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CHAPTER 1

INTRODUCTION

The general continuous linear program is formulated as

follows:

T
minimize f c(t) x(t)dt

0

subject to

t
B(t) x(t) + f K(t,s) x(s)ds = b (t)

0

x(t) > 0, t € [O,TJ

where c(t), b(t) and B(t), K(t,s) are given and are real vectors

and matrices respectively .

A special case of this is a linear optimal control problem

with constraints on both the state and control variables :

T
minimize f (c(t) x(t) + d(t) u(t))dt

0

subject to ~~~~ x(t) = A(t) x(t) + B(t) u(t) + a(t)

O = c(t) x(t) + D (t) u(t) + b(t)

x(t) > 0, u(t)  > 0 , t € [O ,TJ

x(O) given.
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The motivation for studying such problems is the following:

(1) They ar~ widely applicable to many real world situations as

intertemporal economic models of, say, investment and planning

(e.g. [3] and [7] ) ,  and occur frequently in engineering

applications (e.g. [214]).

(ii) They are closely related to their discrete time counterparts

which, formulated as block triangular linear programs, are

costly to solve. Computational experience with such linear

programming models shows that they often require unusually

many simplex iterations [1] [7]
l and also become very large

in size. On the other hand, many small cont inuous time problems

have been observed to have nice mathematical propert ies, and

exact solutions have been easily obtainable by hand [12], [18].

This suggests that a thorough understanding of continuous

linear programs may not only result in methods that can solve

them directly and efficiently on a computer, but also result

in new improved methods for solving the discrete time

formulations.

(iii) Many continuous time problems are inherently numerically un-

stable when solved in discrete time as linear programs. Indeed,

one can construct examples which are easily solved in continuous

time, but which, when discretized with time step € , have

1This seems to be attributable to the observed persistence property
of these models [8], [21], i.e. similar type activities persist
in the basis for several consecutive time periods. In the continuous
case this can be interpreted as activities remaining positive over
intervals of time.

2
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corresponding linear programming bases with condition numbers

1-rnproportional to ~ , where m is the number of rows in the

continuous time problem. In such cases, some other solution

technique becomes a necessity for any appreciably small € .

Continuous linear programs have been largely studied as linear

programs in a funct ion space with the emphasis on generalizing the

simple but powerful results of linear programming. They were first

considered in 1953 by Bellman [2],[3] who established a weak duality

result which, as a sufficient condition for optimality, could be used

to obtain optimal solutions by “good guesswork.” Since then work has

been mainly in two areas: strong duality theorems and computational

methods.
\

The first strong duality theorem was established by Tyndall [26]

in 1965, and subsequently strengthened by a number of authors, e.g.

Grinold [i14] and Levine and Poinerol [19]. These authors imposed alge-

braic conditions on the coefficients defining the problem so as to

directly generalize the strong duality theorem of linear programming [6]

to the case of continuous linear programs in the space of bounded measur-

able functions. Another strong duality theorem requiring a Slater con-

dition to be satisfied was obtained by Hager and Mitter [15] for a

variant of the above optimal control formulation.

The dominant theme on the computational side has been the attempt

to generalize the simplex method to a function space, In 19614 Dantzig

[9] showed that the control theory formulation with no state variable

constraints could be solved using the Dantzig-Wolfe decomposition

principle. Work on the general problem was done first by Lehman [18]

3
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in 19514 and then pursued by Drews, Hartberger and Segers [12] in 1970.

Their central idea was to mirror the revised simplex method step-by-step

in continuous time . Thus they would begin with a “basic feasible solu-

tion” which, roughly speaking is a solution whose positive values are

uniquely determined once the remaining ones are held fixed at zero. The

first step would be to compute relative “prices” backwards in time by

requiring complementary slackness conditions to hold. These prices

would then be used to identify some variable that is currently at zero

on some subinterval of [O,TJ, and which when increased over an interval

would yield an improved solution. This increase would be made in such a

way that the new solution was again a “basic feasible solution.”

Teren [214] in 1977 developed a similar algorithm for the optimal

control formulation allowing, in addition, for end point constraints.

However, his regularity assumptions are very restrictive.

The role of the above works, [18], [214] and especially [12],

has been to demonstrate that the concepts and steps of the simplex

method can be directly generalized to a function space setting. However,

many questions are left unanswered, and some of their suggested con-

structions need to be made more precise if they are to be developed

with mathematical rigor.

In this dissertat ion, we cons ider some of the foundational

aspects of a theory of a continuous time simplex method in the same

spirit as [12] and [18].

The first task we address is that of obtaining a useful character-

ization of’ extreme point solutions. This is achieved, in Chapter 2,

in the case of constant coefficients and in the class of so-called

14
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right analytic solutions. The main result there is that there is a

one-to-one correspondence between extreme points and solutions

satisfying certain full rank conditions, in a manner reminiscent of the

analogous characterization in linear programming, and also the bang-

bang principle of optimal control theory . This characterization is

used to define a “basic feas ible solution” and is the foundation of

the proposed cont inuous time simplex methcd in Chapter 14. Examples

are also presented to show that this kind of characterization cannot

hold for the general (time vary ing coefficients) case. This gives

some indication that it might be meaningless to look for a general

continuous time simplex method.

In Chapter 3 we motivate the approach to be taken in Chapter 14.

This is done by first reviewing the important steps in the simplex

method, and then analyzing an example in both continuous and discrete

time .

Chapter 14 is chiefly concerned with the problem of how to move

from one basic feasible solution to an improved one. The f irst

aspect considered is the statement of the optimality conditions . It

is well known, e.g. [12], [18], that the dual problem need not have

an optimal solution in any space of real valued functions even though

the primal may be bounded and possess a unique analytic optimal

solution. While the existence of simple examples to this effect

motivated the search for conditions on the coefficients where this

would not occur , e.g. [114], [26], it also simultaneously yielded the

realizat ion that any cont inuous time simplex method would have to be

able to accommodate these cases , [12], [18]. Indeed,working in the

lar ger funct ion spac e of distr ibut ions1 which contains the Dirac
1See Appendix C.
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functional and its higher order derivatives allowed these dual

problems to attain their optima. However, interpreting a dual

infeasibility (related to a statement of non-optimality) in the space

of distributions requires some care, and this is an abpect ignored

in [12] and [18].

We here take the view that it is reasonable to assume

that the primal problem is bounded. This means that the need

to work with distributions arises only in the dual. We then

formulate a new dual problem with all quantities being real valued.

This dual is shown to be equivalent to a formulation in the space

of distributions that allows only finitely many occurrences of the ~

and its derivatives, but which nevertheless can be studied in an

entirely distribution free context. The usual weak duality theorem

is established and sufficient optiniality conditions deduced.

Next is presented a new construction which , under certain non-

degeneracy and regularity assumptions, will begin with a given extreme

point solution and from there continuously trace out a path of extreme

points along which descent is obtained for at least a short while.

it differs fundamentally from the usual basis change in linear

programming in that we are here simultaneously increasing nonbasic

variables having both negative and positive reduced costs, but so

that the overall result still gives descent. The approach taken here

was inspired by Dantzig [10] who suggested that dual shadow prices

could be used to find which nonbasic variables to introduce into the

basic set because their values would dominate any changes in the

objective due to corrections in the location of the breakpoints in

order to maintain feasibility. This thesis gives conditions (and

proofs) for which his conjecture holds.

6 
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r Chapter 5 contains the conclusions and mention of some of the

many remaining unanswered questions. The appendices contain examples,

background material on distributions and Laplace transforms, and also

technical lemmas, some of which are of independent interest.

Appendix D in particular contains an interesting existence and unique-

ness result for a set of simultaneous nonlinear equations, the solutions

to which are the breakpoints in one of the basis change constructions.

We conclude this introduction with a remark on the optimal

control problem formulated earlier . Because of the presence of mixed

control and state variable constraints, the problem is very different

in character from and substantially more difficult to solve than the

usual control problem having the state variables unrestricted. See

e.g. [13]. Indeed, the distinction between state and control variables

become s artificial, in general yielding no additional insight . When

it is reformulated as a continuous linear program,1 the state and

control variables are lumped together in a single vector. Thus, rather

than thinking of choosing a control to steer the system along a certain

trajectory, we instead take the combinatorial approach of choosing the

active constraint sets from amongst both the state and control

variables.

1.1. Notation

Let n denote (l,2, . .. , n).

For ~ C n , let ~~ be the cardinality of ~~.

For a n m x  n matrix, A, and ac!, ~~C n , let Aa~ 
denote

the submatrix of A whose rows are indexed by a~ let A .~ denote

~‘By integrating both sides of the system equation.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the submatrix of A whose columns are indexed by 
~; 

let a
~ 

denote

the ith column of A, and a~ . its (i,j)th element. All matrices

will be denoted by upper case letters.

Vectors will be denoted by lower case letters, with the

distinction between row and column vectors being omitted when the

meaning is clear from the context. When necessary the transpose

symbol ‘T’ will be used to indicate a row vector, b
T for some column

vector b. The components of a vector u will be denoted by b..

The distinction between this and the ith column of the matrix B

will be clear from the context.

e~ will denote the pth column of the identity matrix , and e

will be used to denote a vector of ones.

g
(i) ( t )  will denote the ith derivative of g evaluated at

t. g
(i)( t+) will denote the ith right derivative of g, and similarly

for g
(i)

(t_ ) .

fl.~f will denote the Euclideari norm .

If I = (t’,t”) is an open interval then I will denote the

interval [ t’ , t ” ) .

R and cc will denot e the reals and complexes respectively .

L [ 0 ,T] will denote the space of all real valued , Lebesgue

measurable , essentially bounded functions on [O ,T]. L1[O ,T] will

denote the space of real valued Lebesgue integrable functions on

[O ,T] .  When the time interval is clear from the context , these will

be written as L and L1 respectively .

C will denote all infinitely differentiable functions

from R — R ,

8
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l÷(t) = 0 for t < 0, = 1  for t > O .

Chapters are numbered from 1 through 5, with sections and

subsections denoted by 4.1, 14.2.1, etc. Appendices are numbered A

through E with subsections likewise denoted by C.l, C.2, etc.

Equations, lemmas, propositions and theorems are all part of the

same numbering system within a chapter. 14(25) , 14.2(25), 4.2.1(25)
all refer to the same equation 25 in Chapter 14, and will be used when
referenced from another chapter.

[6] will denote reference number 6 in the bibliography.
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CHA~2ER 2

ON ~DCTREME POINTS AND THEIR CHARACTERIZATION

AS BASIC FEASIBLE SOLUT IONS

The simplex method of linear programming is based partly on

the following fundamental results [6].

(i) If f:Rn — R is linear, and f is bounded below on

P = Cx C R~ :Ax = b, x > 0)

where A € ~~~~ and b C Rm, then f attains its infiiium

on P at an extreme point of P.

(ii) x C P is an extreme point of P if and only if A.~ has full

column rank, where ~ = { i:x i > 0).

Because of the characterization in (ii), ext reme points of

polyhedral sets are also called ‘basic feasible solutions.’ Note

that there can be at most m positive components in any basic f~r.s1ble

solution.

In this chapter we shall investigate to what extent similar

statements may be made in the context of continuous linear programs.

We shall begin with the general case , and then specialize various

aspects of the problem.

The general problem under cons iderat ion is

10
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Minimize
T

f(x) = f c(t) x(t)dt
0

( 1)

Subject to
t

B(t)x(t) + f K(t,s) x(s)ds = b(t )
0

x(t) > o

where K(t,s), B(t) R
mXn

, x(t), c(t) R~, and b(t) C Rm for

all s, t C [0,T], s < t.

It will be useful to write the constraints in operator

shorthan d:

Ax= b, x > 0

where A maps the function x to another function denoted by Ax

and defined by

t
(Ax)(t) = B ( t ) x ( t )  + f K(t,s) x(s) ds.

0

In order to complete the problem definition we need to specify

the spaces in which the variables and coefficients lie, e.g. L

This will be done when required.

For a given space X and constraint coefficients B(.),

K ( . , ’)  and b(.) define

P(x) = (x C X~:Ax = b , x ~ 0)

where demotes all n-vectors of elements in X. P(x) is easily

seen to be convex, and will be assumed nonempty.

~ ________ ________ _____ _____ 
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- We shall identify any two functions that are equal a.e., and

likewise require the constraints to be satisfied a.e. In particular,

if x is an extreme point of P (x) and y = x, a.e ., then y is

also an extreme point of PCX).

2.1. Extreme Points as Optimal Solutions

The result that would be most desirable is the following:

if X is a given space of ‘ nice ’ funct ions, and if a cont inuous

linear functional f is bounded below on P(x) then f attains its

inf imum on P (x) and moreover does so at an extreme point of P (x) .
However , without severe pre-conditions on the coefficients defining

the problem, the only case when this appears possible is when X = L

and P(L ) is bounded. One complicating factor is that while the

notion of extreme points is purely algebraic, one seems to require

heavy topological machinery to establish merely their existence.

(2) Theorem. If the components of c( ), b(.), B(.) and K(~ ,~~)

are all in L , and there is an M >0 such that x C P(L~) * I I x ( t ) I I ~ M
a.e. then f(~) attains its infimum at an extreme point of P(L ).

The proof of this result will follow immediately from the

following well-known lemma once the compactness of P(L~) is

established in a suitable topology.

- ~~- ~ — — L_~- — - - _______



(3) Lemma. Let Y be a locally convex Hausdorff space and let

f :Y —* R be concave. If Q = Y is compact and f is lower semi-

cont inuous on Q then f attains its inf imum on Q at an extreme

point of Q.

Proof. See [16, p. 7 14] . 0

( 14) Lemma: Compactness of P(L )

Under the conditions of Theorem (2)

(1) P(L~Ø) is weakly compact as a subset of L~.

(i i)  P(L ) is weak * compact .1

Proof.

(i) See [14, p. 140].

(ii) The proof of this is in the same spirit as that of (i) and will

be omitted. 0

Proof of Theorem (2).

Let Y be the space L~ with the weak topology. By Lemma

( 14) P(L ) is compact in Y. Since c C L~, f is continuous on Y.

Noting that Y is a locally convex Hausdorff space, we can apply

Lemma (3), and the proof is complete. 0

1For interest sake we state both compactness results even though
only one is required.

T 13



Remark. The same proof is valid if we choose Y to be L
n 
with

the weak * topology.

In practice we would like to have optimal solutions that are

more manageable than general measurable solutions, for example piecewise

analytic solutions having only finitely many breakpoints. Theorem (2)

unfortunately is the best statement available and it is st ill an open

question whether or not it can be improved upon even in very special

cases. Even if we know that the optimum has, say, a piecewise analyt ic

solut ion, there is no guarantee that there is a piecewise analytic

extreme point solution. However, there is a motivat ion for cont inuing

the study of extreme points in more useful spaces, given by the

following simple result.

(5) Proposition. If f:X~ —~ R is concav e and x is the unique

minimizer of f over P(x), then x is an extreme point of P(x ) .

Proof. This follows immediately from the concavity of f and the

definition of an extr3me point. 0

2.2. Extreme Points as Basic Solutions

Let us begin by reviewing the proof of the characterization

of extreme points in Rn given at the beginning of this chapter.

We have a given x € Rn satis fying

A x = b , x > 0 .

~~

I -d~~ .~



The necessary and sufficient condition for x to be an extreme point

is that A .~ has full column rank, where ~ = (i:x i > 0) .

To show the sufficiency, we write x = 7~.y + (l-?~)z for

7., C (0,1) and some y and z satisfying the constraints, and then

show that x = y = x . Set a = (i:x1 =O). X
a

= O
~ 

y > O  and z > 0

implies 
~a = z

a 
= 0. Therefore ~~~~~ = ~~~~~ = ~~~~~ = b. Since

A.~ has full column rank these equations have a unique solution, and

we are done .

To show the necessity, assume that A.~ does not have full

column r ank. Then there exists a y~ ~ 0 such that ~~~~~ = 0.

Setting = 0 and noting that x~ > 0, there is a 0 > 0 such

that x + Oy > 0 , x - Oy > 0. Hence writing x = ~~
- (x +Oy) ÷~~(x -&y)

shows that x is not an extreme point.

It is precisely these two steps that we shall mirror in the

continuous case, namely

(i) being able to solve uniquely for the positive components when

the remaining ones are held at zero, and

(ii) being able to perturb the positive components to either side vhen

they are not uniquely determined .

Before continuing, we remark that in order to obtain a similar

characterization in a function space we shall have to severely restrict

the class of admissible solutions as well as the constraint coefficients.

The reason for this is that the constraints in (1) can have extreme

points for which no characterization of the above form is possible.

15
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Example B(l) is such a case. Also, for computational purposes it would

be preferable if we could solve locally for x(t) at time t, without

any considerations of the future. In Example B(l) the values of x

on [0 , 1) are determined by constraints that hold over the interval

[1, 14) . In Example B(2 )  the slope of x at 0, and hence the whole

solution, is determined only at time T by the restriction x(T) = 0.

As in the case of linear programming we are here aiming at

the following restatement of the continuous linear program (1):

Choose a partition of [O ,T] into time intervals [I.) and an

associated partition of the variables ((a~~~~)) such that with

= 0 on I , the remaining variables ~~ are uniquely determined,
j  j

and yield the optimal solution. By our comments in the preceding

paragraph, we moreover want the value of x(t) to be determined only

by our choice of which variables are to be held at zero on [O , t ],

and not by what happens to the right of t.

In the remainder of this chapter we shall work with the space

of right analytic functions, defined below.

(6) Definition. A function g:[0,T] — , R  will be called right analytic

if for each t € [O ,T),  there is an € > 0 and an analytic function

h:(t—e , t+E ) - R  such that g(s)  = h(s)  V s  C [t , t+ € ) .

We shall let ar denote the space of bounded right analytic

funct ions on [0 ,T J .  The required properties of these functions are

established in Appendix A. Our mot ivat ion for choosing the class ar
is that it seems to be the largest class for which the local uniqueness

result, Proposition (9) below, can be established.

16
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V.

The following 1:: a key result in the subsequent analysis.

(7) Lemma. Let g:[0,T] —~R
’1 have right analytic components

g.(.), 1. = l,...,n. Then there exists a (possibly infinite) disjoint

family of open interv als , (I
~)~ 

such that U = [O ,T) , 1 and such

that for each interval Ii’ each satisf ies

(i ) g~ is analytic on I .

(ii) either > 0 on I. or g. = 0 on I
~

•

Proof. See Appendix A. LI

For a given x C r~ 
and its associated partition (I

~)~ 
let

= [i:X
i 

= 0 on

and
= (i:x i > 0 on I~ )

Let t~ and tj  denote the endpoints of I~. Then using the conscraints

( i), the equat ion for x~ on I~ becomes
j

t
(8) B.~ (t) x~ (t) + [ K.~ (t,s)x.~ (s)ds = d~~ (t)

j  .1 t~ i j

for all t C [t~,t ”) ,  where d~(t) = b (t )  — f ~ K(t,s)x(s)ds
0

11f I = ( t’ , t ”) is an open interval then T denotes [t’,t”).

17
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• 
. (9) Proposition. Let x C P(

~
tr) and let CI~) be the associated

partition of [0,T] given by Lemma (7). If equation (8) has a

unique right analytic solution on each interval I~, then x is an

extreme point of

Proof. Suppose that x is not an extreme point. Then there exist

y, z C P(lr) and 
7.. C (0,1) such that x = 7.y + (1-7..)z

and for some t C [0,T), x(t) ~ y(t). By Lemma A .5 there exist

O < r < s < T such that x = y on [ 0,r) and x y on (r,s).

By Lemma (7) there is an interval I~ = (t~,t~) of the partition

such that t~ < r < t~. By analogy with the sufficiency argument

presented in R’~, it is clear that on I
i’ 

y~ satisfies
3

t
B.~ (t) y~ (t)  + f K.~ (t,s) y (s)ds = e3(t)

j j  t ’. j

for all t C [ t~,tj] where

t ’.
j  3

e (t)  = b ( t)  — f K(t,s) y(s)ds
0

However, since y = x on {O ,r), it follows that e~(t) d~(t)

on I . Thus y satisfies (8) on I • Since y = x = 0

on I~ , y~ ~ x on I fl (r , s) ~ ~, contradicting the uniqueness
‘J ‘-‘j  ~j

hypothesis. 0

18
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Remarks.

( i )  In sum we have shown that being able to solve uniquely for the

positive components locally is indeed a sufficient  condition for

a right analytic solution to be an extreme point. The important

part in the proof played by the right analyticity was that when

given x, y C “
~~r~ 

with x / y, we could find an earliest

interval, I., in the partition, on which x / y. An example

where we cannot find a first interval is the following: Let

x(t) = [t sin(1/t)]~ (i.e., positive part), and y(t) = t on

[0,1]. Clearly, in the partition of [0,1] induced by x,

there is no first interval on which x and y differ. Note

further that the theorem is false if the solution is right

analytic but we choose a partition CI~) that does not sat isfy

[O,T) U
~
°
ri 

~~~~~
• This is illustrated in Example B(2).

(ii) Example B(l) shows that local uniqueness is not, in general,

a necessary condition for a solution to be an extreme point.

~Te can now proceed to find algebraic conditions on the coefficients

that ensure unique solutions to equations of the type

t
(10) D(t)  x ( t )  + I L(t , s) x ( s )d a  = g( t ) ,  t [t ’ , t tt )

Since, by Example B(l), such conditions cannot in general also be

necessary condit ions for uniqueness , we shall confine ourselves to

the case where the necessity has been established. This is the time

invariant case, i.e. when D and L are constants.
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Before doing so, we remark brief ly that in the event

D(t) = I, equation (10) is a Volterra equation of the second kind, and

it is well-known that such equations always have unique solutions,

provided that the coeff icients and L ..(.,.) are in L
2
.

See for example ~~5, p. 10]. Thus if D
1(t) exists a.e. and

(D~~g)., (D~~L)~~. C L
2, 

we also obtain uniqueness. In general, however,

D(t) may be singular. This case has been studied by Dole~a1 [11],

and in differential equation form by Silverman [23]. However their

work provides only a partial answer, and a general succinct unique-

ness condition has, to our knowledge, yet to be discovered.

In the time invariant case, equation (10) reads

t
(11) Dx(t)  + L f x(s)ds = g( t ) ,  t C [ t ’ , t”)

t ’

This equation has been thoroughly studied in its more conventional

differential equation form by a number of authors. See for example [5],

[11], [23], and also Appendix C. The uniqueness condition we

require is the following:

(12) Lemma. If the components of g(.) are analytic and x satisfies

(11), then a necessary and sufficient condition for x to be the

unique analytic solution is that there exist a scalar ~ such that

+ L has full column rank.

Proof. See [5]. 0
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I

Remark. This full rank condition has several interesting interpre-

tations. If D and L are square, then 1iD + L has full rank if f

det(1~D + L) Is not identically zero as a function of ~~~ On dividing

by ~ and setting E = l/~ the condition reads: D + eL has full

column rank for all € sufficiently small. If we replace (11) by

its discrete time analog using time intervals of stepsize c, we

obtain a block lower triangular coefficient matrix with each diagonal

block being D ÷ €L. Clearly this block triangular matrix has full

column rank iff D + €L has full column rank. Another interpretation

can be made by taking Laplace transforms on both sides of (11) with

dummy variable ~~. The coefficient matrix of the Laplace transform

o~ x so obtained is precisely D + -
~~ L.2

In order to show that this full rank condition is also a

necessary condition for a solution to be an extreme point, we require

the following lemma.

(13) Lemma. If there is no scalar ~ such that ~D + L has full

column rank, then given any -r > 0, there exists a nontrivial analytic

solution to the homogeneous equation

t
(114) Dx (t) + L f x(s)ds = 0, t > 0

0

1
Note that det(~D + L) is a polynomial in ~~~. Hence it is zero either for
all ~ or for at most finitely many ~.

2See also Append ix C.
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satisfying
T

I x(s)ds = 0
0

Proof. We use an argument similar to that given in [5, p. 1418].

By assumption, for each ~ there exists a nonzero (constant) vector

‘p such that (~D + L)Cp = 0.

If D has k columns let M > 2k be any integer and let

M1’~~ 
.
~
MM be any distinct scalars. Let G be the following

2k x M matrix:

cp (p ...
MM

e (p e (p . . .  e p
MM

Since M > 2k the columns of G are linearly dependent. Hence there

ex ists a nonzero vector i~ 
= 

~~~~~~~~~~~~~~~~~~~~ such that Gi~ = 0.

Set
M M t

x(t) = 
~~~ ~~~~
i=1 

1

Then it is easily verified that x satisfies (114) and that
~1

f x( s)d s  = 0. Moreover, x is not identically zero. 0
0

We can now obtain the main result of th is chapter.

22

_ _  
_ _ _ _  _ _ _ _ _  • -

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



(15) Theorem. Characterization of right analytic extreme points.

Let x be right analytic and satisfy

t
(16) Bx(t) + K I x(s)ds = b(t), x(t) > 0, t C {O ,T],

0

where B and K are constant. Let (I
a
) be the associated partition

of [O,T] given by Lemma (7), and define

a. = ti:x. = 0 on I.)
3 1 3

(i:x. > 0 on I .)
3 1 3

Then a necessary and sufficient condition for x tc’ be an extreme

point is that for each j, there exists a scalar Mj 
such that

+ K.~ has full column rank.
J j  j

Proof. Sufficiency. By Lemma (12), x~ is uniquely determined on
-~ 3
I~. By Proposition (9) x is an extreme point.

Necessity. Suppose there is a j such that for all ~, MB.~ + K.~
j  j

does not have full column rank. Since x~ (t) > 0 on I ., there
I_ _

3 
3

is a closed interval [u,v] c I. and an € > 0 such that x.(t) > €

for t € [u ,v] and I C 3~ . By Lemma (13) there exists a nonzero

analytic y
~ 

(- ) satisfying 
-

3
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t
B. y (t) + K. f y (s)ds = 0, t C [u ,v)
~j~~j ~ju ~j

and
v

f y~ (s)ds = 0 .
u j

Rescale so that ~y1(t) I € for all t [u,v) and i C 3 .

By construct ion of y~ in Lemma (13) this can always be done.
3

Set 
~a 

0 on [u ,v) and y = 0 on IO,T]\ [u,v). Then by

construct ion y satisf ies

t
By(t) + K I y(s)ds = 0

0
and

x(t) + y(t) > 0

x(t) - y(t) > 0

for all t C [O ,T]. Hence both x + y and x - y satisfy (16).

Since y is not identically zero, it follows that x is not an

extreme point. 0

2.3. Definition of a basic feasible solution

With the above characterization of right analytic extreme

points, we can now make precise the notion of basic feasible solutions

in continuous time. This will be fundamental in laying the ground

work that will be used in the remaining chapters to develop a con-

tinuous time simplex method.
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From now on we shall concern ourselves only with extreme points

having finitely many breakpoints.

(17) Definition. Let x:[O,T] ,_,Rn sat isfy

t
Bx(t) + K f x(s)ds = b(t) , x(t) > 0, t C [O ,T]

0

mxn . .where B, K C R . Then x will be called a basic feasible solution

if there are finitely many points

O t
O

< t
l < < t

k
= T

and for each j = l,...,k, a partition (a.,~~.) of the variables such

that

(i) =

(ii) xa
(t) = 0, t C (t .1,t.)

3
- (iii) det(MB.~ 

+ K.~ ) / 0 for some
j  j

If in addition x~ > 0 on the ~~~~ interval (t.1,t .)

+for each j, and x
r(t) > 0, x(t .) > 0 for r ~~ 

~j+l 
‘

then x will be called non-degenerate. On the interval [t.1 ,t.),

x and will be called basic and nonbasic variables respectively.
j

Note that if b () is analytic then by the result of

Proposition C.3(18) any basic feasible solution x will, for each

interval (t~~1~
t~)~ agree with some function y

J(.) that is analytic

25
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on a neighborhood of [t ~~ 1,t~ ). In particular this implies that both
I . the left and right limits, x~~~ ( t )  and ~~~~~~~~ exist for all

j = l, . . . ,k and all I = 0,1,2 
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CH~.PTER 3

THE SIMPLEX METHOD IN Rr
~ AND CONTINUOUS TIME VERSUS DISCRETE TIME

The purpose of this chapter is to motivate the approach we

shall take in developing the theory of a simplex method in continuous

t ime. In Chapter 2 we saw that it was possible to characterize all

right analytic extreme points as “bas ic feasible solutions ” in a

manner very much akin to that of linear programming. Here we show

that the naive generalization of the simplex method to continuous time

is inadequate for this class of problems and that additional new

techniques are required.

3.1. The Simplex Method in t

We first briefly describe a single iteration in the simplex

method. While this is well—known [6 ], we present it to illustrate

and motivate the approach in continuous time.

The problem is

• minimize: cx
(1) 

nsubject to: Ax = b, x > 0, x R

Let x be a given feasible solution. Then for any 7~

cx = cx + 7..(b - Ax)

27
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Upon rear rangement this becomes

(2) cx = (c - 7.,t~)x + 7.b. 
1

To obtain an algor ithm, the following condition is

required.

(3) Complementary slackness condition.

x. > O ~~~c1 -M .. = O ,

The following simple but fundamental lemma follows immediately

by inspection.

(14) Lemma. Let x and 7., be given as above and suppose that the

complementary slackness condition (3) holds. Then if c - t / .  < 0,

and x5 (currently at zero) can be increased so that ~~~~ the

positive components of x need be adjusted to maintain the relations

Ax = b, x > 0, the new solution obtained in this way will have a lower

objective value. 0

The simplex method uses this lemma in the following way.

Begin with any extreme point x, and let ~ = (i:x
~ 
> 0).

For this discuss ion we assume “nondegeneracy ,” i.e. the matrix

is square and nonsingular. Proceed now as follows:

Step 1. Solve for the prices. Require complementary slackness, i.e.

- 1A.~ = 0, and solve uniquely for 7,.

1c - 7J~ is called the reduced cost of x.
28

- •
~~~ 

.— - — - 

~~~

_ - — - -  --

~~

—-- 
-
~~~

- •  -

~~ 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Step 2. “Pricing ”: Select £ such that c g - 7~a2 < 0. If no such

£ exists we are optimal--stop.
t. - .

Step 3. Represent the incoming activity: Solve the system ~~~~~ = a
2.

Step 14. “Minimum Rat io”: Increasing x
2 

to some level e yields

a new x~ given by

x~ = x~ - y~O

To obtain the maximum decrease in the objective, increase e
as far as poss ible, but maintaining x~ = x~ - y~6 > 0.

Under nondegeneracy precisely one component of x~, say

x~, will be zero . r is determined by

r = a r g min ~~_l : yi >o
~

and the maximum e is given by

• x
e =

where we set y~~ = 0. Define the new basis to be

= 
~ U (2) -, ( r ) , set x~ = e, and proceed to Step 1. 0

3.2. Continuous Time Versus Discrete Time

A priori there appears little reason why, without any further

qualification, we cannot apply the above simp lex steps to the continuous

time problem. The point to note, however , is that if we are to work

with solutions having activities basic over intervals of time, then

29
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in order to get a decrease in the objective value by a change of basis,

this change will have to occur over an interval(s) of time. The

discrete time analog of the above process would correspond to a simultaneous

exchange of many activities outside the basis with those in the basis.

This differs from the simplex method where we do these exchanges one

at a time.

In this case , however, Lemma (14) still applies: By a simultaneous

increase of several activities having negative reduced costs, we can

still obtain a strict decrease provided we only adjust existing positive

(basic) activities to maintain the constraints. What goes ‘wrong’ in

continuous time is that without some basic variables becoming negative,

this can seldom be done. In order to make a change of basis over an

Int erval of time, we usually In addition have to adjust nonbas ic

activities, which may well have positive reduced costs. However, once

we do this there is no immediate reason why the intended change of

basis should yield an improvement.

Let us illustrate with an example.

(5) Example.

2
minimize: f ((t-2)x~ + 2x

2 
+ tx ) dt

0 3

t
subject to: 7.. x1

(t) — f x2(s)ds 
= l-t

1 0

~
‘2’ x2(t) + x

3
(t) = 2

x~(t) > 0, t C ( 0,21.
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We shall first show that what happens in continuous time and

then interpret this carefully In discrete time.

Begin with the following basic solution:

[0 , 1): x 1( t)  = 1 — t , x2
(t ) = 0 , x~ ( t )  2

(~) 
-i

[1, 1: x1
(t) = 0 , x2(t) = x

3
(t) = 1

By requiring complementary ~~~~~~~~ over these two intervals,

we ‘an uniquely solve1 for the prices A (.), and obtain:

~i ,2]: 7..
1
(t) = —l

~~(t) = t

= t-i > o

[0,11 : 7.1
(t) = t—2

= t

= - ~~
. (t-l)~ < 0

where ~~
(.) is the reduced cost of the nonbasic variable x~, on the

appropriate interval .

Examinat ion of the reduced costs shows that we should increase

x2 in the first interval. Suppose we do this by exchanging x2 and

x
3 

on the interval [0,.), € > 0. ThIs will yield the following

solution on [0,1):

1This procedure will be well def ined later on.
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[0,.-) : x1(t) = 1 + t, x2(t) 2, x
3
(t) = 0

[c ,l): x1(t) 1 + 2 - t, x2(t) = 0, x
3
(t) = 2

To obtain the new solution on [1,2], we would like to-maintain

basic the same variables as in the original solution, i.e. x2 
and

x3. Thus, keeping x
1 

= 0 over [1,2], we require x, , and x
3 

to

satisfy

- f x2(s)ds = 1 — t + 2€I t C [1,2]

x
2
(t) + x

3
(t)= 2.

However, the only solution to these equations is

x~ (t) = 1 - 2€~ (t-l)

t C [1,2]
x,(t) = 1 + 2€~ (t—l)

where ‘~(t) is the delta functional.
1

We observe immediately that x,,(t) = -~~ at t = 1, and thus

X ; there fails to satisfy the nonnegativity restriction. Hence it

is not possible to adjust only the basic variables and remain feasible.

If we did not require x
1 = 0 over 1,2], and instead held

it fixed at x1(t) = 2.- , its value immediately prior to t = 1, we

would obtain the solution

=

X ; (t) = 1 t C [1,21

x
3
(t) = 1 .

1 ,,may be thought of as a function that is zero everywhere except at
the origin where it . is so large that it integrates to 1. See Appendix C.

32 A



However, this solution is not a basic solution and moreover has an

object ive value that is greater than that of the original solut ion.

This is because the reduced cost of x1 over [1,2] is positive,

and in this case keeping x
1 at 2€ over [1,2] yields a positive

contribution to the objective that dominates the decrease obtained

over [0,.). See Figure 1 below.

xl

A.

,/ %

14.

1 ’
% -old x1

— — — - 1
att:mpted new x

1 

~

FIGURE 1

The approach we shall pursue will be to allow the breakpoint at

t = 1 to adjust so that x1 can be allowed to reach zero continuously

and then be kept at zero level from then onwards. This will yield the

following solution:

I
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[O ,€): x
1

( t )  = 1 + t x (t) = 2, x
3
(t) =

{€ , 1+  2 € ) :  x1
( t )  I + 2. — t, x, (t) = 0, x

3
(t) = 2

[1+ 2€ , 2): x1
(t) 0, x

2
(t) = 1, x

3
(t) = 1

A

., old x11

‘ 4....new x1

FIGURE 2

Here we have preserved on t > € the same sequence of basic

variables as before and have only altered i~he timing of the change

over from (x 1,x3
) to (x ,x

3
). Thus we end up with a new basic

feasible solution. In addition, even though X
j  

is now positive

over the interval [ 1, 1 + 2€) where it has a positive reduced cost,

it turns out upon recalculation of the objective value that an over-

all strict decrease is achieved for ~ sufficiently small, Indeed,
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setting € = 1/3 yields the optimal solution (easily verified by

recomputing the new reduced costs).

If , for a given € sufficiently small, we consider this to be

a single iteration, then it is certainly not a case to which Lemma (14)

applies. However, as the analysis of the discrete case will show,

we can think of this as an infinite number of basis changes, switching

back and forth between t = 0
+ 

and t = 1+, and accompanied by

repricing an infinite number of times.

To discretize the problem, we divide the time interval [0,2]

into N intervals of equal size, and approximate the integral using

the leftmost function values. Let ~ = 2/N~ Then the discrete formu-

lation becomes

N-i
minimize: ~ ((k~~- 2) x1(kE ) +2x2

(k~)+kbx~(kb))~
k=O

subject to:
r— 1

~i
(i
~~
): x1(r~) 

= ~~ x~(k~)~ + (1 - r~)
k=O

~~(r~): x2(r~) ÷ x3
(r5) = 2

x
1
(r5) >0, r = O,l,...,N

The detached coefficient tableau is given in Table 1.

The initial discrete basis, corresponding to the initial

continuous basis (6) is indicated by the heavily circled elements

in the tableau. These are the pivotal elements. Note that for

~Not to be confused with the 5 functional.

-{ 
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t ~ 1, x1 and x
3 

are basic; at t 1, all of x1, x2, x3 
are

basic; for 1 -
~~ t < 2, x2 

and x 1 are basic, and at t = 2 , only 
- 

-

x
3 

is basic. Thus in the discrete case, we have a surplus basic

variable at t = 1 and are one short at t = 2.

We now solve backwards in time for the prices. As in the

continuous case it turns out that x2
(O) has a negative reduced cost.

Increasing x,~(O) has the effect of dropping x
2
(l) from the basis.

This exchange is indicated in Table 1 where the element -t with

the dotted circle is not the new pivotal element for x,,(O). Note

that the surplus at t = 1 has now shifted to t = 0.

Table 1

~ (O) x(~.) x (~~b) x(14) x ( i )  x ( 1 +~~) x (2-5)  z(2)

(cosT) c(o) cfr , ) c(2~~) c( i -~~) c(1) c ( I + r . ) c(2—ô ) e(2 ) ( RIg )

A~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2

o - ~~~
o o _

~~~o o e o i  -
~~~

5 0 4 0 0 4 0 0 -~ 0 0 .~~ 0 0 4 0 1. 0 0

0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 2

~(2_ ~ )
0 4 0 0 4 0 0 4 0  0 4 0 0 4 00 - ~~~0 O Q O L  0 0  -14

0 0 0 0 0 0 0 0 0 . ..  0 0 0 0 0 0 0 0 0  • . . 0 0 0 0 2

0 -~~ 0 0 -~ 0 0 4 0 0 -5 0 0 -~ 0 0 -~ 0 0 4 0 0 0 1. -1

0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0  0 0 0 0  0 0 0 1 ~~~~ 2

c ( t )  . ~t — 2 , 2 , t J
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The next step is to solve again for the prices. However in

this case we cannot sequentially solve backwards for A( ), since the

value of 7.i
(l ÷ s) can only be determined once the value of N2(O)

has been found. Solving yields 7\l(l + 5) = - ~, so that as

5 —* 0, 7.1(1 + 5) —, ~. The reduced costs of the nonbasic variables

are all of order unity except for that of x
1(l + 5) which has value

S - ~~
- - << 0. Hence we now introduce x1(l + t) into the basis.

This has the effect of dropping x
3
(0), and so transfers the basis

surplus from t = 0 to t = 1 + 5. See Table 1.

Below we sketch the effect of these two iterations on

Clearly, the simplex method in discrete time is behaving in

the same way as the proposed step in the continuous case for small € .

The remainder of this thesis will be devoted to making

rigorous the above principle in continuous time, viz.: if an activity

prices out favorably , then without further pricing, it can be in-

creased over a sufficiently small interval to yield a decrease in the

objective value.
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CHAPTER 14

L - .

• ON A CONTINUOUS TIME SIMPLEX METHOD

In this chapter we develop a theory for a continuous time simplex

method . First we consider the optimality conditions and the notion of a

reduced cost in continuous t ime . Then we show how to move from one

basic feasible solution to a nearby one with a lower objective value.

~.l. Optiniality Conditions and Weak Duality

As in the simplex method, or most other constrained optimization

problems, the first step is to modify the cost functional by adding to

it certain linear combthations of the constraints.

Recall that our problem is

T
minimize: f c(t) x(t)dt

0

t
subject to: Bx(t) + K [ x(s)ds = b(t)

0
(1)

x(t) > 0, t € [o ,T]

where we assume that b(.) and c(’) are analytic, and B, K C

The following Leninis~ is easily obtained.
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(2) Lemma. Let x(.) satisfy (1), and let 0 t
0
< t

1~ •~~
•< t k

T

be any points such that the derivativ:s x~~~(t.-) exist for all 

2i = l,...,k and 0< j < 2. Let 7. :1 O,TJ —~R be axiy function

and ~~ j O, l,...,2 , i = l,...,k be any vectors in Rm. Then

T
(3)  1 c(t) x(t)dt

0

= 

T 
7.*(t) b(t)dt + ~~~ b~~~(t~)

0 i=l j=O

+ 1
T 

~(t) x(t)dt - 
~~ ~~~~~ x~~~(t~)

0 i=l j=O

where ~ ( ‘ )  and (
~
‘
~~) are defined b~i

* 
T~~~ k . 3

(14) ~(t) = c(t) - 7. (t)B-f 7. (s)ds K - ~ K i~(t. -t)
t 1=1

(5) = v~
1B + v

J+l
~
1
K

and we define = 0 for j > 2. -

Proof. By assumption we may differentiate the constraints (1) and

evaluate all quantit ies at t = t . Thus

1Some k, 2.
2 *We assume both x and 7. are integrable.

= 0  if t < 0

= 1 if t > O .
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b~~~(t1) 
- Bx~~~(tp - ~~~~~~~ = o

-

. O < j < 2 , l < i < k

where we define

I ~ t
x~~~~(t) = I x(s)ds

0

Now left multiply the (i,j)th relation by and add it to the cost

funct ional. Also, left multiply (1) by 7. (t), integrate over [O,T] ,

and add that result to the cost functional. This yields

T
f c(t)  x ( t )d t
0

T T~~~ t
= f c(t)x(t)dt + f 7. (t)(b(t) -Bx(t) -K f x(s)ds)dt
0 0 0

• + ~~ 
Ji(~~(J)(~~) - BX(i)(t;) -

k=l j=O 1

Interchanging the order of integration and regrouping terms yields

the re:~. i lt. 0

We remark that Lagrangian constructions of this type con-

sidered by previous authors in this area (see Chapter 1) have been

concerned only with the case = 0. I~ r our purposes, however,

allowing them to be nonzero is essential. We shall later see that

the can be interpreted as the coeff ic ients of S’s and their

higher order derivatives,

11
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r

Observing that x(t) > 0 and that the derivatives x’
~
i)(t)

are unrestricted in sign for i > 1, we can now use Lemma (2) to define

the natural dual of problem (i), and make a statement about weak

duality.

The dual problem reads as follows:

Find time points 0 =t0
<t~~

— ... <S t

k

z T, constant vectors

~~~ 
CR

m
, and a function 7. •IO TJ ~~~~ so as to

T k 2 ..
nia.xiiuize: f 

*() b(t) dt + ~ v’~
1 
b’~~ (t.)

0 i=l j=O

(6) subject to, *() + f 7.*(s)d s K + ~~v
Oi
Kl (t t) < c(t)

v
O1
B + v

l
~~
1

K <0

VJiB + v~~
1’’K = 0

- - 

t ~ [O,T], j = O,l,...,2, I =

( 7) Lemma. Weak Duality.

Let the triple (7.* (~
Ji ) (t

i)) be any feasible solution

to the dual constraints (6), and x any feasible solution to the

primal constraints (1) that possesses left derivatives

Then

T T
~~~ 

k 2
(i) f c(t) x(t)dt > f 7. (t) b(t)dt + ~ ~~ b~’~~(t.)

0 0 i=l j~~ 
1

- -~~~~~~~ -;- :~t_ L_ I S - - - — _ - •_ --



(ii) Equality holds in (i) if and only if the following conditions hold.

- For r 1,.. .,n and almost all t C [o ,T]

• (a) x (t) > 0 implies

T 
* 

~~ 

v
0tkl (t

1
-t) = c (t)

(b) x(t~) > 0 implies

v
O1b + ~)

l
~
i
k = 0

(iii) If equality holds in (i) then x is an optimal solution to (1)

and the triple (7.~, (v ’~
1
), (t1)) is an optimal solution to (6 ) .

Proof. This follows immediately from Lemma (2). a

Conditions (a) and (b) are complementary slackness conditions.

In order to make them apply to any triple (7.*~ (v~
1
), (ti)) that

need not be dual feasible1, it will be conventhnt in addition to make

a statement about when we require the higher order terms V~
i
b~ + -, 

j +L

to be zero . -

(8) Definition. Complementary Slackness Condition

Let (7.~, (v~~), (t1)) be any triple, and x a feasible

solution to (I) that possesses left derivatives f~~~~(t )). Then
1
The triple (7.*, (v~

1
), (t1)) will be said to be dual feasible if

it satisfies the constraints in ( 6 ) .

~42
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x and (7.*, (v~
1
) ft.)) will be said to satisfy the complementary

slackness condition if (a) and (b) of Lemma (7) hold, and in addition

condition (c) below holds:

(c) x (- )  is not identically zero on the interval (t
1 

- 
~~
, t

i)

for any S > 0 implies

V3 b + v3~~
,1k = 0 , I < j < £ . 0

Note that if (7.*~ (vii), (t i)) is dual feasible and satisfies

(a) and (b), then (c) is automatically satisfied.

Lemma (7) provides us with a useful means of verifying that

a candidate solution x is an optimal solution. We simply pick

any time points (ti), find (if possible) a 7.(.) and (v~
1)

that satisfy the complementary slackness conditions, and then check

to see if the triple (7.*, (v~
1
) ft.)) is dual feasible. If so,

x is an optimal solution.

In. order to exploit this fact, it will be important

to use the complementary slackness condition to define the dual var~~bles.

As in the simplex method, and as we shall show here, this can be done

when x is a basic feasible solution. For such an x , we use the

ft.) given by its induced partition of [0,T], and then require 7.

iiand (v ) to satisfy

T k
( () + f 7.*(s)ds K.~ + ~ = c~ (t)

i t i r=i i i

+ ~~~‘
1
K — 0V 

~~~~~ 

V

r
0 ~- j 2 , t € (t11,t~) for i = l,...,k .
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Note that if * 
and (v~

1
) satisfy (9) then complementary

slackness holds between x and (7.*~ ( vii), (t
i)). However, the

converse is not true in general since even a nondegenerate x may have

x ( t ~ ) = 0 for r L 
~~ 

(some r, i) which then relaxes the

restriction

01 liv b + v k = 0.r r

This will become important later on in Section 14.5.
Note also that in terms of 

~
(.) and (~ Ji) defined in (14)

and (5), (
~

) reads

~~~(t) = 0, t (t11,t1)

~j i = o , 0 < j< 2

for i l,.. . ,k.

We now show that (9)  uniquely determines 7.* and [ v 3i )

and interpret the [~ Ji) as the coefficients of the S functional

and its higher order derivatives,

For the following lemma we shall assume that the reader is

familiar with Appendix C which contains definitions of and facts
- 

about the (~ ‘1) ) and more general distributions.

(10 ) Lemma. Let (t 1) and (
~~), 

i = l, . . . ,k be given, and assume

that for each i there is a scalar ~ such that (M B.A + K.R )
_l

I-_ i 
~
S
~i

exists. Then if 2 > m,

1414
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(i) (~ ) has a unique solution (7.~, ( v ~~ ) ) ,  which moreover necessarily

satisfies = 0 for j > m

• ,ji . •( i i )  (7. , (~ )) is the unique solution to (5) if and only if 7.()

defined by

k in • .

A(t) = 
*() + ~~~ 

J 1~~~~ J)~~~~ 
- t)

1=1 j=O

is the unique distributional solution to

T
(11) 7.(t)B.~ + f A(s)ds K.~ = c~ (t), t E (t. 1,t1), i = l,...,k.

i t  i i 1

Proof. Note first that if (7.*, ( v 3 ’i) is a solution to (9)  then 7.

defined as above is a distributional solution to (11). By Proposition

C.3 (18) and the assumption that (~1B.~~+ K.~~ )~
1 

exists for some

it follows that (11) has a unique distributional solution of the form

given above for 7.. Further if any such 7. satisfies (11), then

equating coefficients of ~~I) on both sides shows that t~ie components

7. and (Ji) of 7. satisfy ( 9) .  0

With the aid of Lemmas ( 7)  and (10) our initial step in a

continuous simplex method is now complete. We begin with a basic

feasible solution, x , and compute the unique “prices ” 7. and

(
ji
) after requiring that (9) holds. We then evaluate the reduced

costs ~(~) and (iii)
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If

• 
~(t) > 0, t C [O,TJ

~Oid < 0

= 0

for j = 1,..., in, i = l,...,k, then x is an optimal solution. If

not , we use the fact that one of these conditions has been violated

to at tempt to obtain an improved solution . This will be the subject of

the remainder of this chapter.

Remark on the Statement of the Dual Problem

In general the dual problem as stated in (6)  will not always

have an optimal solution. This is because we may in general require

more than a finite number of breakpoints, and thus more general distri-

butions than fir’tte linear combinations of functions and the S

However it seems that this will only occur when the primal problem (I)

has an optimal solution x with infinitely many discontinuities

either in x or in x ~~~~ -

In the space of distributions the dual problem t~~ -

reads:

T
maximizez f b(t) 7.(t) dt

0

T

subject to: 7.(t)B + f 7.(s)ds K < c ( t )  . t I [O ,T]
t

for 7. r 
~~~~~ where the terms with f signs have their usual distributional

meanings.
146
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Since the only signed distributions are measures, any feasible

N will have to be such that ir(t), defined by

T
ir(t) = 7.(t)B + 5 7.(s)ds K,

t

is a measure. This corresponds precisely to the requirement

+ J +~~, 1 = a , j > 1

in (6), i.e. the “distributional part” of ~r must vanish.

That a strong duality theorem always holds for 7. C !‘ is

still to our knowledge an open question.

14.:- . Improving the Solution When Some Reduced Cost ~2(t) < 0

We are now in a position to consider moving from one basic feasible

solution to a better one. Assume that we currently have a basic feasible

solution x, and that we have computed the reduced costs c(.) and

(~~ J) after s’:lving (9). The case we consider here is where

< 0 for some £ and some t~ C (t.1 ,t .). Since is

cont inuous on any such interval, there will be an interval about

t on which < 0. Without loss of generality, we shall assume

that t = 0 .

The following major assumptions will be made throughout the

remainder of this chapter.
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(I) The constraint set is bounded (in L).

(II) All basic solutions encountered are nondegenerate,

as defined in Section 2.3.

We shall now attempt to introduce x
2 into the basic set

over [o , € ) ,  some sufficiently small € > 0, in such a way that a

decrease in the objective and a new basic feasible solution are achieved.

This will be done in two stages. The first will be to make a local

basis change on [O ,€ ) without regard to what happens beyond t =

The second stage will consist of adjusting the solution on t > €

(if necessary and/or possible) so that our new solution satisfies the

constraints.

It will be important to remember throughout that all con-

structions depend on c. For clarity of exposition, this dependence

will not be written explicitly.

L.:- .l. Making a local change over [O,€).

On the interval {O~t]). the first constant basis interval,

the current solution x sati sf i es

t

(12) B.~ x
1 
(t) + K .~~ f x~ (s)ds = b(t)

1 1 10 ]~

X (t) = 0
1

If’ we are to increase x2
. then the new solution, to be denoted by

x ’, will have to satisfy
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t
(13) B.~ x~ (t) K.~ f x~ (s )ds

- l  1 1 0 1

t
= b( t )  — b

2~
(t) — k2 f e(s)ds

0
where 0 ~enot~~ the level o1 x~ .

Since x is a ba::i~ solution, there is a ~ such that

CAB . + K . ) 1 
ex~ - -th. Thus to solve for x ’ in terms of 0,

we can apply t re result of Proposition C.3(l8). However the expres-

sions become c-~n~~e~- ; os.e; instead we rework the solution directly using

the te - niqIi~~~; of Appendix C.

Taking Laplace transfoi- .: on both sides of (12) and (13),

and muitiply ing both .:iie: by (B. + K. )
_l 

yields
~

~ (s) = (B. + K. )
1 
b(s)

S

and

~~~
‘ (s)  = (B. + K. )~~ b(s) 

- (B. + K. )~~ (b 
+1k ) e(s).

~~~~~ ~1 ~l ~ ~l

Thus

,_ I’

(t ~~) ~~, (s) = ~~ (s) — h(s) 6(s)

where

h(s) = (B.~~+ ~~ K.~~ )
1
(b2 

+ ~~ k2)

Now h ( s )  is an rn-vector of rational function in s, each having

the same denominator. Using a partial fraction expansion of h(s),

we obtain, as in C.3(114),
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m - lq p Ic
(15) h(s) = ~~ ~~~k + 

~ 
vk 

1

k=0 k=l r~=O 
r (s_

~k)
r

for (uk
) C Rm, (Vkr

) C 

~~~~~ ~~~ 
C ~

The following Lemma allows us to assume that there is some

U
k 

1 0, 0 < k < m.

(16). Lemma. Suppose there is a subset y- of the rows of B and

K such that K = 0 and every column of B has a nonzero
1. 1.

element. Then u
0 / 0 where (u

k) is given by (15).

Proof. From i)-), h satisfies

(B. + K. ) h(s) = (b + k

~ ~l

Since K.
1 

= 0, the equations i read

B h(s) b

By assumption, b 2 / 0. Substituting (15) into this relation and

equating coefficients on both sides yields B u
0 / 0, i .e. u

0 / 0,1
as required . 0

In our case we have made the assumption (I) that the constraint

set is bounded . Thus, if B and K do not already satisfy the con-

dition of Lemma (l() we can either add sufficiently large simple upper

bounds on the variables , or add a single row

50
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ex(t) + v(t) = M

where v(t) > 0 is a slack variable, e is a row vector of ones,

and M is a large constant. In either case we obtain the required

form for B and K. Accordingly, in (15) we shall let q be the

largest integer such that U
q 
/ 0, where now 0 < q < m.

Following Section C.3 we can take inverse Laplace transforms

and use (i~4) and 
p
15) to obtain

(17) x~ (t) x (t) - 

q-l q 

Uke~~~~~~ (o ))  5(r)(~)
1 ~l r=0 k=r+l

- 

~ - 1 ~(t-s) 6(s)ds, t -~~0
k=0 0

where

ink
_ i

(i- -i) -~(t) = 

~ 
vkr ~~ t~ e 

k , > ~
k=i r=0 -.

Expression (17) tells us precisely how to go about choosing

the appropriate & over the interval {O ,€). The first point to note

is that the ,oundedness assumption (I) implies that all solutions are

functions. Accordingly, our choice of & will have to be such that

the coefficients of (~~(1~~) in (17) vanish. Thus at t = 0~, &

must satisfy

~ Uk6 
r1)

(0) = 0 , r = O, l, . . . ,q-l
k=r+l

- 
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i.e.

(o) +
U
q
& ( o )  = 0

uq 1e (0) o~~ + uqO 0 ~~ 0

u1e (0) (o+ ) + ... + uqe o ~~ o

Since u
q / 0, this implies that

(19) e(o~) 9(1)(0+) = = 9(q-l)(0
+
) 0.

Clearly, if q = 0, i.e. the terms in ~(I~ in (17) are absent,

then these restrictions on (&~~~(o~))  do not apply. As mentioned

in Appendix C, a sufficient condition for this to occur is that

exists.

Next we consider what happens at t = . Since we are making

0 basic only over [0,€), we must have 8(t) identically zero for

t in an interval to the right of €.  This implies that e(1~~(~ ) = 0

for all such t > e. However to meet this condition without having

to introduce S’ s at t = € , the term

q
- 

~~~

k=O -

in (17) implies that O~~~, k = 0,l,...,q-l, must be continuous at

t = e, i.e. we require
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(20) e ( € ) = ~(1)(~
_
) = = 6

(q-l)
(-) 0 .

Once again , if q = 0 then these restrictions do not apply .

Since < 0 on [0,~~),  € sufficiently small, we wish

to have & in some sense as large as possible over [o , ) .  Clearly

any feasible 0 that is positive over (0,c) and satisfies the

restrictions (i~) and (20) will yield a local decrease in the objective.

However, we need first of all to choose 6 such that the resulting

solution is again a basic solution. We shall do this by thinking of

8(q) as a bang-bang control variable that will alternate over

successive subintervals of {0,€ ) between positive and negative

levels that are as large as possible.

In order, secondly, to satisfy the restrictions (20) we shall

require at least q switching times for change of sign of Q(~~ in

the interval (o , €). We shall here make use of exactly q such time

points. Denote these by -r
1
€ , ~~~~~~~ .. . Tq€~ 0 < < Tq < 1.

We now proceed as follows. At t = 0, (17) reads

x ’ (0) = x (0) - u 6(q)(0) 
-

q

assuming that (19) holds. We increase e~~
1)(o) as far as possible,

maintaining

x (0) - ~ 0
(q) (0) > 0

q

Under nondegeneracy exactly one component of x~ 
(0), say x (0),
1 1

will become zero. This is exactly the same as the minimum ratio test

— 
in linear programming. r1 is given by
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x (0)
(21) r1 

= ar~~ in 
~ 

:y~ > 0

• where y
~ 

= u , = 0. Note that the boundedness condition implies

~l 
q 1

that uq has a positive component since otherwise we could increase

6
(q) and hence x ’ (0) , indefinitely.

Let cr1 = 

~l 
U (~) (r1) be the new basis at t = 0. We now

wish to maintain this basis change over the interval [0,-r € ), assuming

for the moment that is given. To do this we need to check the

following: (i)  there is a ~ such that (~iB . + K. )~~ exists, and
0 l ~1

(ii) x’ (t) >0 for t C [0,T1€).01

(22) Lemma. If r1 
is determined by (21) then there is a ~ such

that (N B. + K. )
_ l 

exists.
01 0-

1

Proof. We shall use Laplace transforms. Let p be such that, from

(21),

(23) u = y >O

where u is the pth component of u . Write
ci•p q

(214) (B. + -
~~ K. ) = (B. + K. ‘

~ + [(b2 
+ -~~ k

2)-(b 
+ k )]e

T
0l ~ 0-1 ~1 ~ ~l 

s r1 s r
1 

p

This holds by definition of 
~
l• By factoring out the matrix

(B.~ + K. ) on the right hand side, and noting that (b
r 

+ I kr
1

is its pth column, we get

r
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I-

(25) (B. + I K. ) = (B. + I K. )[I + (h(s) - e )eT}.0
1 ~ 0

1 ~1 ~ 1 p p

Now the matrix I + (h(s) - e~)e~ is the identity with i~s pth

column replaced by h(s). Thus it will be nonsingular iff h
r
(s) / 0.

From (15) we see that

h (s) = u + lower order terms -p qp

Since, by (23), u~~ / 0, we obtain that h
r
(s) / 0 for s sufficiently

large. This implies that for s sufficiently large, the left hand

side of (25) is the product of two nonsthgular matrices, and hence

is itself nonsingular. 0

To obtain x ’ ( t)  we can either solve the equation
0
1 

-

t
( 6 )  B. x (t) + K. [ x (s)ds =01 01 °10 01

from scratch, or equivalently, use (17) to compute the 6(t) that

keeps x ’ (t) = 0 and then, again by (17), obtain the remaining
1

component s of x ’ . The latter approach yields the (q+l)th order

integro~differential equation

(27) uqp6
(~ )(t) + Uq_1,pO~~~~~

(t) + ... + u0~~e( t )

+ f 41 (t-s) 6(s)ds = x (t)
o p 1

with boundary conditions (19).
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(28) Lemma. For € sufficiently small, x~ (t) > 0 on
• 1

• any choice of T 1:0 < < I.
L

Proof. Let r = 
~~~~~~~~~ 

(~
). Under nondegeneracy x~ (0) > 0. Since

x ’ is analytic , it follows that x’(t) >0 on a neighborhood of
01 1

t = 0. Since 6
’~
qj
(0) >0 and 0 satisfies the boundary conditions

(19), it follows that x~(t) = 0(t) > 0 for t C (0 , -r 1€ ) .  o

The next step is to decrease as far as possible on

!r 1e, 
-r
2c) while maintaining x(t) > 0 on [T

1c,
r2E). This will

cause the variable that dropped out of the basis on [0,-r
1€ )1

to become basic again , and another variable, x , to drop out of
2

the basis . r2 is given by

I ,j
X .yt E

(29) r2 =~~~~~ ax ~ :

where y is as in (21). To see this note that the only discon-

tinuity on the right hand side of (17) at t = r1€ occurs in

Thus we may write

(30) x~~(T 1€~ ) = x~~(~ 1€ ) - :~ 
Uk0~~

)(tld _ uqe
(~ )(t 1€

+
) -f~~~(t-s)&(s)ds

= - u
q
[e -

from which (~ )) follows. Note that
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(3 1) x ’ ( r
1
.~~) ~

d 6
~~~

(Tl
E
~~
) - 6

(q)
(~~~-))

Since u~~ > 0 and O~~~~~~~T
1
E )  > 0, and since nondegeneracy implies

< 0 for sufficiently small c , (31) verifies that

x ’ (t  €
~) > o.

1

Let 0-2 
= 0-1 

u (r
1
) (rj . This is our new basis on

[T
1
€ , T~~~~) .  That we indeed have a basic feasible solution on this

interval for sufficiently small € and 1
2 

close enough to

follows from an analysis similar to that given in Lemmas (22) and

(28). However, it is possible that 0 may go negative if is

too large. It will be established in Corollary (~~~- ) below that

the choice of {t
j
) that satisfies (32) below ensures that Li

does not go negative. 
-

We now continue in this way over the (q+l) intervals

[0,Tl~
), [T

1
t , 

~~~~~~ 
T~~~, €) alternating the sign of 6(q)

and obtaining (q+l) basic sets (a- .)  where

i = 1,...,q-l. Each ri is determined as in (~9) ,  and under non-

degeneracy, will alternate between r1 and r2 for € sufficiently

small. Also it is easily checked that for all (ri) the x~ remain

> 0 except possibly - x~ = 6.

What remains is for us to find the points (T
i

) and show that

for this particular choice, 0(t) >0 on [0,€). Once this is done

we shall have succeeded in making x~ = 6 basic over [O ,€ ), and in

so doing, only have adjusted other basic variables over this interval.

In doing this recall that we have not been concerned with the possibility

of some basic variable becoming infeasible at some t > ~~ This will

r be the subject of the next section.
- -1



In principle we can compute ( e ~~~~(€ ) }  as functions of the

parameters (ri) and then solve for the (-r
1) with the equations

- 

~l’•~~ ’ 
[
q) = 0

(32) e(l)(~_ I t
1~~• •~Tq) = 0

t
1

~~~ • • ~~~~~ ~q) 
= 0

In practice , some iterative technique will have to be used. Below we

show how a very good starting solution can be obtained.

In the following let

x ( 0)

y.

(
~3)

x • (0)
p
2 ~~~ { 1 yj o}

where y is as in (21). Under the boundedness condition , both p
1

and ~ exist . Under nondegeneracy, both are positive .

(314) Theorem. For € sufficiently small, equations (32) have a

unique solution 0 • - 1
q 
‘ 1. Moreover , the -r

~ 
are

given to first order by

(35) -r
~ - 1 — z~ + 0(e)
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where the z. solve
1

- z~ + - - + (-l)~~
’zq

z1 - z 2 + ” . + ( —l )  zq = P

— + ... + (_l)~~~z~ = p

l > z 1
> - • •  > Z

q
>O

where

p = p1/ (p 1 + p
2
)

We shall prove this theorem using the following lemmas.

(37k, Lemma. Let 0 T
1 

0 ... < T
q 

< 1 be any partition of [0,1].

Let the bases (or) be determined as above. Then as € — 0

= 

~l 
+ o( € )

for t C [0, r,~€), 
i T

2
€ , c3;), ... , and

= -p2 + 0(e) -

for t C 1 T1€ ,
1
2
C), f T 3 , 1 14(- ) 

Proof. The result on r0,r
~
e) follows directly from the analyticity

of 0 on this interval and the fact that 0~~~ (o) = 
~~~~
. From (3 0) ,

I

- ~~- -- 
~4~-•~ - T~~- -~~~~ - -

-



I.

6~~~(r 1c~ ) = ~~~ 
{

xj ( ;~e ) 
+ 0~~~(r 1e )  2 y. < 0~

Since x ’ and 0(q) are analytic on 1O,T1E)

x ’(T1e )  = x ’(O) + o(€)

= 0(q)(0) + o ( € )

Also, by definition

x ’(O) = x(0) - ~
Thus

x!(-r
1e )  ( \ — 

x
1(0)1 

+ e ~~~1(~~~

1

~~ 

~ 
= + o ( € ) ,  y

~ 
/ 0

from which

= - + o(€)

Since ~~~ is analytic on [T
1

€ ,T
2

~~), the result holds over this

interval.

We may now continue in this way and thereby establish ~he

lemma. 0

(3 8 )  Lemma. Under the conditions of Lemma (37) 0 satisfies

(~~) 6(~-i)(~) = p
1 ~~ ÷ 

~~~~ ~~ 

~~~ 
(1)

k 
(t
~
rk€ )~ 

+ Q(~ i+1)

for t [T
iiE , t~~€ ) ,  i = l,...,q+l, J = 0,l,...,q, where T

0 
= 0,

Tq~1
_
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I.

Proof. We shall expand 6 in power series that are centered at -r .-

and hold to the right of r1c. We proceed by induction on 1.

For the case i = 1, observe the boundary conditions (19), and

write

6(t) = 0(q)(0) t~/q~ + O(t )

Differentiating yields

~ 6
(q)~0~ t3/j~ + o(t~~

1)

Now e~~ (o) p
1 

by definition. Since t = o(€) for t C [O,€),

the result is true.

Suppose It to be true for i. Write

6(t) = 

r~~ 

O (r)(
+ ) (~ - T i t )

r
/r~ + o(t ~~

1)

By differentiat ing,  noting that t and t - are o(€), and

using the result of Lemma (37)  we obtain

= 

j~ l 
6(q-j+r)( ~) (t - T

iE)
r
/r~

+ r(t - T
1

€ ) ~~~/j  +

where

p
1 

i even

i odd

_ _ _ _

-



Using the continuity of at t = T
i
€ , k = 0,l,...,q-1,

• and using the result for the case I, this becomes

(~~)

jl  
‘ ( 4 _ 

~~ 
+ 

~~ ) i—i k= 

r~O 
P
1

T~~ € )  ‘i ‘‘/(j—r): + 

~
. 

— f 
~~ 

(l) (t~~~ — 
~k

+ o (€ 3_
~~l)~ (t_T

i
E)r/r~ + ~~( t_ r

1
€ ) 3

/j ~ + o(~ 3+l )

Now the following relations hold:

j—l -

(i) ~ (r )
(J_r)

(t - Ti€ )
r/(j_r)~ r: = ft3 - (t- T~~€ ) 3)

r- ()

J— ~ i—l
~ii) ~ (l)

k(t ( - 
k )

J
~
r
(t T € )t/(j r)? r

r ’) k=l

= 
~~ 

(-l)
k 4 ((t - T

k
€ )J - (t - T . € ) ~~~ )

k=l

(iii) 
J~ l 

o( - ~~~~)( t  - Tj~)
r
/r~ = 0(c

3+1
)

Substituting these into (3 9)  yields

= 4 (t~~~- (t - T  )J ) ÷ )~~ ~~i 
~~• k=l

+ 
~~~~
. (t - T~~~ )J + 0( i+1

)

+
~
l 

+ 
- 
~ 

- ,  

H ~ (1)
k (t - T

k
€ )

3

+ 
(P
~
+ Q

~~
(i
~
1) 

(-l)~~~ (t-T 1€ )~ ~~~~~~~~~~~ rj€ )
i +O (€ J+1)

_ _ _  - ~~-



By now considering the oa:;eH i even and i o J i , the appropriate terms

cancel ar,d the result is established for i+l.

By in-~uction, the proof is complete. Eli

In a I-~ition to these Lemmas we shall require the results of

Appendix U. These are concerned with properties of the system of

equations (3 6 ) .

Proof of Theorem (314). Using (39), equations (152) become

+ ~~ (1)
k
( - t

k€ ) = Q( J+1
)

3 .  k=l

for j = l,...,q. Thus the r. sat isfy

~~0) 
k~l 

~~~~~~~~~~~~~ 
- T

k
)
~~ 

P + 0k), j =

Now by Theorem D(2) the equations (3() have a unique solution

1 > > • .  - 
~~ ~q 

> 0. Also by Corollary D(9) the Jacobian of the

system is nonsingular for such (z.). We can therefore invoke the

Implicit Function Theorem [20, p. 128] and conclude that (36) has a

unique solution for O(€) changes in the right-hand side. Moreover

this solution will not differ from (-z~ } by more than o(~ ) . From

this it follows that the solution to (140) is given by (35), and

the proof is complete. 0
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Remark. Note that since the T. are determined within 0 (c ) ,  the

actual breakpoints (c-r i) are determined within O (€ ).

We now establish that 6(t) >0 on [o, ) .

(11) Lemma. Let h:R —~R be continuous an~ have a derivative that

has at ix st finitely many simple discontinuities. If h(t’) = h(t”) 0

for some t’ < t” , and h~~~(t) changes sign
1 

k times in (t’,t”),

then h(t) changes sign at most k—i times in (t’,t”).

Proof. Suppose that h changes sign r times at the points

t ’ < < W < t” . Then, since h(t’) = h(w
1) 

= ..= h(w )

= h(t”) = 0, h~~~(t) changes sign at least once in each interval

(w.,w
~÷1
) where w

0 
= t’ , ~~~~ = t” . Thus h(1)(t) changes sign at

least r+l times in (t’,t”). Hence r+l < k, or r < k-l as required. D

(142) Corollary. 0(t) >0 on [O ,€).

Proof. Since e~~~(O) = o(1)(€) = 0, i = 0,1,. ..,q-l and since

change sign q times in this interval, we can apply the Lemma repeatedly

to obtain that 6 has no change of sign in [o ,€). Since e(1)(o) =0

for i = 0,1,.. ,q—l, and since e~~~ (O) >0, the analyticity of 6

ensures that 6(t) > 0 in some neighborhood (o,~). Thus 8(t) > 0

on O,~ ). 0

1By a “change of sign,” we mean going from positive to negative or
vice versa .

614



With this result, our basis change over [O,c), for

sufficiently small, is complete. In the event that q = 0, this is

simply a single exchange for the duration of the interval. When

q> 0 we require q+l subintervals each having a new basis differing

from its predecessor in one activity. Moreover 0 i~; hr~~ic throughout

[o ,€ ) ,  and the bases are all subsets of 1
~l 

U [fl .

Below we illustrate the cases q = 0,1,2. See also Example E(l).

a

q=O

- __________________

O € t

q ~1

Li

q =2 

~~~~~~~~~~~~~~~~~~~~ t

FIGURE 14



14.2. l~ . Adjusting the basis on t > €

So far we have obtained an x’ from x that satisfies

t
Bx’(t) + K f x’(s)ds = b(t)

0

x’(t) > 0

for t ~ [O,€). We now wish to determine the remainder of x ’ that

satisfies these relations on [ .T]. There is in general no unique

way of doing this, and indeed, it may not be possible at all. When

no adjustment to the right of € is possible, then neither is the

basis change over [0,€), and we shall then have to pick some other

interval of perturbation. This aspect will be considered in Section - - . 5.

Our approach here will be to find an x’ over {€, T] that is

close to x in some sense, and that can be obtained in as natural a

way as possible. What we shall do is try to preserve on [€,T] the

same sequence of basis changes as in x, and only adjust the timing

of these changes. This is the approach we took in Example (5) of

Section 3.2.

In addition to assumptions (I) and (II) of the previous section,

we shall now assume the following:

(III) All basic solutions are such that consecutive bases 
~~
, 
~~~

differ in only one element .

This assumption is a kind of nondegeneracy assumption: if and

~ . differ in more than one element , then we can insert bases ofi+l
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~~~~~~~ —-~~~~~ -~~~~~
-———— - — - -  - ——  — 

~~~~~~
- - —  — -  - - 

~
_
~~~~~~~

j_-
S_

- _ ——



zero time duration between them to achieve any two consecutive ones

differing in only one element. The assumption is then that all time

intervals are of positive duration.

In order to facilitate the presentation and understanding of

the material in this section, we shall need to develop additional

notation.

The superscript “ “  will be used to denote an adjusted

variable or parameter. Thus x’, (ti),... denote the adjusted x,

adjusted breakpoints We remind the reader that all adjusted

variables or parameters will depend on ~, and that this dependence

will be assumed understood throughout.

and r. will denote respectively the entering and leaving

variables at t~ . Thus 
~

i +l 
= 

~~~
. U [L .) (r .).

It will be useful to work with variables w. (-) that coincide

with x~ (~) on [t 1 1,t~) but that continue beyond t~ as if the

bre&~ oints t~, t~÷1, ... did not exist. Thus, given x on

wi is defined by

t ti_l
(143) B. 1~wi(t) + K.~ f wi (s)ds b (t) - K f x(s)ds, t > t~~1v

i vi t. 01—1

In addition let 
~~
() and r~~(-) be respectively those

component s of w~ and w~~1 that correspond to X and X

i i
i.e. Xr

(t)  = ~1(t) on [tj1,t~
) and xg (t) = r1.(t) on [t i,ti+i).

1 i
As in the derivation of (17) we can represent x on

in terms of 
~ ~

, as follows:

67
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(4 4) x (t) = w .(t) - u~ 
(k
~3~

1)(t +)) ~~~(t)

~i j=O k=j+l
m.

• 

- - 

~~~~~ 

(k)(t) 
~ f ~1(t-s) ~~~~~~

t C tt~,t1÷1)

for some > 0, (ut) and ~v~
( )  where these are found similarly

to their counterparts in (17). Here they are determined from the

partial fraction expansion of

1 K.~~ )
1 
(b
2~~ 

1-k
2 ) .

As was done for (17), we can assume u~ / 0.

Of considerable importance will be the behavior of x and

as they approach t1. 
Let p~ > 0 be such that

= o, 0 ~ ~

(45 ) (p.)
1 (t

1) / o

and q1 > 0 be such that

= 0 , 0 .zj<q.

(146) (
~~ ) +

ii i (ti) / 0 .

The following Lemma relates and on t > t~.

68
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I-

(47) Lemma. For each I > 1

(i) m < q  < m . + pi 1 1 i

i
d

1. -(ii) There are f vk)k~~ CR , V
q 

0, and 
~~~~ such that

1

q.
(p.)1 

~ (Ic)( 148) ~ ~~ 
(t )  + 1 ~~(t_s) -

~ (s)ds = ~ 1 
(t), t > t~ .k=O t•1

Proof. since the lhs of (1414) contains no terms in the coefficients

of ~~~~~~~~~ on the rhs of (14i~) must 
• -vanish Since u / 0 this

implies, as in the derivation of (19), that

= 0 , 0< j <m ~

By definition of q1, this implies q. > mi.

Since x (t) = 0, t C lt i, t.÷1), (1414) yieldsr.
1

m
t

0 = ~~(t) - 
~~ 

~~~~~~~~~ - I 
~i~~~

-
~
) ~.(s)ds

k=O t
i

where j is such that ~ . is the jth component of ~~ .. Differentiating
1 1

the right hand side p
~ 

times and noting (45) yields

m +p
t (pr

) (p )i~~i (k)~~~ + 

~~~~~ 
(t-s) 1~

(s)ds = ~ (t)
k 

1

I’ t
i

and

m +  r
(149) 

k=~) ~~
—r,j 

‘
~~ t~) = 0 0 r < p

~
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m.-+-p . 
• (k +(50) 

k=Q 
~~~ ~~ ~

(t~) = ~ 1 (ti) / o

where

i (k-i)
U..k, j  ~~~~ 

(0) ~ 1 ~ k ~

From (50) there is some k such that ~~~ 
~ 

/ 0. Let

be the largest such k. We show that 
~

. = q.. Clearly,

+ > > ~~ by ( 146) . Suppose that > Setting

r = q. - m ., . .. ,  p. —l in (149) and noting (~()

i iU . = “ = u  -cl1 P~
+l
~ J

But u /0 and m. - ~ q1 - 
+ 1 yielding a contradiction.

- (p)
Sett ing v~ = ~~~~~~~ 0 < k < q1 

and -~~(t) = (t) completes the

proof. 0

Below we sketch the cases in which p. and q. are one of

0, 1, or > 2. Any of the pairs 
~~~~~~ is possible.

Remark. Note that p. and q~ are dependent on t~, or rath#-~r, the

behavior of and r1• at t~. However rn. and the relation q
1>m 1.

do not depend on t1. m. is determined solely by the coefficients

B. , K. , b . , and k
L

~i ~i 
i_
i 1

We are now in a position to consider the adjustments of the

in order to obtain the desired x . The construction will be

done inductively on i.

For I = 1)
, the adjustment has already been made: t~ =

Analogously to (43), given adjusted time points t~, ~~ 1’
70
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q1=l ~~~~~ 
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and x ’ defined on [0,t ! 1) 
by the bases o. on

j = l,...,q+l, and on [t~~1,
t ’~), j ~ - l,...,i— l, we can define

w~ by

t ti_i

(51) E. w~(t) + K. I w1(s)ds = b(t) — K f x’(s)ds, t > tj 1.nit ’ 0i_i

In attempting to find t~ we shall try to satisfy the follow-

ing:

(i) t~ — - t O as €

(ii) w!~ 1 may not contain a’s.

(iii) On neighborhoods to the left and right of t!, we must have

wl(t) > 0 and w!÷1
(t) > 0 respectively.

(iv) w!÷1 
must be ‘close’ to w~~1 

in order that future breakpoints

can be adjusted.

We begin by considering w~(t) - w1
(t) for t > t~. From

(17) and the construction of 0, it is clear that

(52) wl(t) - w1(t) = f ~~~( t - r )  8(s)ds -

The following lemma gives an important estimate.

(53) Lemma. There is an M > 0, independent of € , such that

[ 0(s)ds = ~~~~ +

where q is as in the previous section.
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Proof. From (59) we have that

q (
~ + ~

j ) i—i
Li (t) = L. + 

1 y ( 1 ) k (t - +
q. q. k=i

for t C [-r. 1~, -r.c). Integrating over [O,~~) and simplifying yields

e(t)dt = (p
1
+p
2) 

- 

k=l 
(_l)k+l(l_ ~k)~~1} ÷ 0(q+2)

By Lemma D(3) and Theorem (314) the term in ( ) is equal to

q

- 

1 
~~ (l - z ) + O (€ )

~l ~2 k=l

where the Z
k 

satisfy (145) and are independent of € . Thus

€ q q+l +2
1 e ( t )  5t = [1 (i - z

k) 1
€ 

+ ~~~ 
+ 0(~Q

0 k=l

Since 1 > z1 > ~~~~- > Z
q 

> 0 and p
1 

> 0, setting

— q
M = p 1 II (l-z ,~)/(q+ l )

k=l

gives the desired result. 0

(54) Corollary. Let g:[0,co) — *R be such that for all t C [O,~ )

g(t) = g(0) + o(~ ) .

Then there is an M > 0 such that

I
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f g(s) 6(s)ds = g(O) M€~~
1 

+ 0(c~~
2
) -

Proof. This follows immediately from the Lemma. 0

We apply this corollary to (52). Since - w~, w1 and ~ are

analytic, differentiating (52) yields

(w~ - w1)~~~ (t) 
= f ~~~~~t-s) 6(s)ds, j >0

By Corollary (514) we obtain, for 1. = 1,

(55) (w~ - ~~~~~~~~ = 0(
q+l
) j  >0 .

Thus not only are w1 and w~ close together but so too are all their

higher order derivatives. It will be important that the pairs w., ~~ i>l

inherit this property as well as the same order of magnitude difference,
q+ 1

Let us now make the induction hypotheses that

tj~~ _ *t~~1 
as € —*0 and that w~ and wj satisfy (55).

Under nondegeneracy, we have that w~(t) > 0 for t C (t.1,t.).

Preassign any small ~ > 0. Then by this remark and the induction

hypotheses there is a r > 0 such that for all € sufficiently small,

(56) ~!(t) > y for t ft~~1 
+ 
~
, t —

(57) I~ j (t) ~ for t C [t 1 + ~, t~ + 25]

714
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and all other components of w! are > y for t C ft . + - , t. +
1 — i— i

Relation (57) follows from the fact that since is analytic, it

has at most one zero in ft . - 
~
, t . + 

~], and is nonzero on

ft. + 5, t~5 
+ 25].

In Figure 6 below we illustrate the possible cases. The

dotted curves below are 
~
.(.) and the solid curves are

It is clear from these figures that a good canaidate for t1

is either t! = t if ~ has no zero in ft. - 5, t. + 5], or ~!1 i 1 1 1 1

equal to the leftmost zero of in [t~ - ~, t~ + 5]. We shall

show that this is indeed the case whenever adjustment of t. is

possible. What determines this is whether or not -~~! and can be

related analogously to (~~
) .

The following is the main result.

(58) Proposition. Adjusting t~ .

Assume the induction hypotheses that tj1 —+ t~_ 1 and tr~~t

and w
~ 

satisfy (55).

From the above discussion we have that for all € sufficiently

small, the number of zeros of in ft . - U, t~ + 5] is constant.

Determine t! as follows: if there are no zeros in this interval,
1

let t~ = t
~
; else let t~ be the leftmost such zero. For this t!

define w~~1 
as in (~-l). In addition let p

~ 
>0 be such that
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= o , o <- .j 
~~~~~

(p!)
1 (t!) / o .

Then, if ph = p 1, the following hold:

(i) t1 - t. = 0(
q+l
) if p. > ~

(ii) (w~~1 
- W

~~+1
)~~~~~

(t) = Q(~
Q+l
) for all t > m~ c(t!,t.)

and j > 0

(iii) w!~ 1(t) > 0 for t ft h , t~~1 
— 5].

Proof -

(i) Write ~!(t) = ~.(t) + y(t). Differentiating this p.—l1 1 
(p.—l) 1

times and expanding 
~~ 

1 about t
~ 

yields

(p• -l) (p -1) (p.)
1 (t) = y ~ (t) + 

1 (tj(t-t.) + o((t-tj2)

Now from (55), (56), and (57) it follows chat t! ~*t . as
:i~ 1(p . -l) (p .)

€ — *0. Further ~! 
1 

(t1) = 0 and 
~

• 
1 (t.) is indepe~ ient

of € .  Thus

y (t’) (p.)

— t.) —* —

~~~~~ 

1 (ti) / 0 as € —*0

Since, by (55),  y
(P i_ l )  

(t1) = 0~~q+l)

t~ - = o(€ ~ ’~ ) as required.

__________ -- - - -~~ S 
~~
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(ii) Since p
~ 

p~, it is clear from Lemma (147) that ~! and

satisfy

q. +
1 _ S \p .

(59) ~~ 
,(k)~~~ + f -~.(t-s) ~!(s)ds = ~, 1 

(t) , t > t~k=O 1 t!
1

and

= 0, 0 < k q.

(60)
q~1 (t1) / o

We wish to solve for -q. and ri ! in terms of ~. and
1 1

~!, respectively. Since the equations (48) ani (5 9)  have the

same coefficients, and since both r~~• and ‘~~! have their
1 1

first q1—l derivatives initially zero, it is easily seen

(by using Laplace transforms, for example) that

(p )  t (p.)
= 

~i~ i 
~ (t) + cp.(t-s) 

~~ 

1 
(s)ds

and
t (p.)

= v~~! ~~ (t) ~ 
r 

~1(t— s) ~
! ~ (s)ds

for some and ~~~~~~~~ Differentiating these yields for j > 0

(61) (~! -
(p -i-j) j—l (p-~ j-l-k)

= v
~
(
~

h -
~~i
) ~ (t) + ~ rp~ 

)(~) (~~ ~~~~ 
1 

(t)
k=0

t - (p1)
+ f ~~~~~~~~~~~~~~~ (s)ds +

1
1

l~ =0 iff q~~> O .
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for all t > t~ where t~ = inax(t!,t.) and— 1  1 1 1

t !
1 

~~ 
(p)

= — 5 ~2~
3
~ (t—s) ~i 

1 
~~~d if t1 > t~

1

and -

1 
~~

. (p.)
= I ~ H~

(t_ s) ~ 
1 
(s)ds if t! < t.1 

~ 
1 1 1 — 1

i

+1 
~-~
(-) (p.) (p.)

Since tb — t. = 0(~d ) and 
~~~~~~~ 

~~~~~ 
1 

~~~~~ 
and

are bounded, we have

= 0( d+l
) -

By (55) we also have that all the remaining terms of (61) are

o(€~~
1
). Hence _

(62) 
~~ - 

~~
)
~~~

(t) = 0~~
q+l
) ~ >0, t > t ~~.

Now since the components of w.+1, except i~~~ , are all

components of x~ for t C ft ., t.÷1), we see from (1414) that

for t > t~ ,
~~~~~1

(wl÷i - Wi+jk (t )  = (w! - wj)k(t) + finitely many terms in

- )~~~ (t)

where k runs over all components of w .~ 1 
except for -

~~~~.

By (62) and (55) this implies that
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(j) q+l
— w.~ 1) (t) =

for t > t~ , j > 0, as required for (ii).

(iii) This follows immediately from (i) and (ii) and since
(q.)
1 (t1) >0. 0

Since the induction hypotheses of the Proposition were shown

to be true for i = 1 we can now inductively perturb the breakpoints

t~ provided at each step we have p
~ 

= p
~
. When p~ = 0 or p

~ 
=

it can be easily seen that this is always the case. However, when

p. > 2, we only obtain p
~ 

= p . in the cases (iii) and (v) of Figure 5.

The remaining cases in Figure 5 for > 2 all have ph < 
~~

- When

this occurs, statements (i), (ii) and (iii) of the Proposition need

no longer hold. This may result in infeasibilities or in very large

perturbations further on. As we shall see in the next section, state-

i~ nts,(i) and (ii) are crucial in establishing improvement in the

objective.

The only breakpoint requiring special attention is the endpoint

tk 
= T. If the ef fe ct of 0 is to move t~ to the right, then we

simply truncate the new solution at T. However, if t~ moves to the

• left, then the attempted basis change will only be possible if there

is some feasible extension of x beyond T. As will be indicated

in the next section, even when we can move t1’~ 
to the left, we may

not be able to obtain a decrease in the objective value.
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In the event that we get ‘stuck’ at the endpoint or at some

t. because p! < p1, it may be possible to take advantage of an

ambiguity in the dual prices. See Section 
~.5.

.5. Proof that x’ is an improved solution.

Assuming that the adjustments of the breakpoints on t > €

were successful
1 we now have a new basic feasible solution, x’,

specified by the bases a . on [-r. 1€, -L- .c ) ,  and on

To show that

T T
f c(t) x’(t)dt < 5 c(t) x(t)dt
0 0

we shall show that the decrease obtained over [0,€ ) dominates any

possible increase due to the shifting of the breakpoints. Of course,

as discussed in Section 5.2, if none of the breakpoints have shifted

the result is immediate.

The case where t~ K T is special and will be considered

separately at the end of this section.

The change in the objective may be found using (3) and the fact

that complementary slackness, (8), holds for the pair (x,7~). The

expression so obtained is

T T - •  -

(63) 5 c(t)(x’(t) - x(t))dt = 5 ~(t) x’(t)dt-E ~ ã~ x’~~~(t)
0 0 ij  1

11.e. p
~ 

= p~, all i, and t~ = T, where tk = T.

8i
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We need to show that the right-hand side is negative for € sufficiently

• small. Def ine

I1
~~

(€ )  

~~~ 
~(t) x’(t)dt

h2
(€) = 

T 

~(t) x’(t)dt - ~ ~~~

(614) Lemma. There is an M < 0 such that

= +

Proof. By complementary slackness

h
1(€) = C~~~(t) e( t)dt  -

Since is analytic on a neighborhood of t = 0, and < 0,

we can apply Corollary (5 14) and obtain the result. D

We next show that h
2(€) = Q(~~~2)• By complementary slackness

and Proposition (17), we can break down this expression into contri-

butions due to t~ moving left or right. We obtain

t.

(65) h2(€) = 

1 

(t) li(t)dt - ~ ~~i ,(j)~~~~
i such that t ! I j I

t ’ < t  1
I i

+ E 5 c (t) ~!(t)dt -
i such that ~., 

r.
t <t t
1 1
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Note that the terms in t1 = t. make no contribution. Thus for all

appearing in (65), we have, from the construct ion of the t !, that

pi > 0.

(66) Lemma. For all i such that t. < t !,
1 1

t !

~ ~~~~~ ~i (t)at =

Proof. ~1(t) = (~ !(t) - ~.(t)) ÷ ~.(t). By Proposition (58)

=

Expanding 
~ 

about t. yields

= o(( -t  — t.) 
1
) -

By Proposition (58)

ti - = 0(
q+1
)

Since p1 > 0, combining the above establishes the Lemma. 0

Before continuing we need to establish an important connection

between the reduced costs immediately before and after the basis change

at t1, t~~< T .

(1 83
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(67 ) Lemma. Let p be such that (p.) = r.. Let > 0 be

such that

~~~~~~~ = 0 , 0 < j <

(
~•) +1 (-t

1)/O -

i

Let hi (s) be defined by

h2
(s) = (B.~ + I K.~~~~

1 
(b2 

+ I k
t
)

and let cn2 and n2 be such that the leading term in the Laurent

expansion of h2 (s) is a~2
s~~. Then

(i) ~3 
1 

= o for j > max{ 0, n~ - ii.)

- 
n -n.-l,i i~• (s . )

(ii) if ne 
— n~ > Q, d2

2 1 
= (—i) 1 m5g ~r 

1 
(t~)

( iii ) if n~ — ~ 0,

= ~~~~~~~~ 0 
~ ~ 

< — n~

and

(~x.-n ) (i .-n ) 
+ 

n (i-) 
+1 £ (~~) 

= 
1 £ (t.) — (—1) ~~t

Cr i (ti)

11f no such exists then 
~r j

(t )  is identically zero to the right

of t~. Set i~~ =0.
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Proof. We shall use Laplace Transforms. By (ii), ?~. satisfies
1

j T
?\(t) B + 5 )\(s)ds K.~ = c~ (t) -5  7’5(s)ds K.~• i t I I t~

for t € (t. ,t.) in the distributional sense. For convenience wei—i 1

shall reverse the time direction and shift the time origin to t~.

Define ~ on [O ,co) by

t
(68 ) ~(t) B.~ + 5 ~(s)ds K.~ = g~ (t), t > 0

i 0 i I

where
T

g(t) = c(t~ - t) - 5 ?\(s)ds K
t.
1

and we assume that c(-) has an analytic extension from [O,co) to

( _co ,00). Clearly

~(t. - t) = ?,(t) for t C (t.1 ,t.)

Further, it is easily seen by definition that —d~~ is the coefficie’it

of 5
(j) in 

~~(-) , defined by

t
(69) ~2(t) = g2(t) — ~1(t)b~ - 5 ~1(s)ds k20

and that e (t)  is the functional part of

1
Strictly speaking we should write

T T
5 A (s)ds as 5 ~*(s)ds + 

~~ Ok

t t• k>ii 1
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Taking Laplace transforms of (68) yields

~(s) = ~ (s) (B. + K. )
l

i

and substituting into (69) yields

(70) g
2
(s) = g~(s) — g

e
(s) h

2
(s) -

We now wish to relate to the reduced costs taken with

respect to the basis 
~

i +l Denote these with the superscript ‘*‘.

Thus we def ine

c(s) = g2 (s)  — g (s) hi(s)
~i+1

where

h*(s) = (B. + K. )
_l 

(b + k ) -
~i+l ~ ~i+1 

5

We shall show that

(71) ~~(s) = ~~(s) — ~* (s) h2 (s)

Note f irst that h
i
(s) and h~-(s) are related by

h (s) = 
j
(5) — ~~~~~~~~~(5 )  ~~~~~~~~~~~~~ i / p

(72)

11
2 (s) = h~ (s)/h* (s) -

This can be easily shown by relating (B. + ~ K.~ )
1 

and
i
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(B. + K. )
l 

Rewrite (70) as
~i+1 ~ 

~i+l

g2 (s) = ~*(s) + g (s) h~(s) - g (s) 11
2(6)£ 

~i+l

and g~~(s) 
~~~~~~~~~ 

as

~~~~~ 

h
2
(s) = 

~i+l 
h
2
(s) + 

~~~~ 
-g

2 (s)) h
2 (s) .

Combining these two yields

= ~~(s) + - ~~~~~
i

( 5~~~~ 11
4
(5) + g~~~~(s)(h~~(s) -~~~(s)).

From (72) we have that

h~ .(s) - h2.(s) = h* .(s) 11
2 (s), j / p

hi (s) - h
2 (s) = (h~~~~~s) - 1) h

e (s) - 
-

Substituting this into (73) and rearranging yields (71).
From (71) we can now establish the lemma. Observe that

- t), t < t~, is the reduced cost ~2(t), t < t., had there

been no basis change at t
1. Hence 

~~
(t
~ 

- t) is an analytic

function and we obtain

(—l)~ ~~
(i) (O~) = ~~~~~~( t )  .
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Applying Lemma C 14(19) to (71) yields

g
2
(s) = ~ (-i)~ 

3)(t
+)/ 3+1 

- (E (1)J ~(j)(~
÷)/ j+l)(

n2
)

- 
j~~ j r~~

Inspect ing this expression we see that there are no terms in for

j > rnaxf0, n2 - ii.). 
Hence ~~J 1  

= 0 for such j ,  and (i) is established.
- 

n -n -l n.±l (nj
If n2 - n~ > 0, the coeff icient of s £ i is (-1) 1 (O

2Cr 
1 (t~ ),

establishing (ii). If n
2 - ~~~

. < 0, the coeff icient of ~~~~ 
j

(~1)
(j) 

~~~~~~~ for 0 
~ ~ 

- 
~~~

‘ 
so that ~~~~(t) =

-G. _n2)_lFurther, the coeff icient of s 1

ii.-n (Fi.-n ) i~. (~~)(—1) 
1 £ 1 £ 

(t~) - (-1) ~ 2
Cr~ 

(t~)

so that

(
~
._nt) ~~~~~~~~~~~~~ ÷ 11

2 
(n .) ÷c

2 
1 (t.) = e

2 
1 (t

~
)_ (_l) 

~ 2
C
r 

(-t
1)

as required for (iii). 0

(74) Corollar1.

— 3 1  • —
( i )  d2 = 0 for j  > maxtO, q. - p

1 
- n

1
)

(ii) if q1 - 
- > 0,

~~~~~~~~~~~~ 
~~~. ~. — (

~) +
= (—1) v c (-t i)q

~ ~
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( i i i)  If

= 0 , 0 ~ j  < + - q1

and 
(~~.+p .-q.) q.-p.+l • (s .)  

+
C
2. 

1 1 
(t) = (—1) 

1 1 
v
1
~~~~

1 (t1)

where v1 is given in Lemma (147).

Proof. From the proof of Lemma (147) it can be easily shown that

- and that -
~~~~~~~

= V
1
. Since x

2 
is basic on

it follows by complementary slackness that c
2 (t) 

= 0, t C [t.,t.~ 1
).

Hence ~~(t~) = 0 for j > 0. Applying the lemma yields the

result. 0

We now continue with our proof that h
2(c) 

=

(75) Lemma. For all i such that t! K t.

f ’ ~2
(t) n~ (t)dt 

- 
~~~~~ ~~~~~~~~~~~~t )  = 0( q+2

)

Proof. Since t! — p t , and since
1 1

0 (q) (q)
~ (t:) 

~ 
~ (t

1) / 0 as € —* 0 ,

we may write, by (60),

(_ ) q~-j
~ (t.) = O((t1 — t

i) ~, 0 < j < q. .

L~~

. 
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q+l
Since t! - t. = o(€ ) we obtain

1 1

( • )  (q+l)(q . -j)
~ (ti) = 0(€ ~ )

- Thus

when 0 < j < - 2.

By Corollary (714)(i), since p. > 0,

= 0 for j > max(q. - 1, 0).

Thus

~

- 

1~~~~(t .) = Q( q+2)

We next show that

j
l 
~2 (t) (t)dt = 0~~q+2)

If q
~ 
> 1 it follows since t’ - = O (€~~~) and since

- t.) 1) Suppose that q
~ 

= 0. Then since > 0, we

have by Corollary (714-)(iii) that ~2 (t) = O(t! — t
i). Since

ti  
- = 0(

q+l
) we are done.

This completes the proof. 0

Combining Lemmas (66) and (75) with (65) shows that

h2(€) = 0( q+2
)

We now state our main result.
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(76) Theorem. Decrease in the objective

Let x ’ be constructed as in Sections 14 .2.1 and ~.i .2. Then

there is an M < 0 such that

T T
c(t) x’(t)dt - 5 c(t) x(t)dt = M q+l +

0 0

Proof. This is immediate froni the above and Lemma (614) . o

In concluding this section we consider the case t~ < T . This

can only occur if some X (T) = 0, r~ ~k’ and x has a f easible
k

extension on a neighborhood to the right of T. Let 2k and refer

to the new basic variable beyond T, in keeping with Li and q1 at

the other breakpoints.

The reason why this is special is that Lemma (67) does not apply

at the endpoint tk 
= T. In the event that > 1, this means that

- -jk
we may have d2 / 0 for 3 = - 1, and therefore that Lemma (75)

k
is no longer generally true. Following the proof of Lemma (75), we

• • - • q+l
see that this could yield a positive contribution of O(€ ) to the

q -l,k
objective value if ~

2
k 

< 0. If = 0, we may have 
~2 

(T) > 0,
k

with the same effect.

From an algorithmic point of view, when d
2 K 0 if > 1
k

or c2 
(T) > 0 if = 0, we suggest first finding an alternative

k
extension beyond T for which these do not hold. Should this not be

possible, simply allow t~ to adjust. If a net increase has been

obtained then the whole iteration must be disregarded and we either

select some other interval of perturbation or use the technique of

Section 14.5.
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Note that the question of adjusting tk will in any case only

occur at isolated iterations.

14. .  Improving the Solution by Adjusting a Breakpoint

This section considers the adjustment of some breakpoint t.

to obtain an improved solution. As in Section 14.2 we begin with a given

basic solution x and its associated reduced costs 
~

( )  and [~~J1) -

The oniy case we consider here is that of p
~ 

= 0, i.e. X
r 

(t i)  > o.

The reason for this is that adjusting t . when x ( t ) = 0  ( i .e .

p. > 0) usually causes the occurrence infeasibilities, or changes on

t > t. that have greater orders of magnitude than the adjustment at

ti. 
1

That an improvement can be obtained by adjusting t~ will be

signaled either by one of C r . (t < O ~ E2 (t) < 0, or by some

d2 / 0. While the former is a special case of that considered in

in Section 14.2, it is much more convenient to think only in terms of

adjusting a breakpoint.

Throughout this section i will be held fixed , and 0 < ~ - - < T.

We shall let t~ be one of t . - € , t. + € for ~ > 0 and small , a~.
1 1

then adjust the remaining breakpoints tr > t~ in the same way a~ w~

done in Section L- .2.2. All notation will be as in the prev~~~. s~ 
-

1~f Remark after ro~osition (58).
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Observe that setting t1 = t~ — € makes basic over
i

[tl,ti) and that setting t1 = t~ 
-f € makes basic over

i
[t1,t1). As in (65) we can obtain the local contributions to the

objective, attributable to this change, in terms of ~~, (a~), 
~~( • )

and i~
(). Let 

~~(c) and 
~~~(E) respectively denote the contributions

due to moving left and right. These may be written as

t.

(77) g~(€) = f  ~~~(t) ~
I(t)dt - ~~~~~~ 

~1~~~
(
~ i )

and
i

(78) ~~(€) ~ ~r 
(t) 

~~
(t)dt

ti I

We illustrate these two cases (Figwe 7 below) in the event

that q1 > 0. When q
1 

= 0, r~ and ri ’ will look like in

Figure 6 with the time direction reversed.

The following lemma relates 
~~ 
(€) and 

~~

(79) Lemma. Let be as in Lemma (67).

- ~~+l -(n,) 
+ 

i
(i) g (€) = (t ) x (t) € 

+ o(€ L

R ri I r
i i

(ii) g.~(€) = (—i) ~ 
~~(€ )  + o(€ ~

Proof.

(1) By definition of

_ _ _

(~i ) (t-t ) ~i
+l

ç ~rj
(t) = 

~~~ 
(ti) — + o((t -t 1) )

1 1 9,

— __&_~~_- - .~~~~~~~~~~~~~ - —

_
•
~~~ ø_

• -y .—~



Before

t~~>t1 —

~~~~~~~~~~~~~~~~~~~~~ ~~x~i

t~ 
~~
I.*4

~
i
~ t

FIGURE 7
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r

Also

~1(t) = X
rj
(t;) ÷ o(t-.t i )

Substituting these into (78) and integrating yields Ci).

(ii) By Lemma (137), 
~~ 

and are related by

q.
1 
v~~’~~~~t) + f  

~ i~~
-
~
) ~4(s)ds =

t1

for some (v~) and cp 
~ 

( ) .  Since 
~ ~ 
(t1) > 0 for €

suff icient ly small, and since ii~~
’
~~(t1) = 0 for 0 < k < q

~
,

we obtain
( )

(t1) =

Expanding ~~~~ about t~ yields

(q
~)(80) V

q ~4 (t1) = x (t~) + o(€ )

Expanding i~j (~~ ) about t1 yields

q -k

(k) (q~) (t-t’) ~ q
1-k

+l
(81) i~j 

(t) = r~j  (ti) 
(q1—k)~ 

+ o((t_ t ~) )

for 0 < k < q
1

Hence
q
1-k ci~-k+l(82 ) ~~~~ lI

(k) t1 
= x

r (t;) ~qj
_~y~*O(€ ) for 0 < k ~ •
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• Next, apply Corollary (713) . If - > 0, then the leading

in (77) is
• i

_q~—~~—l,i i +d2 = (-l) v a (t)
i

From (82) we then have

i (q _
~i~—i) 

+(83) 
~~ 

(ti)

~~+l (~~) 
+ 

~~~~
= (—1) ~ ~ (t ) x (ti) ~~

- + o(€ ~ri i r1 (~~+]~)~

n +2
Also by (82) it is clear that all other ternis in (77) are o(€ ~ ) .
Hence ~~(€) is given by the right hand side of (83).

If - < 0 then all the = 0, and we may write,

by Corollary (713),

-
— 

q~+l i (ru ) 
+ 

(t_t)
~~ 

~ j~~~ +1
c2 (t) = (-1) v c (t ) +O~~(t-t )

~~ ( q)t i

for t’ < t < t . Multiply this expression for ~~ (t) by that given
i — — i  i

for ~4(t) in (81) with k = 0. This yields

~~ (t) ~~(t)
i

n~+i ~ 
(q1) (n1) + (t—t1) (t1—t)= (—1) v i~j  (ti) c (t

~
) + o(€q~ r~ —

for tj�t~~~t1.

H 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _



To evaluate f  ~~ (t) rI ’ (t)dt observe that since tt = t -€ ,
t’ I i i
I

t the value of 
-t~ q~f  (t—t~~ (t~—t) dt .

ti

is proportional to a beta-function, arid indeed evaluates to

q1~ 
(ri1—q1). ~~+l

÷ l)~ 

€

This then yields

t
i

I ~~ (t) ~~(t)dt
ti i

- - n + l  -n1+l 
~ 

(q1) (n4) + i
= (—1) v i~~’ (t~) ~ (t ) € 

+ o(€ )q1 i ri i

Using (80), we obtain that 
~~~(E) is equal to the right-hand side

of (83) .

We have thus shown that 
~~(€) is given by the right-hand side

of (83) for all q1, ii1. By (i), (ii) now follows immediately, and

the proof is complete. 0

This lemma tells us precisely what to expect locally when

adjusting the breakpoint, and only requires informat ion about the

behavior of ~ at t = t~ . We stanin~rIze our conclus ions in Table 2i
below.
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Table 2. The Local Contribution to the Objective by Moving t
1

t. 
.

. 

;~2• 
tj• — €  ~~~ ti

+€ .1

(~~) 
÷ 

(~~)
~ (t1

) >0 ~ (t~) <0r
i r

1 ~

even ij~ odd even odd

t i = t
i

_ E  - + + -

t i = t i + € + + - -

~ +1The ‘+‘ and ‘ — ‘ denote increases and decreases of O(€ ~ )

respectively, and were obtained from Lemma (79) by noting that

xr (ti) > 0.
i

The case that we shall be most interested in is that of =

i.e. ~ (t~) ~ 0. This is because, as we shall next indicate, it is

the only case in which a decrease obtained by the above adjustment

always dominates any possible increases due to the adjustment of the

time points tr 
> ~~ However, If , for example, no other breakpoints

need be adjusted, then shifting t~ according to Table 2 will yield

a decrease for > 0.

It is interesting to note the analogue of Lemma (79) (with

= 0) in the simplex method: if a variable enters a basis ~

1
Recall that is the least integer such that ~~~

1
~(t~) ~ 0.
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replacing Xr and forming a new basis ~~ ‘ , then the reduced cost of

X with respect to ~~ ‘ is opposite in sign to the reduced cost of

x~ with respect to ~•
To complete the procedure, it remains for us to follow the same

course as in Section 4.2.2 , and determine whether or not the breakpoint s

tr > t~ can be adjusted so as to ac ’- ommodate the change at t~ and

yield an overall decrease. It should also be checked that the adjust-

ment at t~ has caused no immediate infeasibilities, i.e. some other

variables becoming negative near t~ .

This can all be done by directly applying the tools and results

of Section ~4 .2 , and the details will be omitted. Proposition (58)

applies as it stands with q = 0; that is, the shifts in the break-

points, t . - t1,~ are o(€) and (w~ 
- wr)

’
~~
)(t) = 0(c), r > i. When

= 0 and we have determined t1 by Table 2 so as to yield a local

decrease , Theorem (76) too applies , with q = 0, to yield an overall

decrease of o(€).

~.13. Improving the Solution When Some ~ Q

From section 13.1 we see that the (~~ i) are dual infeasible

if for any I, £ , and j  > 1
-01
d2 > 0 ,

or ~~~~~ 1
2

1
From now on It will be understood that 0” means > 0
when j  = 0 .
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In such a case, even though we may have ~(t) > 0, t ~ [O ,TJ, it may

5t111 be possible to improve the solution by making basic, in some

suitable way, the variable x1(t~ ) .  One such case was considered in

Section 11.3 where with 2 = ~~ it sometimes paid off to move the

breakpoint t~. In general, however, a construction along the lines of

that given in Section 4.2.1 is required. Thus , if ~ 0, we wish

to increase x
2 

= 8 on a neighborhood of t~ in such a way that

> 0 if >0

(84)

< 0  if < 0

This is because ~~~~~~~~~ appears as the coefficient of ~4i)(t1) in (3).
It is import ant to note that if ~ 0, we are able to make

0(1) changes in x~~~ only for some q > j. This follows

from Lemma (67). From this we also see that if we are to

make x2 = 8 basic over [t~ 
- €~~ , t~ + €

2
), 

~~ 
+ €

2 € , the

dominating local contribution to the objective will be given by

~j*,i 
~~~~~~

where j * is the largest j  such that

a~
1 

-

Thus we shall pick our perturbation e such that (84) holds with

j  j * See Figure 8 below for an illustration of the case j* = 1.
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FIGURE B

In the event that 2 = 2~ and, say, < 0, with j* = 1, we
i i

could obtain a perturbation of the following form:

1Since x1 is basic on [t 1, t1÷1).I
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_j*
We remark that when d2 

‘ > 0, a local improvement can always
i

be obtained by just shifting t~. This follows from Table 2, since

by Corollary (713) and v~ > 0,

*i ~ 
(~~) +

~~~~~~
‘ >o -~(-i) ~~~r

1 (t i ) > 0
I I

The unfortunate part about In general attempting to improve

the solution when some ~ 0, is that even though we may be able

to obtain a local decrease in the object ive value, adjusting the break-

• point s to the right of this change may sometimes yield an overall

increase in the objective value. This was seen to be the case in

Section 13.3 with > 0, or when we needed to adjust t
k = T.

Further, when p1 > 0, we may not even be able to obtain a local

improvement in a neighborhood of t~ . However, these are precisely

the situations in which the complementary slackness conditions yield

alternative dual variables A*( ) and [v~
1

J and which will be

considered in the next section.
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One particular case where an improvement in the objective value

is always possible, is at the endpoint tk = T when x~ (T) > 0. The

construction is as follows :

(i) d~ 
‘ > 0.

Carry out the f i rs t  step of the construction of 6 in Section

~4.2.l on the interval tT , T],  for € > 0 and small. Thus simply

make the f i rs t  basis change from to 
~l 

over the whole of this

interval. This will yield

= M~ 
q-j~ + 0(~

q_j*+l)

some M > 0, and also

e~~~(T) = 0(~q-j) , 0< ~ < ~~*,

where q is determined as in (17). The contribution to the objective

value then becomes , using (63),

T j*
r ~ (t)  e ( t )dt  - ~ 

~jk 
e~~~(T)

T- j=0

= ~j*,k ~~Q_ j*/(q - j *)~ + 0(
q_j *+l )

While Lemma (67) does not apply to the endpoint tk = T, it can still

be easily shown, by using (70) in the proof of Lemma (67), that q> j*~

From this it therefore follows that a strict decrease is obtained for c

suff icient ly small.
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(ii)  ~~~~~ < o.

Partition [T - € ,T] into several subintervals over which we

alte rnat e the sign of 8~~~, as in Section 13.2.1, in such a way that

e(3*) (T) < 0. Indeed, by the results of Section 4.2.1, we can choose

the intervals so that

= _~~q_j * 
+

for some M > 0, and also

e~~~(T) 0(~
q-j
) 0 < j  < j * .

As before , this yields a strict decrease for € sufficiently small.

When i~ 
= 1, the e so constructed will be as in Figure ~

except with the solution truncated beyond t~.

At points t~, 0 < t~ < T, we remark only that a similar

construction applies with the exception that we need to continue

beyond t~ to meet requirements of the from (20). In the event that

2 = L
~
, these requirements need not be met , as Illustrated in

Figure 8.

• i4 •5~ Ambiguity in the Dual Variables

In the previous three sections we considered Improving our

given basic feasible solution when the dual variables, defined by

complementary slacknes s as in (9) , were infeasible. However, as was

noted there, obtaining an improved solution was not always possible ,

for the following reasons:
1014
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F
,

(I) Making a change of basis over an interval of length € may

force us to adjust other breakpoints to the right of this

interval, and these may violate the condition of Propos ition (5 8) ,

namely p~ = p~.

(Ii) Should this change of basis force tk 
= T to move left, it has

to be disregarded if there is either no feasible extension of

x on a neighborhood to the right of T, or if the result

of allowing t~ to adjust yields an overall increase in the

objective value.

(iii) As was noted in Section 13.3 and 13i~, making a change of basis

on a neighborhood of some t~ when some ~ 0, was in general

not possible when p~ > 0. Even when we had = 0, there were

seen to be cases where the need to adjust later time points led

to an overall increase in the object ive value.

What these cases all have in common is that they are being

‘blocked’ by some t1 having p. > 0, i.e. the variable xr (t
~
)

leaving the basis is zero. This means that the complementary

slackness condition

- 
_Oi 1

xr (ti)>0~~ 
dr 0 ,

I i

does not apply, and therefore that the dual variables are no longer

uniquely defined.

For such a t1, let us now relax the restriction = 0 by
i

setting ~0i = r (-r some scalar) and determine the dependence of the

1See Section 4.1.
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dual variables and reduced costs on y . Denote these by 7 ’*( tj y) ,

(y Jr(r)), ~(tjr) and (air(T)), where I here is fixed. In this
i.

analysis we shall maintain as before all the remaining relations in

(9) defining ~~ and (~ u2 ) - Let 
~ 

be such that r
i = 

i~p~

( 8 5)  Lemma. Let ~r*(.) and ~~ir1 satisfy

(i) ~*(t) = 0 , t [ t~,TJ

jr 
=~~~~, r > i , j > O

t

(ii) ~*(t)B + f  ~~~~~ K.~ + ~
O1K = 0, t € {t .

i t  i 1 1— 1

01 li T
~ 

B.~ +~~ K.~ = e
I ‘-‘I

+ ~~~~~~~~ = 0 , j > 1
1 1

t
i i

(iii) 7T (t )B .~~~+ f  ~~~~~~~~~~~~~~~~ 
K.~~+ 

v~r 
~0v i~(t - t) =

t € {t  ~:;)r— 12 r

p irB.
~ r

+ 1l
i+l,rK.~ = 0 , j > 0, r = l,...,i—l.

• Then

* * *7~ (tfr) = 7’ ( t b ) + yir (t)

= 
Jr
(0) +

I
* 

(86) ~(t Iy) = 
~(tb0) - r(7r*(t)B + f  7T (s)ds K + ~ ~

OvK l+ t
v
_t)

t v=l

~ir(1) = ~ir(0) + (ir B + M~~~’ K )
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Proof. This follows by noting that 7’ (.j~~) and (v~
1
(y)) by

definition satisfy (9) with the relation

+ ~~~~~ = 0
i 1

replaced by

v0~ (y)B.~ + v
1
~(y)K.~ = yeT . o

I I

The relations in (-~~) show that the dependence of 7’(1r),...
*

on y takes on exceedingly simple form. Note that ir ( )  and

are uniquely determined and are independent of y. Note also

that by construction, x(~ Ir) and (~~~ 1’(y)) satisfy the complementary

slackness conditions for any r. In particular, if for some y,

the triple (A” ( r)~ 
().]r (1)) (tr)) is dual feasible, then our

current basic feasible solution is optimal.
_0I

Using this device of setting dr = y and parametrizing the

dual vari ables in terms of y is an essential ingredient of any

continuous time simplex method. Thi is amply demonstrated by

Example E(2), where the constra ints are such that there is only one

feasible solution—-hence trivially optimal--and yet the dual variables

defined by (9) in the usual way are dual infeasible. However,

parametr izing in terms of y does yield (7”(’lr), f-~~ .1r
(~. ) ) ,

ft~)) dual feasible for y < -1.

Both Lehman [ l ~ J and Drews et al. [12] recognized the need

for this, and suggested extending the concept of a basis. We now

interpret their approach within our framewo rk .
107

_____ — —~~~~

- - - - -  -

. 

- - - --~~~~ -~~~~~~~ . . — - ,



Suppose that we are attempting to find an improved solution

using the techniques of Sections 13.2 , 13.3 and 4.13, but that we get
1.

“stuck” in one of the situations mentioned at the beginning of this

section. For example, suppose th:t at some t~, ~~(t
*
) < 0, and that

in trying to increase x2 on It , t +€) ,  we find that for all € > 0

we are forced to move a breakpoint t1 that fails to satisfy p~ = p
~.

We then parametrize the dual variables in terms of y by relaxing

the restrict ion = 0, and thereafter f ix the value of y by
i

imposing the restriction

(87 ) c2 ( t f t ) = 0

This corresponds in discrete time to making x2 basic at the point

t , and dropping Xr from the basis at the point t~, with no change

in the object ive value . In the simplex method it is theref o re a

degenerate pivot whose only effect is to determine an alternative

complementary set of dual variables. The same can be done in continuous

time by redefining which variables are basic at certain isolated points.

In [12] this is termed as a ‘~point pair.”

Since our boundedness assumption does not allow any b ’ s in

the primal problem, assigning basic and non-basic labels to variables

at isolated point s can have no effect on the primal solution. However

this does have a marked and important effect on the dual variables.

*Observe that making x2 basic at t and dropping x at the
rj
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point t~ g ives a count of rn-Fl variables basic at t = t’~ and rn- i

bas ic at t = t1.
1 

*The next step is now to move t either lef t  or right ,

depending on whether or not ~
(l)(t~) is —~ 0 or 0, while simultaneously

adjusting r so as to maintain (87). The aim of doing so is to try

to obtain either dual feasibility, and hence a proof of  optimality,

or a new interval over which we can attempt another basis change.

Whether or not a procedure of this nature will always yield

e ither a proo f of opt imality,  or an eventual strict decrease in the

objective value is not known. It is also still an open question

whether or not use of this “point pair” technique is needed to

obtain a proof of optimality. Posed another way, can we have a solution

that is not optimal, but has the property that at no point where the

dual variables, def ined in the usual way by (9), are infeasible

can we make a change of basis using the techniques of the previous

sections and obtain a decrease in the objective value.

1By Theorem 2(15) we know that every right analytic extreme point has
at most m variables positive over any interval. Hence having a
pair of intervals with this surplus-shortage property is not possible.
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CHAPTER 5

CONCLUSION

This dissertation has been aimed at establishing some of the

fundamental concepts and results required to develop a continuous time

simplex method (for the case of constant coefficients in the constraints),

To this end, we have accomplished the following:

(1) A characterization of all so-called right analytic extreme

points that allows us to work with them as we would with the

basic feasible solutions in linear programming.

(ii) A distribution free statement of the optimality conditions.

(iii) A means of moving from one extreme point to another, with an

improvement in the objective value.

Much remains unanswered from both the algorithmic and purely

mathematical points of view.

On the algorithmic side there Is the need to combine the con-

structions of Chapter 13 with an effective heurist ic that chooses the

intervals over which to attempt a basis change, and also decides on

how large to make € before recomputing the prices. Developing such

a heuristic should go hand-in-hand with the design of a computer

implementation. Based on small examples solved by hand, it would

seem that an Initial implementation should be highly interactive in

nature. Of great importance in any implementation will be the question

of how to solve, numerically, equations of the f orm
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t
Dy(t) + L f  y(s)ds = d(t)

0

where the only condition on D and L is that (~D + L)~~ exists

for some scalar ~~~.

More fundamental is the question of convergence, about which

nothing has been said. This is related to the (unanswered) question

of when is the optimum attained at a piecewise analytic solution

having only finitely many breakpoints. It is also intimately connected

with the question of whether the need to take advantage of ambiguities

in the dual prices, alluded to in Section 13.~ , occurs only (if at all)

to obtain a proof of optimality, or whether it can occur before the

optimal value is reached.

The last major open question is whether or not the sufficient

conditions for optimality, presented in Section 13.1, are also necessary

conditions when the optimum is attained at a piecewise analytic solution

having rinitely many breakpoints.
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APPEND IX A

RI(~iT ANALYTIC FUNCTIONS

This appendix contains the propositions about right analytic func-

tions that are required in Section 2. The main result is the proof of

Lemma 2.2(7) which we restate below as Lemma (3). For completeness we review

the def initions of ana lytic and right analytic functions.

(1) Definition: [22]. Let 0 C H be open and g:0 —
~ R. Then

g is said to be analytic on 0 if to every open interval I C 0 with

center a, there corresponds a series 
~~~~ 

ci
(t_a) 1 which converges to

g(t) for all t € I.

(2) Definition, A function g,[O,TJ —~R will be called right analytic

if for each t € [O,T) there is an € > 0 and an analytic function

h:(t—€ , t+€ ) —~R such that g(s) = h(s) for all sE [t,t+€).

( 3)  Lemmaz Let g:[O,T] —,R~ have right analytic components g
1
(.),

i = l,...,n. Then there exists a (possibly infinite) disjoint family

of open intervals, (I
i
) such that [0,T) = U~ ~~~ and such that for

each interval I~, each sat isf ies

(i) g1 is analytic on I
~j~ 

and

(ii) either Ig 1 j > 0 on I
i 

or = 0 on I i.

11f I = (t’,t”) is an open interval then ‘

~~ denotes the interval
[t ‘,t ”).
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The proof of this result will require the following lemmas.

(~ ) Lemma. Let I C R be an open interval and (J 1) a family of

open intervals whose union is I. Let g:I -+R be given. If g Is

analytic on each J
1 

then g is analytic on I.

( 5)  Lemma. Let K C H be a compact interval, and let h be an analytic

function defined on a neighborhood of K. Then either h = 0 on K

or h has finitely many zeros in K.

(6 )  Corollary. Let IC R  be an open interval, and let h:I —~R

be analytic. Let Z ( h )  = ft € I:h(t) = 0). Then either Z(h) = I,

or Z(h) has no limit point in I. In the latter case Z(h )  is at

most countable.

The proofs of both these lemmas may be found in [22].

(7) Lemma. Let be any family of open intervals, and (Ij) be

a disjoint f amily of ope n intervals such that U~ I~ = LJ
a ~~ 

Then

cr a — j j

Proof. Since the collection (i
d

) is disjoint , the connectedness of

intervals implies that each is contained in a unique I~. Thus

J = I~ for some j and we are done. 0
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Proof of Proposition (3). We shall prove the proposition for the case

• n = 1, since f r o m  this, the general case follows immediately.

By definition of g being right analytic, for each t € {O,T)

there exists an € .
~~ 

> 0 such that g is analytic on K
t 

= (t, t+€t ) c [o,T).

Let V = U,~ Kt and W = U
t K~. Since V is open, there exists a disjoint

family of open intervals (J~)~~~1 whose union is V.

On each J. we now obtain the following: By Lemma ( 1 3 )  g is

analytic on J ~. By corollary (6) either g = 0 on J~ or g = 0 on

at most a countable sequence ft1,t2,...) C J1. In the latter case write

= (t ’ , t-”) .  Since the sequence has no limit point in J~, and since

by definition g agrees with an analytic function defined on a neighbor-

hood of t’, the only possible limit point of C tk) is t”. Hence we

may assume that

t ’ < < t
2 
< ... < t”

With this part ition of J~ we can now conclude that there is a (possibly

infinite) collection of disjoint open intervals (L~) such that

J g ~ > 0 on L~ or g = 0 on L~ , and such that = U
k 
L~.

Now it is clear that W = {O ,T). By Lemma (7), it follows that

hJ~ 
~ 

= [O ,T). Hence Ujk i~ = [ O ,T). By relabeling the faa! y
• (L~ ) as C I a). we obtain the desired result. 0

(7) Lemma. Let g, h:[O,T] -9R be right analytic. Let t0 € [O ,T) be

• such that g(t
0) ~ h(t0). Then there exist 0 < r < s < ‘T such that

g = h on [O ,r) and g ~ h on (r,s).

l1~4
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Proof. Let E = (t:g(t) / h(t)). Since t
0 E, E is nonempty. Let

r = inf E. Then by definition of r, g - h on [0,r). Since both

g and h are right analytic there is an ~ > 0 such that g and h agree

with analytic functions on [r,r+~ J. Again c~,’ definition of r, there

is a t € (r, r + € ) such that g(t) / h(t). By Lemma 5, g - h

has finitely many zeros on [r, r + ]. Hence there is an s € (r, r +

such that g / h on (r,s). 0
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APPEND IX B

• EXAMPLES OF EXTREME POINTS

• The constraints are all of the form

t
B( t )  x ( t )  + J ’ K(t , s) x ( s )d s  = b ( t )

0

x (t) > 0

for a.e. t € [O,T]. B(t) and K(t,s) € R
m )
~~.

(1): An extreme point that is not locally uniquely defined, and is

independent of small changes in T.

= 1, n = 3, T = 5, B(t) = 0 on [O ,5}. Define K(t,s)  =

Ik,1(t,s) k2(t,s) k3(t,s)] on the triangle 0 < s < t < 5 as follows:

5 t k
1
(t,s) k

2
(t,s) k

3
(t,s)

I s , l) 0 0 0

[1,2) e
_5t 

o 0

• [0,11 [ 2 , 3 )  0 e
St o

[ 3 , 13) 0 0 e St

[13,5] 0 0 0

(1,51 [s , 5 ]  0 0 0
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Set

= ~~tt ) = i
3(t) = 1 on [0,1)

= i2(t) = i
3(t) = 0 on [1,5]

and then define b ( .)  by

t
b (t) = [ K ( t , s) ~ ( s)d s , t € [0 ,5]

0

Consider now the specific values of K(t,s):

(i) For t € [0,1) the equation is trivial, i.e., 0 = 0 so that

the values of x on 10,1) are not in any way determined by

the coefficients on [0,1).

(ii) For t € [1,2) the equation reads

~ 
e
_5t 

x1(s)ds = b(t)

The left-hand side is the Laplace transform of x~ on the interval

[0,1), evaluated at t. By the uniqueness theorem for Laplace

transforms (see Theorem C.l2) the above equation has a unique

(a.e.) bounded solution x1 
on [0 ,1). By construction this

solution is x1 = 1.

( i i i )  For t € [2 ,3) and t € [3,13) we obtain similar equations in

and x
3 

respectively, and conclude that the only possible

solution is x2 = and x
3 

= on [0 ,1).
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The above shows that x on [0 , 1) is uniquely determined ,

• independent of the choice of x on [1,5] . Thus choosing x = 0

on [1,5 ] y ields x = on the whole interval, and this must be an

extreme point solution.

Notice that we have one equality constraint in three nonnegative

variables and that on [0 ,1) all three are positive while on [1,5)

all three are zero. 0

(2): An extreme point that is locally uniquely defined except at the

origin, and whose values throughout the interval depend explicitly

on T.

m = n 1, B(t) = t, b(t) = -t and K(t,s) = -2. Thus

t
t x( t )  - 2 f x ( s) d s  = -t

0

x( t) > 0, t € [0,T].

One can easily show that the only solutions to this equation are of

the form x(t) = 1 + at for a an arbitrary scalar. a is the

• derivative of x at 0 whIch , once determined, yields a unique

solution over the remainder of the interval. To obtain an extreme

point solution we choose the least a such that 1 + at > 0 on [O ,TJ.

Thus the only extreme point Is x ( t )  = 1 - t/T .
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Note that if we set a = 0 (say) and choose the partition

I (i
a
) with I~ = (l/j÷1, l/j), then x(t) = 1, t € [ O ,T ] ,  is uniquely

determined on each interval [l/j+1, l/j). However, it is not uniquely

determined on [0,T] ,  and is also not an extreme point. 0
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APPE NDIX C

• DISTRI&JTIONS, LAPLACE TRA NSFORMS AND EQUATIONS OF THE FORM Dx + L f x = g.

This appendix summarizes the tecnniques and results required

to study the solutions to equat ions of the form

t
(1) Dx(t) + L f x(s)ds = g(t) , t > 0

0

where D, L € R
m Xm and g(.) is analytic. We remark that by a

suitable change of variable and time direction, all the results

pertaining to (1) will be equally valid for equations of the form

T
(2) 7~(t)D + f ?.~(s)ds L = g(t) , t < T

t

The material presented here is well known, and we refer the

reader to [27], [11] and [5] for further details.

When D 1 exists, (1) becomes the much studied Volterra equat nn

or the second kind. This can be shown to have the unique solution

• (3) x ( t)  = D~~g(t) - D~~~ f e
_
~~~~

(t 5) D 1g(s)ds •
l

However, when D is singular (1) may not have a solution in any R
n _valued

space of functions. Consider the following example.

• 11f G € Rm X m  then e
Gt 

denotes the matrix exponent ial 
~

.4 120
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(14 ) Example.

/1 o\ /0 -l\ /0
D = ( ), L = (  J ,  g(t) =

\l 0/ \0 0/ \i

i.e.

t
x1(t) 

- f x2(s)ds 0
0

x1(t) = 1

Clearly, if x ,~ Is restricted to be a real valued integrable function,

then these equations have no solution. However we can meaningfully

work within a larger class of ‘functions,’ the space of distributions,

where these equations do have a unique solution.

C l . Distributions

Let !~ denote the space of all C~ functions ~p:R 
—

~~ R that

vanish outside some bounded interval (depending on 4. Then the space

of ~iistri utions, ~~~
‘ , is defined to be the set of all continuous linear

functionals on Thus, if h € D’, then to every ~ € ~~~, 
h assigns

a real number, to be denoted by ~~~ ,~. Locally integrable functions

may he considered a subspace of r- ’: if f:R —~R satisfies

M
I If (t)Idt ~-M

for all M, then the functional defined by

1See [p7] for the notion of a sequence (~~) converging in o.
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(f,q4 = f r(t) ~ (t)dt

is a continuous linear functional on D, and hence is a member of

D’. Distributions generated this way are called regular distributions.

Of particular interest here will be the S functional and its

derivatives. S is a distribution defined as follows:

(5,r~ ) = p (O) , Z

Thus if we think of formally integrating S against p,

[ 5(t) cp(t)dt, then 5 may be thought of as a ‘function ’ that is zero

everywhere except at the origin, where it is so large that f 5( t )d t  = 1.

Indeed, distributions were invented precisely to make formal notions

of this kind rigorous.

Distributions allow us to differentiate functions that do not

have derivatives in the usual sense. The motivation for the definition

of distributional derivatives is the following. Let f:R -~ H be con-

tinuously differentiable. By definition

(f(l) (,)) = I f~~~(t) ~(t)dt

• Integrating by parts and noting that (P vanishes outside a bounded

interval, yields

= - f f(t)

= ~~~~~~~~
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Since is also in ~, the right hand side makes sense when regarding
f as a regular distribution. Thus for rp € ~j , h € D’, def ine h~~~

by

(h~~~, ~~~~ 
= - (h, ~~)>

and more generally

(h~~~,~~) = (~ 1)i ~~~~~~~

In the case of ö, we get

( 5)  (~ (i) = (-i)~ 
(i)
(0)

With the above not ion of the 5, we can now solve Example (13)

by inspection.

x1(t) = i~(t)

x
2
(t) = s(t)

What we mean by writing the solution formally in this way is that, for

(x 1, cp) = f ~p(t)dt

and

(x2,q) = cp(O)

In general, it will turn out that the solutions to (1) contain linear

combinat ions of
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V -

An important concept in the development of solution techniques

for (1) is that of convolution.

• If  f , g :R — H are two cont inuous f unctions that vanish on

(-~,o), then their convolution, f *g:R -+R is defined y

t
(f*g ) ( t )  = f f ( t -s )  g(s)ds

0

Notice that f*g = g*f .  This def inition can be extended to the ca se

of f and g being distributions provided f, g € D~, where

C ~~ ‘ denotes the space of distributions ‘vanishing’ on ( -co ,O) .

By this we mean that f € satisfies (f,cp) 0 for all cp € D

vanishing on [O.~~) . See [27, p. 122] for further details. Of importance

here will be the result

f

(6) 
5
(i)*f = f (i) ~

for f € D ~.

We shall be applying (6) to functions of the form l~(t)f(t)

where f:R —~R is inf initely differentiable. Clearly (l~f)
(1
~

• exists only in the distributional sense. It  can be shown that

- 

(7) (1÷f)~
’
~ l÷f~~~ 

+ ~f(
i_1)

(0) + • •~~ + 5(i-i) f(o) .
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C. 2. Laplace Transforms

The Laplace Transform is an extremely useful tool for computing

and manipulating solutions to equations of the form (1). The rea son f o r

this is that it allows us formal algebraic manipulations, the results

of which are correct, usually requiring no further justification.

If f:R —. B is such that f(t) = 0, t < 0, and for some

c € R, e
_ct 

f(t) is absolutely integrable over R, then the Laplace

transform of f is defined by

~ t
f(s) = f e 8 f(t)dt

0

where s € ~~~, Re s > c. The alternative notation ~~(f)(s) will also

he used.

With some care, this definition can also be extended to distri-

butions.

For f € f~~, define

-st
= (f,e )

whenever the right-hand side makes sense. This will occur when, for

some c, e~~
t f(t) is in a certain subspace IS ‘ C D’ called

distributions of slow growth. Any such I’ will be called Laplace-

transformable. For our purpose it suffices to remark that the family

(i)(~
, ) is Laplace-transformable, and moreover that

(8) ~~(~
(I )
) = 

i
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Other Laplace transform formulae that will be important are

(9) ~~ 
tk l÷(t)) = ~~~~~~~~~ ‘ Re s > 0

(10) ~~~ t
k 
e~
t 
i~(t)) = - k+1 Re s > Re u

(s-u)

(11) f~g(s) = f(s) g(s)

The following uniqueness theorem gives a 1-1 correspondence

between Laplace-transformable distributions and their Laplace-transforms.

(12) Theorem. (Uniqueness Theorem). Let f and g be Laplace-

transformable distributions in D~. If f(s) = g(s) on some vertical

line s = c + in their regions of convergence, then f = g.

Proof . See [27, p. 225]. 0

C.3. Solving the equat ion Dx + U x = -

With the above results we can now proceed to solve

t
Dx(t) + U f x(s)ds = g(t), t > 0

0

1It suffices to require that f(s) g(s) over some segment of an
arbitrarily oriented line in their common regions of convergence.
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in the space of distributions. We begin by rewriting the equation as

(13) (D5 + Ll÷ )*x = 1kg, x
~ 
€

Taking Laplace transforms on both sides (assuming x is Laplace-

transformable ) yields

(D + ~ U) x (s) =~~(l÷g)(s)

by using ( 8 ) ,  (9) and (11).

Assume now that (D + ~ L)~~ exists for some s (and hence

for all except finitely many s).  Then

x(s) = (D + I L)~~~~(l~g)(s).

From (11) we see that if H = (hij) is an m x rn matrix with entries

hij € and whose Laplace transform is (D + 1 L)~~, then x = H*(1~g).

By Cramer’s rule for computing the inverse of a matrix, it is

clear that (D + ~~ L)~~ = (n
j
(s)) has entries that are rational functions

of s. Indeed each ri~ 
has the form

p ( s)
ru (s) 

q’~s)

where the p 1~ and q are polynomials in a of order < m, and

q ( a )  = det(sD + L) .  A partial fraction expansion of each r u yields
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m 51k
_i

- (l13) (D + I L)~~ = ~~ U
k5 

+ ~ 
1 
2+1k=0 k=l 2=0 

~~

where 
~~~ l rri

k 
= degree of q, 1

~ k1 are the roots of q with mult i-

plicit ies (ni,~) ,  and the matrices (U k) C R5 1 X m, ( V )  C ~m X m

From ( 8 ) ,  (10), (114) and Theorem (12 ) we obtain (D + 1 L)~~

as the Laplace transform of

m
(14 H ( t )  = 

~~ 
TJ

k
5

~~~
’
~~

” ( t)  + ~~~ v~ ~~~~
- t 2 e k l~ ( t )

k=l 2

To obtain the solution x, we compute the convolution H~ (l~g).

Using (6) and (7) yields

(16) x ( t)  = ~~ u~~~~(t) + 
~ ( ~ u~g 2~1)(Q)) s~~~(t)k=0 2=0 k=2+ 1

t
+ f Y(t - s )  g ( s ) d s , t > 0
0

where

mk l

(17 ) ‘~‘(t)  = ~ V~~ ~
j- tt e k 

,
~~~ t > ~k=1 2=0

We have thus established the following result .

m )~mIt can be shown that Y(t) € R since the imaginary parts cancel
- in complex conjugate pairs.
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( 18)  Proposition. Let D and L ~ R m X m , and g :R _ , R m be analytic.

If there is a ~ € P such that (~ D + L)~~ exists , then the unique

solut ion to the equation

t
Dx(t) + L f x(s)ds = g(t), t > 0

0

i n the space ~~ is given by (i( - ) .

i - ro of .  By construction, x given by ( l~ ) is a particular solution. To

show it is the unique solution in ‘ , suppose that y is another

solut ion . Then both x and y satisfy (13). By construction H ( t )

given by (15) satisfies

H~ (D~. + Ll÷ ) = Is

where I is the m x m identity matrix. Convolving H with both sides

of (13) then yields

= H *( 1~g)

= H~(1~g)

By (6 ) .  it follows that x = y. 0

We remark that alternative expressions for the coefficients

and ‘i’(t) have been found usi ng the Drazin inverse of a matrix.

See [ 5 ]. In particular it is shown that there exist matrices

• m X mF, G such that

• ~‘(t) = FeGt.
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Since these expressions yield little additional insight into the nature

of the solutions , we shall omit them here.

Finally, note that since g is assumed analytic, x is the sum

of an analytic function and a finite linear combination of (5 ( 1)
) •  In

the event that D 1 
exists, it can be easily shown that U

k = 0,

k = 1, .. ., m, since q then has degree rn . In this case, all the terms

in 5(i) in (i’ ) vanish , and we obtain the same expression as in (3) .

c.14. An initial value result

1 ) Lemma. If ~~~~~~ ~~~ R is analytic and l~g is Lap lace transformable

then

~ a~S~~ + 1g)(s) = ~~~k + ~~ g
(~ )(0)5~J

k ( D  k=O j =O

Proof. Use (8), (9) and Theorem ~~~~~~ in [27, p. 231]. 0

i~o
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APPENDIX D

• AN EXISTENC E AND UNIQUENESS THEOREM RELATING TO THE f

- In this Appendix we study the equations

q+1
- + • . .  + (-1) Z

q 
= P

Z
2

- Z
2

+ . ”  ÷ ( 1 ) ~ +l~2~~~~1 2 q

- z~ + + (_1)~ ÷l~~ =

on the simplex

S = ( z €~~~~1>~~ > . . .  > z  > 0)q — 1 —  —

for given 0 <p < l .

These equations appear in Section ~~~~~

We remark that they are closely related to the study of the

Vandermonde metrii’: (see e.g. [17, p. 36])

z z ... z1 2  q

V(z) = 
Z
1 

z~ ~~~~~ z~

1 2  q
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r

However , the usual app lication is to solve a linear system of equations

whose detached coefficient matrix is V ( z ) ,  for some given fixed z .

Here we are give n a solut ion

I

(1)
q+l

to the equation

V(z)y = pe

and wish to determine z.

The main result of this Appendix is the following:

(2) Theorem. The system of equations (1) has a unique sointion in

the interior of the simplex Sq

We shall require several results for the proof of this theorem.

(3)  Lemma. For any p and any z € ~~ satisfying (1),

( 14 ) - 
q+l 

+ + ( 1)q+l q+l 
= p(l - H (l-z ) ) .q 

1=1

Proof. Define the polynomial

q
f(w) = ii (m — z.)

i =1

and let it have the expansion

• ~~~~~~~~~ 
•

~~~~
~ •



= 
q+l 

+ + ... + a~ n

Multiply the ith equation in (1) by a
i and sum over ~ =

It is easily seen that the resulting equation is

(f(z1) - zr1
) + ... + (

~ l)~~
1
Cf(Zq

) - z~~
1
) = p(f(l) - 1).

q
Since f(z

~
) = 0 and f(l) = rr (1 - zi) , the result follows. 0

i=l

(6) Corollary. For 0 < p < 1, the (q+l) equations

k=1 
(_ l)~~

1 z~ = p , j = l,2,...,q+1

have no solution in the interior of

Proof. For z in the interior of Sq~ the right-hand side of (14) is

< p , and the result follows immediately. 0

(7 ) Coro1~~~y. For 0 < p 
- 1, equations (1) have no solution on -the

• boundary of

Proof. Let z be the boundary of S
q and satisfy (1). By examining

the form of such z and the form of (1), it is clear that there are

1 
~ 

£1 < < 2 < q such that (z 2 , . . ., z2 ) is in the interior of
1 r

Sr and satisfies
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( 1 ) i+l 
Z~~ = P’ , j = l,2,...,r+l

i~-l i

where either p’ = p or p’ = 1-p. By Corollary (6) this is a

contradiction. 0

(8) Lemma. Det V(z) = IT z,~ IT (z . - z.)
l < k < q  l~~ i-~ j < q  ~

Proof . See [17, p. 36]. 0

(9) Corollary. Define ~~~ —* by

f.(z) = ~~ (_ 1)
k~~ Z~~ , j =

k=l

Then

det D f ( z )  = q~ (1)
q+l 

(z~ - z.)l < i < j< q

where Df(z) is the Jacobian matrix of f(z).

Proof. This follows directly from the Lemma and elementary properties

of determinants. 0
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(io ) Lemma. Let -r 1, . . ,r~ € B be given. If the equation

2 2 2
yl

-4- y
2
+.”+Y 12

+ +. . .+  y~ = rq

have a solution, then this solution is unique up to a permutation

of the variables.

Proof. This follows from [13, pp. 2142-2 135]. 0

Proof of Theorem (2). Existence: The proof will be by induction on q.

For the case q = 1 the result holds trivally.

Suppose that the result is true for q, and that ~~, in the

interior of 8q’ 
is a solution. Define the maps H:S

q 
x [0,1] —i

and h S q 
X [0,1] —~ fl by

H.(z,t) = 

k=l 
(1)

k+l 
~~ + (_1)q ~~~ , j = 1,...,q

and

h(z,t) = 

k=l 
(_ 1)

k+l 
~~~~ + (_ 1)~~~~+l

We need to find 1 > > ... > zq > t > 0 such that H(z,t) = pe and

h(z,t) = p.

- 135



Now H(z,O) = pe, and by Lemma (3), h(~ ,O) < p since ~ is in

the interior of Sq~ 
Also by Corollary (9) the Jacobian, D

~
H(z,t) is

nonsingular for all z in the interior of S and all t. By the

Implicit Function Theorem [20, p. 128] there is a S ~‘ 0 such that

for all t € [o,s), the equation H (z ,t) = pe has a solution z(t)

in the interior of Sq• 
Moreover z(t) varies continuously with t.

We now show that we can increase t from 0 to some t~ while

maintaining H(z(t),t) = pe, z(t) in the interior of Sq~ 
0 — t < Z

q
(t)~

and such that h(z(t*),t*) = p. If this is possible then (z(t*),t9

will be in the interior of S
q~1 

and will satisfy (1) in the case of

q replaced by q+l.

Since D H(z,t) is nonsingular for all z in the interior of

Sq~ 
it is clear that the only time we can no longer increase t is

when either t = z
q
(t) or z(t) hits the boundary of Sq• In the

event that t = Z
q
(t) or any two components of z(t) are equal,

we can use the technique of the proof of Corollary (j) to obtain a

reduced overdetermined system having an interior point solution. By

Corollary (6) this leads to a contradiction. The case remaining is whe’~i

for some t ’, z1( t ’)  = 1 and 1 > z2(t’) > •. > z~(t’) > V > 0. In

this case (z
2(t’), ... Z

q
(t~)~ tt ) satisfies (1) with the right-hand

side replaced by 1 - p. By Lemma (3) we get

k=2 
(1)k ~~~ + (1)

q-4-l ~~~~ -4-]. 

q
= (l-p) (1 - (i-t’) ii (1- z )) .

k=2 k

Hence

q
h(z(t’),t’) = 1 — (l—p) (1 — (i—t’) Ii (l_z

k
)) .
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Since the term ( ) lies in (0,1) we have

h(z(t’),t’) ~ 
p

However, h(z(O),O) - p, and we would have reached an earlier t~ 
< V

at which

h(z ( t* ) , t*) = p.

This completes the proof that the result holds for q+l. By induction

the existence is established.

Uniqueness: (This proof is due to T. J. Rivlin)-) Suppose there

are two solutions z and ~~ . Upon rearrangement, it is clear that

z and z satisfy

Z
2 
+ + = Z~~~ + Z

2 
+ Z

3 
+

z1
+ z

2 
+ z

5 
+ = z1

+ z
2 

+ +

z~~+ ~~~~~~~+ ~;+  
.. . = ~~~~~~~+ z~~+ ~~~~~ +

By Lemma (10) the vector (z1,~2,z3,...) is a permutation of

Since both z and ~ lie in the interior of

Sq~ it follows that z~ =
~~~

, i =

This completes the proof. 0

• 1
Private communication .
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• APPENDIX E

EXAMPLES OF SOME STEPS IN THE CONT INUOUS TIME SIMPLEX ALGORITHM

(1). Making a change of basis over [O,c) with q = 2.

t
x1(t) 

+ I x2
(s)ds = 2 + 2t

0

t
x
2
(t) + I x~ (s)ds = 2 + t

0 -J

x + x  = 2
)

x1 ~~x~4 = 2

x
~
(t) > 0, i = l,...,5, t E  [0,1] .

Since we are using this example only to illustrate the pro-

cedure for making a change of basis over [O,€), we have omitted the

objective function.

The detached coE fficients are:

1 0 0 0 0  0 1 0 0 0

0 1 0 0 0  0 0 1 00
B =  0 0 1 0 1’  

K =  0 0 0 0 0

1 0 0 1 0  0 0 0 0 0

2 + 2t

2 + t

2

2

1
~~

• • 
• 

• ~~~~~~~~~~~~~~~~~ 
‘
~~~~ I~~~~~~~ 
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We begin with the initial basic feasible solution 
~l 

= (1,2,3,5)

over [0,1]. This yields

x1(t) = x
2
(t) = 2, x

3
(t) = x

5
(t) = 1, x4 (t )  = 0

Next we introduce x14 = 0 into the basis over [O ,E). Follow-

ing Section 14.2.1 the first step is to find the partial fraction

expansion of

h(s) = (B.~~÷ 
1 
~~~~~~ (b13 + 1 k13) .

Substituting yields

1 1/s 0 0
_i 

0 1
0 1  1/s O 0 -s
O 0 1 1 0 = 2

1 0 0 o i

whose expansion is

0 0 1

O 2 ÷ -l 0

1 0 0 -

-l 0 0

Thus q = 2 .

4-

• 1)’)



Following (21), (29) and (35) of Section 13.2.1 we find

• r1, p1, 
r
2
, p2 

by taking minimum and maximum ratios on the vectors

x(O) = (2, 2, 1, 0,

y = (0, 0, 1, 0, ...1)
T

We obtain

r1 5, p
1

1, r
2 - 5 ,  P2

l.

Since q = 2, we partition the interval [o,€) into three sub-

intervals [O,T1c), [T1
€, 12€), 

and [1
2

€ ,E )  on which we shall have

the bas ic sets 
~1! ~2’ ~l 

respect ively, where

= (1,2,14,5)

= (1,2,3, 14)

To obtain and 12 
we begin by solving the equations 14.2.1

0 0
(~6) for z1 and z2, 

and then set = 1 - z1, 12 = 1 - z2 as our

initial guess. Should we obtain

_ 0 0
e( € I tl,12) = 0

= 0

then these will be the desired values of Il. 
and r

2. 
Now z1 and

z
2 

satisfy

1140
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- z
2 

= 1/2

z~~- z ~~= l/2

1 > z
1 

> z
2 

> 0

Solving yields

z1 = 5/ 14, z
2 = l/14 ,

and therefore

i
~~~~

l/14, i~~= 5/14 .

Solving the equations with these values for and shows

that 0 does satisfy the above conditions at t = c .  The solution is

given as follows:

1 1 3 3[0, 
~
. 
€ )  [•I

~ ~~
, ~ ~) [~ € , € ) [€ ,l)

2 -~~~t
2 2 -~~~t

2 
— ______

2 - ~~ t
2 

+ (t - 1 )
2 

+ (t - 1 )
2 2

, 3 2
- ~t - ~~~

x2 
2 + t  2 + ~~~€ - t  2 - € + t  2

0 2 0 1
)

1 2 i t2

X 14 0 ~~t
2 

- (t-~~~€)
2 

- (t- ~~~e)
2 o

0 0 2 1

4 —~~~~— -- —-~~~~~- - ~~~~~~~~~~~ - —-— — 
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Below we sketch the solution.

k
,

x
2

x~,7 
_ _ _

I_

t

~

FIGURE 10
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(2) . Using ambiguity in the dual variables to u u tj i i u  a proof of op timality

1
minimize r

t

subject to ~] (t )  + I x (s)d~ = 1 - t
0

x2(t) 
+ x

3
(t) = 1

x
~
(t) > 0 , t [0,1]

The detached coefficients are

1 0 0  0 1 0

B =  ,

0 1 1 0 0 0

I l - t i
b(t) = L ~ j c(t) = [1 0 0]

It can be easily seen that there is only one feasible solution,

given by

x
1
(t) = l-t, x2

(t) = 0, x
5
(t) = 1 , t €  [0,1] .

Hence this must be the optimal solution.

4- I 1143
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FIGURE 11

Determining the dual variables by solving 14.1(9) in the usual

way yields

~~(t) = 1, ?\~(t) = 0

V3 = 0 , r = 1,2, j = 0,1

The reduced costs of x
2 are

E2
(t) = t - 1

2 ‘

and we observe that ~•, (t) - 0 for 0 < t < 1.

Noting that x1(1 )= 0, we can relax the restriction = 0,

and parametrize the dual variables in terms of ~ = i~~. Solving the

equations given by Lemma ~.5(85):

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- 
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(~~~~, ) (~~ ~~
) + f (~~~~, ~~ )ds (~~ g)÷ (L~~ , u~~) ( ~~ ~~) (0,0)

0 0 1 0  1 1 0 0

~~l’ ~2~~O l~ 
+ 

~°l’ 
LL 2 ) (

0 ~~) = (1,0)

1 1 1 0
(u 1, 

~2~~ 0 l~ 
= (!D,0),

yields

~~(t) = ~2(t) = o

= 1, all other = 0

Thus

= 1, ~~
‘

( t H )  0

v~(y) = y, all other v~~i) = 0.

The reduced ‘ osts of x
2 now become

~2 (t Iy) - t - 1 -

= C, all r, j

We :~ee that c2 ( tj i - ) > 0 for 
~ 

< -1. Since tfij5 also yicfl~~;

= < 0 for such r, our dual variables A (.!r) and

are dual feasible in this range, as required.
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