of application of force to gas from lifting sur face 4-~~ certain

the closely spaced to it, permeable for gas surface. The vector of

the sur face  densi ty  of the app l ied  fcrces wi. set/assume norma l to the

permeable surface indicated , continuous at each moment of t i n e  within

certain tha t  d r i v i n g/ m o v i n g  a long the s u r f a c e  of region and t h e  equal

tc zero ou t  of this  region.  Under  these  c on c i t i c n s  is placed the

problem — to de te rmine  the  rates  of f l c w  of gas , if the m ot ion  of

lifting surface and force on it a re  known .

Page 19.
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2. Disturbed velocities i and pressure p Ct infinite gas, set to

motion by arbitrar y field of external volum e fcrces ~o
1 . in l i nea r

approach/approximation it is determined by system of equations

- (1/)  - - - 
- 

- I
- t~ f I ( t  ! -F C- ~~ (h\ V I )  — .

and by initial conditions

~~ ~ - - ~) p , ~ -~~ o (~~2)

(Po — density of u ndisturbed air, c — speed of sound) .

If we present the velocit y and pressure in the form

(‘P
v - - 1)  -~ gra l p . p - - - Po

the system (2 1) it is reduced to ncnhcwog eneots wave equation for

the potential  -p:

- 
I d~ ? t~~V 1) ,V i~ ~-2 ~3(3

wh ere ‘-~ ~~ S~~~
1t — the referred to P o vectcr of the momentum densit / of

external forces.

Potential 0 is convenientl y searched tcr in the f orm ~

which reduces to following equation for vector E:

1 (1- ’!: - ( ‘  ~)— - I).
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Solution of aquation ( 2 . 3 )  under the zero initial conditions,

which correspond (2.2), is given by Kirchhctt’ s formul a

I:’(r ~, t ) =  -~~_ i~ (~ . t ,, - ‘-) c I k . 1= r~ - - r

(integral it is common on the part of the space where integrand is

not equal  to zero)

Vector T~, accordingly (2 .4 ) , is cc n s tr u c te d  as d e l ay i n g

potentia l of flows the vectcr equal in m omentu m densit y to. Therefore

let us name this vector momentum /impulse/pulse— potenti al . Passage to

the limit to the surface field of forces is ccnverted (2.14) to the

fo rm

/~f r0 ~~ j
~ ~~~ 

1(, , t , - - (2 
~ )

where I ( r , 1) — the referred to Po vector of the surface momentum

density of the external forces , which affected up to tor que/mo ment t

the gas at the points of surface w.

3. Let us examine irfitite quiescent gas in which with certain

mo men t of time begins to move lifting surface. As has al ready been

spo ken , let us con sider that the pcints of lifting surface little are

dis tant  f rom certain staticrary permeable sirface of W. Designating

through W 0(t) region on surface of ~ for wh ich is design/projected

(along standards) at torque/momen t t the lifting surface , let us

_ _ _ _ _ _  —a
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identify this region with quit e lifting surface , transferring to it

the points of appl ication/appendix to gas of external forces.

Page 20. - -

The part of the boundary of the lifting surface w hose points

have different from zeic ncznal tc~ard boundary composing the rates

cf motion , directe d from region W 0, let us cesignate through L, (t)

and  inside region — L 2 (t )  let us r e s p e c t i v e l y  call these c u r v e s

leading and trailing edges. Region W 0 can 1e limited to the pieces of

curve s, not  hav ing  the normal  to t h e m  c o m p r i s i n g  ra te  of m o t i o n  (by

flank edges).

Let us describe the motion of lifting surface by the parametric

equation ~ = (u, v) of surface W by the pcsition of the cur ves L,

and L2 at different moment of t ime. For conv enience  we consider L 1

and L2 at the initial moment coinciding, but in order not ~:o t~xc luIk

the case of the instantaneous eaerçence (or disappeara nce) of the

section of li f t in;  sur face , let us a l low/ assume the  mot ion  of these

lines with infinite velocities. W, (t) and b 2(t) - region ~n surfac e

of W , described by the curves L1 and L2 up to the torq ue/moment of

‘1ti me t, but r 1 (r), v2(r) — the torque/moments of the time when the

curve s L 1 and L2 pass above the point (r) or surface of ~.

~fI
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Let us realize that the points of regicns W~ ~~~ U2 at the

mo ment of the passage above then of lines L i and L2 cont inuously emit

the acoustic wa ves, which spher ically diverge at a rat e of c. Let us

fix certain point of space (r0), not locating on surface of U, and

the torque/moment of time to. The parts of regions U1 of andes U2,

frcr bhich had time to reach point (r0) up to torque/moment t0

acous tic wav es, let us call the audiI~le forms Cf these reg ions and

designate respectively W~ and W~.

The condition of the determination of point (~) in region W

(Cr W~ will be ‘1 (i ,, r, 1 k,)  ~-: ( ‘  (or ‘F, (,- ,, r , tj - -c i  U) , w here

‘F (r0’ r , - 

~ I _ t’ Ilri — -~(r) !  an d ‘F ~~~ ‘F , whe n -
~ — - , (1 = I , 2) The region ,

vhich supplements W~ to W , let us design a te  U~ Region W can be

name d in an audible manner of the film Cf eddy/vortices, while reg ion

— aud ib l y of l i f t i n g  sur face .  We wi l l  be res t r ic ted to the

regular  case when in the composition of bound-iries of the region 1V

and 1V~ enter the lines, determined by equalities 1

‘F 1 (r , ,  r , t~ ) (‘ ‘t~ ~~~~ - r , 1 , ) (~ . I)

FOO’~M0TE 
1~~ In the special cases, furt~ er nct examine/co ns idered ,

equalities (3. 1) :an occur for the totality of the poi nt~., which torn

region. ENDFOOTNOTE.
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Let us designate the lines indicated respectively L , L and

will call them the audit].e for ms of leading and trailing edges .

Begion ~~‘ can be also ]imited by the secticn cf boundary of the

region V which let us designate through /.~~ (Fig. 1). Sinc e the lire

L 4 has different from zero normal rates of mot ion its intersection
-~~wi th  cur ved L fo r  points (r 0) ,  wh ich  do oct  lie on U , it is

impossible. Region W~ besides lines I - and L can be li mited to

the sect ions of bounda ry  of the region U whcse totality let us

designate /~~ (see Fig. 1).

Page 21.

1~. -
~~(;, /)  — referred to Po vec tor  of aen s ity  of su rface forces ,

wh ich act on gas from the side of points of region U0, in direction

of s tandard I to surface of V. Regarding the vector of the surface

momen tum densi ty of the for ces

F ( r , /) ~~~~~~~~ t) d! ,

and the vector of mo.entuu/impulsejpulse—pctential of the flow ,

cause d by these forces , accordingly (2.5) will te

E (r ,, I
~) ’  

~~~~~

- -

~~~ 

(;, (
~ - 

-fl

For the determination cf velocity potential 0, it is necessary

tc know de r iva t ives  of vector E on the  coorcinates of point  Cr 0)
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Let us examine the d i f feren tial of vec tor 1, calculated when

point (~~
) is displaced in the d i rec t ion  of artitrary unit vector

- in distance 6h, and time t0 grow/r ises ty 6t. Since region W~

will obtain during this variation certain increase ~W , the n

introducing derivatives under integra l sign, let us find

- 
I (~~~~ ) 

~ ~ I)

±~~ ~~~
- ‘ _ , (

~~ 
ta - - ) - 

~~~~~~~ 

‘ 

~ 

( - l . 1
W I

(-I
Throu gh I’ , ( r , 0 is des igna t ed  the  t i m e  derivative , a ~

indicates differentiaticn ir the sense cf the vector v with respect

to the coo rdinates of po int  ~~~
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Fig. 1. Fig.  2.

Page 22. 
-

L~ displaced dur ing  variat ion pos i t ion  of l ine I~. a

and r - radius— vectors of the arbitrar y infinitely close point s of

these lines (Fig. 2). Beg arding lines ‘L~ an d / ~ we hav e the

equalities

~~ 
(r~ r, 1~~ ‘1 1 (r4 ‘~7~1i , r ~- ‘ir , (

~ ~~ ~U ,

d i f ference in whic h wi th in  l imi t w hen 
~~-.o, ~t— .o gives ~

-Ie following

condition, superimpose d on

~~hç~ ~F1 -~~- ~r ~ ‘F , ~~~~~ ~il = U.

where c and V — Hamilton ’s operators on alternat ing/variable r0

and r.
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Since

ç ,  ‘I I (r 0 — r )  r - - r  ç ’F , = (r -— r)’ ~~~~~~~ r cGrad ~ ,

this condition can be written in the f orm

(e + ~~ r (e-  
~~ 

- -- - (-1 .2)

smi tabl e both for a curve L~, and for L;, moreover

e =~ (r - — r o) I r — r o ’ , ~- - - -~ Grad~ . A th e  p a r t i c u l ar  case ~/ z=~ t— O equality (4.2)

gives the fol lowing condi t icn ,, super imposed  on vector dL of the

cell/element of curves or

- dL (e ~- t )  rzrO. 
(4.3)

Let us introduce in curves L~ and L the families of the

alterrating/variable vectors m, which lie at tangent to surface of U

cf plane, but  clear these curves.  Assu mi n g t h a t  the  t a n g e n t  to wa rd

surface of U componen t of v ector ~ is d i rec t ed  along the  app rop r i a t e

vec tor , we will obta in  f r cm  (i4.2) with an accuracy to ir-.finitesimal

f i r s t  crde r

- (i:. ~~ ~II - (4 4)rn
,n (e — - F— i’ )

The element of area dS ’ , constructed cm vectors ?r and dL , we

consider positive, if ‘~r it is dir~ cted f r c m  re gion W ( i = l , 2) ,  and

with view along standard N has region W, tc the left of its

direction. Then dS~~
_ I
~~ rd/.~l 

an d on (14 .1$) we f i n d

____ - - - - - - -
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dS’ - .~
“

• 
m i l L  

~~ 
.
~~~hm(e

During replacemen t curved /.~ by broken line from cel l/elements

t he  corresponding areas  dS’ f o r m  the  region~ ’W~, which differs from

to the small second—order quantity telative to 6h and 6t.

Page 23. 
-

Producing in (4.1) the replacement  of region w on~ ’W~ (that it will

oct influe nce the differential ~E), we wil l ck tain

~
‘
~
=— 

~~“Ji ‘~~~ ~~~~ 
(—)- ‘

) ~i;~ 
,~ 1)

/ ~h ~I
-

~~ 
~~~ 

i 

~ ) (a—- ~ 
- -

Nmd/. -, - I \ -. - - - -- - 
- 

-
- I ~r , I —  - ) I ( e  ~~~ - I — L~ tI -

J 4r~fm (e IL) \ C /
I
’

the coefficient of Oh in this expressico gives derivative of

vector E on the position of point (r0) in direction -~, i .e.,
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JJ -~~~~~ 
(~~~ ) 4 

~~~~~~~~ ~~~~~~~ 

-- 

) 

-- - 

~~~~ 

‘ -

~~~~~~ ~~~ 

-

WI)

f \,ii j ( e .  ~ F I r t 0 ~~~~~~~~ (4 .5)
• 1 4thn (e — l- ) C /

Since ~~ t) = 0 with t < i~~ 4r), value to curve L is

equal to zero and the t h i r d  integral in (4.5) is absent. Calcu lating

with the aid of (4.5) derivatives alcng coczdinate axes and

determining div K, we will obtain velocit y pctential

(r e, tI) -
~~~~~~ 

~~~ ( 
.)i (r ~ t , _ 

~

. )+

$ j ~~ ~~~ (i ) 
/ (r . i~ —- 

c 
I

WI)

here I ’ and . — projection of vectors I and ~ on the going along
()

them standard N , a -
~~~~~ , indicates different iaticn with respect to the

position of point (r 0) in d i rec t ion  N.

According to (4.6) in all points of space , beyond

exception/elimination which are located on surface W , potential 0

exists and it is continuous, and gradient ~ de te rmines  the  ra tes  of

f low of gas.

.1
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Page 24.

Po tential jump  0 wi th  approach  f r o m  the  d i f f e r e n t  sides of surface V

to the located on it point (
~~) on the basis of the max imum properties

of the potential of dual layer is equal to I~~r, t), that means

F (r , tI ~~circulation on duct/ccntour G , whic h pierces surface of U at

this point (positi ve I correspond to the intersection of surface of

V in the circuit/bypass of duct/contour G in the direction of

standard 1?) . In the case of c 0 equality (4.6) transfer/converts

intc known expression for the velocity ~otemtial of lifting surface

in the incom pressible fluid.

5. Assuming that function o(
~
, t) is differentiat ed in all

points of lifting surface and it is final on its boundarie s, let us

deter.ine derivati ves of potential 0 with respect to coordinates and

time. For this, preliminarily let us find differential ~~ when poi nt

(r0) is displaced by vector ~ h , and time increases on at. riesignating

throug h ‘dt~’ and ‘~W the increases of reg ions  W and W luring this

variat ion, we can wr i te
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(I~~ ~ ~ JJ ~~ ~~~~
c () )

~ 
‘ (

~ 
~ .i ~ t,-- ‘)J L O II~~I

co flO)

dS ~1 f I \ - - / /_  ~~~I - - 

~~~~~ 
, ) I i ( r , 

~0 
-- 

~
. ) ç~ t - - )

14 ))

~JHr ~~~~~
() )r (r~ ‘I) 

-

~w I

H ~~~~~~ d~~ 
( ~) [ ‘c~(r~ t o 

~~)~~

/Z + i;( ~~, -

~

. 

~~~~~~ 

~~~ ~;~
-)

~

± JI 
~~~~~~~ ~~~ 

(- I )i~(r . ~~‘ ) 
-
~
j-J4

~ ~~~~~~ 
i ) i~(r . ‘I)

fhe entering here integrals on regions ~W and ~~~ are converted

into integrals on lines L~ and i.~ analog c~s with that, as this was

made dur ing calculation OK. F u l f i l l i n g  this ccnversion and tak ing

into account that  to curve  L~ value I ’ ( r , ~ 
I 

) 
turns into zero, we

obtain

- 
~~~~~

- 
~~~~

-( )
~ 

I ’ ( r~ t~~ 
1

) ~ r , 
~ - O I I~ )

)~

‘ - H  (:~S 
~~~~ 

( ) ‘ 
‘i~ 

_‘— )( ~~t — 
~. 

—

~~~ ~

‘z) +

f 
~
. ) 

~
‘ — J ~~ ~~~~ (

1
1 
)\~nd/.I i~~r~ ‘~ 

1
, ~~~~ - f - c ~t J ,  (~. I)

1))

where !~ — the par t  of the boundary of t h e  region W~, w hich goes

along line s I. and I.; . mcr eover positive circuit /bypass L; w i t h
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view along N must leave region W0 to the left.

Page 25.

Coefficients of 6h and Ot in (5.1) essence deriva tives and

~ respectively. Calculating with the aid cf (5.1) gas velocity ~

pressure p . we will  ob ta in

V~ r , to)~ :~ rad J j  ~
. (  )~ 

F ( r , t 14~~~ 
i

I IIfl S)

~ 
j  I 

~ ~~ r 1
~ 

— J ~ ( (  \fl \mdl 
t / )  (~ 2)

- 
,
. -l r~ /mn (e —1 C

p (r e. (
~) - P~ ~x , ( ) - 

) J  ~(r i + ; (r  t~, - 
~

- ) +

(.  I \+ ~~
, ~ i r , I , I .  r

- -h-~l,n ( r I jL) \. (~ / ( ) .  ) )

The first integral in formula (5.2) can be interpreted what

veloc ity in  point (~~,) of the flow of the inccmpressible fidd ,

caused by the dipoles, distributed ove r surface W with density

1’(r) .= l ’ ( r , t~ 
‘)+  ~ - - 

~
- )  and or iente d a l c n g  the  nor mal .  Such

dipoles produce t h e  same velocities, as covering this surface

eddy/vortices with circulation I’(t~) (functicn 1’ r d e p en d s  besides

on the tcrque/momen t of t ime  t 0 and  of thE pcsition of point ~~~~

Let us further call r audible c i rcu la t ion .  ibe corresponding to

audible circulatio n vorte x sys tem consists of layer on sur face W’
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w i t h  the vector of surface intensity -~~ ._ • 
~~~~~~~~~~~~~~~~ 

and t h e  goi ng

along lines I.~ and I-~ discrete eddy/vcrtices , intensity AG * of

which is equal to I~~ on I~~ and t~ on I~ . U t i l i z i n g  f o r

calculating first term (5.2) ~iot—Savart’s for m ula, we will obtain

the fo l lowing  resu l t an t  expression for a gas ve loc i ty  t h r o u g h  th e

intensities of the eddy/vortices:

v = = J J  
~ 1

/4 e - ~~~ dS -

I 
) 

~~~~ [ ê (~~~~ [ 1 V t d j  
~ r / ~). .~. ~4~ I ( t7l (I’  —f- L)

Page 26.

4
Expressing element of area dS , standard N and surface gradient

f r om t~ by means of curvilinear ccordinate~ u, v

dS ~ = x dudv , ~~~~~~ -‘ r .~J z  ( t =  ~~~~~ ) ,

(J rad I’*~=x I (~r - k 1 i ~~- — - _  
!r1.~ \.\~~

I .) ,

we cam present the obtained expresEicn for velccit y also in the

fo l lowing  form :

- I -— d ( r  I’ *) 

_
;. dI~v I I e X - - 

~ ~ , ~~~~~ 

dud v -- / — - ~~~ 
*

1~ /~

- - e ( \ e)  
~ ~~~~ ~ 

( ‘ ( \ t ) I I U dV _ b d UI  ; ( r (  - - / 
( . 1 5 )

- 
~ , 

— ) .

~~ 

- - 4 f ~ (Au  + B b )  0 c
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here A - r~ t~~ - c ~~, B = r 0 e - ~ c~ .,, hut value a and L essence t h e  coefficients

cf vector in on basis ,~~~, As a result of (4.3) to curve occurs

equality Adu • Bdv = 0, that ensures the independence of the

determined by formula (5.5) velocities from the selection of

coefficients a and b. That entering in (5.5) jacobian from vector

~ (u, v) and scalar 1” (u , v)  is easily determined by dir ect

d ifferentiation of the f u n c t i o n  I’ *(u , v):

~~(r , !~~) ( 3 ( r , I (r , I)) I d r , ~(r, t)(

1( u , v)  d ( U ; V) 

- 

c ( 3 ( / 1 , v )  l

- Ic _ -s I -, ~ r , ~~~~C-I ‘ ‘ 1 ,

In expression s (5.4) and (5.5) it is possible to

transfer/convert to limit , fixing point (
~~
) tc surface of V. The

“direc t/straight” value of velocity, equa l to the half—sum of the

limiting values with apprcach to point 
~~~ 

f r c m  t he  d i f f e r e nt  sides

W, will be determined by these expressicns (isprope r integrals are

taken in the sense of princi pal values) . In t h e  most i m p o r t an t  for

practice case when V there is a plane and pcint (r0) i t  l ie/rests  on

it , the third and fourth integrals in (5.14) disappea r.

Formula  (5. 14) solves stated p r o b l e m  of t h e  ra tes  of f l o w  of gas ,

caused by the arbitrarily driving /moving in it lifting surface with

the assigned/prescribe d final surface load. It expresses

Biot—Sa vart’s law , generalized in the cas e of the compressed medium.
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According to this law durinç the unstead y actica of lifting surface

in gas Biot— Sa vart ’s f o r m u l a  it is required to apply only to that

vcrte x elements from which had time to reacb tFe point of

application/ append ix  sound  s igna ls .  Besides  iii add i t ion  t3 t h i s

appear the supp lementary “wave ” which comprise of velocities, whic h

decrease as first degree of distance of eddy,vcrtices.

6. Example 1. To t h e  quiescent gas f r o m  t t e  to rque /momen t  of

t ime  v = 0 at the  p o i n t s  of p lane  z 0, ccaes into ac tion the field

of the dir ected along axle/axis Oz forces b ith constant surface

density • p. Let us find the gas velocity in torque/momen ’ t0 in

the point of axle/axis Oz wit h coordinate z0.

Page 27.

A u d i t o r y  sensation area w~ w i l l  be determined b inequality

‘1~~~~~ — d , , --o and will represent by itself circle witi. a radius o~
P ~~~~~~~ wit h cen ter  in the b e g i n n i n g  of coordinates. The vector

of mcmentu . density is directed alcng axle/cxis Oz and along value is

equal to I I ~/ -- pt Hence

- I- ~ ~ 
) -
~ 

- -s - ~ ~~‘- — 

~ 
) “

To th is circulation corresponds circular E ddy/vor te x with a

radius  of N wi th  i n t e n s i t y  — pt 0. It will ExcitF at point (z0) the
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directed along axis Oz velocity - F u r t h e r m o r e , in  the

expr ession of gas velocity accordingly (5.4) will enter component

r ~‘( i V ~ I~~i,1I l
.1 4~-I r,,, (1’ I

where integration it is ccnduc ted in circle with radius of wit h a of

B, which limits auditory sensation area. Introducing vect3rial angle

8 between the radius—vector of the points ci t h i s  c i r c u m f e r e n c e  a n d

the axle/ axis  Ox and assuming that vectors are directed radially,

we will obtain

Nmdi I / I / )~ N — I l l ’. ,flp IS))) 1 (62)

where a — a half—apex angle of the cone wit~ circle U~~ as basis/base

and apex/verte x in point (z0). Taking into acccunt (6.2) integral

(6.1) elementary is integrated and gives ~~~~~~~~~~~~~ whe nce

t’:~~~ 1’; J ~~ I
~1~

_tI 10> - ,
(Ii

~ey: (1). with. . 
-

This  result  can be obt ained by a n o t h e r  way, for example by the

soluticn of one—dimensicnal prcblem .

Example of 2. On t h e  p l a n e  z = 0 Cartesian coordinate system ,

evenly moves from infinity the carry ing band of final width. From the

side of band to gas, acts the field cf thosQ directed conversely of

- - - -

~~~~~~~~~

- - - - -- - - ~~~~~- - -~~~~~~- - - _ _ _ _
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axle/axis Oz of the forces, which ha ve con stant surfac e densit y ‘1~~~ 1

It is required to determine the gas  velocity at certain moment of

t i l e  t o in poin t  Q, which is loca ted  on b a n d .  It  is a r r a n g e d

ax le/ ax is  in such a way  t h a t  up to the torque /m cment to the forward

edge of ba nd would coincide with axle/axis Cy, and the positive part

of axle/axis Ox traversed point C. The f u n c t i o n s  ‘~~~ 
and r~ , which

show the transit time of the leading and trailing edge s of the band

abcve the point of plane z = 0 with coordinate x ) 0, wi ll be

— 
X ( 

~ 
- 1,)

V and -
~ , = 

,. V

where b — width  of band , v — a rat e of its moticn.

The vector of momentum densit y for this flow will be

k t r  - 

~‘ u t with r 1 < t < ~~~~~~~ 
t’ = v~ with t > ‘2)  • Areas V 1 a n d  V 2

are half—plane z = 0 , x > 0 and z = C, x ) k. Lines L and i are

de te rmined  by equa l i t i e s  ~
- i --  o and  q 1 = i  ~~. ~~ = I I , i.e. repL ~s~~nt

by itself conic sections with focus at point Q, eccentricity p c/V

and directrices x = 0 and x = b .

Page 28.

Le t us e xamin e the case of supersonic spe e d of mo t i on , w h e n p >

1, line L — ellipse , and line 1. it is absent. Areas U~~ and  U~~

_ _  ---- ~~~~~~ -~~~~~~~~~ -- - - - -- -~~~~~~~~~~~~~ - - --~~~~~~~~~ - - _ _ _ _ _ _
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ccincide and represent by t hemselves t h e  in t e r i cr  of ellipse (Fig .

3). Audible within ellipse circulation i~~ - Th e c o r r e s p o n d i n g  to

this circu lation vortex system ccnsists of the layer of those cover

the in ter ior  of ellipse of para l le l  to a x l e j a x i s  Oy eddy/ vor t i ces

with a density of p/V and the concentrate d Eddy/vortex wit h an

i n t e n s i t y  of px/V , tha t  goes ove r e l l ip se . since (e N) = 0 for point

C. the rate of flow of gas accordingly (5.14) are wholly de termined b y

Biot—Savart’s formula , used to the vortex system point ed out above .

Introd ucing the vectorial angle between a fccal radius and the

axle/axis Ox for the directed along axle/axis Oz velocities from the

rectilinear and elliptical Eddy/vortex , we will obtain

Ij II
- 

p sIn II I! ~-

2 -— 2it V (x — x ,)

= J 2 L’I (cos U d~t’ sin U dx). (6 ;/~

where x 0 — coordinate of point Q.

The first of the integrals is undertaken in the sense of

princ ipal value. Coordinates x and y of t h e  po i nts of ellipse and the

lengths of a focal radius 1 are connec ted aith 6 relationship/ratios

x = fli, v~~~1s i t i O . i~~ ~~~~ ~OS6 ) wh e re N V/c. Ca lcula t ion  of i n t e g r a l s

(6 .3 )  gi ves v ’ ~‘( M  ‘} 
- = ç~ w hence ~~~~~~—

“ 
~

- --i- - This  resul t

is well known from the theory of fine/thin airfcil/profile in the
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su perscnic flow.

9
- -

~~~ 

~

--

~~~

--

Fig. 3.
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Page 29.

FLCW ABOUN D DELTA WING BY HYPERSONIC FLCW .

V. P. Kolgan

Work examines the problem of the flow a [ound delta d i f l j  o’

hypersonic flow of gas at low angle of attack. Is used the mel- h n 1 - )~

t he  “sources” of t h e  pressure , wi th  t h e  a i d  of ~~ic~ t h - ~ p rob l em cam.~
to singu ar equation. There is carried cut r e g u l a r i z a t - ion of his

equation, because of which cbtained integral eguation wi th continu u~

nucleus. The results of the work are illustratEd by exam~iles ot th 4 -

calculations for  pressures  fo r  the d i s t u r b e d  zone of f l o w .

This problem has already been examine d by a numbe r of the

authors (1], [2], who applied for the determination of solution the

method of expansion/deccmposition in series, reflect/r epreser~~ing

ph ysical flow plane to certain fictiticus plane. In this article is

çroposed another approach tc this prcbl€m , which ensures obtaining

soluticn immediately in physical pla ne. Method can render/show useful

for the solution of a series of other problems.

1. Formulation of pretlem. Let us e x a m i n e  the low er surface of
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t he  d e l t a  f l a t/p l a n e  w i n g ,  a r range/ loca te d at low ang le  of a t t a c K  a

<< I in the supersonic flow of perfect gas with large ma ch n u m b e r

2 1*  — ang l e , f o rmed  by l e a d i n g  w i n g  Edges .  Let us assu me a lso

t h a t  the pa rame ters ~‘t~ ii and v sat is f y th e follow in g

r e l a t i onsh ip/r a t i o s :

M
~~ 

-
~- I: M 1 -;)) I ii i p

let us search for asymptotic solution for a flow around of the

ving under the made assumptions. It began the systems of coordinates

xyz was arranged in the spout of wing sc tFat the p lane xz would

coincide wit h wing plane , and X—axi s ccincided with t h e  ax is of ‘he

ey..etry of wing. Let us introduce the dimensionless unknown velocity

tunct icns, pressur e and densi t y

V I- , (u , v , u’ ); p - - ~ ( p 1
, p ,  ( I

where  and ve loc i t y  and the densit~ of flow in the

undisturbe d f low.  By v i r t u e  of assumpt ion  (1 . 1 )  l ead ing  w ir ~1 edqe

will be supersonic, shock wave — plane and the parameter .. of flow

after it by constants up to the disturtance cone , proc eeding from

spout wing. This zone of flcw with the constant parame ters is

designated by index 1 (Pig .  1) and it wil l be f u r t h e r  called

exterior. The zone of flow , which lies within Mach cone, which

emerges fro. the spout of wing, let us cal1~ name inter na l area (area

2. iig. 1).
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Page 30.

Let us write out the solution for an Exterior. By virtue o~ the

made assum ptions solut ion can be presented in the form

j /.)
+ -) ?

p -

-V 0 (~~~% ) ;  ~~ 
I ~

)

Zi~~ ~~~ 
‘- ( ~~, 1’! ‘i -}

~~,, l ‘ z) -

where p = T* (x , z) — a surface of shock wave , and values with zero

indices re main the order of one with tendency u toward zero.

Utilizing relationship~ ratios on oblique shock wa v’~, it is

Fossible to obtain the follcwing scluticn tcr the exterior :

— fl1 z, Ps 1 , -) 1 I
I I I

1 1
- — — ‘

where A5 = 1 ~ 1 -f - K 1)2 1 
F’

i—adabatic Index

S S
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Let us examine interior. Let us introduce the new unknown

fun c t ions  and new va r i ab les  w i t h  t h e  aid of t h e  re lat ion sh i p/r a t i o s

U —= I ~ 2 U f ç j 3 ( J 1 O ( c t 4 ) ;  ~* ri , ,  ~- aI ~1 -~ - O( ~~)~
-z ~~~ t ’~ -~~ 

Q(a~); ) ~ -~~,-l~~x ~~
- -
~~~~ 

)‘ 1 (x , z * )f  0(a 8); 
1( 1  ‘

S
))

~2
.J 

t~;’~ f 0(a~); I
p t 

~~~~‘i - f )  ~~~
i
/) 1 

_ f
~ 

0(i ’) ; v ~~- v ~-
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13

Pig. 1. Pig. 2.

Page 31.

Then for interior of the equation of gas dynam ics in this
5~

approach/approxima tion they seem in the fo rm

- 

() 

~~~ ft - 
( p  - 1 U) ft

( I X  LIX \ f ,  J
LI (Pi~

’\_ ~ 11. LI 2 ( d t ’ 1 ~~~~~~~~ 0; - (1 .1)
L I ’  ‘ Ox ~~ 

ti j

LI ( ~01’5~1 0; a~, 
- -~ P

(~X dz * 
~. ~ I

Bound ary conditions on shock wave for this problem wh en y ’--= Ao X

take the form

- - -- S -~~~~~~~~~~~~~~__
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(I , i A , 1 V, =-
~ Y 1 ~

; p1 (1 - A~) Y,

LI) ’ , S
- - ( I e )LIz * -

~ 
1) tV’i~ 22 (1 F “~ ,)t  

p

vI == 
- 

1~~ - v i -
-; H I M’~, 12 (1  -~ A ) 2

If we introduce conical varia bles Y— ~ -i’ - - and and toa1 x ti , x

exclu de from equations ( 1 . 6 )  U 1, V 11 ~~ , then problem it is reduced

tc cne equation relative to Pi

isp, _ (~ ~~~~
. Z i) ( ~~

1
~) - Nz ) )  —~- o

under following boundary conditions (Fig. 
~) :

on the shock wave AB

‘ Z ~~~/ i (k = )‘I Ms) ;
‘‘ U (I

pp  ~ I ~(A ,, 1/1,, i ~ A 7 8 
-

p ,  z k- U,, / 
- 

U,1 

~ (F jj A , ( ~l, - - I) ) / 1 
—

on the arc of unit circle BC

) ~~~~ 1 /2 k -
~ Z - ~ I ; p (1 . l ( )

on the sur face  of w i n g  Co

P )  0 ~~~
)‘ ~ 1; p i r ft (I 1 1)



DOC = 78068002 PAG E

on the plane of s y m m e t ry  £0

/ -- 0; I )  - -~~ V M: p , ~. 0. 1.

Funct ion Pi can be analytical]y ccntin~ ed to enti re pol ygon BUEP

symmetrically, and , if we s€arch tor tFe analytical solution Pi (Y,

2) in the form of the function , even relative to its arju rie rtts, th€~n

conditions (1.11) and (1.12) will be satisfied automatically.

Ccndition (1.9) is spread tc AF and ED hy symmetrica l form , and on

the arcs of the unit circle , is retainEd as tefore condition p
~ 

= 0.

Page 32.

2. Information of houncary — valu e problem to integra l equation .

Let us search for Pi in the form of the contour integral

p 1  - ~‘ p a , ,  ~~~~ j .
}’ , / ‘ ~

) tI’~, (~—~ 1)

wher e
( 1  V ~~~~~ ) — / J (  I - ‘ , -:- ‘ l -

* Y, / , ‘ ~) ,,
,~ 

Iii 
~ t~ (1 t- ~~~~ 

,2 —

I,’( ” . ~) — th. in tens i ty  of the “ sc ur ces ” c f  pressure,

arrange/ located in a s y m m e t r i c a l  m a n n e r  on IF  and ED;

— arc l eng th .
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The solution of form (~ .1) satisfies equat ion (1.8), elliptical

wi thin unit circle, and bcurdary tc conditicns ~1. 10)— (1.12) . For

this, in order to satisfy conditio n (1.9) , Jet us find the limitiny

values of derivatives P it and !‘~~~ with apprcach to shock wave of from

within area BDEF:
- itg ( M  / i

P t - ( - ”~ 
( ) , Zj  j~( ’,, . ) r ’ l ’ ( - ”~’ , 7, ‘, ,  ) d s  k2 

-

p ,  ~ 
,\~ 0 7) g (1 ,, -

~~~ (M, Z, i, ~
) /~ J 

-‘ I

Subst ituting expressicn (2.2) under ccndition on shoc k wave

(1.9), we will obtain fcllowing singular furcticn g (Z)

k t g ( / )  + ( B, ~i~z + ~ I’(Z, ~~~~~ 
(~)d~

- 1’~ Z~Z (Z  ~) —--~!j I/(1 M~) k1( 81 - A , ,2’2)
(11(7 

~ )L
~ - !-~2)k

~ 
4.\~ ~Z~(I

Equation (2.3) is rela ted to the class of homogeneous complete

special integral equations for open circuits.

Let us search for function g(Z) in the class of bou nded

functions. Then pressure P I .  calculated acccrding to for mula (2.1)

will be bounded function.

Let us write character istic equation fcr equation (2.3):

~~ 
k2 - /~4

k2 1( 7) (B i ii~/~i 1 z’ 0 ( 2 4 )
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The index of equation (2.4) in the class cf bounded funct ions x

= 1, and the limited soluticn of eguaticn (~~.-L4) is r ec o r d/w r i t ten

i~i th  an accurac y to const ant  f ac to r  in t he  f o r m

f ( ~ 1 k2 / ~b ( Z ) c x p
— .4. Z~)

/ ~H/ t .~~ / 2 )  k ’ ( B  - . iZ ~~j ’ ’
k

1 (7) 
k2 II1 ~ Z2 ~~ 2/12 x~ (k ~ x 2 ( (B , — /12.~~ ) (k 2  ‘ v 8) 

-

I k~ ~ x~(k~ - - .v~) - f - k 1 ( B , — A 2 x~) 2

Page 33.

Let us conduc t now for equaticn (2.3) the usual procedure of

r e g u l a r i z a tion by the s c l u t io n  of c h a r a c t e r i s t i c  equat ion. As a

resu l t  we w i l l  obta in  th e  r e g u l a r i z e d  e q u a t i o n

k

g(Z)~~- ; I 1 ~’(Z . ~) g ( ~~ / ~f ( / ) ,

where

K (7, - a (/ 1  u i /  ‘1’ , (7 , ~) -

k
2 ! (7) I /~‘ t- ‘x p I - 7) -ct - (~) ‘l’~ (-~.

- :- ‘ ( - :~ 
72 )exp I (t)

- Z (  k2 - - Z2
7~(1 ’~ / ) k ’( B , 

- 

‘1 ,/-’ (~
’ -

- i  
k2

~ t ’ (k2  / ~) L /~‘ (R , .-l~ ~ “ I ’ ’
~I’,(Z, ‘ )  ~~

- ‘1 (7 , ~
) ~--~1)~/ ,

When deriving the equation (2.6) there was used the pa ity of

function g (Z). From the theory of special integral equat ions (3] it
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7:
follows that equation (2.6) represents by itself the integral

second—order of Fredhola equat ion with the ccntinuous nucleus whic h

already can be solved by the approximate numerical methods .

Let us note that the procedure of regularization becomes

inaccura te  when ‘4 . ” ‘ ‘ . because  is cha nged the index  of equa t ion

(2.4), and coeffic ient c(Z)and , consequently, a lso nuc leus K(Z,.~)

become disruptive.

3. obtaining solution and its standardization. The problem of

finding the distributicn cf source strength g (Z) came to second—or der

of the integral equation of Fredhoim scluticn wit h continu ous nucleus

(2.6) . For f i nd ing  the so l u t i o n , let us  use the  fo ll owing  a p p r o x i m a t e

diagram. The cut of the i n t e g r a t i o n  ( C , k )  let us divide into n equa l

parts ~s = k/n and on each section \s , apprcxima tel y let us cou nt the

function g, of constant. Then , replacing in (2.6) integral by the

sum and varying n times variable Z, we obtain for g, the s’.’stem of

the linear algebraic equaticn s

~~~~ _ ,i , (3 1)

where the matrix e lement  A takes the fcrm

- I~ (7,, ~)~ s

cclumn element f1 f(/, ); 7, — the  coor d inat e cf t h e  midd le of the  i

S S - -~~~~
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cut.

For providing the nece ssary accuracy/precision during

ca lcu la t ion  K t ,. ‘
~j

) t he  i n t e g r a l , e n t e r i n g  the  express ion  for  K ( Z ,

, was calculated from the formula of rectangies with the number of

se parations n 2 .

Solut ion g (Z) , obtained from equation (2.6), is determined with

an accurac y to constan t factor due to the arbitrary selection of tht~

solution of the characteristic equation f(Z). Let us note that from

condi tions on shock wave (1.7) it follows that along shock wave is

correct the relati onship,ratio between w 1 and p.s :

~ ,~ 
~~~ (3 2)

(17 - - I “ ‘ ‘

Page 3~1.

Since during motion alon g the shock wave A B f u n c t io n w 1 w i t h

con t inuous  f o r m  changes  f rom zero to -w ,, = - ‘~~
‘ 

, the with the aid of

relat ionsh ip/ratio (3.2) ccrditicn of the standard ization of function

p,, can be presented in the  f o r m

J Z ) Z p ( ’ 4 , Z d Z ~~~~~~ 
~~~~~~ 

- (3.3)

Substituting in (3.3) express ion (2. 1), we will obtain

-  
S
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s tandard iza t ion  cond i t i cn  icr f u n c ti c n  g ( Z ) :

k k

i ~~~ 

- I/s’ Z~) ~— 1 ‘41 g ( ~)d .
k2 - Z~~ 

[/ (/2~~~ Y~ ) - - 4 /~~ 2 ( I  M~~

I 
- - dZ 

- 

- 

— —  _~I ~~~~~ (3 4)
~~~~~~ k2 ~ f 1 ‘

The second integral in equaticu (3.4) is located wi th  the  aid of

the known formula of the exchange of tI~e order cf integration in the

dual integrals: -

k k
I dZ ~~(:)~~~__ ~~~~~~~
2 Z k2 - - - Z 2 (~ Z)  

— 
2k

—- k —k
k it

1 1 ’ dZ
I g(Z (d~ -2j Z~ k2 — - Z2 (. 7 )
- it it
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ft~ ~~~~~~~~~~~~

F i g .  3.

Page 35.

Last/latter integral in equation (3.5) is equal to zero, since

internal integral on Z turns into zero. Finally the condition of the

standardiz ation of functicn g(Z) takes the form

Ic It

- - k (‘~
‘ -— ~~ — -I \1 - ’ ‘17

- ‘ (I - .- M2, g ( J t I .  - - - - -
— 

.- . I ’ ‘‘ /‘ 1k (Z~ 
-
~ 

- 

~- )  I -l \\ 12 I / ~~~ (1 I

0 

— 

~~~~~~~~~~~~~~ 

~ ~~~~~~

4. Examples of  ca lcula t ions. E m p l o y i n g  the  given ab ove procedure

was comprised the program of calculatic n fcc ccmputers . During

calculations was set/assumed ~‘ = /.~1 and X = 1. It turned out that

with an increase in the number of sepa raticns (n = 5; 10; 20; 40) the
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difference between the consecutively obtained sclutions is rapidly

reduced; for example, at the value of the paramete r ‘i. ~ - .-
~~ 

the

difference in the values of pressure Pi during calcu lations for n =

20 and 40 is exhibited only in the fifth sisn. By this is confirmed

the effect iveness of the selectio n cf the calculation me thod . In Fig.

3-5, are constructed the isohars Pi in the disturbed are a

respectively for the values of the parameter M.~ u== 0, I; 1 ; 5. In these

cases the calculations were performed with r = 20. Given data of

ca lcula tions are conf ir me d by t he r es u lts cf ( 2 ), in which the

solution is found in the form cf a series.



S 
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u s A.9 Al c~~5l /’— ,

~~~~~ ~~‘ —~~-‘ 
~~~~~~ 

~~~ --~ /7 ~~~~~~~~~~~

Fig. 4. Fig.  5.
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Page 36.

AEROOTNANIC INVESTIGATICN Of ELEVONS ON L0~ -ASEECT—RATIO WINGS .

V. G. Nikeladze.

Are examined the aerodynamic characteristics of elevons as

organ/controls of longitudinal and lateral ccntrol on

low—aspect—ratio wings. Is presented the method of calculation of the

aezc dynamic characteristics of elevons at subscnic and supersonic

speeds. Are given the results of systematic studies in the effect of

the separa te parameters of elevons on their aercd ynamic

characteristics. Is given the flow pattern cf low—aspect—ratio wing

with the deflected to large angles elevons at subsonic, transonic and

superscnic speeds.

NETHO D OF CALCULATION OF THE EFFECTIVENES S CF ELEVONS AT SUBSONIC

SPEEDS.

The method of calculation of the effectiveness of elevons on the

wings of arbitrary plantczm at subscnic speeds is instituted on the
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use of a reciprocity theor e m 1. which establishes

communicat ion/ connect ion between a e r c d yn a m i c  w i n g  cha rac te r i s t i c s  in

direct/ straight and  r e t u r n  f l o w  w h e n  t l€  d i r e c t i o n  of ve loc i ty  of

incident flow v 0 is replace d by reverse/in-verse .

FCOTNOTE 1 The use of a reciprocity theorem for the evaluation of

the control effectiveness was suggested by A. I. Golubin skiy.

ENDFOOT NOTE.

The d erivatives of the lif t coef f icient e~~ , of the coefficient

of p i t ch ing  moment ,n~” and  cf the r o l l i r g — m c m e n t  coef f i c ient  rn -” ~~

the angle of deflection of elevon s ,,, can be presented as fo l l ows :

c~ ’ -
~~~

- ~~~~ (I S; (I)

- 
~~ 

p .~ - dS; (2)

In ~~
- 

~~~~ 
p .~ , - dS; (3)

S 

here S — an area of w i n g ;

Page 37.

.1111 pressure—drop coef f ic ien t  be tween  lower and suction sides

of wing, driving/moving at angle of attack without rot ation , in the

turne d f low;

S . 5  - - -~~~
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p ~~~“ - -- pressure—drop coefficient durin g the rotation of wing

r. lat ive to axle/a xis Oz in the turned flow;

I pressure—drop coefficient durin g the rotation of wing

relative to axle/axis Ox in the turned flow ;

•/~~~ 
— velocity head.

For m ” and rn~~ as characteristic linear dimensio n is accepted

root wing chord b0.

The problem of flow arcund of the wi ng in the turne d flow is

scived by the a p p r o x i m a t i o n  method in w h i c h  t i e  w i n g  is rep laced b y

vor tex/ eddy sur face ’.

PCOTNOTE ~- . S. N. Belotserkcvskiy. Fine/thir lifting surfa’:e in the

subsonic f l ow  of gas . N. ,  “ science” , 1965 . f N D P C O T N O T E .

Carrying vortex/eddy surface is simulated b y ccnnected Vikhrev ’s

series cords. Each cord is replace d by several cbligue hor seshoe

vor tices, which consist of the bound vortex with constant

intensity/strength along Epread/scope I , ard free vortices.

_ _ _ _  S
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— 
~/ /0 ~ ~ ~ ~ ~ ~ -

~~~

7

) l~~~~~~~ 

J~~

;

~~~
, 

1-~
-_

~
q - -

~

Pi g. 1.

Page 38.

Desig n diagram is represented in Fig. 1. Wing ~ith the fracture of

leading ed ge in the examined case of determining the effec t iv’~~’~ss of

elevons was replaced by four Vi khre v by the cotds from chord , each of

which was, in turn , was replaced by twelv e ctlique horseshoe vortic~~

along the semirange of wing.

Thus, on each half of the wing it is arrange/loca ted of 48 bound

vortices. In each cell of the formed grid , the bound vor te x coincides
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with the line of 1/4 chords of cell , and the distance between free

Vikhre -v by cords is equal to the spread/scope of this cell. The

boundary conditions of nonpassage are satisfied for each cell at th~

point, arrange/located cn the middle of the line of 3/4 chords.

Durin g the calculatico of the effectiveness of elevons , it is

necessary to have values of the di~ ensionless circulat ion of

eddy/vortex dur ing the m cticn of wing at angle of attack without

rotation ~ dimensionless circulation 
~~~~~~ 

d u r i n g  t h e  r o t a t i o n  of

wing of relatively axle/axis Oz and dimensicnless circ ulation 
~~ ‘A 

for

the wing, which rotates around axl /axis Ox.

Satisfaction to boundary conditions gives thr ee indepe ndent

systems of equations which wake it possible to determin e three the

diaen..,ionless circulaticns indicated above

- ~~~~~~ -

~ (W  - ) - .,, ~~~~~~~~~ 
l

V 11 /~

“(W ~W ) ‘ . .,

~~~~ 
~~IJ  .,j  /.s~ I

I — I, 2 , - - ~n; in = V / i ) ,

where W y ,, — dimensicnless velocities, caused by the oblique horseshoe

worte x i at point j,

~
xS,

y Ij  ~
. .S ~~~~~~ ~~~~~~ 

I) ;

x91 , z0 — coordinate of the junction/unit calculation po int j; VO 1~
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3,

— dimensionless circulation of eddy/vortex; /~ — d i s t ance

between free vortices (see Pig .  1) ; ° 1~~2 ‘
~~~~~~~

- dime n sio nless

coord inates of point N; / — sweep angle ~ f the bound vortex;

— additional dimensionless veloci t ies  w h i c h  appear  at point j

from the eddy/vo r t ex , w h i c h  is lo c ated on left half wing and

symmetrical to eddy/vortex i,
.~ W, ( ; .. ,~ ~~~

I
~ Ij . ,).

Page 39.

The calculation of all dimensionless velocities was conducted on

the formulas
-. W V ~~ 1), (5)

wher e
,‘)  V~ (~0,

I~~~ o. ~ ) — the ve loc i ty ,  caused by t h e  b o u n d  vor tex  at the  a r b i t r a r y

p o in t :  ~~sI!1 y . C 1 ) S/ ±  -
- I

- - - - 
S-f-

~~s Sl I I/ —j— tg j i  - I -

~ , SI ~1 / ~~~~~ 1
(~~ S / ; (

7
)

I ~~~~~~~~~~~ I ( I - i 
SS
_ )

.

V,f~ 1 ~,. 1)— the velocity , caused by tree vortices at the arbitrary

pcimt:

V,(~0 , i)  ~~~~ 1 1 I’(~ 
- ~)2~~~ J

I o - tL~t 
I

r . 1

I (~~,, tg ,i)~ —j - ( I ~
— 

A
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After solving syst em o f equations (4) and after calculating

va l ues p~ , P . and p .. , we d e t e rm i ne  to ta l  w i n g  charac t er istics wi t h

the deflected elevons om the formuia s

= .1 ~ , ( IZ;

I •~ , - - 
/~~

-

m~~A~ / i / : , ( I I )

where i. — wing aspect ratio ;

2- ~ 7 f~ 
i lx;  ( U)

~~~ 
dx;  ( 13)

(IX S (1-i)

here x —  coordinat e of the leading edge of wing sectio n in the turn-i d

flcv; 1,,, — relati ve chord of elevcn .

Page a~0.

For an example Fig. 2, gives the results cf calcula tions with

the aid of the computers of the effectiveness of elevons on wing wi~-h

the fracture of leading edge. The ccrpa riscn of calculated and
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experimental data shows that computed v a l u es  of coefficients ~~~~ , rn’”

and en ” are higher experi uertal. Ore of the reasons for this

disagreement is the not considered ty theory presence of th”” slots

which are formed between the staticnary part of the winj and the

deflec ted elevon. The e f f e c t  of slot on t h e  e f f e c t ivenes s ot e levons

is shown on Fig. 3. The introd ucticn of the emp irical coefficients of

k 0.85 into computed values of derivative s C r ”~ ifl and in , - m akes  it

possible to obtain the values of tI~ese der ivat iv es w i t h  an accurac y

tc +5o~o.

__  

- 

_  ‘
~~~; : ~~~~~~~t~



r ________II
AD—AO fl 7S3 FO*tIIN TECHNOLOGY DIV flIGHT—PATT ERSON API OHIO P~S to ne

SCIENTIFIC NOTES FROM THE CENTRAL AEROHYDRODYNAMIC INSTTTUTE .tU )
At 70

UNCLASSIFIED Ft0 I01R5)T fl10 70

2’~=3
AD
4085743

II. 

~~~~ 

__

_____ 

_ _________________ I_  

-- H



= 78068003 PAGE

~H n” ~~~ i T ~~ 
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rig. a.

Key: (1). III Version ot elevon; 4 sections. (2) with

partition/baffles. (3) without partiticnfbaffles.

Page *1.
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MET H OD OF CALCULATION 0? EFFECTIVE NESS AND HING E MOM EN TS (IF E L E VO N S

AT SUPE BSONI C SPEEDS.

Effectiveness of elevons. The aethod of calcu lation of the

effectiveness of elevons on low—aspect—ratic wings at su personic

speeds is instituted on the linear theory of supersonic flows. During

the calculation of the effectiveness of ele~ cns , it is assuwed that

the rotational axis of elevon is supersonic . Mach lines do not

intersect the wing chord and elevon.

E]evon with the adjacent sections of wing is divide/aarked off

into zones (Fig. £ ): zone I is li.ited by the Mach lines, which

Ftcceed froa the point of intersection of rotational axis with the

root chord of elevon, and tFe trai]ing edge of elevon ; zone II is

liui ted by the Mach lines, which procee d fr c a  the poin t of

intersection of rotational axis with tFe roct ard end chords of

d evon, rotational axis and the trailing edçe of elevons; zone I~~ is

liwited by the Macb lines, which procee d frcm the point of

intersection of rotational axis with the end chord of elevon, and the

trailing edge of elevon.

The pressure-drop coefficients in these zones are equal to

A 
_  _  _
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a —
.1 4 x -p1 - a rccos ~~

-—-—- — (1: )
I ~~— tg5~ 1 ~~

~~~~~ = . (1 ~
)

~ 
— tg /3I~

— a
-

~ 4 x -
-- ;~rccos (I I )

~ ~ 
Ig 

~~ —

x

hers p~” — juip/drop in the pressure coefficient between the lower

and upper surfaces of slevon in the i zone during the deviation of

d evon of 1 tad; (where tg x.. — a.ssp ang le along the

axis of the rotatiou of elevon); p = 1 W— 1; ~,, — angle of

deflection of slevon, deteruined in section throughout flow.
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~
_____ ___________

~ ~~: ~~~~~~~~~~~~~~~~~~~~~ ~~~

Pig. 1.

Page ~2.

Pot a low— aspect—ratio wing, inc lu ding for  wings with

alternating/variable sveepback on leading edge and the trailing edge,

perpen dicu lar to the axle/axis of syl.etry, exEression for

derivati ves ct”, nz~~ aid m ’. they t ake  the fc ru

4S~Ig~
57,3SV ~~ —- tg2~ ,, L tg~~

+(b~~ 
(~8)

8 2S~ i ?~ tge I —

m •‘ — — - ——— i (b0 ,~ 
— —  b~ ~.) Zo ~. 

—

57,3 Si 
~~

‘ 

~ tg2 is,. tg € L

— J’~ ç: :~~~~~
‘
~~ ~~~~ ~~ ~~~~~ ±gte.

I 2 1
~ (b0 . ...b,~ ,a)

rn:’. — 

~~ 
-4 4— m ’~’;~ 

-
~~

- t~~’’,~ (b~ ~~~

• ) 1~/ 2 ]  , (~2())

4

—A
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where 

2 b S ~. tg 2 e(a I 
~~~~ , (21)

‘‘ b,~ S ig 
~~~, V ~~ — 1g2 y~,,

m~~ =-  -

~~ bA V~~—tg x,0 
I3~ ,a ~~ 2,, 

~~~~~~~ 
—- b1 ~,)2 ~~ —

— (b0 — b~ ~~ 
- —  ‘,O~~K 

(b~ + 3b~,,)1; (22)

8 
- 

b 14S~ tg
2 (a - —  I L~~~ -~~— (23)

‘“i 3 b~ Stg~~,j~~2 _ _ t g2~

(I -
~ a - -  ~/f ~~~~T2). (24)

~ S ig ~,, J — tg~ ~,,

In these fori ulas: c~
a — lift coefficient of wing frow the

deviation of elevons on both halves of wing  to cne sid e on 1° ; m~ ” —

rolling—uoaent coefficien t during the deviatio n of elevo ns on both

halves of wing to opposite sides on .10 ; m~’ — coeffic ient of

longitudinal wosen t with respect to z axis , passing through the point

of int ersection of the loot chord cf elevon wi th  its rotational axis

(Fig. 14) d uring the deviaticn of elevons on ho th  halves of wing to

one side on 10 ;.

Page S$3.

S~, b0~ , I~, s — area , root chord , span and se.iapez angl e of bas e delta

dig (Pig. 14);
= I ’ 2

‘ — relative chord, the apa n an d the position of the

— is.. S
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teginn ing of elevo n, in reference to the seairange of ba se delta

wing.

In the case when elevon has the constant atsolute chord (~,.—O)

of expression for der luativ es c8
~, m~ and m~ substanti ally they

are sluplified: 
C

? ,D~~
_ 8S~b,.I,, tg E (25Y 57,3S~

= — ~~~~ -~~~~~~~~~~~
g

-~- (2z0 + l i,) : (26)

4S~ b0 A tg s b ,  (27)z 57,3Sb ,4j~

Those obtained by the calculation of t k e  characterist ic of the

effectiveiess of elevons are .ore experinental values. Processing the

results of experi.ental dat a and their  colEari son wi th  the results of

calculations shows that for the evaluat io n of the effectiveness of

elevons at the •oderate supers onic velocities Cf the  value of

derivatives C”, m~., rn ”, deterwined according to foraulas (18) — (20) it

is necessa ry to nultipl y by the eap irical ccef tic ien t of k =

0.85—0.9..

Hinge noaents of elevo ns. The calculation of the hinge •o•ents

of ele vons at supe r sonic speeds is done w i t h  the  saae ]iaitations ,

which were accepted for the ca lculation of the effectiveness of

slevoas. The hing.—aoa.nt coefficient relative to the rotat ional  axis

of d evon during its deviation on 10 is equal tc
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— 

~17~ 
(m~j’~ - - 

~
- 
~~~~ 

(28)

rn8
’ 

8b~~.Ig~ - - - - - 

r 
~ 

~~~~~~~~~~~~~~~ ( 1  a)  -~~~

3S,. bA tg y~. -- tg2~ ,, L 2 2

-
~ arccos a ~~~2 1 (2’))

2i~ 2 I’

~~~ = ,
~~~~~~~ 

- ~~~~~~~~~ — 4 b ~-,, ~~~~~~~~~~ 
-

‘‘ ‘ S.,, bA 
~. i —- tg - 7-~ ~

(b~,,, — b~. ,,)2 (I~~~4- (b~~,, — . ..)II — ~~~~ {I~.b~9. I/~~ —

- -
~~~~~~
,. + 2 (b~~, — b~ 3 0 ) 1 - 1 ,,(bn~~

-- 
~~~~. 3~~) ~~ ‘3B~~ 

-
~~~ (h0~ ~~~

— 
b0 ,, b~ ,,, (h (, . 40 — b ,. i,, ’) 

- 
(b~,,, - - h K. ~.)}] ~3(J)

i
,,, tg~ I I-  ~, 2 ( a

:~s ,, b~ , ,  1g 1 , ~ 2 . tg 2 i~ 
a - —-

~lrccos a 1 _~~2 
-

+ ~~ 
— - ; (3 !)

2

S b ’
here -

~~~~

. 
- b .~~~/

4—’~- 
— relative area and the sean aerodynasic

chord of slevon to rotational axis .

Page 141$.

In the case of the constant aLsolute chor d of ele vo n, the

hing.— ioaent cosff iciest is .gsel to
.1 I 4 tg ~ b~ ( 4h,. \m ’ = 57,3 ~~~~ ..‘~ L 3~~)

As showed the coapariscn of the calculated and experisental

values of hing.—aoaent characteristics, calculated hinge—sosent

coefficients prow, to be soaevbat overstated. Therefor e during the 

--~~~~~~~~~~~~~~~ -~~~~~~~~~~ -~~~~~~~~~~~_ _ _ _ _ _  _ _---_____________
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estiaation of the hinge sonents of elevons at the soderate supersonic

velocities coiputed value cf coeff icient  m~~ , deterained in f o r m u l a

(28) , inst be aultiplied by the e.pivical ccefficient of k.~ 0.85.

Physical flow pattern of wirg with the deflected elevons, obtained by

the aethod of pressure distribution.

The studies of the physical flow pattern of wing with the

deflected elevons were conducted on the sodel of low—aspect-ratio

wing with alternating/variable sweeptack on leading edge (Fig. 5).

The analysis of the effect cf sach number of the inciden t flow on

flow aroun d of the wing witL the deflected elevcn is carried out

based on the exasple of the examination of the air—loa d distribution

in wing section , arrange/ located approxin a t e ly  in the niddle the

spread/scope of elevon.

Pig. 6, depicts the  diagra .,curve of çressure distr ibut ion  along

wing chord in the presence of the def lected elevon wit h Mach nurbe r =

0.6.
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Key: (1). Section.

Page 45.

It is evident that the deviation of elevo n causes the redistribution

of pressure along an e n t i r e  wing  chord both on upper and on lower

surface. With Mach nuiber = 0.83, dev ia t ion  of d evon of negat ive

angles is no longer cause d the re d istritut icn o f pressure along an

entire win g chord cn lower surface ’.

E COTWOT E ‘. Analogous results on airfcil/ptcfile with control at

t ransonic speeds were obtained by C. P. S vi s h c h e v  into 1948.

EIDPOOTMOTE.

During transition to snail supersonic velocities (M = 1.05, Fig.

-S
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7) the deviation of elevon of negative angles causes the

redistribution of pressure on lower su r f ace  o n l y  along the  chord of

elevon. On suct ion side of w i n g ,  th e  zcne of the  ef fec t of the

de viation of elevo n of pressure d i s t ri b u t i c n  is spread for ward , the

f u r ther , the  greater the  angle  of deflecticn of elevon .

The a nalogous p h e n cm e n cn  is cbserved w i t h  large mac h nunbers  of

the incide nt flow . The grea ter  the  m ach  n u m b e r , up to smaller

distance elevon is forward fron spread its effect on the side, turned

tc flow (Fig. 8). During transition frcm the subsonic to supersonic

speeds, changes the fora cf the diagra s/curve of pressure on elevo n

itself. If at subsonic speeds the form of diagras/curv e is close to

triangular, then at supersonic speeds it is clcse to rectangular.

The enuieratad above special feature/peculiarities of a change

in the character of flow arcund of the wing with the deflected

elevons explain the reasons for  an inc idence/ d rop  in the

e f fec t iveness of elevons and  an inc rease  in the i r  h inge  m om ents

dur ing transit ion fro. the subsonic to Eupe r s on ic  speeds.
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T H E E F F E C T  O F REA L P RO P E R T I E S  OF
AIR ON PARAMETERS OF FLOW NEAR AN
ELLIPTIC CONE. A E R O D Y N A M I C
C H A R A C T E R I S T I C S  OF E L L I P T I C
C O N E S AT L A R G E  A N G L E S OF A T T A C K

A. P. Bazzhin , 0. N .  Trusova , and
I. F. Chelysheva

‘Ibe calculation results of a flow around
a family of elliptic cones by a flow of ideal
gas at large angles of attack were pre3ented
in works [1 ; 2]. Subsequentl y, several variants
of flow were calculated taking into account the
real propertico of air , which are in a state of
thermod ynamic equilibrium . These calculation
results permit one to evaluate the effect of
real gas properties , which proves to be In-
significant f~ r the v:iriants of flow , examinedin works [1] and ~2]. The first part of this
paper is devoted to this problem.

Calculated aerodynamic characteristics of
elliptic cones over the angle of atta’~k range
from 30° to 50° in the case of an ideal gas are
presented in the second part of this paper. The
comparison of these results witb the calculated
and experimental results of other authors [3, ~4 )
has confirmed the validity of the results ob-
tained by ttie calculation method with large
angles of attack.

FTD—HT— 23—708—ij 1
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THE EFFE CT OF REAL PR OPERTIES OF AI R
ON PARAMETER S OF FLOW NEAR AN ELLIPTIC
CONE

A calculation was made of the flow around an elliptic cone
having a cross—section axes ratio of 6 • 2, half—angle aperture
of the cone in a horizontal plane O~ 15% , with the angle of
attack a • 30°. The air was examined as a three—component gas
consisting of 78.08% nitrogen , 20.95% oxygen , and 0.97% argon ,
and its thermodynamic functions were calculated according to

the standardized program .

The incident flow velocities were equal to 2350, 3356 ,
and 6713 rn/s. which corresponded to the M,, numbers equaling 7, 10,
and 20 (with the speed of sound a,, = 335.6 m/s). The main bulk

of calculation data in works [1] and [2] was obtained at M,, - 7.

Figure 1 shows the position of shock waves near the cone in

the perfect and imperfect gases at velocities V,, — 2350 and
6713 rn/s . The difference in distance from the body to the shock

wave in the symmetry plane of the flow , in the case where M,, = 7
(V,, • 2350 m/s), comprises about 10%. The absolute shock wave

disp lacement ari~~ rig when considering the real properties of air

has a reg~ ig ib1e change through out their duration. The same

thing applies alao to the cac e of the flow with V,, • 6713 rn/s .
Transition lines II near t h c  Lwer surface change together with

‘Sb . ’  cha r ~ge i n the ç. :i t ior .  ~r ~~~~~~~~~~ waves ;  however , the  points

of t r a r 3 I t i ~~r on t b e  bu l y ~ A r ’ f ’ . 2 c  ar c  i l ap l a c e d  very l i t t l e .
2 h a r g~- 1r t he  rd - it I i- dIs k a n c~: from the  b l y  t c  the  shock wave

o — 1 I s ~~ inc e ~r n t h e  u ~~j t ,~ t h e  w i v . ’  in the  symmetry
p . a t e )  are ~iott . - i in F I g .  2 a~’ i i T h c t I  r . ~ f ’ ce n t r a l  angle w
(see F ig .  1) ~~~~~~~~~~~~~ of ang les ~ corresponds  to the

lower j~~r~~i :~’ of ‘ rI ’~ c- ~rI.-~. In t h e  range ~ < 80° a l l  values of
qu a n t i ~~ ~~~~ ~~~~ on the  lin e S h a v i n g  a w i - i t h  of not more than

FTD—HT— 23—108—7i 2 -
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0.C~i. In other words , In the examined area , dependence £/c~ —
can be represented by a curve pertaining to the perfect gas , with

an accuracy to within ~4 % .

: cc -JS °
~f . :/$’ ; / . J : i Y. 8  = : - - -

::::~:j :  :~ s :~ :~:
- :: :±: ~~~ 

- -
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~~~~ 
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I7FJM/ 1- - : F - - -  

- t - -

, -~~~~~~~. 
f - —  -

-“ 
~~~~~~~

- —  r ’ - -

‘1 
~~~~~:

~ ~: : : :~ ~~~~~~~~ :

______ : ~~~~~~~~~~~~~~~~~~~~~~~~~~
Fig. 1.

Functions and ~~~f~(°’) have a similar nature
p. p.

(Fig. 3) .  Values p0 and p 0 (prc a~~ure anI density) in the symmetry

plane of the flow (on the wave -ni  U -dy ) - i re  r e fe r red  to

and p,,, respectively (see Table U. First f all we should note

the extremely slight effect of the real properties of air on the

magnitude of relative pressure whe~, ‘~ = 2350 rn/s (M,, — 7). The

Li
FTD—HT— 23—708—73
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relat ive pressure on the body su r face  and shock wave , when 0 <

u < 100°, is v i r t ua l l y  independent  of the  real propert ies  of
a i r .  Changes in the p 0 value of the body , to which  the pressure
on the body is refer red , are also negligibly small. This means that

the values of aerod y n a m i c  c o e f f i c i e n t s , ca l cu la t ed  at M,, — 7 in
the case of’ a perfec t gas , will also be valid w i t h  high accurany
In the case of an imper fec t  gas as well.

The e f f ec t  of the real properties of air on the relative

densi ty  when V,, 2350 rn/s (M ,, • 7) is also s l ight ; hcwever , the
change in values of’ these parameters  in the symmetry  plane , witt ’
the consideration of the real. properties of air, comprises about

8% (see Table 1).

Ch .nge in the relative pressure and relative density on the

body surface remains slight when considering the real properties

of air , even at veloCIty V,~ = 6(13 n/s (M,, - 20). This variation

does not exceed several percent . Un the shock wave , especially

on the upper section , the change in the relative values Is more

noticeable.

t
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Table 1 
____ ____ _____

p~~ 
~~~ 

I
_____

0.359 1 5.534 0 .3362 5.307
2350 0 3593 5. $34 0.3339 4 .865

0.3692 6.612 0.3497 6,392
o,z~s s.s~ o.M55 5.369

0,3759 9.482 0.3621 9.210
$713 

0,3178 6.075 0.3551 5.813

Note: The lower i i u m t i r .; pertain perfect
gas .

S

*
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Table 2, 
______

v_ 1~ i J 2350 
i 

33~

~~i”’ - -~~ ‘ 0.918 0 840 0,630

0,~lI5 0,835 0,623
0

I,

If we assume that the indicated nature of change in relative
values is valid not only for  the examined  va r ian t s  of flow , but
also in the case of other variants close to those examined , then
It is possible to propose the following method of approximate

ca lcu la t ion  of the e f f e c t  of p rope r t i e s  of an imperfec t  gas .

Parameters on the shock wave and body sur face  in the symmetry
plane , when calculating ‘he real properties of air , vary with an

accuracy to within several percent (see Table 1). ThIs variation

is easily obtained when the slope of the shock wave is known.

Then , using the distributio n of relative parameters obtained for
perfec t gas , It is possible to obtain the real distribution of

gas—dynamic parameters along the surface.

With regard to the determination of the shock wave Inclination

or the distance from the shock wave to the body in the flow of’

an imperfect gas , as a result of the calculations it was revealed

that the ratio of distances to the shock wave in the planc~ symmetry

in the case of an imperfect gas , to the corresponding distance

in the case of a perfec t gas , is equal , with high accuracy, to the

inverse ratio of densities on the shock wave , as this can be seen

from Table 2. Consequently , if’ the calculaticn data are available

for a perfect gas , then It is pos sible to approximately determine

va lue to co perf. gas on the shuck wave in the symmetry plane
in an imperfect gas ; then tu find value ~0 perf. g,~~~ refine the

p0
inclination of the shock wave in an imperfect gas , and find a

{I~ 
6 

I
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more precise value for ofl the shock wave in an imperfect gas
and the new va lue for c~~. Then, using the available dependence

for perfect gas , it is possible to determine the location

of the shock wave near the lower surfa ce of the cone in an imperfect
gas .

AERODYNAMIC CHARACTERISTICS OF ELLiPT IC
CONES AT LARGE ANGLES OF ATI’ACK

Aerodynamic characteristics oi’ ellipti c cones were calculated
for a perfect gas with H ,, • 7 over the angle of attack range of
30 to 500. The error in determining the flow paramete rs on the
cone sur face , in part icular  the distribution of pressure according
to the carried out estimations , comprises the value on the orler
of 1%. The error in calculating the aerodynamic coefficients
should be on the magnitude of the same order. The forces acting
on that part of the upper body surface where the flow was not
calculated were not considered , when calculating the forces and
moment. However, it is entirely obvious that if the streamlining
occurs without a break in the flow over the upper surface of the
body the forces a~-e very slight .

Aerodynamic coefficients were calculated using the formulas ;”

normal forc. coefficient

_ _ _  (1)

axial force coefficient

(2 )

7

U



a _ - _ _

“I

coeff icient  of longi tudinal  momentum

M
C q.,S-I ~~—j - ( 1+ a ’) cN. (3)

where q - ~- p, .V ,,; S - cone area in the p lan .

Limits  of integration correspond to the bypass of the cross—
section contour from the symmetry plane to the last point at

which the solution is known , i.e., the change in the variable is

first from zero to b and then from b to n’. In range (2) F~( b )  •
• 0. In the vicinity of’ this point the integration was carried

out by means of variable F~~, for which the following substitution was

made a’~~)—— b ’ ()tc— Il (c) or . E ( r ) —. equations of transverse elliptic

section ; F~ and n conical variables].

The coefficients of’ the lift and resistance forces were

determined using the C N and CT :

C,— CM CO~ 2 -— C, Si.l~~~, C , CN SIf l2 -  C7 CO%~~.

Figure ~ shows the aerodynamic coefficients c~~, Cy~ cm and

aerodynamic quality K as a function of’ the angle of’ attack of
cones with opening semiangles 0 - 100 , 15° and 200 and the ra t io
of axes of the cross section 5 - 1;  2 and 3. Values c

11~ cy o Cm
and K(6 — 1) are given over the entire range of the angles of

attack from zero to 50°. The solid lines indicate the calculation

data from work [3] at small angles of attack. Solid lines in the

angle of attack range from 30° to 50° IndIcate the results obtained

in this work . The experimental data fr ur work [~
] are plotted

by different points pertaining t -  air. The axes indicate the

exnerirnental data obtained by ~~thors earlier at H,,, • 6. Such a

4
I;
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comparison of the various data had one purpose in mind — to arrive

at a concept concernii~g the nature of change of the aerodynamic
characteristics of elliptic cones over the entire range of the

angles of attack and to determine the validity of the calculation
data obtained by us over the angle of attack of attack range from
300 to 50°. As can be seen , as a whole , there is good qualitative

and quantitative agreement between all the results presented. The

dashed lines in the intermediate angle of’ attack range can be

considered as a possible interpolation of the aerodynamic coefficient

values in this area. The remaining curves in Fig. ~4 represent the

aerodynamic characteristics of elliptic cones in the range of

large angles of attack at different values of 6.

M,— 7

%Et i i  ‘~cj:~ç~~ .~~~ rr
4E -H~h~~~~~~~~[ 41± 

_ _ _,ft~~J {~~1~ ‘
~~~
‘!

~~~
‘

. h  ___
~ 11 W’d ‘Et :  + E ~t , / T tr( ~ ~~~~~ rH
T 1” 1-’ T 7~~~~~~~~~ T I- .  : _ _ _ _  I •~~~~ 

‘
~~~~~~~~

, M Tf~ ~~~~~~~~~~~~~~~~~~~~

~ _ _ _  _ _ _ _ _ _

Fi g. ~4 .

The L rfect of 6 with I iJ’fer~ rt cons ’ ~1 r t  parameters  is shown

in Fig. 5. We will note ¶~~u ’ ~r, u aer ~yrvi:sic quality of cones
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always increases when pass ing to greater e l li p t i c i t y  of the cone
cross section . The coefficient of longitudinal momentum over the

range of large angles of attack changes almost linearly with the

angle of attack. According to formu~la (3), the position of the

pressure center of an elliptic cone Is determined by value (1 +

+ a2 ) ,  i . e . ,  only by the opening semiangle of ’ the cone in the
symmetry plane of the flow .
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Page 53.

ST UDY OF THE FLOW OF GAS IN A CYLINDRICAL CHANN EL D U R I N G  THE SUDDEN

P I P A W S I O N  CF SONIC P LOW.

G . F. Glotov , E. K.  Mo r oz.

Is carried out the study of f low durinç the sudden ex pa nsion of

scnic airflo w in a xisymuetric cylindrical channel .  Cha ng ed relative

lengt h and the area of ch an r el  in ranges 1 1. 5— 14.5; F = 1 . 5 — 3 . 0 .

Are investigated the special feature /pecul iar i t ies  of flow in the

area of the connection cf flo w to the wall cf channel and is

establish/installed the existence of the single condition of

connec tion.

The problea of the connectio n of turb tlent superson ic flow — one

of the basic with solution of which we enccunt er in a seri’~v; of the

gas—dyna.ic equipment/devices: air inta kes, ejector nozzle s, the

ca.era/chaaber of Eiffel , etc. One Of the Elobleas in this case

consists of the deter .Jnaticn of pressure cf stagnation zone. The

exçerimenta ]. investigation cf pressure in stagnation zone at. the

larg e lengths of axisya .etric cylindrical channel  (in connection wit.h

ejectcrs with the zero coeffic ient of ejecticn) was for the first
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tu e carried out by G. L. Gxodzovskiy et al. into 1953 (1).

Subsequently similar data were obtained in a series of the works (for

exampl e, see (2] and (3)). The effect of the length of channel on

pressure in stagna tion zone was f or the first time

establish/installed in the experiments cf G. L. Grodzovskiy and V. T.

Zhdano v whose results were presented in work [3).

The beginning of theoretical studies cf the problem of the

connection of the turbulent flow was placed in work f4] and it is

continued in (5), (6].

In this article are investigated the tasic physical p henome na,

which appear during the ccntection of turbulent superson ic flow to

wall, and the condition of the connecticn of separating flow line.

For this purpose, was carried out the experimental study of the

flow of turbulent supersonic flow in cylindiical channel with sudden

expansion. The schematic of the model of channel with designat ions

and the geometric parameters of the invest igated version s are given

to Fig. 1.

In experiments discretely changed the relativ e length of

chann el. The range of the lengths of channel, in reference to the

height/altitude of step, the equal to the half—differenc e of
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diameters camer a/chambers and nozzle throats h =(D — 
~/2, comprise d

1 1.5— 14.5, but the area of channel , in reference to the area of

critica l nozzle , changed in the range P = 1.~~— .3.

Page 54.

Boundary layer thickness in nozzle th ro at, referred to the

height/altitude of step, it was equal to 6 = tc 0.10-0.25. Reynolds

n u m ber, calculated according to critical throat diamet er, comprised

Be = (2—1.2) x 106. Testings were cond ucted at the pressur e air flow

in precomb ustion cham ber, equal to 3—8 atm (ats.), and to tempe rature

= ~~~~ 290°K.

During testings, besides the total pressure in precombustion

cha.ber, wer e measured tFe rressure in stagnaticn zone Pi an d the

distributi on of pressure according to the wall cf channel p wi th  the

aid of static—pressure probes 0.8 ii in diame ter, arrang e/]ocated

with space 1.5 mm . The accuracy/precisicn of the determination of

relative pressure was + 10/0.

The picture of flow at output/yield frcm channel was

photographed by Toepler ’s itstrument. With the aid of oil film

(mixture of oil and carton hlack) was visualize d the picture of flow

cn the wall of channel and in the meridia n ilane of stagnation zone.
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Fig. 2, gives the typical dependence of relative pressure in

stagnation zone P i  (P i  = Pi/Po, wh ere P o — averaged according to

expenditure/consumption total pressure flow in the section/shear of

sonic nozzle) on relative nczzle pressure 
~~ (~~ p /E~~, 

where p2 —

ambient pressure). Are isolated threE characteristic

conditions/modes: 1 — ccnditions/mode of the ccnnected flow , which is

characterized by constant quantity of relative pressure in stagnation

zone. 2 — transient conditions/mode , 3 — separating cond itions/mode.

Further analysis of the obtained experimental data is conducted for

conditions/mode 1.
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Page 55.

The generalized dependences i ’ I~ I i  at the differen t values of

the rela ti ve areas of channels F ar ’~ given to rig. 3. As can be seen

frc. this curve/graph , the value of relative pressure in stagnation
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zone P a remains constant/invariable for this value of F during the

decrease of the relative length of channel I to certain value which

let us designate I . We will call the area cf the lengths of channel

I -I ., the region of self—simila r flow alcrg the leng th. During

fut ther decrease of the relative lengt h of channel to 1 i. value

p~ begins to decrease (region of ncn— se lf—s irmulating flow) . Fig. 3,

gives the boundary of the region of self-siiilar flow.

Compa rison showed that our data on pressure in stagnation zone

for the region of self—simila r flow will agree well with other

authors ’s data, obtaine d during the discharç e of sonic flow into

cylindrica l channel.

Was also carried out t~ e estimaticn of the known criteria of the

connection of turbulen t flow.

One of the lost successful criteria is the examined in works

(5], (6) condition for the angle of the correction of flow ~

where 
~~ 

— mach number cn the boundar y of inviscid jet. At ang le

is understood the angle of incidence w ith the wall of the channel of

the boundary of the inviscid jet, constructed by method of

characteristics accor d ing to the mea sured in ex perimen t sense of

pressures PilPs (see sctematic in Fig. 4) . As is shown com parison ,

the values ~ ~1 v 1 ,~~ calculated according to the results of this work,
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in the region of self—similar flow virtually coinc ide with the val ues

ir. given for the appropriate flow in wor k [5] (Fig. 4). However, in

the region of non— self—simulating flcw , angles ~ grow/rise and for

each value of F is obtained its dependenc e ~
“ l’M Thus, in the

examined case the criterion of the conn€cticn of turbu lent flow in

th e form of single depen dence ~ ~t’M~ is valid cnl y in the range of

self—simula ting flow and is not spread to the non—self -sim u lating

region (this observation is related also tc the correlation parame ter

.
1- istroduced in work (5]). Therefore is necessary the search of

other more comaonfgeneral/tctal criteria of connection .

For purpose of the exp lan ation of the physical pict ure of flow

in the reg ion of th e connection of f low to the wall of cylindrical

channel, was carried out the visualization of the picture of flow on

the vail of channel and in the zone of mixing with the simul taneous

measurement of static p ressure d istribution on va il and the

photographing of flow at output/yield with the aid of Toeplet ’s

instrument.

The examination of the obtained photographs of oil film and

their comparison with the diagram/curves of the distribution of

pressure on vail made it possible to present the real picture of flow

in the region of connection (Fig. Sa). In photographs are visible

three zones. In zone I (we examine f tcm nozzle edge) oil remained

F
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intact. The compar ison of this zone with the air—load distribution on

vail which in this zone it is constant, shcw s that t he flow here

either entirely is absent or so weak that it dces not act on oil

film. In zone II , are observed the longitud inal overflow s of oil and

an insignificant change in the pressure , which indicates the presence

Cf weak current  in the limited region towards nozzle. In zone III oil

is washed off comp letely en an entire wall, exce pt the nar row

transverse band with a width approximatel y 1 mm (line of the

connection P). Flow in this zone is accompanied by sharp pressure

increase on wall tc certain maximur value p,,,.~ /p1.

11
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Page 56.

This testifies to the presence of powerfu l flow with interface (line

I I ) ,  to the left of which flow is directed toward nozzle, and to the

right — towar d the section/shear of channel. It is logical to assume

that the interface repr esents by itself the pcint of rendezvous of

separating flow line (line I) with the wall of channel.

Fig. 6, gives the photograph of oil fil. to longitudi nal plate

and the corresponding schematic of flow. Or figure are noted : 1 -

separating flow line, 2 — boundar y of zer o longitudina l velocities, 3

— boundary of flow , 14 — boundary of invisci d jet, 5 - point of the

connection , by 6 - duct/contour of the pl ate. In photograp h clearly

______ 

t
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is outline d the rotat ion of f low l ine  in v i scous  layer ,

arrange/located lower than separatfng line, into stagnat ion zone and

the formation/educatio n of the reverse/inverse flow near the vail.

The mass of the r e f l ux  gas ret urns to the  m a i n  f low , for ming the

local eddy/vortex between wall and boundar y of flow . The longitudina l

size/dimension of this eddy/vorte x virtually ccincides with the

extent of zone II (Fig. 6).

The part  of t h e  viscous layer . ar r angej loca ted  higher tha n

separating flow line after meeting wit h wall turns to output/yield

ftc. channel. During this rctation in f lo w, appears the system of

characteristics. In te r sec t ing ,  t h e y  creat e t h e  oblique shock w a v e ,

seen at output/yield frcm tie channel (see Fig. 5) .

Is of interest the ccmpari son of calculate d and determined in

ex~erimenta in the positions of separatin g flow line. In work (5) as

separating line is accepted the boundary of inviscid jet. For the

region of self— similar flow , it is possible to note the satisfactory

conformity of the calculated and experimental results (see Fig . 6)
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Page 57.

Only of wall itself begins their disagreement , as a result of w hich

the calculated boundar y of inviscid jet meets the wail of channel at

the point, which lies approxima tely tc 7—lOc/o further from nozzle,

than the real line of connection.

In the case of small length of channel (non-self—simu lating zone

of flow) the calculated boundary of the inviscid jet A (Fig. 5b) can

I
-
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even exceed the limits of channel, althou g h in actuality the f low is

that connected. For such channels, as shows the visualization of flow

in meridia n plane, separating flow line B consi derably diff ers from

line of demarcation of inviscid jet and •ore steeply it turns to vail

~Pig. Sb).

The specific in experimen ts positions of the line of connection

on the wall of channel made it possib le b y the measured

diagra m/curves of pressure to determine the pressure at attachment

point, equal to the total pressure on separating flow line (Fig. 5).

The comparison of this value of pressure with pressure in stag nation

zone shows that their sense for all investigated values of relative

areas and lengths of channels apprcximately is constant and is equal

tc I’s , i;  - - to 1.9 ~ 0.05 (Fig. 7a)

The results of processing given works [6~ - [9) show (Fig.

7b)that during the flow around flat/plan. step is observ ed certain

tendency toward an increase in value P”/Th ~~~~ • 1.7— 2 w i t h  ~~ =

2.1—14.4). In the first apprcximaticn, this sense can be accepted

equal to 1.9. A chang e of the relative maximu m pressure on wall

depending on number M 0 both for the flow in channel and during the

f low around flat/p lane step does not in practice affec t va lue pu fm

(Pig . 7).
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Pig. 6.

Key: (1). Region 3f self—similar flow. (2). Zone.

Page 58.

The relationship/ratio P i p  ,~~obtain€d fcr flow in axi~1ymve tric

cylind rical channe l and durin g the flow around flat/plane step, can

be used in the analysis of the conrecticn ct supersonic turbul ent

fic. on wall in the range of numbers H0 ~ 2—3.5.

The conducted investigations made it pcssible to also explain

the mechanism of the effect of the length of channel on relative
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pressure in the stagnation zone (see Fig. 5). In accordance with a

change of the basic flow parameters in the regicn of connection, it

is possible to isolate three reference lengths cf the channel:
/ 

— 
1~. / hJ~ ~~~ 1 • —

~ ~
,~ and 1~~/~ (this tc some degree of analogous the

introduction critical pcints for the case of the flow around

flat/pla ne step [5]). The specific above relative length of channe l

1., (see Pig. 3) it corresponds to m aximum pressur e increase on wall

in the region of self—similar flow. During the decrease of the length

cf channel to 1,, (position of the section/shear of chan nel 1 and 2,

iig. Sa) relative pressure in stagnaticn zcne remains constant . In

this case, temain without change the positicn cf the line of

connection, ma x imu m pressure on vail and the angle of the slope of

the resulting shock wave , observed in output/yield from the channe l

(see Fig. 5a), it whic h ind ica tes the invariability of f low

disturbance in local region after the line of the connec tion (the

value cf slope angle very weakly dependin g cn value of F). The

observing when I I decreases of pressure on the wall (3~e Fig.

Se) testif y to the presence on this section of the accelerated

superzcnic flow.

with the decrease of the length of channel into the region of

non—self—si.ulatin g flow I 1 , tc certain va lue whic h let us

call/name critical I~ , the for m of the distribution cu rv e of pressure

an d the position of the line of connection remain without change. In

4
-s
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this case, maximum pressure on the wall of channel and the angle of

the slope of the resulting jump at output/yield decrease. The

decrease of flow disturbance after the line at connect ion leads to

the decrease of relative pressure in stagnation zone. In this case,

~~ximai by pressure on wall is greater th an pressur e envir onmen t
(i ’~~. , ,  I) .

During the decrease of the length of channel / 
~ / , (position

£4, Fig. Sb) occurs the shift/shear of the air—load distr ibution and

line of connection to nozzle, as a result of which the length of

stagnation zone it decreases.
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Key: (1). Azisymmetric flow.

Page 59.

On section from attachment point tc the point , whic h corresponds to

critical length ( 1 i  1 flow in wall viscous lay er subsonic [9].

Therefore when I I , the picture of flow either must be br.cken as a

result of the report/co .munication of stagnaticn zone with

env ironm en t or, at the sufficientl y la rge pressure flo w, the line of

ccunec tion must move from the section/shear of channel , that also is

observed in experiment. In this case, maximum pressure on vail

contin ues to decrease, remaining mcre tha n pressure en vironmen t, and

with respect it decreases pressure in stagnaticn zone.
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Thus, for the investigate d conditions/modes of the connected

flcv pressure environment does not affect value Pi. Pressu re in

stagnation zone depends cn maximum pressure on the wall of channel

after the line of connecticr , that it is necessary to consider during

the development of the calculation method .
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Flow of gas in a fiat duct , caused longitudinal gradient of the

temperature at Knudse n ’s artitrary number .

N.. N. Koga n, N. K. Nakashey.

For the kinetic •ode l eq uation at Eoltzmann in linear setting,

is solved the problem of temperature cree p in flat duc t for the

arbitrary values of Knudsen ’s number.

Obtained approximate analytical scluticn. On the basis of this

solution, are made eva luatA cns of possible faults of mea surement of

pressure , for example , the heated gas wit h the aid of “cold”

instrument.

As she was noted already by Maxwell [ 1 , i f  along will is a

gradient of temperature ,, then the ccling into ccntact with i t ~ gas

mo ves relative to wall. This motion calls thermal slip or creep. The

gas flow in this case depends on the number of Knudsen Kn , equal to



DCC = 78068004 PAGE
/33

the ratio of mean free path X to the widt h Cf channel ot the diamete r

of tube d. If by the unevenly heated tube are ccnnected two

coutainers wit h different temperature , then the equilibrium (zero

expenditure/consumption through the tube) stcps at certain the

pressure differential which also depends on Knudsen ’s nu mber.

These phenome na can exert the essential influence, for example ,

durin g low—pressure measurement the heate d gas by “cold” instrument;

in the porous media they can cause flow or the pressure

differentials.

~~~~~~~~~~~ ~~~~ c~ 6~ie f/ct~. ~~ a ~~~~ e~~~
,’~ -~~ect

’ 1~~’ ~~~~~

~-~,~~/(/,c,d C )  ( I ~~ LL / I~~~~~~~~ 7~~ :: ’ “SJ t i 2  L 2 7 —  £iJ ~
Different cases of the flow of gas, caused in flat/pl ane duct by

the gradient of the temperature at the arbitrary values of Knudsen ’s

number. Ap proximat e soluticr of the model equation of Roltzman is

cbtained in analytical form.

1. Let us examine gas bet ween two infinite parallel motionless

plates. The temperature of halls T,~, is changed on z. Let us consider

that this change is small , so that

7’~,, 
•/
~, (I ~(:)~: ~~~ 

—
~~ I. I;~ 

‘f
~ ~

J ), t i  .1 )

and problem is linearized. Let us assume also that the walls reflect

molecules according to Naxwellian law; the temperature of the

molecules reflecte d is equal to th e tempera ture  of vaI l ‘1~
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For the solut ion of prcblem , we will use the model eg uation of

Boltz.ann (for exampl e, see ( 8]) :

\~~f 0 f )  f  - f l  CX ~ H ~kT~~~’ (I.~~,

where f — distribution functiom ; ~~~~~~~~~~~~~~ 
— respecti vely

numerical  density, mass and the velocity of molecules; ~ and T

macroscopic velocity and temperature ; k — Ecltz.ann constant.

Condi tion om the wall:
3

I 2 
i ~‘ I 

.
~~ u) “u ( 2 ~k T ~~) ~~~~~~~~~~~~~~~

where n. it is determine d frc. the conditicn of nonpassage.

Solut ion let us search for in the fo rm

I f~ i 1 + ~(x , ;)i~ I
(1,4)

~n \ 2  m c 2 
~ I

Jlf~ 
II ll ( 2i~k 7 ,, ) exp 

~k T 0

w here n 0 = n(0, 0) ; • — small addition squares of which we disrega rd.
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Linea rizing equation (1.2) and after making it dime nsionless, we

viii obtain

( I _  Vt ~~~ 2 z u 1 ( V 2 
~ . (1.5)

~ L4X 1 a (1Z 1 
‘ ‘— 1

Are here introduced designations:

x , =~ 
‘

~~ 
z 1~ ; h1, -

~~~~
‘
~~

----- , ~.~~~‘ ‘ h }~
- - V A Z .  ~i h , , v2 ;

,, —-- n (1 —I— ~); 
7’— 1 ( 1  -

~ ‘t ) ; a ~-= A ii , d 
~
‘ h , , I~ ii

tl~ /1 , ‘~ v .il v; ‘# 
~ 

“ ‘
~ 

d v ;

Roundary condition (1.3) takes the fcr.:

~
,( ~~~~ , ~~ , ~~~~~~~~~~~~~~~~ v2 ) t ~~. (1.6)

2. Let temperature of wall change linearly:

~~1~ ’ (U’. (~
_‘.1)

Page 71.

Then the solution of equation (1.6) it is pcssible to search for in

th, form

1,_ p 
~~~,, ~ 

(‘~ 
2)

ii this case
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~IZ~ ‘z = UZ :
—

p kn u T~( 1 1 , az).

an d for ~ are obtained fcllowing equation and the bo undary

ccndi tion:
V (J ~~ (1 (1

- -- -;- = -- ‘~~
I ~‘)x 

( 1  U

~ ti)

Set/assuming temporar i ly  u 1 by known function and integrating

(2.1$), we obtain in tegral equa tion for ~

~(x 1, V r 
(I) - a  

~‘ 
(s) ~~~ e 

- T, dS 
, (2.5)

M ul tipl ying this equation on v~c x p ( — v 2) and integrating by

veloc~ ties v, we will obtain i~ntegral equation for u&(xt):

~~ 
~~~~~ ~ 

j u i ( s )  — J ~
(, -— .S ) (/S -- U I ~ ) i/s

J~ ( t )  I~~I~~~ - 1,2 ,

~ ( ‘
“ I ( x )  ~ —

Fumct iom I t~ i - ~~--~ has logarithmic special

feature/peculiarit y with s = x 1j Thetefore approximately it is

pcasible to ass ume u 1 (a) u 1 (x 1) and to remove u1 (X i) from under

integral. In this approximation of solution of equation (2.6) is

ottained in an explicit fccm :
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~~, 
‘ 

‘ i

~
) f~ i,~~ i ( ~~ x

Analogous approach/approximation was uE.Ed in (8) for the

examina tion of Poiseuille flow in the sam e setting. Problem in [8]

differs from that examine/ccnsidered crly by the fact that in it

it is set/assumed by constant and is assign,prescribed pressure

gradient. In this case

I ’d .
~~

,, 
~~—

I’ (2. M)
I dp
,)~ ilz

Page 72.

The comparison of the cbt ained soluticu with precise sciution of

Ch.rchin’yani (9 1 shoved its satistactory accuracy/precision (Fig.

1). It is possible to expect the same accuracy/precision of

approach/approximation, alec, in the problem in question. Accordingl y

(2.1) and (2.3) solution (2.7) correspcnd s to the gradient of

tem p erature ~ 
z (/To)(dT/dz)and to pressure gradient b = 5/2 a. Since

in li~ear setting it is valid superpos ition , let us exclude with the

______________ _______________________________________________________________________________________________
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aid of (2.8) from solution (2.7) the part , caused by pressure

gradient. Then with dr/dz = 0 we ottain

~~ (.)9
“I ‘ 21 ‘X II 2 

—

3. Knowing distribution of velocities, it is easy to determine

volumetric flow rate:

p d ~ u r ~(x 1) d x :

(3. I)
- - ,, - . 

~~ 
(‘i);

ad~
,
~ 

q, (a).

Results of its numeric al calculaticu are represented in Fig. 1.

Ih e results were obtained with the aid of the tables of integrals

.1,, , gJ,v.m in [10]. At Pciseuille flow , as is known , has the minimum

of expenditure/consumption (Knudsen ’s paradc2) . As can be seen from

Pig. 1 of the flow, caused ty temperatu re gradient ,

expenditure/con sumption . is changed monotonica lly, after grow/rii ing

wi th the decrease of pressure. Zeic expenditure ,consum pt ion is

established with a specific ratio between the gradient of temperature

and pressure gradient .  Set/assumin g ~~ mccc r d i n gly  (3. 1) we have

k(a) ; /~(~~ 
‘/‘ ~~~- (3.2)

p 1

To dependence K(s) it is represented in rig. 2. Durin g the

-4
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measurement of tem pera ture on t he value of the order of magnit ude of

temperat ure itself the pressure differential cai comprise to 590/0 of
its average value. This ma x i m u m  value !t(a) is reached in free

molecula r conditions/mo de w hen Kn ~ - and it . was obtained from the

sclution of the eq uation of Boitzmann for tbis case. Thu s, for

instance, if ins t rum en t an d the measure d vol u me are connected by the

tube with a diamet er of 1 m u  and is measu red pressure order 0. 1 mm Hg

wi th ~T/T = 0.3, then the error in rea d ing s w ill com prise

approximatel y 80/0.

1’
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rig. 1.

Key: (1). work.

Page 73.

icr a comparison Fig. 1 and 2 by dotted line show resu lts for

wavier—Stokes equation with slip conditions on boundary.

With large a the accuracy/precision of obtained approxima te

solution falls and it gives inaccu rate asy.~totic behavior whe n a ~

—. i.e., when Kn 9 0. With Knudsen ’s smal l num bers, it is possible to

utilize Wa vier— Stokes equations with the cccditions of tem perature

s l ip  on wall.

~~2
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According to the solution , obtained in [8], this slip

‘ is equal

I ~ I . , ( 1

since f or her e the model equa t ion in qu est icn th e coeff i cien t of

ductility/toughnes s/viscosity ~ = kT/A.

ICOTWOTE ‘- . in wor k (7] is cbtaine d the va lue cf coefficient , equal

to 0.383. ENDFOOTNOTE.

Co~sequently, the rates of flow, cause d b y cree p, are of the order

i5~ and the inertia and viscou s terms of Wavier—Stokes equations — an

cz der ~~~~ i.e., the same crder as some of the additive terms,

entering the equations of Barnet. However , it is possible to show

th a t for  here a small l inear gra dient o f tem pe ra tures ~~~. and a <<

1) in question the soluticns of the equat icns of Barnett and

Navier—Stokes coincide (vitt p = ccnst , i.e., hith b = 0) :
ii,! , U

U j ( ~ - z) t’oii ’.I L’ ,

- ~

Wor k ( 7 )  shows , th at for the axisymu et r ic case solu tion in the

approach/approx imations of Raviet—Stckes and Barnett they do not

coincide and in the appropr iate expansion/decomposition of type (3.5)

en ters ter m 0 ( a -2). Ihus , in here the flat/plane case in question
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Wavier—Stokes’s asymptotic behav ior (3.5) must be satisfactory

already with not very large a (see Pig. 1) .

Let us note that wavier—Stokes ’S asymptotic behav ior for

Poiseuille flow is much worse (see Fig. 1) . It is real/actual,

accept ing for the rate ct slip (see (8))

I Iii ,
— I~~j ’

vs have

- 
II - (

I ( 4
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PIg. 2.

:H~~
Pig. 3.

Page 14.

With zero flow rate the gas of wall flcvs to one side, and in

cen ter another (Fig. 3).
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It is interesting to note that under tte ccndition of the zero

flcw rate through the section and at t b €  s ul t i c i e n t l y  h i g h  v a l u e s  of

number K n  the velocity profile is such , that abcut wall gas f l o w s  in

the direction, opposite to the gradient of the temperature of the

walls (see Fig. 3) . At the same time ficm sciution this same of

proble m with the small numbers Kn , obtained frcm Navier-Stokes

equation , it follows that the gas velocit y cf wall, has a n o t h e r

direction, i.e., during a clange it the number of Knud sen, under the

condition of the zero flow rate through the section , gas velocity of

wall reverses the sign.
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OPTIMIZATION OF THE FLYING BANGE OF VEHICLE IN THE ATMOS PHERE TAKING

INTO ACCOUNT LINIT ATIC~ TO CONPLET F CV EB LOA L.

V. V. Dikusa r, A. A. Shilov.

Is examined the prcb lem of the deterainaticn of maneuverability

capabilities of the space vehicle , which pcssesses lift, durin g

red uct ion  in the a tmosphere  t a k i n g i n t o  a c c c u n t  l i m i t a t i o n  to phase

coordinates. Problem is sclved with the use of classical principle of

L. S. Pontriagin ’s maximum. Are given numerical examples .

Great practical interest represents the app lication/use of

methods of the opti.izaticn of tra jectories in the pre sence of

limitation s during the function of phase cocrdinates. To theoretical

questions of these problems are dedicated vcrks (1) — (5]. “n works

(1), f2], ( 14 ] ,  [5] the principle of maximu m is demonst rated for the

case y e n  in the optimum trajector y in qu estion everywhe re is

retained the local effectiveness of ccntrol . This case is called

regula r (3].

The basic difficulty of applying the principle of maximum is
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connec ted with the need for the solution of the boundary-value

problem which is complicated upon consideration of limitations . In

the present work are exami n€d the systematic special

feature/peculiarities of the  solut ion of p l a c e d  p rob l em w h i c h  make  it

possible to overcome the diff iculty indicated.

1. Setting and the analysis of prcblem .

Let us examin e the prcble. of the selecticn of the angle of

attack control of the vehicle, which is braked in the atmosphere , in

flight to m i n i m u m  and maximum distance takirg into account limitat ion

to the value of the complete overload whose solutions ma ke it

possible to determine tke maneu verability capabilities of vehicle

(Fig. 1).

Expression for a complete overload te~kes the following form:

fl: ~ ( ‘I r - - . (H

where q = pV2/2  - velocity head ( k çf ,#m 2]; p — atmospheric density

(kgf.s 2/m ’]; V — velocity [./s]; r , — drag  coefficient; (‘
~~ — lif t

coefficient S — characteristic area of vehicle ( m 2]; G - weight of

vehicle (kg).

Page 76.
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From (1.1) it is evident that n clearly depends on steering

function e~. and the li.itation in question telcngs to class

kL~, U) (see (4 ))

Let us assume that the aerodynamic forces, which act on vehic le,

are characterized by the pc]ac of the fcrm

( ‘~ ~~~~~

where ~
- , — a drag coefficient of ze ro  a n g l e  of a t t ack ; / —

parameter of polar.

The use of t h e  dependence i n d i c a t e d  m a M e s  it poss ib le to

sufficient simply explain tFe physical sense of optimum solution .

To value C~, (i.e. to the value of a n g 1E~ Cf attack) are

superimposed the limitations:

~ y 1 9 I

For the development/detect ion of a brcader class of solutions

and rcle of the superimpose d for value ‘
~~ 

limi tations the parameters

of po la r  and value 
~~~ ~~~~ rn.~ let urn select ac t ha t ~1AK ,~~) ~

would be inside of cut e 9 , 1 c . , . ~ I . Here K — l i f t — d r a g  ra t io ;
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/4(1
K The equations of the plane •oticn of vehicle in the

at mosphe re tak e the form

V e , q ~ ‘.111

~~ ‘/ - H (-
~ ~

‘ 

~, ~ 
)

i i  ~- ‘ s i i i

/~~~~i ( I S  ~1

/? I /i

where g = g0 RtJ(R + h)2  — acceleration of ;ravity [mis2); H — r ad ius

cf planet [a]; h — height/altitude of vehicle (.],; g0 — surface

gravity of planet (m/s2); 8 — local flight path angle (rad]; L —

flying range (km]; t — time (3]; a — mass ot veh ic le  [kg .s2/m].
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ilflMl ~9~’

/ ~ 
I

~) 

-

~

Fig. 1. Key: (1). Boundary of the atmosphere.

Page 77.

Point designates differentiaticn with respect to t.

Let us count t he atmosphere of isotherm a l p
~ . t ’  

~~~. where p0 —

atmospheric density on the surface of planet [kgf.s ’/m’) ; • — index

Ct the exponential in formula for density (1/m].

Let the descent vehicle come from initial state int o fina l

optimally in the sense cf m a x i m u m  cr m i n i m u m  of distance. Let us
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assume that in optimum trajectory wh en n .\ ( , \ — limitation to the
(I fi  -

total cverload) is satisfied the conditio n of regularity 
(~ 

/ u

(see (3]).. In this case for the scluticn of 5tated problem , it is

possible to use the mathemati cal vehicle, develcped in wor ks [1] —

(5 ] .

Desig nating those conjug ate/cctibined tc 8 , h, V and I.

alter nating/variab le of variational pr oblem for system 81.2) throug h

Pa. 1~~, p3, p,. 
let us write the expression of the Hamiltonian of the

expanded system

c~ ç~t ’ -~ ( 1’
H — P 1? IL 

c us 0 p V sill ~J

(c ,~ ~~~ ‘\ p4 1? Vcus ~I
I - - 

2,n L~ ~-UI ri
,1 

. ( ‘I

cince system ( 1 .2)  is autonomous  durinç the period of the

descent no limitations are Imposed , the H = fi in all inter val of

mo tion. -

In accordance with (1] and (4) the system the adjoint from 81.2)

equaticns must take the f o r m

(‘H
P f l — - -  - ‘ ( I )(1X1 o x 1

Peg. 7$.
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Then

Pt -- 
~~~1 
( V  

~, 
~ ll) ~ 

~~ 
( 1 1 5  (j

/0 ~ O I L - .~~ L -
~ f ,~ / 

-

C ‘~ ~~~V ( I S  ~) I

P2 P u,,, (R-~ 
/ i~~

-
~

f ‘ 2  SI l l  1 1? V c o i s

1,_ i 
~ 2f ? l 

- 1? - 
Ii ~~~ ( I? - I i i  - — (1 1)

( I- -

~~~ t (0 S 11 ( ( I S  (j

1~’ f~ li ~~ . S t I i  ~I

‘I ‘0 .S U ( ( I S  1~j - ~- f~ -
- — -—-- - -t 2’ k~

) - - I. 
~ “~ -

, / 
/t _)j~, g. 

I I

p 1 z_ U,

whet. )(t) — Lagra mg. ’s factor , mor eover o ( t) i , l  \)~~~(J

/ ‘I-
;-~- -  -

~ ~ f ’ :. ’ y 1 
- 

-‘ t I p  1 ’ ~V c, O 1 ~. , i . )

Pot spates (1.2) are assiga~ptescribed the ini tial condi tions v (t0)
yO~ 9(t~) 0°, L(t0) 0, to = 0, b(t0) = b°. It is required at the

specific fixed/recorded height/altitude h’, is sufficient sm a l l ,  so

that the distance fligh t it woul d be poss iUe to consi der ti~ ished ,

the provision for maximum ci •ini mum cf flying range. Inasmuch as 8

and V at the end of the flight are not fix,reccrdecl, then at the end

pci nt
- 

!,
O
I
II il .5)

Conditions (1.5) are boundar y for syste. 81.4). Prom condition

x 0 and p4~) -1 , it follows th a t p, —1 in an ent ire trajectory.

f lws  sta ted pcobl.m La redeced to two—point bowadar y-vel.. pr oblem
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tcr the system of ordinary differential equaticns.

If we assign palO) and p~jO), then of the condition H = 0 it is

possible to determine p2iO
~, and the numb er of those controlled at the

en d of the tra jectory of f u n ctions p~ (l) and I 3 (1~ it coincide s with the

numbe r of parameters, assigned at initial pcint . With this program of

ccntrol it is determined frcm the conditions

• lll!ll 1 ( 1 ( 1 1  L 0
~ • I l l iX  11:111 H • lihi X 111)11 / h j ~ i,oiii . (I .i~)

The constancy of overload is provide d by a change in absolute

va lue t ’~ ( l  in accordance with th. condition cf

communication/conne ction n~ \ and the sign of function 9 )t )  is

determined by sign Pa accordingly (1.6) . It in the process of motion

along limi ta tion n . \ in some point e, - U and q ~ 0, the n in this

trajectory at the subsequent t or gue/mcm .n t is jossible the

disturbance of the assigned,prescribed limitation. This is connected

with the fact that the local ef fect of control cn the amou-.Y of

g— force is already ex haus ted ( ~~~ - ~~~~~ During the solution of
\ (II i, !

boundary— value problem by iterative methods the fact ind icated is

important first of all because in some test trajectories can occur

the d isturbance of limitaticn. Simulta neoumly with this appear

computational difficulties in the construction of the iterative

calcu lation method s, since of (1.4) it tollcws that ).(t) ~ — w h e n

. 1 1
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So that the iterative process would not have the spec ial

feature/peculiarit y indicated , but the trajectcry of the expanded

system of equation s with the d isturbance of limitation the y

continuously transfer/ccnverted in trajectory without the disturbance

of limitation, let us artificially restrict tEe decrease of value

r ,. f rom belo w by value ~~. en upon r eack ing  of value (~~ the

valu e )1(t) is limitedly cn top °
~by value ( l 

- Inasmuc h as by

hypo thesis on un kn own optiI!~m t ra jectory 1” - /U , then with

sufficient ly small and e~”(I~~,1 ,, -~ it is possible - to  s a t i s fy

boundary conditions ( 1 . 5 )  . This makes it possible to carry out the

regular iterative process of the sclution of boundary-va lue proble m,

without exceeding calculaticn grid ETsVM ~~igital computer].

.1 
Page 79.

Let us examine the systematic special feature/peculia ’J ties of

t he  solution of problem taking intc account limitation ~: ,V Dur ing

mc tion in open dom ain ~~ .\ accordingly (1] — [4) )(t) = 0; in this

case va]u ‘i correapon4~$ to value ‘~~.• determined according to the

principl, of maximum (.~~ i m u m ):

- • P
C~ — ( 9 11111 1 1110 t l :t i-i 0 

~~ 
1 : 1 0 -  I 

“‘ f’ I 

-
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Key: ( 1) . or. (2) . where.

At certain torque/moment funct iom “~ will teccie m ore tha n N, and by

this “intersection ” will be determined output/yield to limitation.

During mot ion along l imi t a t i on  ‘~~ - ~~~~, (‘,‘. A). In order to determine

the torgue/Roesnt of descent from limitation , simultan eously w i t h

c~
i \ ’ 1 V. comp ute c9(p,) with~ ut the account cf limitation in terms of

the instantaneous values of pulses p

~ 

(see (1.4) ) f r o m  c o n d i t i o n

(1.6). Them the torque/moment of descent is determined by their

intersection c~~(p 1 ) --
~ c0. ( Vi .

let us examine the trajectory phase, which adjoins the end

point, determined by boundary conditions (1.5) . On this trajectcry

phase when LI’) — max. carrie d out ccnditio n “~~~‘ . .\ , then it is possible

to determine the character of optimum contrcl in the vicin ity of the

end of the trajectory. Pot this, let us examine i-:. 
~~~~~~

‘ 

~~
‘ - With h *

Iii) functions p~
(1) an d p~(d decrease to zero. According to l’a3pital’s

rule It m c =~ - f---. ?r cm ccnditior H 0 and system (1.1$) we obtain
0 •~ V )  2i /) . I.

the following relationship/ratios:

(10 1 7)
- (U - p  /1(1) )  s i l t  fiw

( I )  ~~~~~~~~~~~ g~~i ll 0l 0 1 t
- P0 I, ’ ( 1 0 2  

i~~
1 (I. )

With sufficiently small h(’~ usually sin O(’J < 0, since the vehicle
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loses altitude; then p

~~ 
) 0. Henc e it follcws that p, < 0 wi t h t- =

— 

~ (~ 
) 0).

Value p3 (t1), as p3 (t1), is equal to zero. Then from conditions

p
~ 
(t ,—h) < 0 and 0 > 8 — m, 2 f o l l o w  p3 (t ~ —~~) < 0. i.e., .‘ ( t  ~‘ t  -‘

and C~~ -“~~~~~~~
) (~~ , - ~~~~

. but when —~~ < 8 < ,r,/2 fo l lo ws ~~~‘ f l  • and

I I’~~~ ( ’ (  ~( 1 . 111 ,1 1 
in accordance - vjth (1.6). In the case of fl ight to

ma x i m u m  of distance L ( t ,) > 0 4id cos 9 > C; tE€refore during the

soluticu of problem on iD~ +~~ax. the last/latter case drops off.

Ro wever , in proble m on IIU.) win both tIr e case (— w /2 < 8 ( 0 and —w (

6 < — ./2) are possible.

In the initia l staçe of motior in the presence of

ccimunic ation/connection ‘~~ and ‘ v it is a priori unclear , that it

is bett r in the sense of the aximi2a tion of glid ing distance

~,. ‘~~~or r ,, ~~I/’ ) W ith incr ease ‘ ,~ 
increases ,. increases

and distance wi th scue i n i tial ~~~~, 9L°~ can decrease as a result of

premature speed loss. The selection of contiol is clearer at the end

of the trajectory when the effect of the ir~ tantaneous value of

velocity is small (momentum/impulse/pulse ~ 3 
— this the influe nce

coefficient of a variation in the velocit y cn distance ) and distance

can be increased because of an increase in the positive lift, i.e.,

~ 
o , ,,~ Pot the last/latter phase of tra jectory I�~ -

~ win with sin 6

‘C 0 and cos 0; according to to H — mar. fcllows ‘
~~~~~~ -‘ ‘ -. ‘ ‘ -  and

‘I
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~~~~~~~ ~~~ vith s i n e < O a n d c o s e< 0 .

Page 80.

In the case of the trajectory of mini m u m range , con trol ~~~~~ ‘ I

with — ‘/2 < 0 < 0 contributes to the decrease of flying range. But

if —. < 8 < w/2, then flight is accompiisb€c in the direction ,

opposite initi al, and for tEe minimizatio n of d istance L (t 1) it is

necessary to incre ase the  -duration of the last/latter trajectory

phase. This occurs when ~ ‘~~ - ‘ -  which correspcnds to the fact tha t

the l i f t  is directed against weight.

The made anal ysis makes it possible tc scive two— point

boundary—value problem taking into account limitat ion I!- .\
‘
. if in

cptimum trajectory / Case () is examined in separate

wor k.

2. Procedure and the result s of the numerical determination of

C~ ti.um trajectories.

For practical determination of optimum trajectories the pr~sence

of limitation to the value cf complete cverload , it is necessary to

ru.erically solve system of equations (1.2), (1.4) under boundary

conditions (1 .5). The boundar y—value proble. of the select ion of

t
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initial •omentum/impulse/pulses ,,,“ for satisfact ion of condition s

(1.5) was solved by Newton ’~s method. It was reveal/detected tha-P the

sensitivity of solution tc changes j ” is very grea t , and s u r f a c e s

i, 0 /, have very complex structure. For tEe search of the first

approximat ion, was suggested the piocedure , based on with the aid of

the princi ple of maximum the funct ional LI” in QUESTION can be

expressed as function of parameters p ’1 . p~~
1

in optimum trajectory a~re fulfilled ccnditions p1(IP p3 ’ = by 0

and It1~ = mar . IL~ (mm I~’)) w i t h app ropr i a t e p 3 .  but at ot her values

,i, ’ - and 1.’~ - ~~~ ( I ’ ’  - I- , , , )-

In stated problem only  d2 L/ dt 2  contains clear ly control -
~~
,

surface ! ‘ (p ~~ l m ust be smoot h or , at least , have simpler structure ,

than p ’,’~~(p 1
~”~ ). During search by the method of the gradien t of sequence

~~~ which ensures U’)4 wax. (LLI).$ win ) wi ll automatically decrease

values p , . and when as a result of the flatness of surfac e 1~~’ ’p ”~’:~)

the conver gence of the methc d of gradient in the region of extremum

it will deteriorate, it is possible to refine values 
~~~~~~~ 

by Keuton ’s

method . This approach can be used also with t)~€ larger number of

unknow n pa rameters.

During limitation ii \ this method eflectively was utilizc~d and

provided the rapid convergence of iterative processes. wit h the use



DCC = 78068004 P A G E  ~~~~/�,

of a gradient meth od of the search of initial condit ions p ,  and  of

quadratic extrapolation icr known sclutiOn~~p
’ 0 (\ with i = 1, 2 , 3

where \ , — assigned sizes of the q—force , was fulfilled the sea rch

cf solution /‘~~~~ ~~~~~~ which was being mor e precisely formulat ed then by

Newto n ’s method.

in pract ice lu r i n g  t h e  n u m e r i c a l  r e a li z a t i c n  of problem by ETsV~

instead of alternating,variable systems (1.~ ) here utili zed ~~~~ 
• Ft

dimensionless variables ,- 
I’

,

Page 81.

Pcr an example let us give the optimum lines of descent in the

vehicle in the atmosphere ~~th the use of a lift—drag ratio. D u r i n g

ca lculatione was accepted:

I , ,  .~ 0 - (‘ ~ - ( I I ‘f
I 

~
,, I ( 1 . 4

o ,,, ,~ 
- 1) i i  , 3 I )

lit~~- -

,,(I) O e ( o I o3) I I’ 031 1 I !  -

( I I  
~, j,, - 

Ii,

(I j )~ ,,- .‘ , - - (i .~~ 7 i(~~ ,

- a/, II ‘ o ) !,(, /,‘

F? ( li  I - Ill

1 i Sflbf,T, ~

cay: (1). kg.s2/m1. (2). with. (2a) . a/s. (3) . for .
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For the regularization of problem duriny t h e  search of thu regul.i r

optimum programs, close tc irregular , it was accepted

During the calculaticn ot ze r c  fu r c t i c n s  p , ,

r, V Ft ~~~ ~~ ‘ ,- they were determined w ith an  a c c u r a c y  t o

10 ’— 10~ • and valmas i’; ’, war e more  Fr e c i s ej y  f o r m u l a t e d  d u r i n g  t h e

scluticn of boundary—value problem to 10~ ’—1 0~~.

Pig. 2 and 3, give the results cf the calculation of t h e  o p t i m u m

tra jectories ~~ $ sax. without limitation fcr cverload. Let us foc us

attention on fracture curved ~ 1y ~~j , that cccurs at the value of the

angle ~~Ol, at which the EeigFt/altttudes of tirst and secon d m aximum

~~~ coincide. Prow Pig. 3 it is evident that dependence C , ) !)

oscillates about value , ‘~~~, which corresponds ‘ . ‘ ‘I ~~~~) -  Let us

note that fluc tuation .~ 
c , (1j c o n t r i b u t e  to d~ mp in g fluctuat ions h ( t )

and ,i ( I ) .
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I 1 ~~~~~~~~~~~~~~ 
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-
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~~ 
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~
/ •  ‘t / • I
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I LI 17 I 17 /I7O /17! 3171? f 1 7 8 /3/7 N°/7 8 17

Pig. 3.

fey: (1). S.
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The obtained solut ions were used for tEe sclution of prob lem

taking into accoun t limitation ,, v Pig. 4, gives the results of

calculations. It turned out that during decrease of N program , ( ‘

changed so that to some degree ;it compensat ed for the losses of

distance f r o m  the  act ion of ii i t a t i c n .  W h e r  t he  possi bi l i t ies of

ccmpensation were exhausted , beginning the ucticeable decrease of

distance.
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H V h 
- : ~~~ ~~~~~~~~~~~~~~~~ ~~; ç  ~~~~

/11~~ 1,11 u:~~
Y-  - - I - - - I 

~~~~~ 
41 - - ~

$ \ \ V D~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
/ 1  

-

I/ / J . ,
: :  :

~~~
: , :~

J t J 4  

~ H L ~
-~- t  _ J _ ,

~ I • •
~~~~~~~~~ 

I

I -. - 

1— ~ 1— ~- - ~~~~~~I~~~~
j

~~~8 I 8  88 8 ~‘ 288 3817 ~~~ //~j
1mg. ‘0.

Key: (1). m/s. (2). s.



coc 78068004 PAGE ~~~

L /,11/f
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1 . 
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1 :  ‘ I  1 ? —  ( ‘17 I

1 • 18. __—_._—._— - • . • -

~~
• . ..

~~~ •
,, .,. 

_____ 

_____________ ______

8 17 LI 8 ii ( 7  
,‘ •

Pig. 5.

Key: ( 1) .  m/s. (2). s.

Page 83.

For the same parameters of vehicle, we re  c~€termined solutions jJi)

4 win at different rates of entry *0) and 8. Findings were used ~uring

the determination of solutions taking into account limit ation to

overload. Pig. 5, gives the optimum tra jectcry if’)1 w i n , fo r  wh ich  N

19.3~ with ~o) = 7900 i/s and ~~1 ’  ~ —3 °.8. It is evident that the

possibilities of decreasing the overload by local variat ion in the

ccmtrol are almost exhausted; there is a ma imu m size of t h e  g— t o r c e

-s .. at which opt imum trajector y still remains regular for a problem
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cm LL’) — m m .  With N < N , optimum trajectory will be irregular and

this fact must be considered during the nume rical solution of stated

pro k l ew.
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I H E R M O P L A S T I C  STRESSES A N D  C E F O B M A I I C N ~ OF E U E L T A N K  i N  r.i F~ P C L ~~

CF Il~ E M P T Y I N G .

•1

~. IL Marchenko .

~s e x a m i n e d  t he  q u a s i —st at i o n a r y  c n e — d i i n e n s i o n a l  td . i~ o~.
t h e r app l as t i c i t y :  the d e t e rm i n a t i o n  of the ~tr € s s e d  anu uL. t i . -  st~~r -

~~~

of s t r a i n  of c i r c u l a r  c) l l f ldr i c a l  sh e l l  d u r d l u m i n  fu e l  tiak w i t ,

hcrizcntal axis, that appear during its un ev en keatiny i n  t h ~ ~~ oc’

of c o n t i n u o u s  empt y ing .  Is c o n s i d e r e d  the E a u s c h i n g er  e L L a c t  a n ~ t~~~

v ar i a b i l i t y  of p las t ic  d e f o r m a t i on  ~cn sp a c e  c c c rd i nat e )  a u L l n o J

discharging. For tke linear law of hardeuin~ ottained exi~ t S - i l U t l c l i .

1. Formulation of the ptoblem. Easic assump tion s

The position of the current pcint c~ t I e  c i r c um f e r d u c ~ of th~

cross section of median surface of shell ~.s assign.d by dng1~— It~~, t~ i.-

posit~ cn of the fuel level in tank — by a n g l e  (Fig. 1)

F

____ -~~~ - - -~~~~-
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the determination of d€formaticns an1 d stresses is coz~u uct~-d

separately on the regiors

()  ~~~~~~~~~~ it -
~~: (1 .1~

7 t — ~~1 ~~~~ / 7t . (1 .~2)

~n each region to the assignedjprescrited and unknown va 1u ~~s
0.

ap p r o pr i a t e s  itself i n d e x  i• (ii. = 1, 2) , t h a t  ccincides  w it h  th~

numtes of this regicn, to relative and similar1 values — d l i n e  above

lettexing.

FCCTNOTE 1~ Similar are , for example , boundary values q for ela~~r i c
\

sclut~ cn 4 ‘~~~~ - “ - ~- - - ‘
~ and boundary velues ‘I for e ia st o— ~~1a~~t ic

solutjcn ‘~ ii~ ,. ‘ii I , - i EIDFCCTNO’IE .

t empe r a ture  f~ is assumed to be c o n s t a n t  in t h e  i rey ion ,
aor~over T5 > T~. Let us designate the moduii of elasticit y t h r o u g h

/f~; I ~-= o i : , .  Pure thermal deforaati,c n ~~~ ~~L ’  ~~ I ft ~~~~ - -~~ C~ 
-

where m~ 
— coqffic~ient of linear expansioq.

-t
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/~~ 
‘p

1 ”

/ . fOil ~‘-i’

-
- y .  -

~~~~

- 

- -

1 i..g. 1..

P age 85.

As a result of an abru~ t change in th~ temp erature on L )O U III1tL ~~

of th . region (1.1) and (1. ) (when ~ w— y .’) a l l  det or u I i t i o n ~~:

elastjc ‘.~~~
‘ ir reversible plastic ~~~~~ . 

~~~~~ - pure/clea i~ th€~~m al

~~~~ and also thermal stresses a~ d “~~ chacqe abruptly.

the complete relative deformation cf skeli e ~~~~ ~~~~, 
c o n t i n u o u s  ~~

all values 0, we set/assume by that obeying the law of tue tlat/j~la~~

sectipns :

e (-
~, ~~~ 

F (-~) 4- ‘1) (- s) (°~~ ~~ 
(1 -

~~ )

[values P(’~) and t~~~ ( - ~~~ are ambject to determination ]. 

— -.- -. — -- -- - - ~~~~- . _  -
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It is accepted , that

- - 

( -
~

, _
~ )

__ I) - ( I ) , T~ )

F) (I I)
- -

~~~~ 

~ 
F I)  

-

amd that in each region

~~~~ ?) ~ ,, 
(1.~~)

T h e r m a l  stresses a re  su b or d i z ~a t e c  to  t h e  condit i~~~.i of

se l f — ba lan c e  to which  i t  is c o n ven i e n t  to g i v e  t h e  f o r m

(- p ,  C ( ) ~~~~~ (f ~~ ~~ fl. 1 _ 1 )

in t e gr at i o n  i n  ( 1 . 6 )  is r e a l i z e / a c c o m f A i sb E d  ~i e p a i . i t e l y  on

regions (1.1) and (1.2).

equation (1.6), a n d  a lso , t h e r e f o r e , t k e  s u b s e q u e n t  sol~itiun

t h e y  dc no t  depend on radius and tUckoess cL slell (u su ~~i C L

it shell it is supported). Thermal stresses taking int o 1~ccount tn .T

&.ower stresses, which depe n d on thicknem a, in this work or auc

examined.
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The surfaces of t h e  y i e l d  (or t h e  pl ast i c  d e f o r m a t i o n  ~ 2J ) L o i

reg ions (1.1) and ( 1 . 2 )  t h e )  a re  accepted. ir t h e  t o r n

~~~~~~~~ T) ~~=~~~~ gu ~~, ,~1 ( T )  If , ~~~~~~~~ ft ( i

where i. the plastic module,/moduli [slop~ tangents o.. ~ tr aiyi. t

liqes, tha t connect points (i). ~~, and ~~~ ~~

i , yield pcints tcr elongation — for comj~z e s s i oi ) .

We wi l l  be r e s t r i c t ed to t he  case whe q j - depend oi~i y  on

t e mp e r a t u r e , i.e., communicatiOn/cc~ nection (1.7) is linear.

uith load accordingly  (1. -d~) a n d  (1.7).

-~~ 1 - 
— ~~, ~ i~~ ii ~~):

/ •

1~~

Page 86.

The conditions under w h i c h  occurs the LesistLve loa d ~~~~~ a n u

diechar~jingI iI~ , , if wt ascr ibe  th e  r o L e  Cf t im e  to var iabL- ~
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tc consider that 7 CUI1 SI . t b e y  are  r e c or d / w r i t t e n  as f o l l o w s :

f i )  ( ‘~) (1
/ i c  ii J ~~~~~~ - ~ 1 i~~ t i  _ -ft

- - (
~ 

II)
u l _ I -

( I , ~r~t~i f ii( ~~~~~~ / ti :~~I~4TI 1~ U.’

~~~~~~ ~1). if. U)- and. ~3). or if.

EcCINGTE ‘. Not  or~ly discharging, iut also passive loauin~.

k NDPCCTNOTE .

~ifferentiale d , guotients (cq -
~~~~.

A c c o r d i ng l y  (1 .9 )  durig~g “discharyin y ” variables r~~ C d f l  h.~-

tuncticns 0 (but not ~). The requiring in~ tkis case sup ~) l e n e n t o L y

telaticnship ,’ratio for deteriinaticq € ,,~~ in the case w h e n

(which occurs in the be qinn ing of unlu adi ry caused by emptying), l~~t

us i n tr o du c e  as f o l l o w s .

Let the regio n

— -,~ -f. - - - it —

is any of the regions of •crotonicity wholl y belonging (1.2) ,

when ~~~~~ ‘,
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icr these values of we assume that in (1.10)

( I)i i~~- t c i —
- (-: - c i i i  , (i~ ., ) U ;

- 
• 

‘~~~~- I I
( I

~ 
_ _ -

e , L~ !iiI f -  - .) —

I’ - I~~~I’ (~ 1 1 -

K e y :  41). if.

Jot va lues  of that are  su L c r d i n a t e d  to in e q ua l i t . j

assume t h a t  ( 1.11) i t  is c o r r e c t  c r l y  in  t h e  r eg ion

- -
~~ T 

( I . 1 ~~

~n both cases must be - d~~~~ ’ ( i .

Let  us assume also t h a t  determ inations ahcve the viriable

s a t i s f i e s  ( 1.8 )  ( c o n d i ti on  f = 0) in Lounda ry pcints of :igiCL

(1.10) .

Subsequently let us utilize t~ € designatict s

~~~ ~~ - 
- -

I, 1 1 , 
~~~) ~~~ ~ ) 

- i ~; 
- 

:~ (1.l - ~
l:~ I: , I)

s. Equation s for determining of F a;d (t)
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As let us see , in c e r t a i n  r a n c e  cf c h ar g e  - - ~~~
- 0) v a l u e (i •

a ~ are defined for a]]. * in ( 1 . 2 ) .  E c r  t hese  v a lues  of -~

accord ing ly  (1.3) — ( 1 .5) , in r a n g e s  ( 1. . l )  ~cd (1.2) respectiv l 7 .

pt.it be

/ ) I i (~~) - - ( l ) ( C~~~~ -

1)1 1 l - ~ ) (I’ ) ~) cos - ’ ‘-— 
- -

rage B7.

jf -
~ 0, then of (2 . .]) .  ( 1 . 4 ) ,  (1.6). it  fcU.ows

— Ct) (U) =~~~~ ;

i~ (0 , -
~

) (1: (

~, (0, i~ ) ~~
— ‘~2 I~ 2 ~~ ~ ~p 2

D 2 ,  a1,

Cm t ha  o the r  hand , a c c or d i ng l y  (1. 7 ) ,

- r

01 two expressions for (0, m) wit h the aid of designations

(1.13], we wil l  obta in  -

€~2 (r) ~~i~~~~

(

~~~~ii~ ~~ 7 )

21) —- (1 1 ) 1 2 02 ~~~ ,
c 2 _ 

, 

~~~~~~~~~-~~~~~~~ - -~~~~~ - - ~--
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a n d  th e r ef o r e

-— -~ I x , ~ 1 -—(1 -— i~ ) x  (~~ - 1)
D - - - -

Tai ing into account these r€laticnship,’ratios and (1. 4)

equ a ij t ie s  (2.1) w ill te rebritte n as fcllc~s:

e ( f-f (1) cils ~ ); -

4- -~~F -~ ~~cns ~~ - -- I —~~~~ x~

introducing (~~.5) in 41.6) and designating

1’~~2 + E~ ? ( ~~) 1 d-;

(2.~ )

let us arrive at t~j e eq~ aticns

• F1 e— - (e •- 1)~~~’ ( 1) ( ’  I)~~-~~~- ? ; f);
I i~~~~

j I
I- ~!( 1 ) ~~~~~ 

-
~~ 

- (1’ C — - (~ i~~~( :~~ + ‘
~~~ (~ 7)

‘ i 1 1 ~~
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Solving (2.7) , let us find

R ( ) { ’ . 
v I )  l~( ~) -

+ P c — (e - 1) (-~ 
-

~~~~~~~ 

Q~e 1) SI I ;
(~~~ s~

1 si r i !~ - 
- 

- 
-
~

I ? ( - ~) ~ ~~~~ ~~ 
- C-’ - -- - - — 1) -

‘iiii -
~

~~~~ I) -

here

fm) : C - eu’ - t ) ( ~~4 +~
s
~~~4-~) - ( e — ~~~~~~

( -
~

);

-y -
~ sii i  -~

-
~-- Sil l 2 

~~ 

~~- f 2 . 9 )

Page 88.

Let us designate

-- (k (-~ ) c O S -~ =~~~
(-
~)- (~.lU)

Variable ay -~) Flays  i m p o r t a n t  i d e  d u r i n g  the  determindtion

of plast ic  de fo rmat ions .

Let us note t h a t  acco rd ing ly (~~.5). , i.e., for it is su t t i c i e n t
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/

small ‘
~~,

- ~ -~ I U~ I 1)

To us is knor n the f un c t i o n  i y - i . -Let us designate throug h

t he  r ç c t of the eq u at io n

~ ~ ~;
-,- - - (~ .l~~)

~f when ~~~~~ -~

(~~l3)

and 2 I ( ! ~ 
-

~~~~ ) in range (1.1) is the greatest stress, t n e n  of )2 . 1~~)

and (2.11) it f o l l ow s  t L a t  in range 41. 1) s,,, U. Unde r the

f o rmu l a t e d above c on d i t i cn ~ of the  fo rmul a of this section , are vaiju

for values -~~ sat i s f y i n g  tle inequality, entering in (2.13) .

3. Purely elastic deformati ns and of the stre sr in sheli.

This case, otherwise ttan in us, it vaa examined in w or k  [ 1 ) .  ~e

will cttain it, after assumin g i -
~ ‘Thea, accordingly (1.8) , s,,, — U

wjth ajy ~~~- t h a t  m ean s  and in the zomes of discha rging. With

t h is  ‘~~~ ._ -( ), D = j~ 8~, E = 0 equ a t i o m  (2.~~) is d e tu r mi n e d F a n d

bu~ equations (2.5) — w i t h  C .
~~ 

-
~( 

t .
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/10

Accordingly (2.5), (2..E) and 42.10)

I ~ s i n 2 - ~- 

R~~) 
~ + ‘~~ 

-

(e 1 ) 1 ’ (~~)) ~2~~~ ’ ” 
- ~) -~- 1

~ 
(-;~ 7:

- ‘ 

e (3.1)

~ urvejgraph ~~~~~ 
wi th € 1.113; 2p 2 P Q ~~()) is shown to by

lcwer curve Pig. 2. This curve intersects frcm straight line ~~~~~ =~~~
_ -  

~~~ I _ I

at the points for  w h i c h  -
~ ~
:
~~m (m = 1~ .~~, 4 ) ,  and from

s t r a i g h t  Line  - —  -
~~, at pcint ~~~~~~ Puac tioc ~ (on lower c u r v~~~ )

reaches the minimu. w i t )~ ~ ~~~~~~~~~~~ 
- .,
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i~~~ -~~~’ --,’ •• ,j~ 1’uq(c
fl4( ~~~~
- - - 

/

~I i-il-’ i - - ’ -
~

- -
~

Key: 11). Taking into acccurt plastic defctmaticns. (2). w i t h o u t

acccuot.

Page 89.

Frcm Fig. 2 and relationship/ratio (3. 1) it follows

mith 0 .~< -~ 
~ ~ and uith -

~
,(  -

~~ 
~~

3 ( -;~) ~ 3 (3.2)

uhen -
~ : -

~~

- I )  - 
2

~~~~
, 

( i i )
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consequently, with increase -
~ for its v a l u e s , vh ic r l  c or r e~~~ond

(3.2) or which exceed -
~ 

(bLt it is later is the process of emptyinj,

-
~~~~ 

in some parts of range ( 1 . 2 ),  a~~d ~wit b ~ those cor r~ -~~ond ( 3 . 3 ) ,

in range 4 1. 1) or its part they can arise tte ccndition uf f o r m i n g

the irreversible plastic deformaticns.

—4
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~~
LM’1’J

- 
~~-e~

-’ /
gu~ / V

~/ /\~ /

/ Mø~~ 4-
-
. 

~/ / 1/ /  ~‘
- ,1/ 1/ 1,1/ ~~

I ~o~)]7~~~~~~ f~
2_ 110 

~~~

-5~~~

T/ñ
~

0
~~~~~

/
/

~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~

/ (
_
,) 

-

— ~~‘7 ~~~~~8~~~~
_
~~ ~~~‘I~~~~- ~~ --38 
~~~~~~~~~~~ (i-)

c 

~
,

4 iii. ~2, 7

P~.g. 3.

Key: 41). elastoplastic voltages. (i). elastic strains.

Page 90. 

.
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1

The rrve/graphs of stresses ;~ found frca formula.. (1 .f~),

(2.5), (2.8) when ‘ -, ~~,,, ‘I , are sbcw.n by irck€n line s oy c u r v e s on

F ig .  3. They t e s t i f y  t h a t  w i t h  increase  of  -
~~ in range (1.2) occurs

t h e  d j s ch a rg i n g,  a n d  in Lance (1.1), beginning from -
~ ~ - , ‘ load

heycud yield point. Fron them it is evideat alsc vhich U 1 f ( - ~ ~~~ --~~~~-~~~

it range (1.1) has great, and e~ ~, r. — -
~~ in range (1.2) — a s m a l l

va lue ,  The n , as it follows from Fig. 2 and r E l a t i o ns h i p/ r at io  (3 . 1)

with -
~~ , - - -~ -~~. and with -~ -

~~ ~ cccurs th€ i n e q u a l i t y

( 
~ ~~ ; •  - 

(A 
~

a zone . - ~ and , citner t~~~iL  p a r t w i t ~~i

these zone s or their part s kelong (1.2) , a re  k n e w i n g ly t r ee  f r c m

~.la s t4 c  d e f o r m a t i o n s

The made  ana lys i s  cf e last ic  s c i u t i on subs tan t i a lly f a c i l i t a t e s

finding the zones of plastic deforaaticns.

14~ Elas to— plastic d e f o r m a t i o n s  and of the stress in shell.

Firs~ case. Let us exPand/develo~j the sciution , obtained earlier

for values of ‘. satisfying inequali’~y (2.1~~), at whic h 
~p l =0 ’ 

First

let us constr-wct ~,, , According to results Secticn 1, it is possible

.4

-5 - -.
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iø
to  exp ect  the f orn a t i on ~ e d u ca t i on  of thr e e  r a n g e s  of m o n o t o ni cit y  ~~

33

7 ~ 
- — (-LI)

7: 4 ~- 77

and o.~ two zones in which w~en . — -
~~ 
..~< a w — -

~~ and w :fe fl v— ~~’5 ~~~

~p1(’~~)~~~ 
U. (4 .~~

Let us  designate through -5 ,~ (a = 1, 2, 4) values -
~ , t h a t

satisf 1 condition ~~~~~ 4 . — ,‘) 0, t h r o u g h -~ -

~~ 
to t~ e conditic~~

( 1 
( 1  A )  -

~ ~~~~~~~~ 
:: -~ )-= O U /~~ ( - ~~ ) - ~~~x~ , -

~ey : .~ 1). and.

t h r o u g h  ~~
- 

~ to condit ions

- d3 .7 3 i- ~ ) = Ili jU 3~~( ~) ~ : (‘~~
) ft (4 -I )

- - d-~ 
-

0

Por determination 
~~m let us not-i that ~~~~~~~~~ -- ~~ when ç2 7: ~m

) (1,

an d then according to tte seco~ d eguat ,iqs from (2.le) anu (2.5). we

will cbtain

‘ (~~~t I , ~. -1 (- IA)

:(‘

- U-—-— -- ~i!173~%—~~~.~ -- —
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‘VI

linding -
~~~,, f rom (ILE) makes sense 051) ~.hen ~~~- .U (~~~r , ,

when ~~ real/actually there exists. Wl~en ,<U everywhere7 , ft

As follows from Secticq 1 in t 1~e f i rst  cI r a n g e s  (4 . 1) m ust

appear dependence ~~~~~~~~ corresponding to the first cas~ f L o n

(1.11~~, mo reover for it acccrdingly (4.1), 4~ .3) and (1.11)

~, ~~~ — a 1
., f )  l~~~~1

P age  91.

~n the second of ranges (4.1) it is necessary to ex~~ ct ~~~

dependence e,2 (-~~. correspqndiny tc seccq d case (1.11) , Loi wh ich

~~~~ ~~~~ ‘ -
~~~ and acccrdirgly (1.5), 12.4), (~ .4) and (1.1 1)

~~~, ~~~~~~~~~ 
.— -;~3 ) — ( -  I -~ ‘~~- ‘-. —

~n the other hand , from (7.8), (t. 11). and (2.4) it rollow~

I I ~
‘ ! ~

Thus, taking into acceLnt (1. 13)

-~~ - i (-,.. - -~~)
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~ n the third of r anges  (4. 1) , accccdiq~ tc  t n at  p ~e n t ~~ IrA

(1. 11) ,  f o r  t h e  f i r s t  ca se :~~~~
- , -

~ ~~~ 
-~~ E , , 3 (~~~~~ ) 

~~~~~~~~

Consequen t ly ,  for ~~~, t k at  lie at r an ge s  (4 .1)  and (4 . 2 ) ,  w h e n

these ranges  or at least t h e i r  p a r t s  ~€ lo a g  ( 1 . 2 ) ,  f u n c t ion ~~~~~

n e c e s s a r y  to assig n t h u s :  
-

(~OS~~
) 1 -

~ ~~~~~~~~~ 

~~~~~~ ~ ~ l- I 
~~~~~~ (_

~~

_ 

-

,, 7 _ — () ~- - ~~~~ I

- - — ~~~~~~ 
H 

- - - - --
- 

-  II )H - -
- - - - ~~ , — , -

- - ( I )
— - ~

_
‘ ) ~
, (~O’— 3 

- — - - -. - — - ,
,_ ~~~~~~~~~~ ~~~ - - - — U 1 7U - -  -‘~ 

. ~~73

- - C’ ) S ~~ 
- ~ (Y-~ J 4

2 
- 

-
~ 

~. -

FEy : 41). with.

Then  consecutively it is possible to f.ind eve ry th ii  ~ ~, and

w h i c h  will mak e it p o s s ib l e  to c cm p l et e iy  sclve  our task  t cr  -~~~ -~ ~:

~t is real/actual, ~~~~~~~~~~~~~~ in  f i e l d  (1 .2 )  we as~~ign  ~~

acccrding to fitst equation . (14.6) and cn (2.6) we compute P P 1 ( -
~~)

and  Q = 01 (-
~) [, P a n d  Q it is c o n v e n i e n t  to a s s i g n  t he  in iex , w h i : h
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ccxr es~ond s to the number of rows iron (Ii.~~) ,  used for  t .~~ir

det e r i i nat i c n) .  On (2 . 8 ) ,  we f i n d  F at d  ~~~~, cm (~~ 10) ~~~~~~~ and

frcm 44.5) with a = 1 we determine -
~~~ ~urt~er s i m i l a r l y  ar e  locatec

‘2 - ~~ ’ c) ) - ,) . I~. (t ~, alsc , irca (4.5) ~o, that satisries the

ccndi tion

- 
7 . (-I 7~

With chservance (4 .7)  we find P~~~~, (‘- A ) I - , 1 ’ . an-I trom

ecuatjcns (4 .4)  -, and 2 , It it seems that E. - - ,,, then we c om p u t e

E, ~.)., Q~ (-A and so forth , and from (4.5) -
~~

. Finally, t~ 4i ough P 5 i - ~~,

~ we f ind F. 1 , ~ also , f r c m  equ at icn  44 .3)  -~ If i t  seems

that it region (4.7) there are no rccts of equation (4.5), the n tt

means that Uhin s 7( -~ it lie/rests above straig ht line ~~- ~~~~‘-- a nd

tberetore 
5,2 ~~ everywhere , besides the f i r st  of reg ions ( 14. 1 ) .

If It turns out that E~~ 
-,
~. then the mentioned

s~ ralghtlIne Is tangent to ~~~~~~ In the point of the ~. 
-
~ ~~~~~~~~~~~~~ 

~~

everywhere except the first area ~4.l).

~ncidentaljy are calcalated stresses ~~~~-

Secon d case. If -~ > -
~~~~, then ix ~ region (1.1) will -i~ ise

dsformatioss ~~~~ in the process of Empt y iDg converting intc
region (1.2). For (1.2) they will b~ccne the defornation.~j of
discharging 

~~~~
- - ( -

~~~3 >~~~~~
-

Ihat means that in the completely Emptied tank when

( O S  ) 
- - -  - (‘(S 

~ ( ~- 1 —
~

- ~oc -
‘~
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Page 9~.

Iccording (4. 8)

57( 7 3  ~~)~~~~~~~(( 73~~ -H ~~0.

7,9 ( I ) )  - ~~ ~~ U) ~. 
(4.9)

Let us designate

7 )73 )  1- ~73 ) -~ - (t’ (7:~ ~i 
(4.10)

a n d  let us no te  t h a t  a c c o r d i n g l y  (1 .5 )  an -i ( 1 4 . 9 ) ,

2 -  ~ 
-I I i)

Erom (4.11) and (4.9) t~~~ ing into accc~ nt (1. 13) We rind th -it

a f t e r  wh ic h ( 14 .8)  i t  is c op i e d  as f c ll cw s

aben U -

‘ I I- - 
~~) 

1 ( S  -i :. (~~( > ,  

~ (4 l~)
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~cw for  the coap 1etei~ eaptied t~~~k (~ = .) we r i gh t  to u se  the

second of equations (2. 5) , and neans b j  f.na ui.s (2 .6 )— (2 .  8) .  T a k i n g

into account (4.6) and (LI . 1~ J the  d e f c ra at ica  ~M) is de te rain ed

e v e r ywh e r e  and  cosputat icns  us ing  f c za u la s (2.6) do not en~counter

difficult ies.. Coiputin g by 42 .t )  P (a) and C (.1 . and thea on (2.8)

P ~~~ and ~ (w) ~4 . Iu )  w~ vii i obtain l inear  equa t ion  te latively ~
(ab.. ‘

~~~ < . a unt be £ T > # l~~. Let us retwr n tc  case by ~ < v. The

stt~ $SaS 
~~~~~~~~~~ •~, exa mine d in Secticn 3, and means in the case iq

qnest4cn, with decrease 0, they  decrease,  Tketefoce with

gener ally speaking , not in Entire regio~ (1.1) ~, , /

Mt •~~~~~~~ -~~‘.) ~e tha t  value of paraleta x ~ , at which iq (1 . 1)

‘p i ír)  , / ,  aereov er ~~~~~~~~ flen for ~~~~~~~~~~~ with the aid of

( 1.. 5)~~ (1. 8) , ( 2 .4,  (1.131 we obtain

~ (~~
, 

~ 
t (t’ 4) us q~) f 

~i 
a~ (4,13)

~~~~~ ~
) I’ ‘l’cus c~ I —

moreover in regio; 
~~~~~ 4 0 4  v — ~~, by b.iiiç part (1.2), 

~~~~ 
we

assi gn on for aula (~.11). with the aid of (l l .)3)  and (1.6), again let

us arzive at equations 42.7), if we in thea r.klace e by ~ and to

assua

( I  — ‘

~ 

) + ~~ \ ~~~ ~ a~ 2 ( ~) t d~;

- 

•1— 1 (4 .14)
11,1+ 2

V (4  r ~ I~~’: 
s,,~~(cp)~ CO$~f dp.

I
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Consequently, as sciution (2..)) for th~ case in q u~~tion they

also serve (2.8). (2.9), it we in t b € i  replace e by ~~~, ctn~1 P and Q to

calculate accordin g to (4.1*). Let is scsi that this soiuticn with

= ~ leads to the sa.e values of 
1 ( ~). aid 4 (s) , ub ich enter in (4.10).

a

The f irst of ~gual it ies  (4 . 13) • with  ~ = C an d ~ ~ ,~ 0)
teduces to the equation

, (~~ ) -
~ ~~~~ ~~

17 tk. ~~thod presented it is possible tc obtain e~ ugtion &. tor

P. ci’.~~~ an4 in the case ~~~~~~~~~~~~~~~~~~ Io i€vsz , wit h - , close to

(chick usially occurs), thu iptsrval/q.p ck i aa ge  it is possible not

to exasine.

P a ge ~3.

Tbe gives for. ulas ca ke it possible t c sc lv e  •t a t ~~ ~~~ut 1 - .  x r ~

- 4  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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criterial fore. Criterion x ., I) --- i~~ - sakes it possible even

before calculatiou s to judg the possikilit~ of the eser gence of

plast~jc defor catio ps in ta i~k. Crutezicj 
~ 

solves the probleu about

th~ niuber of plastic flow areas dutiug discbszçiag.

Calcula tion ~as carried out by the a ut t or  for stresses and

sttaiaa oI ta ak ftqi D 16AT sith t cllc~ iag b~ initial data: I~ =

0 250 2 0~ ~,53; ~ 30,5 Iac~MM 2 ; a~ 2 = 25 KZf ,’.UM 2 I:~
= 654() ~zc ie.~

2 ; e == 1 , 113; !~ -~ 1M9() K2C MAf~ : E~, 
n ;is K2C/ M M .

The results of calculation are given tc Fig. 2 and 3.

The nuierical values of the stresses •a~d strains in region ( 1 .2 )

£atis~y the conditions of discharging (1.9). The accou nt of ~1astic

deton ations leads to a ncticeable reducticr ir~ the stresses.

8Ifl~ ENCfS

1. S. II. Kah n , S. I. la ra shk ov. to tea&erature of the stress in

the housin g of shell , by the partially tilled liquid. XVALVU , the

transactions of scbcol. ian. 128, 1958.

2. I. A. Dirger , I. V. I .  V. Dea ’yaiiua bk.. Theories of

_ _ _ _  -~~~~~~~~~~~~~~~ 

I_ I__
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plasticity with nonisotbercal loadiqg. “cechanics of solid”, 1968, No

6.

~eceived ‘e/VI 1969.
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METH O D 0! SUCCESS I V E  A I E R O X I M A T I O M S  IN P R OE L EN CF TRA N SIi ~N T  CREEP AND

Cf N0~~LIN E A R  ELASTICIIY.

I. I. Pospelov.

~n work is given the aethod of the sølutici~ of the j~roblems of

thec ry of creep that  is the  develo~~cent of the  setbod of elastic

solutjcns (1]. Method allcvs physically the nonlinear ta~iki of the

theory of creep to reduce tc the s€quee ce ci linear tasks and tc

dencr~ te the redistributicn of the stresses i; construction in the

~rsceas of creep. Unlike work (2] couplebe strain is reprasented in

the tpn a of the  suc of in s ta nt an e c~~s deforsat icn , by non linea r  f o re

voltaqe—sen sit ive, and creep at ra ip ,  non1~~near voltage —sens i t ive  and

t i a..

The behavior of saterial during cr eep is described by the theory

of figs. Is given an exa u & l.  of nu set ica l  cc.petatio n.

‘14
—a
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1. Fundanental eq~ ations of the theory of creep.

It is assumed that the components of t te  deviator at comp lete

strain e,1 are accu cula ted iron the ccu~onerts cf the de viator of

insta n taneous d.toraaticn ~‘~‘j ’ depending onl~ cn stresses, and creep

strai n P s, ’ that voltag e—sensitiv , aid th. t ine :

e 11 =e~1 4 - p ~1 it , I - 1 , 2 , 3), (1 .1)

~~~~~~ 
e~1 =~-~ 1~, ~~~~; here 

~~~~~

- - a strain ten sor ; 
~~, 

1 vitA i = j  and

with i j j.

for descri bing the process of creep, are utilized tne equations

of the type
PH . 12— 

2 ; ~~1’ -

where SU
-- a stress deviatcr; p,1 •— duiv.tive of the strain

deviator .f cr..p on t~e codified tics v(t), which is the function of

th e phys ical t u e  t; “ P, - the stress i r ten sities to of the rates

ci creep strain, moreover
3

2 
Xj / S j J ;

s ,i ‘,, - - 

~~~ 
(I 3)
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(here i s, - - stxsss t€nscr; a — average,aean stress).

Page 15..

The relationship/ratio between inteqsities of stresses and rates

ci creep strain aqd the t h e  is accepte d hi~ the follow in g form :

~~ ~f (~) (1. 4)

Dur ing  nuierical. ccuputa t ions  is utilized 
~~~ 

~~~~~ Fun ction f( ;~
)

and the codified tu e v = v (t) are deteruiaed frca the grid of

curves of creep, obtained expetiaentall3 with elongation under

coqdi~ ion~ of constant teaperature (2].

The conponents of the deviator of instantaneou s deton ation are

detersined by the equations

( IS )
—

) ,II

_ _ _ _ _ _  -
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~q1
Coaaunicationjconnccticn between inte.sit~ies of instantaaeou~

deforsation sad sbress•s

( 1. (~)

let us accept in th . to r i

- 
~ ,.

- 
3 1  ( 

~ 
) 1 7 )

where ~ — shear io~dsjua; s .~ — cc;staut S cf caterial which can be

deten.ined fron di.graa

Ccaaunication/connccticn betve~ n tb. aleraçe/mean stress 
I
3

an d the average/sean strain ! :~ 
is expresse d by the eq uation

2 — k~i, 
t i . $)

I~. ‘i ~~~~~sre E — Yovog ’s aodtlus, ,~~~~ Poisson

ratios.

Fr o m equations (1.1), 41.2), (1.11.)— (1.6) we will oDtain

de,1 -

~ d ~~~~ F ~ f ( ~H) ç ( 1 ‘1)
dt ~ i, ~ 2 3H

Equations (1.9) describe the behavior ci usterial bob h during

jasteataneous nonlinear defcraaticr and transient creep. They not

li near and their use during the soluti,c n of prckleas  is connected

1’ A 
.
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with acnsiderable aatheiatical difficulties.

Ea~ge 16.

Equation (1.~ ) is convenient , iscla ti~~ lin ear part , to present

in the for.

~~~, LI,,, 1 - - — i), 
(1 .10)

w here

1 -  - 1 —  ( 1. 11)
I-) ’

it is pcssible to subordinate  to cccdiitioa C ~ ~ < 1 b y se lection of

key ’ s constant

D 1
~~~~~ ~‘P~ ~~ >0;

ma.

(1 ) .  vith

her e ~~~~~~ 
- c.rtain conditional nud er.

in calculations D, it was calculated tro. the fo rmula

j )  f ( ~ i i m~~
) (1.12)

max

hnalegous to equat ion (1.6) we repr~sert in the for n

e,, .~“ (I -+-- .) ,  (1.13)
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- 

- ‘ /q(,

w here

~ ~~~~ 
- 

- 
IL — 

~~~~ 
3 

~~
‘ 

— I 
(1 .14)

~°

:~ .
~

it is possible to subordinate to cciditio n -1 w 0 by t’he

selec tion

IL 

- (
max

~
I ~~ ~O /

f or p~ it is possible tc accept

- , 
I ~~~~ , (1.15)I .~~ ~~~~~~~~ 

‘\
-$ 

20 
~~

which corresp~nds to secant aodule/sod~ilus to t h e  diagrac ~~~~~ for

~ø m a x ,  or

( 1.16)
I .
II 3

that Ccrrespoqds to the taigent codulus on c i a g r am  eN —~. - 3 , for 2.ma~

ju tke region whene cosauuicaticn/connecticn betwee n the stress

I
- -~~~
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1; ,947
and the straiu bears l inear  charac te r ,

-
~~ ,,~ 

m - 
( I)

~ “:~~) 
H ~~ 

= IL ,

Eey : fi) . and.

Taki z~g into account  ( 1.10) and  (1~~13) € q u a t i o n  (1.9)  let us

present in the forn

~~~ 
4 -

~~ 
•. , 2~ t~ t~~, — 2 ~L1 ~~ (I . 17j

cr in the int~gra]. form

2 IL ~~’ j J  f~ ~~ 
(1. 18)

whet. !IZ - . a linear oper ator,

~~~ L z 3~L~ fl(~ 
a t)t ._

~~. ze I t T h  ‘‘d ~’: ( 1 . 19)

f ’ , -— 2~’ -e  - ‘ ‘  ~. -~, 1 c3 ’ ~ -~~~’d T , (1.21))

-
~ j 

- 

2 ~~~ 
~~~

L 1 
(.c~, ‘ I :  ( 1 .21 )

I , ,  I~1, (~~, )  2 x i e~ (
~ )I e ‘-~ ~- ‘ . (1 .22)

Page 97.

Iquations (1. 18) describe the behavior of cateria l both during

instantaneous nonlinear deforiation and during creep. For the elastic
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aed iu i  for  which :t ~~~~~~~~~~ , - I ) , ~~~~~~ j , ~~ ’t , ) 2 1L( , / ( ’ , ) f r c a  equa tica s

( 1 . 1 9 )— ( 1 . 2 1) we have I~ f ,~ :~. • Por the linear medium ,

descrjhed b y Naxwe l l ’s code l, 
~~~ 

~ = C, = 0 and  f E o w  equdt ions

(1.18), we will obtain

s , 2~~e ,, . ( 1 2 ~ )

Erci coaparison (1.18) and (1..~3) it is evident that the

functjons ‘ a~ d ~ when 
~~ 

= ~ characterize the deviation of the

~rcpestiea of body froi the propertiEs cf ~axw€ll ’s mode l with the

icdifjed use y = v(t).

jt we place D = 0, then eguaticns (1..1C) will describe the

plastjc deformatio n of material during the cctive proc ess cf i c a d in y

or the nonlinear elastic tetavior ci material. In this case T~~ it cai~

serve as the paraseter of the loading of cicstruction.

~. Equations of the thecry ci cree’ in displaceient/aoveaients.

iron the equations ci static equilibri~ a,, expressed into

str esses,

‘‘ + p!, 0 l i , / 1 , 2, - i ) , (2 . 1)
(IX

J

(w$r. f- vector of case forces), Iron ‘Cauchy formu la —

— 
I ( 1u , (IU , \\ ( 2 2)

‘‘I - 2 ~y)x , (IX )
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1.

(here “ displacement vector), and tro. €quation s (1. 1~1) se will

obtain the equations of equilibrium , expre sSEd in

d isp lacemen t,’m ov eme n ts, in tbe for. ci Lace :

~i(j 4
LV U ± (:L ~~ / 

(IX 
— - (p1’ ‘ ) ‘ j ,  I - - .

wh er e ?.z . linear cpeza tcr , 
~

~ ~Rf 1 ’

The boundary conditicns, expressed in the stresses

/ , r ,, (2. 5)

(wb er • /~~~— - direction cosires of normal tc the surface; i~~~.

fo rces, asaigr~/prescrihEd cn boundary surface with the use of

rclat4cns)~ip,ratios (1. 18) and (2. ~) they are ccnverted to the form

(i l l  \
/ . ‘ 1 ) ~((j/ ) /- , ‘I , , .

/ (Lt , ‘j

where

‘1~~.. i J ~ 
- f , ) I ~.

________________ -a
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~cr the  elastic .ediu. for w h i c h  :‘ L S~~,(~~,,)=2 !Lt’,/ (t O), /) - .0,

an d  conse quently, (I) ,,~=
(t) , ~~ IL ~, -- i the system ot equaticns

(2.3) and (2.6) is reduce d to  the k n c w n  e q i at i c ns  of Lane and

bcvnda ry conditions. Equaticns (2.3) a~ d (2 .6) formall y coincide wit ii

th~ equations of the tbecry ot small elastc—plastic deforiaatiori~;, to

which let us use the method of elastic soluticns.

The procedure of the celculaticn of th stressed anu stat~ of

strain of body, wh ich is lc ated urder conditicqs of transient creep,

by the aethod of successive approxi.aticr~s,, ccnsists of tollowing .

lot deterniniag the first appreximatica , vu set/assume that
= I, Then ~ f ’  ( 7 / ~1~m ‘~1 1 

~~~~~
‘ 

~, /A will be the know n

functjcns, determined by i~ iti*l ccnditio~is sod which ar~ the

soluticn either of elastic cr nonliqear elastic problem. .J’4uations

(2.3) and (2.6) becone the equations ci the linear theory ot

viscoelasticity. )~e sQiutiCu of these Equaticrs with the specitied

initial conditions u we -take for th. first aI~~roximation . From

.quatjcan (2.2) let us find that ~~~~~ e~~, ci equations (1. 18)

f,~
. from equaticns (1.3), (1.11* , (1. 114k, (1.21) , (1.~?O)

(2.(~) , (2.7) — respectively ~~~~ i ’ ’ , ~,‘ ‘  
~~~ 

j’J’, (!‘Y , (I)~.’ and toi  th a-

deter.ination of the seccnd spproacb,’approxim.tioa “; we again
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util i te  a system of l i nea r  equa t ion s  (2.3) and (2.6) w i t L &  the

ccqvented right sides which can be interpreted as fict itious unsteady

external forces. Conti~icing this tb~ pzc ’cess ml the soluti on of the

se q uence of t~ e tasks of the  l inear  theor y ct v iscoelast i c i t y  w i t h

the introd uction of f i c t i t i c u s  ex t e rn a l  forces , we will obta in

requir ed the accuracy/precision of results. Th e  ra te  of t h e

cc~ vexgence of the sequence ot a p pr o ach ,ap p z c xi mat i on s  wil l decrease

in the course of time ; therefore icr the pui~ cse of the savings of

mach ine tine during the calculatio n that stressed and of stater of

strain one should utilize pcint—by—pcint meth od , i.e., at each space

on tile to solve system of equatio~s (2.3 ) and (2.6) with initial

conditions and co~sta.nts t~ and P t’  -c~ 1culat~ d cq the

priceding/previous space. ~crecve r fcr coaditicoal value 
~~~~~~ 

is used

the maxicum value of the stress intensity in bcdy, calculated in the

preceding/previous  space: ;, u ,~~ (x ,~ v .x , ’~
’j, mnitiplied on a,, whe r e a >

1. On given o;e a in the process sa t i s fy ing  the inequa1ity~~~(x , ) • ~~~‘.m.

we tu~~’ process of the space 
~~~~ ‘ For ‘u 

‘
~c \ TTTTh , ~~~~~~~

In general tori a questicn cc ncerniqg the convergence or t n~
approach/ approxica t ions , obtained hy the set—fcrth method, require s

suppl e .entary investigatioqE.. The exa*ine d telcv example  of n u m e r i c a l

co m pu t a t i o n testifies tc  the  s u f f i c i e n t l y  h i g h  rate of the sequence

cf a p~ rcach/approxi.aticns.
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3. Elçngation of rod with a given rate of deformation.

Let us examine the rcd , which is def~ riid with speed

Then takir~g iqto account the incomEressibi]ity ci materiaL ~~~~~~~~~~~~ 
~~~~~~~~~~

wh e r e  .~ and ~~~~
.- stvesS and cc.plete strain of rod , f rom

e.quaticns (1.10) , (1.11), (1.13) and  (1. 14) we cbtain

-~ 3 L f)~ ~~~~~ 
( ‘ - ~~~~ ~~~~~ — (~~ mI , (3.!)

The solution of equation (3.1) for the k iteratio n can be

pres en ted in the fo r m

~~~ (t) - e ~ ~ - { ~ (~ ) F (e ‘ “~~ 
- 

‘ - I )

3 ~L 1 1) ~ (,.,)k_1 ~~~ I) 
~~

— (~~ ,,,)k_ I ~~~~~ - - )

f- ~~ (~~) J ~~’ - 3 1L ~ ~~~ ‘~~—‘~~ (~~4,, )k— I d~ . (3.2)

where

- ~ IL 1 (1, \~,~o )
-I I .

I
HL ________

,*~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ . - ~
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This task allow/assumes the exact solntici~, expressed in

gua d ra tur ss,
(3.3)

wh ere

~ ~ , 
r n — I  

-

(— ~ - 
, 

- (3 -I )- 
C t - -

f ( ’1 ) - - . 
-

The results of the calculaticq ci a change in the stress in

t ire , cbtained on fo rmulas  (3. 2) and 43.3)~ w i th  A~-- f l , I h . I 0  “( 
“fl

.

~= 9.9 p = of 2117 k g f / m m 2 , •0 = 46 kgL/uZ and n = 3.66, coincide and

are röpresented in Fig. 1. for acc~ lerati-ag the process of the

coqvergence of approach,approxiaaticos, the time interva l in question

was djvidej.arked off intc the cuts wit h s&ace ~v = 0.02, in each ot

which the stress was determine d fica formula (3.2) with in~.tial

ccnditiou and constants D and ~~~hy determixed equations (1.12) and

(1~~15~ or (1.16), calculated on the pr.Ecedirg/[revious cut.

Cc.oditiona l constant nember - ~m , ’. was determi nE d from formul a ~~~~~~~~~

Was accepted a 1.2.
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~~~~~- - ~~~~~~~
_ I 

-

‘I 8.’ 8* ~~6 r/~.viii.j

lii. 1.

Key: 11) . kgf/mi2. (2). i

Page lOg.

in th. process of count, sati sfy ing  inequality ~~
‘ (t) ~~~~~~~~ 

we

determine the valise of space ~v via its freçm ertat ion in such a way,

that uculd be observed the conditicqs by —1 < ~ ~~O, 0 .~~ ~~~< 1. The

results of calculation testify to the sufticiertly high rate of the

conv ezqence ci the sequence ci appzcacb/a~~~2oximations. For the

ca lculation of stresses with an acc.racy to fifth significant digit ,

is not required sore than eight apErcacb/ap&roxiCations .

R El ER i N C  ES

1. A. A. Il’yushin. Elasticity. State lechnical Press, 1948.

p

fl 
-



DOC 78068005 PAGE .àY

2. A. A. Il’yu shia . I. I. Pospelov. On the method )f successive
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journaiw , Vol. IV, iss. 4. 1964.

Eeceiued 23/V 1969.
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Faqe 101.

E!UCT OF HEA7ZIG LCW—E}ESS U EE GAS IN I SNOCK T V8 2  ON INLREASE IN TilE

A~11AIUA8LE TEMPERATURE Cf S Z A G N A T ICE.

G. L. Grodzovskiy.

Is investigated the prcble. of an inc~~ease in the attainatle

temperature of stagnaticn ci gas t]~cw in sbcck tube. It is shown ,

that tcr this purpose is advisable heatixi g lcw-pressure ~as. Is

carried out the analysis of the effect of beating low— pressure gas on

the increase of the attainable temperat ure ci stagnation in flcw

b eh ind  shock wave for  the case of a c u e— d i a p h r a g m  cylind rical shoc k

tehe. - -

Tc gas dynamics of flows in shock tubes devoted large number ci

invest i gat ions (for exam p le, see (1 3—  (3]). ELlimary attention in

thfse investigations is devcted to the problem ci the achievement of

ma xim u m rela tion to the ra te of the shcck wave U to th e speed of

mound in the moti~.1.ss gas befor e wave a t,:
(I

a

____ - - - - - - - _ _ _ _ _



DCC = 78068006 LI G E ~~~~.2.1

where a~~~~~~~~ ;,~~j — the static t e .pqr a tn re  cf low— pr essure gas ii

frcnt of the wave, ~ and R~ — adiabatic A n a ex  and the jas cor~ tant

ci this gas.

icr the simplest cylindrical cqe— ciaph Lagm shock tu be (Fig. i)

maxim um va lue of num ber N t,, as is k qcw n, is reached at an infinite

pressure differential. cn t)~e diapbi:agm :

(~~ f- I)a~ -— 
-
~ t I ( I )

I max - I P’ i k 1 7

\~
where by index 4 are noted the parameters ci hiçh—pressute gas.

In accordance with relat ionship,r atio I i )  number  N t, increases

with an increase in the temperature of the high—pressure gas T4 and

wi th an increase in its gas co psta nt E 1. There icr e  considerable

attention in works [1], [3] it is given to the prob l ems of heating

bijh—Enessure gas with the ise of high—pressure gases w ith light

molecular weight. Fr om these pgsitions low—ptessure gas (Ti) was

examin ed cold.

ly us is investigate d the ~roblea of a; increase in the

attainable temperature cf stagnatic; 10 of gas flow in shock tube. It

“

~ 

~~~~~~~~~~~~~~~ 
- I—..., — —-----— — . -

~~ - .~~~~....—‘ - --
~~~

•--‘.
~— . -__ — — ——

- -.
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is sh q w n, that for this purpose is advisable heating low—pressure

gas. Ry calculation f o r  fiqa]. pressure differentials on diaphrag m

this effect was independently previously fcLnd by N. I. Kh vostov.

Lo wer cn the basis of an a ly tical sclu tiox~ is obtained the universa l

depenEence of the attainable temperature of stagnation oL gas flow in

sbcck tube on temperature cf lcw—pn.smc te gas.

let us give analysis icr the simplest oiagraa of shock tube fog.

the perfect gases (see Ely. 1). The cbtais c results can be cosron

for the cases of more cc mp o i~nd circuits and for gases.

Page 102.

The tempera ture of sta gna tion 1~ of gas f l o w  in region 2 ( b e h i n d

sbcck wave), it is l og i ca l , it depe~ dm on the rate of flow U~ = u 3 =

V and the parameters of low—pressure gas. ‘Ate limiting value of the

veiccjty of the gas flcw V is reache d at an infinite pressu e

differen tial on di a p hragm , valu e %~~~~ depends culy on the parameters

cf the high—pressure gas:

Vm~~ 
2 

a , - — -
~ I ‘~~ 

A. k / • 2)
I, ‘~~ 

I

lot the fixed value of V. we ccae to tb e task of tue maximum

attainabl, temperature of stagnaticq 1~ in 11cm behind ~ihock wave in

the gas, compressed driuing~moving at a rate of V by the piston (rcl~
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ci piston performs con tac t surf ace , sea Fic. 1).

Jiom the equations of shock wave propaçaticn , it is possible to

obtain the following ezpression fcr the relative rate o~ flow beh ind

the shoc k wave:

2 I - 

2 
M~~ 1

‘I 
I 

(~~I~~I ~~ ~~~, 
~~ 

I i )

r
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(.4:)

Fig. 1. 1 — high—pressure chambers ; 2 — low—pressure chatuber; 3 —

diaphsagm~ 4 — shack wave ; 5 — contact surface ; 6 — centered

r ar ef ic t i o n wave.
\

~~ 
-
~~~~~~~~~~~~~~~~~~~~~

4 ’ 
-.L~~ _~~8 7~8 /7,0 1*8 /ñ~ ~ 8 ;‘D D— — ~~~~~ — r - - ,

____ - ~- k - —- 1~ 
V V 

—

il

li,. 3....

Page 303.
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A jump/d rop in the static temperatures T2!1 on shoc k wave is

determined by the knowp relationshipiratio

I I Ir. 
- 

) 2 1 
j  (\ ~ (~~)

Nespectively the ratio of the unk~ cv~ temperature or stayraticn

1~ in flow behind shock wave to the static temperature of the

1cm—pressure gas T1 is possible write in tbe term

I (.M ) / .1 \1 ).

whence one should expressic n for the dimensicriess value of t h e

temperature ci stagnaticn it flow the shoc k w a v e

/ ( . \1~) , — I -

7/ ’~ t : I ’ . •I~ (M i ) 2 (~~I

One should considet  t h a t  according to ~quation (3) to each va lue

Ct pasameter N t, correspcnds the specific value ci the rel~~t~~.~

velocity of flow behind shock wave (piston speed) V/a1.

Hg. 2, gives a change in the dl.exi.siciless value or the

te m p e r a t u r e  of s tagnation  ?~ dependirg ca tk€ relative s~..o~~d V/a s. It

is evident that at the assiçned/prescrite d valu e of ve l o ci t y  v cf

tlcw behind shock wave (piston speed) , az~ licrease in the teaptrature
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ci the low—pressure gas It, leads tc an increase in the a t t a in a t l e

temperature of stagnaticn .rc. Thus ,, for instan ce , if parameter ~~ was

located iz~ the range 10~ < N 1. .~( ~~ 
20, .tben curing heatinj c1

1cm—pressure gas in shock tube it is pcssik.le it is more than tc

twice raise the te m perature of stagnaticn i~ it flow behilL d shccs¼

wave.
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Page 104.

EAS E P~ ESSUHE AFTER REC IANGULA .H S T E P S  WIT H LIF EE REN I RAT ILJ S OF iftIGFIT

IC I~ I WIDTH OF STEP.

c~. K. Lavr ukhin.

Are givex~ the results ci the €zpe .riwental investigation of ha

pressure after rectangular steps with diff~ zent ratios o i ~

heightjaltitude to the widt~ ci step at sub~ onic and super sonic sp~~~

Ct externa l flow.

~s given the empirical formula icr det era iriny the L~~S€ ~rCss u~~
after rectangular steps, ~Eich ccns ider~ th€ effect of tue r e l a t i ve

heiyhtjaltitude of steps and Mach ruate r of the incide nt flow.

At present is investigated in suffici€.~t detdil base ~LC~~~ U L ~

after axisymmetric and tlat,plac€ steps [ 1] — [3]. As shodcd tb.~ ;e

investigat ions, in the case of turbulent bct nda ry laye r i.~t se  prt2ssu~ e

after the axisymmetric step hig her t~ an base pressure at t.-~r

flat/plane step on 10— 150/0 with subsoi~ic e~ d cn 30—40o/o at

sup e r scn i c  speeds of e x t e r n a l  f l o w .  H o w E v e r , the infor maticn ah cut

ta~~€ pressure  a f t e r  t h e  s t ep s  of scie  ~ t r at r i t i cn a l”  f o r m s  — oval ,

-- - - - - - ~~-- - - - -~~ _ _  - - - -~~~-- - - - -  -_ _ _ _ _
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rectangular with different ratios of hei ght~ a1titude to the width of

step and the like — is virtually absent.

Theoretical studies of base pressure after such step..~ encouritei~

great diffic ulties due to the need fcr cons iderin g transvarse

cver flcwing tot separatict 2Cn~~S.

Article gives the re~ u]ts of the experimental inves tigatioi of

base pressure after rectangular steps wit h cifterent ratios of

b e i g h tj a l t i t u d e  to w i d t h .  I r v e s t i g a t i cn s  were ccnduc ted with M ach

rum b e rs of externa l  t l cm 0— *~i—2 .. 7~~.

Reynolds numbers changed in th. range Ee 4.5—14.lu’ as a

result of a change both the lengt h of the mcdel and the total

pressmre in exterqal flcw.

~€re investigated the acdels ci twc ceibinations (w~ Ije —

parallel..epiped and cone — cylinder). The basis CL mode l was cen tr a l

drain;vented plate 1, establish/installed co holding pylonE 2 ( F i g .

1).. With the aid of interchangeable re.ctaugrlar plates 3 ~ nd

segmental  extensions 4 , fa s t ened  to c e n t r a l  p l a t e , the y we re

cc.pos€ ,collected the  bcdy  ci coabiz~a t icns  indicated abo ve .

The width of rectangular steps remainec fcr all model s ot

T~~~ 
_ _ _ _ _ _
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co~ stant (b  = of 7.0 mm) . The relative height/altitude of step h (all

linear dimensions are referred to the width cf ~tep) chang ed  f r o m

C. 111 3 to 1.0. The relative length of models 1. changed frcm 3.43 to

5.15. The half—angle of tt€ wedge cf the ncse section of ~he models

~as equal to 17.

The mo del of com b ina ti c n ccn e — cy linder , that was Deing

intended for the joining the results to kncwn data, had diamete .~ ot

the bçttos section/shear D of 70 xi , semi/apex ang le of ..‘one of 17°

and C = 3.43. -

Ncdels were establish/installed near tte section/shea r of

two—d~ iensional nozzle of 5 wind tunnels with the open test section.

In the process of experiment, was measure d the base pre..~sure , static

p r es s u r e  and Mach number in exterral flcw. The location of

static—pressure probes and the eleven receivers of base pressure is

sbcmn cn Fig. 1.

Lace 105.

leasurements shove d that the static pzes&ure on bot h sides ci

uc d€ls virtually ccincides and it is close to the static pressure

e x ter n a l  f low.  Thi s ind ica tes  the abseace Cl tbc angle of attack of

mcd€ls and that at the se lec ted l en g t h  cf t h e  models of
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distu . rbance/p er turba t ic~i f r c m  s pc u t  ci hottcm section/shea r t h e y

v ir t u a l l y  at ten uate .

I change of Re number (one and a bal i tiles) as a result cf

changjng the length of model 3. from 3.1~3 tc E.1~ with this Mac h

number of external flow did not virtually influence the value of bas e

pressure. Apparently, and icr the transiticral forms of steps there

is a regio n of self—similarity acccrding tc Be number, disco vered for

the axisym metric and flat,plan€ s t e p s  (for exauple , see L~~D.

Pig. 2, depicts the d.iagras,curv€s of pressure on the end/face

of models with Mach number = 0.84. With th~ lance Mach numbers , the

form çf diagram/curve is retained , changes cnly the level of base

pressure. For the models, close in fcr. to the flat/plane step (with

v a l u e  ci ‘~~ < 0.5), is ncted certain pressa~re increase on the edges of

step, connected, apQar ertly . with the eaercence of intense tip

vorte ;es. With an increase h during transj~ticn tc step with square

sectign/shear, the ancrease of base pressnre in the edges of step

becomes less noticeable. In the middle part of the steps, the base

pressure is retained cccstait.

Subsegueqtly during the analysis ci test results for value i’

is accepted the base pressure, average d om the height/altitude ci

step. Pig. 3, gives the averaged values of tase pressure after
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rectangula r steps with diferent ratios of heigtt,altitude to width.

Ee~ e ccrrec ted  values gi kase p r e s s u r e  for  t la t jp lane  step j~ and

t o t  a;isymmetric step ~?. averaged cn the data of works [2] and [3.
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I~e~j: ~1). Experiment. (2). cone — cylinder. (3). calcu laticn

acccrd 2ny to f o r m u l a  [ 1).

Page 106.

The experimental values of base jiressuze, cbtaine d Ly the author

cii cylin drical model, a r e  close to vaLue p~ icr an axisyimmetric

step, whicl can serve as iqdirect proof of t h e fact that the py lcns,

w hich sup port models, were arr ange, lccated at  this  dista nc e from the

h o t t c u  secticq/shear whEn their eft~ct cii the value of pressure

vi r tua l ly disappeared. The values of t h e  base pressure cylindrical

mcd e l  and  model w i t h  s q u a r e  b c t t oi  sectio-s,shear (b = 1.0) v i r t u a l l y

coiucjded with all Macb n u i k e r s  of ex t erna l  t lcw .

W i t h  the decrease of t h e  r e l a t i v e  heigk t/ a l titude  of rectangular

step, the base pressure decreases from the value of base pre-~~ur;e

a f t e r  ax i symm etn ic  step i” to the valu e of base  pressure a f t e r

flat/plane step ,,
~~

. moreo ver wi th an increa se  i~ Mach nuaber of

ex ternal flow th. law of tI~is change ever -icre approaches linear

(curves  for Mach n u m bers = .50 and ~~e7 6  Ji g. 3).

Th e values of base p r e s su re  a f t e r  r ec tangular  steps w i t h  the

L
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relatjve height/altitude cf step h and Mach number ot external f l o w ,

cbt ai med on the propose d em p irical de pen dence

~ ~: ~ ~: (I - - #z~
- ’ )” (I)

where

,fl 
I iii M -

sa t is fac tor i ly  wil l agree ~i th  e x p e r i m e n t a l  va lues .

~U E RE NCES .

I . I~ t)  r s I II II -\ h R - I 1 1 , 1  t i ase  pressures In t raf l sof l i~ and
I u i i k -  h o w  .Iourna l oh \ t ’ r - I  MI- I l  2- i . No . 4 , pp. •~‘LI 600, 1950
2 I Ii a l iii a n f) R ~ ii a, iaIv ~ is (If I)ase pressure at supersollic

- I l l ~l(’ i i i t (or npari lll v~ 01 x p e l  U I R I l h . Report NA ( :A , 195 1 , No. 1051.
1 I - Ii in n I) 1/ K u I i i  F) M . , Ku r ~ I II. I I. A m i k - s i - , ~i nd

(if -~,;i ra i I - )  t t o ~ in sup~-rs(Ih(I c and suhsonlc st renII Is IX  Con-
I it t i I I l t I k I ? I , l  It  I Il / il l I I I  ii~ip liqti&e , t I I . I 957

I Ii a d d e i I~ I I  o I d e r I) W - R c g a n J. I) 8ase 1r ssure in
s t lp t r-o i I i c  fIo~ -~ I?( (

~ I’ f i~54 X I  27 1

beceived 21~ lII 1965.
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Page 107.

TI~E S 1BUC~ U R E  O P P C W E R F U L  S E C C K  WA V E.

1. L. Stasenko.

~t is proposed to find density profile in plane shock wave in

the fcra of two branches of sacoth function , which asimptotically

tend ton density values at infinity (before the wave  and a f t e r  it)

with the dyne of the relaxation of the crder of local mean tree pati..

~~th arbitrary viscosity—temperatu re depesdence , the tasi is reduced

to qua d ratures, and for rigid and Maxwelliar mclecules it is scived

in elementary functions. Is copduc ted the comparison with the

resul ts , obtained by o tter  ietbodii, w h i c h  s tows that  the proposed

examinatio n is reasonable with Mach numbers of the  inc ideqt  t l c w  cn

t h e  cider ci three and it is abcve.

The proposed simple method of calculaticn of the parameters

according to shock wave thickness can rEflder/Ebcw useful for the

rough estimates, for example , during the study cf the passage ci

small soli d particles, dr.ivingjmcvii~g in jet, t h rough  sh oc k w aves  or

dnninq the determination ci the effect of tk€ strongly spraying jet,

which escapes into evaciate d space, cu  the iacrcscopic bodies wh ose

Li
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size/dimensions are comparable with the thickness of wavt.

Let X—axis be perpendicular to shock w~ ve, point x = 0

ccrrespond s to the positio~ of hydrodyna m ic

discomtinuity/unterrupticn . Let us search icr density di~ tiibuti on

r ( x )  in the form continuous functicus , wi. tk  twc branches:

I I
fl. - - fl 1 I I I

( I  
I I )

~~~ ~~ 
~‘ ~ F • i I)  -

f l — f l, I I t i
0

where
U r’) ‘

I / I ’  Inin e ,

t he re  is a mean f ree  p a t h  ci m o l e c u l e  in the system, coz iiected uith

w a v e ;  * — me an free pa th in gas, determined through the coefticient

cf ductility/toughness/visccsity 
~
.; . — mo ]~~cu 1ar mass ; u,(c>-

macroscopic and average,mean thermal ci gas velccity. Factor (u +1(C))

,~ c )d.scribes passage from one system tc auctbez: in the case cI an

intense shock wave , it is if the cider of nu mber  M~ in the incident

t~,o. befor e wave ( r , ,  “~ and t h e  crder ci cmi — for a wave

Indic s by 0, 1. 2 are related to ccnditions in the

*ceet4r~ of wave, in the tlcw before the wave a~ d after it at

infini ty.

I- I
_ _ _ _ _ _ _ _ _ _



LCC = 78068006 PA G E W’

L u c t i l i ty/ t o u g h n es sj i i sc o s i t y  can be the arbitrary tunction of

temperature 1.

Page 208.

~n relationsh ip/ratios (1) are taki~ iLtC account tue

conditions, by which must satisi) function r (x) at infin it y and in

zeic: with x ~~-— we have n ‘~~ fl 1. , w i th x ~~+ • we have n~ n2

( a s y mp t o t e ) ,  with x~~~0 we h a v e  n4n 0 (c c 1~t~~n L i t y ) .

iron (1) after dAfferer tiatic~ we cbtaan
i 

/ 
( t 1 ,

.1 -  . 1)
h i - I i)  -, l t  / , 

il l

acquiring another equality the derived both branche .~ 01 f U I I Ct 1 C I A

•~ . ,  (or m ( x ) ] at poist i = C, we cb taiL [taking into account

coittamity •i ~~~ and }~(x) ] - -.
~~~~~~~ -. whence

f I  ..)  ( I ~~

(custructed t~~us function belcmgs to d amn C1, SiflC* .i its ~i e C O f l J

derivative at point x=0 suffers the dibcoIt1nuity/inteLL.~upt 1ct

4amal çgous situaticn occurs , icr exam Fl e, ii the case of the

artif4cial ductility/tcugboess,ivisccs ity of ~eum ann—Rikhtaayler , in

,
1~

a
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which second derivative of velocit y prctile is disruptiv&~ on t ie

front/leading and rear  h o un c ar i e s  ci  wave).

the  thickness of w a v e  f r c m  P t a q d t l  is ce t e n m i ned by t h e

expression

I 
-: 

i 
(~~I)

W i t h  the Qrdei of the tendenc y of values v 2 anu ,, toward

unity is identical ; copsequently , tkE  tli~ ckcess L, limited by

rclatjcnship,ratio (5) , approaches final lii it. This 5~~~~~~ i5 t h a t

ne la t j c n sh ip ,r a t i os  (3) ci e q u i v a l er t  to t i e s  r e l a t i on s u i p , u at i c~ (1)

ar e w~ong for weak waves .

Prom the law of conserva tion c i m a w ,  we have

U (I 
~1l

I4t II 4

1~ e law St conservaticu of energy let is accept in the fjrui ,

amaloqous to Bernoulli’s integral in the tb€ciy of the steady tlo~~:

(j? (i~ ii: ,

‘2 ‘p 11 ’  2 ‘ / ‘ 1
~~~ 2 ’  ( I l

wh•r• ~,. 
— the beat capacity at a ccnstan t pressure.

This ralation abip,’ratic is fulfilled at any point of wave cul y

in the case of Prandtl’ -s n u m ber Er = i/ ~4; Ui latter is nost clcse ti A
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th. value of 4umbe r Pr for twc— and triatomic uclecules. Ls

r..l/act n*l , according to Eucken ’s formul a, nuater Pr -

— relation heat capacity of gas , so t h a t  ra t io  nPr/3 is equa l  I OL

such uclec ules 56/57 and ~~A4J6i respectively. Pcz monatoin ic gases Pr =

~,3 and the relaticu indicated is eç~al to €/9.

itiliziny relationship/ratios 16). (7) aqd taking into account

that
I

H -

let us knowingl y satisfy all laws ci cc nsezvaticn at infinity 1€fo Le

and after wave.

Page Icy .

Pros ielatioaaklp,’catAOs (2). (6) aqd (‘7) we have

/ I t ( M b

/ / ~~~‘ , . (“I
1 2 L_ ,,

’ M ’

wh ere ~~ — mean free p a t h  in t h e  gas b e t o r e  the w a v e .  Suns t itut in y

( 8)  in (3) , we wil l  o b t a i n  o r d i n a r y d i tt e r e rt i a l  equat io ns t Ot  t i()

tra~cbea of the functic~ cf Leiers./inv€rsi ts ~~~~~ , mOlv i in

çuadrat~ res.
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It  least , for t w o  cases — r ig id  ( - .  -
~~ 

i and Na x wel lidn (~ 
— ‘11

mclecules — quadratures for 
~~~.,  can he e~ pzes~ ed in t he  e l e m e n t d r y

fu~ctjcns:

~cr rigid molecules, ~~~~~~ =~~

- 
b 

- 
,~~~~

‘  
‘ , .

I - I ( I ’  I I i )

I 
, 

I 

•
I = ( ~~ ~~

, 1

for Nazuellia n molecules , ~//j 1 = 6,

r 
~~~ 012 I I ~~ /~ - h i :  - •~ ° 

- , - •

- I ( I I )
h 

- 
a
, F 

~~~~~~ 
- 

~ ) - 
h i , - ,

he re
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it in ’ 1
;

I; C— in •

- (I
II -

I 1 ~i ) ( . - ( I - j )  ,~~ a

I- ,I ( ‘-; i~ , ( ‘1Iii -

- J ,2

I’ - Ii \1 J

J I

I + (-/ I) M

Fig. 1 and 2, give the airfoil/prcfiles ci shock waves tot the

case of rigid sciecule s, designed cn tci~aulas ( 1C ) , and  t u e

airfoil/profiles, desiyr.€d it work [1] accczdiny to Na vier—Stokes

€yuat4cns, the method ci Nctte— Sm ith and Mcnte—Carlo. In F i -~. 3,, ar~-

ccnstri~cte d the density profiles and tenp er ctur€s for thc case ci

i~aiwelliaq molecule s on icraulas (1 1) ci presert article a n u th e

airtojljprofiles, designe d in wor k [.�J acoczdia~ to Nav L1 -L—Stok es

equatjcns, ~otte—Ssitfl’s method and with tie aic of elli~-tica~

(two—temperature) the distriLution functions of mollil cules accotdiny

tc speeds.

- - - - -~~~~~~~~
_ 

~~- - - ~~~~~~ - - - - - - _ _
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Fig. 1. li1. 2.

rig. 1.

I(ey: 11). Formulas (10). (i). Navier—Stckea. . (~
) N o t t e -~~m 1 t I . ( L .)

~c-nte Caric.

Fig. 2.

Key: 11). Formulas (10). (i). Navi€r—Stc kes . (c). Motte—~ ixth. (14)

~cnte Cazic.

P age 1-10.

Prow the give n curve/gLap hS it is evident that for the p owe rful
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shock wave s (N )~, 3) of the cifference tetween the density prof iles

and temperatures , o bt a ine d ~y the €i~umeratec methods (includinj

proposed in this actxcle) ci one ord€i. Purtherecr e, is notict~~x le

powe r~ ui asymmetry (relative to the “center ’ of wave) obtained

simple , is noticeable powerful asymmetry (relative to tuE “centeL ” CL

wave ) ci the obtained density profile which was noted both in1

thecretica l a~ d in experimental [3], [4] ixivestigations. In

particular , Fig. ‘4 gives exp erimental data cn the measu rement ci

d€ nsi~.y d i s t r ibut ion  in s h o c k  wave by tb. ae t l iod of electron t i e a m

[3J. 3hock wave w~s obtaine c in air j~ I , -I ; M  h p ’ 1 ( 1 mm H~ ) ~uriry th e

flow aroun d disk and sphere by diameter I.~~,l0 a m (white and blac k

small circles respqctively). In Fig.. 4, are plctted also the r’esult~;

ci the calculatiox~ of ti€ airfcil/prcfi-le ct  wa v e , carried out by th~

autior of work [3] acccrdinç tc Motte—Saith ’s method (dot—dash line ).

Unbroken curve — calculaticn according to fc~ aulas (11~ tot the

~~i wel1iari molecules: in the rar~ge of tem pcr a tures Ti::35oK<T<2ti~oK= uT°

An tlçw the dependence ci tie ductility,touçhness/visc o~ ity o~ iir CII

t e m p e r a t u r e  is close tç s t r a i g b - ~ l ine  j. — 1, acr eov er ~s 1 2.5•lC 6

kg .m -$us ’, whence mean free path ii~ gas is ctt~ ined equal to

iez O.3 7. 1O 3 to a. Pig.. 4, shows that the ccnvergence ex~~ riwe r.tal

data and theoretical results, obtailied çn tie basis of th~ pLoI~CSec1

method , sufficiently good.
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1 6 ~ •- ~/ 1 ~. - - -

, 
4/ -

F i g .  3. Pig. II.

Fig. 3.

K e y :  41). Pormulas (11). (2). Navi€r— Stckes. (3). Motte—Smith . (14 )

ellipsoidal func t ion  of distributicq [2]•

Fig. 4.

Key: 41). Formulas (11). (2). Motte—S.ith-. (.3). experimEnt .
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BALLIS T IC TUBE FOR ORAG MEASUREME NT
ON MODELS IN FREE FLiGHT AT
HYPERSONIC SPEEDS

L. P. Gur ’yashkin , A. P.
Krasil’shchlkov , and V. P.
Podobin

A b rief descr ip tion is given of a bal list ic
w i nd tunnel , the operating principle of which is
based on the firing of models towards the super-
sonic flow in the wind—tunnel working section .
The Installation is Intended for the measurement
of the drag coefficient and for studying flow
fields of axially symmetrical bodies in the
range of supersonic and hypersonic flight
velocities.

The range values of the M number In the ballistic wind tunnel

is equal to 1.5—15. HIgh resulting M numbers are obtained , In

the first plac e, as a result of the firing of models towards the

flow , and, In the second place , as a result of the lowering in the

speed of sound in the working section of the supersonic wind tunnel

by means of cooling of the air In transit through the nozzle.

For the resulting H number the following expression Is correct:

M — M.+

where V — the speed of fligh t of the model relative to earth;

a — spee d of soun d in the flow ;

— number of H flow .

FTD—MT—24—2l—72 1
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- The valties of the Reynolds rS.amber are obtained considerab ly
hig$er than In wind tunnels at the same M number. The expression
for the Reynolds number can be written In the form

Re — 4�~n P +

~ 
p

where d - the diameter of the midsection of the model;

— flow velocity;
— air density in the flow ;
— viscosity of air in the flow .

The first term corresponds to the Re number of the model at

zero velocity of the firing, and the second term — to the Re

number during motion relative to earth . The Re numbers realized

in the ballistic wind tunnel under various conditioj’~s of the

experimentation are of the order of l06_l07.

In ballistic installations the stagnation temperature Increases

with an increase In speed of the flight of the model [1]. The

maxImum stagnation temperature in the described Installation is

equal to -2800°K.

Figure 1 gIves a diagram of a ballistic wind tunnel which

• consists of three basic elements : the wind channel , rifle stand

and electron optical equipment.

“F

______ 

Fig. 1.
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‘T’~S WFJtE tunnel is 5uperson ~ o and operates in air of high
Pr~~sur. without preheating. The pressure in the antechamber 1

r.aoh 200 attn. The wind tunnel has Interchangeable nozzles 2
oalbulat.d for numbers • 2.5, 3 and 3.5. For the purpose of ‘

providing for the compensatIon of the boundary layer , the nozzles
have an octahedral cross section . The inlet section of the
working section 3, whose length is 214 gauges , has the shape of
a correct octahedron with the diameter of an Inscribed circle of
714.5 mis. In proportion to the distance from the inlet , the cross
section of the working section Increanes because of a decrease

‘ in the area of the angular Inserts, which accomplish a junction
from the octahedral cross section to the square . In this case two
pairs of opposite walls of the working section of the wind tunnel
remain in parallel to each other. Installed on these walls are
optical windows for photographing the model . The working section
is closed by a subsonic diffuser 44 which is connected with a
turning elbow 5.

The braking of model after the flight of the working section
occurs in the high—pressure air In the phase of trajectory L, which
consists of the internal cavity of the antechamber and tube 6 with
the collector of the model 7 deflected 90°. The velocity of the

model In this section decreases a~ proxImate~y 5—10 times .

The models were fired from smooth and threaded barrels 8 of
the caliber 114.5 mm with flight velociti’ s of 500—2000 m/s. The

firing was conducted with Dural steel or brass models .

For the test work in the range of the low supersonic M numbers ,

the aerodynamic circuit of wind tunnel , I.e., the nozzle , work ing

sect ion and diffuser, was dismantled and In its place a thermal

chamber was installed where the pressure could change from 1 to

15 atm. The inlet of the model into the thermal chamber with

increased pressure was accomplished with the help of’ an explosive

film gate.

FTP—MT—214—21—72
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1Th balijetic wind tunnel was equipped with three identical
a.a~urIng stations for photographing the model and measuring
the time between the moment s of photographing. Each station
is shadow system with a parallel light beam .

In a direction perpendicular to the optical axis of the
shadow system , in the center of the photographing field there

passes the plane of photoblocking, which is a slotted parallel

light beam which goes from source ‘~ to the photoelectric pickup 10.

To prevent the illumInation of the photographic film by diffuse

scattered light , the source i~~ equipped w i t h  a light filter which

dIs p lace~ t~he spectrum of li.~~’ Into the region insensltivo for

photographic film. The model , flying through th ’ working section ,
consecuti ve ly intersects the ligh t beams of’ the photoblockings of

three stations . The signal , which appears in the photosensitive

device at tne tnter sectl ’-n of th e l i g ht  ray by the model , enters
Into the control unit c ~~~ spark light source 11. There occurs

an Intense light flash , and the r’ - l ’ l is fixed on the film of the

camera of the first stat i on . lmultaneou sl y the impulse of the

light of the spark source falls on photoelectric head r1 12 , whi ch
co islsts of the vacuum phototube STsV-44 and cathode follower.
The electrical signal of the photoelectric t oad starts the first

electronic chronom’~ter 13. The ~~~ond station wDrks simi lar to

the first with the only dIfference being that simultaneously there

occurs the stopping of the first chronometer and the starting of

• the second one , which is stopped from the flash of the light source

at the third station .

The thus obtained space—time dependence of the flight of the

model was used for the calculation of the drag coefficient [21.

The accuracy of the measurement of time by the electronic

chronometer is equal to 0.25.lO
_6 

a , and the accuracy of the

measurement of the posi t ion  of the model on the trajectory is
equal to 0.2 mm .

Fi.~—MT—2J4—2l—72 
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—- •• I • i ~Given below for an example are some experimental results
obtained on the installat ion described .

Figure 2 depicts depending on the M number the values of the
drag coefficient of the axisymmetric model with the conical
expanding panel half—angle of aperture of which is equal to 35°.
The head section of the model represents a cone with the half—
amgl. of aperture equal to 150 . The length of the cylindrical
part of the model Is equal to l.Sd , and the ratio of the diameter
of the cylindrical pe~rt to the diameter of the midsection of
the model d/D — 0.565. A decrease in the drag coefficient in the
range of M numbers of 1.5 to — 8 are caused by the change in the
pattern of flow of the model. With a further increase in N number

the drag coefficient does not change .

~: r E :  i i i !  ~~i i
-~~ 4- + - -

,_
_ - ii i . M

Fig. 2.

Figure 3 shows the changes In the drag coefficient of the
ellipsoids of revolution at the fixed M numbers depending on the

ratio of the semlaxis . (a — horizontal semlaxis , b — vertical

semiaxis). An equidistant displacement of this dependence with a

change in the H number is observed . ~~~~~~ 

j M.~~-.A 
— —

Fig. 3. 
• = = : — : — — : =I
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Th development of the width of the turbulent nucleus of the

• wak~t behind the sphere of up to 3500 gauges in air at atuOspheri c
preØeure is shown on Fig. 14 in the fo rm of dep.ndences of 3 on i
whet. 3 • 6/d Is the width of the turbulent nucleus referred to
in the diameter of the midsection of the model , and i • d/x is
the distance from the model to the place of the measurement of
the width of’ the wake referred to the diameter of the midsection
of the model. The turbulent wake behind the sphere in Its near
part at m - 2.8 and Re - 10~ is shown on FI g. 5. For a compari son
Fig. 4 shows test data from works [3] — [5] and the theoretical
dependence [6] for H - 8.5. DespIte the great dIfference in

velocities all the test data agree well with each other. In the
interval of the gauges from 30 to 3500 the development of the
width of the turbulent wake can be approximated by empi ri cal
relation ~ — 0.2O844i~
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T h E  Efr~FECT OF THE H~OC ES S C I  C V E F C F - ~~EG I N G  C~ T h E  E F F E C T L V 1~N E S S  CF

ICNIC SOURCE Wl T kl VOLUNE’I~~IC ICN1 ZAI ICb .

Yu. E. Kuznetsov , V. P.. Ru d~ kov.

~a exaai ned the flat ,’Elane •od€l Cf L L1C Lource wiia the

distijbute J ove r its length neutral com~onEL t cf plasma.

It is shown , that th€ ~rocess of overckarçir i y whose inte tisl ty is

GetEEI~ nEd Ly the ~hysi al ~~o~ert~ e~ ci ga~ (atcsic wei -jut , th ~

~~cticn of overcharqin j and icnizaticn ) an~ by Electron ts2ff 4~~r-i ture ,

h u t s  the value of the oveLall efficiency (t tk€ USE ot i •ras ~~~.

The e ffe c t i v e n e s s  of the work of icnic Ec-ulce is charactetize l

t y t h e  v a l u e  of the coefficient at the ~se ci sass ‘~ (ratio oi ion

tlcw in by o u t p u t/ y i e l d  sec t ion  to th e  coa~~L a ~. t A c n  of the w c r k

substance, expressed in unity of egwival.nt A cm current)

(o.~agativ ely high et fe cti vei e a~ ha’e IcuLces iith the i nization 01
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n~ utr il 1 articles by e1Ectrc (~ cchl is icn [ i  — [~~~. The m cn c i a t u w

€ttectiveness of such SOU CES is examined ir wczk [6], in  thi~-: case

t h e  prccess of overc harçing in the vclum e ci discharge i- not

examined.

~nli~e the condjtjcn~ cI the ecceleratci Cf the pla iia a ~~~i t t Q  ~~~~~~~

~rcces~ of tke distribute d cverchaiging pla)~E ~c~ itive ro le  [7 ,

under cond iticns of ionic scurce tUE ~~ocess can become

Larrier,obstacle for achiev em ent of t h e  hi çL v a l u e s  of t~ie

ccefficient cf the use ct a sass, since the rapid neutr~ii  par t ic le : -; ,

formed as a result of overchargin~~, have thE icy iOniZation

~rctahility .

4n the presen t woi k are ap~ rcxiiately Examined the proces~~-~ ,

which CCCUE in the camera~ chamte r ci icUizat icn , takin g i~ito acccur~t

cvercbarging.

The camera/chamber of icnizaticn is ccrsidered plaii~. ~hp

r .eutral and ionic componentt of ~lasia lOVE alcrg coord inatt X ,

~e.r~ endicular to chamber walls which a~ e icrnd under the p o t w~t ial ,

n e g a t i v e  w i t h  respect to t h e  p o t e n t i a l  cf plasie . Is exa min ed t::e

case, when the potentia l difference nea& the electrode i~~i ~reate~

than the electron temperature , expressec in electron vol ts. Tht cuqh
a-

the left wall (Fig. 1~ ) ccctzs the irleakaçE of working

- - - - -- - -- ~~ -~~~~~~~~~ - - - - - ~~~~~~~~~ - _ _ _ _ _ _
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sediu~~/~~ro~~ehlant. The dens it ~~ at the i x c o i i n ~ f l o w  of ~~ r k  su s t an c e

/
~. juat as the densities cf the t l cws cf ctL t L a l particles in the

cale ra/chamb er , it will Le tx 1~ressEd in un i ty ci eg uiv a l - rt t iOi:

current , i.e., in amperes tc syuare cent im et er .

S
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The discharge of icnic and neutral co.~o;e~ t occurs throug h the

right wall — to riding—crc~ with t~ ansjareqcj 
-
‘ -

‘ where ~ — area

ci cpening/apertures, S 4 — comaonjgeneral)totel area of chamb er end.

Fcr ions and neutral particles, the ef~~ ctive transparency ci  j t i d  is

accepted identical and equa l gecietric trax~~ aiency 
~~
.

t~eutral component let rs consider consistiry ot three ~a L t s

~?ig. ib):

1) the flow of “cold” neutral ~artic1e~ with a density of

i • ( ~~~ driving/moving ci left wall tc the zigh t (always po-~itivo ).

a
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i) the flow of “cold” neutral particles wj tk a cens ity of J’~~~ ’ 4 ~~ •

driviog~ movi ng from right wall to the lef t (4lways positive) .

3J the flow ci rapid nertral particles with a density of J;, (~ ) .

fcr.e d as a result of overckarging.

The first two unidirectIonal flows are characterizen Ly certain

average constant thermal velccity - ,, deter.i4ed by the temperatur e

cf walls the third — by veiccity ~
- , w hos e ~verage value the crdc r 01

the velocity of ions ~‘ is determined ky ELe ctrcn temperatu re.

Migh velocity~ and the light pcrticn of the flow ot L a p i d  i~~utral

p d r t i c l e s  in coapari so .n w i t h  v e l o c i t y  and f l c w  ci cold n eu t r a l

particles makes it possible to disregarc in equations tu~ t~- rm ~ ,

which consider seccodary cvercharging and ~ke icnization ot rapiu

restral particles.

Let us consider that the ions move frca cErtain section x 0

within tae camera/chamber to the l€tt and right walls (a.~ this

fchlou s from work [8]), .Czecver on both walls ion currents are e~~udl

anc are determined by Echa ’s foriula [9]..
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The neutral particles , which w E r e  b e ic~ tcr.~d beca us€- of

cvercharging, move to the side of the .ctjcr of ionic tI LVE , i. ., ci

the left side of the caierajcha.ber tc the iett , and in the r i ;n t

side çf the camerajchamiec to the right (set Iiç. ib). in ~~~ c t i c n  x 1,

the flow of these n e u t r a l  particles is c~ u ai tc zerc.

Are accepted the fcllowing assuiFtions: i c an~’ sect ion x , a l l

ioja have identica l ve iccity ~~~~ which depends only in x , moreover

~~~~ = ‘:,‘,~~ 
the mean f r e e  p a t h  cf n e u t r a l  particle before ccili~~ion

with neutral particle and w~ th ion is muc h scre the dist ince b€t~~e - ~n

the wall~ of source; electrcnic concentraticn and the di~.tribut icn

fuDctlcn of electrodes along X—~ xis are constant.

Within the framework of the adoptea asxum &tions, the ion f l c w s

and rapid neutral particles , through tke artitrary secticn x t a~~i n g

placev are determined cily by theit ~eneraticn and are expressed

resFec tively by th. follovisy dependences:

i lj ,  (
~~) 114 ~I fl ~

j V4 1 ( I )

I / ,~ ( ~
) — ~~~~ U ,, ~~~~~ U, ( 

~ ) I (2)

where — a concentna t ic~ Of cold neu tral ~ar ticl.s,

i~ 
( -~ 1 /~ i 

- I I)

— the section of overcharging, ecce[ted by con~ tant in

value in each sect ion x 1 ;
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— averaged according to distributicn function p r o d uct  of

ioi~1zation cross sectioD tc the velocity of electrons.

FCC’IN~ 1E 1 • According to t~~E e s t i i a t i ci~ of t L e  auth~ rs, introduced by

this assumption error into the tlcw value ci th recharged neut ral

particles, for the •a~ oiity ci work substances and in the real speed

rai~ge ci ions does not ExceEd 400/c as a re sult ci the l c g a r l t h f t i c

dependence of the section of symmetrical reac~ arce overchargin g cn

the .cdule,’modulus cL relative veiccity . E~ LE (C1~0TE.

The flows of cold neutral particles, oi.i vAr y /aov in j from 1~-tt to

right and from right tc left , ate ex~ resse d t) the resp~ctivel y - j i v ~~n

belcw dependeqces and represent by themselv es the loss/d L~ reciation

ci neutral particles as a result ci ic~~izatA oz~ and overcnarging:

4/)4, 1 I -~ 
) 4 / 1  U ,, 3 4 , i i i  •,i , fl~ 3 , V 4 ) ii ( 3)

~1i ,, ) ~ ) ~— ‘  fl U,, U, 41 1 4 / ? , II~g 
~~~~~~ 

t ’ , 1 ) / I  (1)

Page 117.

lqua-tions (1)— (4) for ceterminin g the ccmstants it is necessaiy

tc supplem ent by the following boundary conciticns ;

j
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t J , (’ ) j~(IP~~ j (O) t x =  O)~

il l  J t i  1’ , )  1,, - i ’ )  ~~ ~~~~

j ,, (_r 2) ~~
- I 

~~~ (~ ) /, ( ? )  j• ’ ( ‘ - ) I  ( 
~ -I , (

~~)

f — J, ( ’
_ I 

— — -1 — - , (_ ~ ‘- I ;  I ?? )I,, ( ‘ I  I I-’ - )  j ,,~ ( t 1) -

The ph ysical sense ot expressicns 15)—(7) is clear: the tctal

f.1cw of all particles is equal to ccnsu.pticn, and in secticn x 1,  t h e

ici~ tlcws and rapid neutral particles are egual to zero fsee (5) and

I 6 ) J .  E r c a  grid in secticn 
~~2 

the r eu t ral p~ rticles reflected and

neutralize d ions give ccuct erflow of  ccld teut ral part icles (7).

Condition (8) determines the coefficient ci the use of ~ mass.

We will be restricted to the examinati on of the Maxuellian

distr~ buticn function of electrons. Let us intrcduce the

designations:

— io~ izatio n cross sec ti cn, averaged according to th€
I,,

~a)uelliaq distribution function ci electrcps.

— the mean arithmetic velocity of electrons.

— Scha ’s formula [9]. ~ L whi ch  k ( ? ,2,
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(w~ •re 
~; 

— ratio of the  mass of electron to t~ e mass of ion )

,~ •
k~~~ — the p a r a m e t e r  of ov e r c h a r g i n g . .

4., I

under flows j , ,1 ( X) .  j ,, . ( x ) , J,,) x ) ,  1 (x )  let us sU b sE q u e n t l y  unde r s t and

their relatiop to the module /modulus of thE maximum strength ci icr

curreut I, - while under indepe ndent the variable x let us u n d e r s t a n d

th~ dj.enaicnless quantity, which represents by itself tIle ratic of

lougitudiqal coordinate tc the mea n tree path ci neutral particle to

t he  içn iz a tion :
,lfl V,. 3 j -

Latter makes sense when the effectivEness ci icrization does nct

d€pend on coordinate.

~n the adopted designatiops we cbtai n the followi ng system of

differential equations:

c/j,( r)  L i , ,  ( x )  J.,2(- ’ ) l  . / , ;  ii)

Ii ,, I x )  .1 1 I ’ )  I I,, I t )  - L (‘)l ~~ I?)

/ /~ ( ~ ) — 
~~~~~~ I I  I A ;  / , ( k  4 / 4  I I )

1j ,,~ (4 )  — i ,~~ ‘) I~ 
-~ I I, ( ? I j  414:  ( 12)

w i t h  the b c u n d ar y  condition s

I
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j  j ,,
~ 

ii) 1,i (U) I (I i ) - (.r I I ) .  ( I . : )

1,, i,,
~ 

(
~~ I,,. (x ,) (~ t 4 ) ,  ( ( 4 )

i , , - (  ‘~~
) ( I  ;) i (x ,) L I I~, (x2 fl I’ t I. I

-= — 
I 

, (~ ?J (16)
~ •) 1 . j ,,(

Page 118.

Solving together (9) and (10) • let us have

,1 / ( i )  L’~j  ( 4 )  4 ) 4 ? ?  / , t _ _ -

2 
( I i )

- , A / (x)  ~) 
- -

— 
, 

4 ) 4 4 1  J~ ( 4 ) ’ - II .

Key: ~1). with.

Then is determined the value ci the current of ra pid neu t r a l

particles cn the boundaries:

A
J ( t i  4 .4.,) ;

- (I~4)
.1

(U) — -— - ~.
_ U,

Let us replace of the differential ot independent vari abl€ in

equaticns (11) and (12) bj the expri ssica, çtt. ined from (9) ,
‘Ii (~4 / k  ( ( 9 )

i,~ ( 
~) / ( _ I

let us introd uce the designations

/ 474 ) ’ )  b, ( t i  
(20)1,,? ) 4 )  j,,~~

(

4,,

—- . . . _ — - - — -

~~ 

_

~~~~~

._ .  — - J
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he w i l l  obtain the s) s t em  of t h e  d i t f e r ~ n t I a i  eguat .i.ons

— II  %~~ ( t )  )~1~, )
~~):

( ‘ 2 ) )
1 I /, 4 , , ) I  

~~~~

~ts solution taking into accou;t bounda ry conditi ons and (18)

t a k e s  the  f o r m :

in field J, ?~~)~~~O

- . A ,~ ( .4 )
~‘ I n / , (~~ (

(22)
1j ’ (x )  I

./( .~ ~j,,j, (~~
) .

~~ (I : A , , , ) ] ;  (~~l r .4J~( t )  -

ja field J ,~~ ’)  I )

- - - 1 / 1 4 )
V j ,, - j , 1 ?

— (2 3)
/ 

, -/ .1’~~ :‘ i,, j, )~~ ) I ( I  - I— ~I / , , ) I , ( 4 )  . 1 1 4 ( 4 )  —

where

- i)

lunc t ion z, proportional to the ~~pce~ tration of cold neutrdi

particles, represents by itself their relative distribution a l on g  t~-

l en g th  of the camøra/chamtez ci io~ izstIos~

The four th i4tegral of systems (~).— (1i) viii he located d u r i n g

the soluticn of difler eit ici equat ion (i) , written in the form

(24)

.:i I
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4e

itka ich it is necessary sepa r at ely tc in t egr a t e in two fie ld s Cf t h e

camerajcha.ber where j , ( ~~~~~~ O and ~~~~~~ ~

Page 119.

3e,Lative value of the conSump ticn cf vcrk iA y medium/propellant

ii (22) and (23) can be expressed k~y dependence j,, -- ‘- , which
4/ 

1

€asues fro m the determinaticn of t h e  cc~ u t A c i e a t  of the use of a

working medium/propellant.

The results of numerical count tor twc different valuos a n d  i n

different parameters of overchargi ng A are ~iven to Fig. 2 and 3.

A system of differential equaticns (9)-(1.~) can be utilized for

the case of the overlap of working m€d iua /prcpell ant from the side of

grids,~

La this case, will charg, only boundary couditions:

~,,i (0) ,~, (0) , I ( (4 );

/,,~ 
( t- ,) I 

~~ - ~~
) — II 4 4 ~~, ):

4- ( I  — 
~ / , ,~( ‘  4 I ~ 147 (t  t~~(; - - (‘fl )

— I
-
- 

I . x - )
— 

~,,4 I t • - I

~espectively will chaqçe t1e integrali of the system:

~n fi el~ ~~~“>°

4 ~~

‘-
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- 
4 j ~(x)

y - - - j 1( x) —- - ~, - 4
(2~1)

~~~ j / J~(x)~ 
.-: •i , (x)  2C~ ;

4n fi•ld J , ( x) < O  4 - -

Aj ~(x)

~/h j ( X J I l  f . 1(~
;) j 2 • .

~
(
~ 

- (:10)

w.bqge 
,. 2J~/J. A 1

-~ •
~ 

I 
~

- ) .  
~~
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Fig. 3.

Pag e 120.

Value , ,i ’ .,,,, obtainec for this case, dces not detec t

dependence ca the transparer cy of grid (Pig. 4).

From (18) follows thE interesting uq~ wersel dependence: th€

ratio ci the flow gf the r e c h a r g e d a e ut r a ~.I iartAcles to ion curren t
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co the toundary of plasma (in the examine d çne— dimensi czi 4Ai. C.1;~~k’) 1~~i

a i w a y m e q u a l  t o val ue A / 1 .

~ecall t ha t  t h e  copstact A d e p e n d s  or l ~ ci  t ne p h y s i c a l

p r o p e r t i e s  of gas (atcaic w € i g b t , t h e  secti ui of ove rcha~~~i n y  di l l

icaiza tion) ar i d of el ec tr cx ~ t e m p e r a t u r e  a n c , t h a t  v er y ~ u b s t a n t i ~~1ly ,

directly it does nc t  de~ € r d  cn the  v a l i~e ci the camera/c t~~m bk-L .

Iron (16) and (28) it is e v i de4 t  tha t the  uppe r u ni t ’ of t h e -

v a l ue ci th e  c o e f f i c i e n t  ci t i e  us e  ci a m a ~ s e v en  fo r  t11e

sufficiently long camera /chambers is the e~~ ression

3 = 

I (3 1)

—a- --’
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Page 1~~1.

¶IHE V~~~SI0N CF DISPERSICh ~ITH0D AN D 11E TA LK S CF BOUN DARY LA Y~~1~

ST AEILITY .

V. ~. Lutovinov .

Is exawi~ed the versict of dispersio n ~ethco ton t IR sy~~t~~m s of

th€ djfierential second cider equaticns . Is notEd its

ccmauoication/connectjcn with the tas)~ ci the factonizati~ n of linear

differential expression. Is shown tte pcssihility of appl yi ny the

.€thod for the numerica l sciuticn ci tie ta~ ks ct boundd uy layer

stability within the tram ew crk of linear tiEoLy .

tet us examine the solution of ~cun da ry—v a1u e probltm i C L  t h e

system of the differential equations of tl’,E seccnd order

1 “ II I I I ;

Let on one of the ends of the cut cf irtegration ab , for

exa.pk. , w i t h  y = b the bcundary ccr~ditions 1€ arbitrary rela tively

‘I a nd •~ bit on ctbqr — sith y = a the y take the form

h e r e  
-

_ _ _  - - - - - - - — -~~~~~~~~~~-- - -  - _ _ _ _ _ _
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- : - ‘ I ’ : ; I

‘I ,, I~ ;, - 
I,,

/‘ ‘,

1 I(
~

- ) - . 

~: K - - -

ii -, ~~.,,, /~~4 - -

“~~ and k , ,  — complex vua t€rs (i , = i~ ...,

On the basis of the ideas of the dispe asicn method of Gelfand

and Lck u t s i y ev s k i y  L i ] ,  let us search icr nattix /die B = 13 (y) und

vectot 1 i - \  where

1’ , 1~~~~~~~~~~~~~ 34 
I

- I , ‘I

- - ~~ 
‘ I- ,,

which satisfy

‘I 
- 

— 1’; (
~~)

!4)’,j I’ ‘I )u )  (- S I

L a c e  1~~~.

Iitt er eu~~iat iag (2 )  and utilizing (1) and ~2), we will obtain

4/I Ic ) ’~ ~~t .— /~I’ Since is solut ic a (1~ and satisfies (1’)

lat nil/dia B vector functict i: t he y  a~st satisf y

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -4
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/ ; // ( I

4 ’ - /I’~ I -

/ I(’, i 1 . ‘I ’ ~ 
(I> )

integrating systems (4), (5) bith initial condition . (6), we

hi ll cbtain at point y b ci conditicns , bil ch are missing toL t h e

in-vestigaticn of the solvability of tomn dary—v alue problem . A f t ’ r

determining, if this is possible, ‘I i / . let ~s find via

reverse/inverse screw die ~~~ solving the problem of Ca uchy tor

equatjcn (2).

It  is possible to mb o~ tha t

11 
~ 

I

here ii - - :~ ~: there is it. of tFe l inearly independent s o lu t i cr i s
-, - - 7 --’
0— 10=0, which satisfy O4KO C with y a ;  U - i  - matsix/die,

reverse/inverse U.

Ihe described methcd , as other di spersi cn methods, can ne

cbta ,io€d f r om the theorem ahout the factonizatics of linua t

d i f f e r e n t i a l  expressio n [ 2] .  Fro m this same thecrem tollcws the

ccrtinuou s differentiabilitl of mat r ix e l e m m n t s  13. ‘

luring the study ci kctnc ary layer statil ity w i t h i n  t he

tramevork of linea r theciy, it is necessary tot the eq uation of

Cr r —Sç .~e~ f.id

1
ç

I\ 2~ ’ 4f ” t  ~
‘ t i , I? Rv ~ ( T ’ 

~~y)  
~‘“ r I  “I
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with the bcundary conditicns

1
’ 

t~ (
~~ -

~ ~
- )  0; -

1 ’ -
~ ~ +

“ — ~ ( -
~ 

- 4 -  
~r )  - 0 1 ‘‘ i’’’ - ~‘ ‘ (“)

‘‘ 4 ’” 4’ ~ II (10)

Key:  ~ 1). wi th

tc determine among eigenvalues B, S. , -~- i e , cf boundary— value

prcb le z ( 8 ) — ( 1 0 )  t h e  field where ther€ Exist 0

Iguation (8) and b c u n d a r y  c o n d i t i ci .~ 4~ ) can be pre sen ted  in the

icr .

‘ I ’  . 1 4 (4 ; 4 1 4 )

K q
’ 
~~u with 

~ ~ (12)

here j
-
~~~ 

r

- — 
- i I~’~’ .1 (v 4 -

~ 
I

—
~ 1 ( 4  ) 

-

Pa ge  1~~3.

The dispersion method In questlcr is led in t h i s  case to t h e

iategsation of the syst em
ir - 4 ( 4
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w i t i  t h e  ipitial  c on d i ti o ns

f (~ ;~ #~ 
4 )

The investigation CL a ~ u e st i cn  cc n c e r n i n ç  t h e

affiliatio n/accesscry ct th~ va l ues cf p a r a m e t e r s  B , ~~~, C , wi to th~

oum be r  of i t s  own is reduced taking intc acccu rt (10) to checkin g Ct

cc;dition b 12 (0)=0. The presence of communicat icn/connectio rl (7)

gives grounds to rel y c~ t h e  s t a b i l i t y  ci tte process of int~~y r a t ion

(13). Ihis is conuir.ed by numerical exp erii ei~ts.

Zet u s no t e t ha t  t b ~ me thod in q ue st i c [  c a c  be usei alsc tc the

statility analysis Cf ; € t ~~.
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