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CHAPTER 1

INTRODUCTION

The general continuous linear program is formulated as

follows:

T
minimize [ e(t) x(t)at
0

subject to

t
B(t) x(t) + [/ K(t,s) x(s)ds = b(t)
0

x(t) > o0, t € [0,T]

where c¢(t), b(t) and B(t), K(t,s) are given and are real vectors

and matrices respectively.
A special case of this is a linear optimal control problem

with constraints on both the state and control variables:

T
minimize [ Le(t) x(t) + a(t) u(t))at
0

u

subject to é% x(t) = A(t) x(t) + B(t) u(t) + a(t)

0 = C(t) x(t) + D(t) u(t) + b(t)

u

x(t) >0, wu(t) >0, te€[o,T]

x(0) given,




The motivation for studying such problems is the following:

(1) They are widely applicable to many real world situations as
intertemporal economic models of, say, investment and planning
(e.g. [3] and [7]), and occur frequently in engineering
applications (e.g. [24]).

(ii) They are closely related to their discrete time counterparts
which, formulated as block triangular linear programs, are
costly to solve. Computational experience with such linear
programming models shows that they often require unusually
many simplex iterations [1], [7],1 and also become very large
in size. On the other hand, many small continuous time problems
have been observed to have nice mathematical properties, and
exact solutions have been easily obtainable by hand [12], [18].
This suggests that a thorough understanding of continuous
linear programs may not only result in methods that can solve
them directly and efficiently on a computer, but also result
in new improved methods for solving the discrete time
formulations.

(iii) Many continuous time problems are inherently numerically un-
stable when solved in discrete time as linear programs. Indeed,
one can construct examples which are easily solved in continuous

time, but which, when discretized with time step €, have

1This seems to be attributable to the observed persistence property
of these models [8], [21], i.e. similar type activities persist
in the basis for several consecutive time periods. In the continuous
case this can be interpreted as activities remaining positive over
intervals of time,.




LT €

corresponding linear programming bases with condition numbers
proportional to el'm, where m is the number of rows in the
continuous time problem. In such cases, some other solution

technique becomes a necessity for any appreciably small e.

Continuous linear programs have been largely studied as linear
programs in a function space with the emphasis on generalizing the
simple but powerful results of linear programming. They were first
considered in 1953 by Bellman [2],[3] who established a weak duality
result which, as a sufficient condition for optimality, could be used
to obtain optimal solutions by "good guesswork," Since then work has
been mainly in two areas: strong duality theorems and computational
methods.

The first strong duality theorem was established by Tyndall [26]
in 1965, and subsequently strengthened by a number of authors, e.g.
Grinold [14] and Levine and Pomerol [19]. These authors imposed alge-
braic conditions on the coefficients defining the problem so as to
directly generalize the strong duality theorem of linear programming [6]
to the case of continuous linear programs in the space of bounded measur-
able functions. Another strong duality theorem requiring a Slater con-
dition to be satisfied was obtained by Hager and Mitter [15] for a
variant of the above optimal control formulation.

The dominant theme on the computational side has been the attempt
to generalize the simplex method to a function space. In 1964 Dantzig
[9] showed that the control theory formulation with no state variable
constraints could be solved using the Dantzig-Wolfe decomposition
principle. Work on the general problem was done first by Lehman [18]

3
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in 1954 and then pursued by Drews, Hartberger and Segers [12] in 1970.
Their central idea was to mirror the revised simplex method step-by-step
in continuous time, Thus they would begin with a "basic feasible solu-
tion" which, roughly speaking is a solution whose positive values are
uniquely determined once the remaining ones are held fixed at zero. The
first step would be to compute relative "prices" backwards in time by
requiring complementary slackness conditions to hold. These prices
would then be used to identify some variable that is currently at zero
on some subinterval of [0,T], and which when increased over an interval
would yield an improved solution. This increase would be made in such a
way that the new solution was again a "basic feasible solution."

Teren [2L4] in 1977 developed a similar algorithm for the optimal
control formulation allowing, in addition, for end point constraints.
However, his regularity assumptions are very restrictive.

The role of the above works, [18], [2L] and especially [12],
has been to demonstrate that the concepts and steps of the simplex
method can be directly generalized to a functicn space setting. However,
many questions are left unanswered, and some of their suggested con-
structions need to be made more precise if they are to be developed
with mathematical rigor.

In this dissertation, we consider some of the foundational
aspects of a theory of a continuous time simplex method in the same
spirit as [12] and [18].

The first task we address is that of obtaining a useful character-
ization of extreme point solutions. This is achieved, in Chapter 2,
in the case of constant coefficients and in the class of so-called

L
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right analytic solutions. The main result there is that there is a
one-to-one correspondence between extreme points and solutions
satisfying certain full rank conditions, in a manner reminiscent of the
analogous characterization in linear programming, and also the bang-
bang principle of optimal control theory. This characterization is
used to define a "basic feasible solution" and is the foundation of
the proposed continuous time simplex methcd in Chapter 4. Examples
are also presented to show that this kind of characterization cannot
hold for the general (time varying coefficients) case. This gives
some indication that it might be meaningless to look for a general
continuous time simplex method.

In Chapter 3 we motivate the approach to be taken in Chapter L.
This is done by first reviewing the important steps in the simplex
method, and then analyzing an example in both continuous and discrete
time.

Chapter 4 is chiefly concerned with the problem of how to move
from one basic feasible solution to an improved one. The first
aspect considered is the statement of the optimality conditions. It
is well known, e.g. [12], [18], that the dual problem need not have
an optimal solution in any space of real valued functions even though
the primal may be bounded and possess a unique analytic optimal
solution. While the existence of simple examples to this effect
motivated the search for conditions on the coefficients where this
would not occur, e.g. [14], [26], it also simultaneously yielded the
realization that any continuous time simplex method would have to be
able to accommodate these cases, [12], [18]. Indeed,working in the

larger function space of distributions1 which contains the Dirac
&

See Appendix C.




% functional and its higher order derivatives allowed these dual
problems to attain their optima. However, interpreting a dual
infeasibility (related to a statement of non-optimality) in the space
of distributions requires some care, and this is an aspect ignored

in [12] and [18],

We here take the view that it is reasnnable to assume
that the primal problem is bounded. This means that the need
to work with distributions arises only in the dual. We then
formulate a new dual problem with all gquantities being real valued.
This dual is shown to be equivalent to a formulation in the space
of distributions that allows only finitely many occurrences of the 5
and its derivatives, but which nevertheless can be studied in an
entirely distribution free context. The usual weak duality theorem
is established and sufficient optimality conditions deduced.

Next is presented a new construction which, under certain non-
degeneracy and regularity assumptions, will begin with a given extreme
point solution and from there continuously trace out a path of extreme
points along which descent is obtained for at least a short while.
7t dirfers fundamentally from the usual basis change in linear
programming in that we are here simultaneously increasing nonbasic
variables having both negative and positive reduced costs, but so
that the overall result still gives descent. The approach taken here
was inspired by Dantzig [10] who suggested that dual shadow prices
could be used to find which nonbasic variables to introduce into the
basic set because their values would dominate any changes in the
objective due to corrections in the location of the breakpoints in
order to maintain feasibility. This thesis gives conditions (and
proofs) for which his conjecture holds.

6
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Chapter 5 contains the conclusions and mention of some of the
many remaining unanswered questions. The appendices contain examples,
background material on distributions and Laplace transforms, and also

technical lemmas, some of which are of independent interest.

Appendix D in particular contains an interesting existence and unique-
ness result for a set of simultaneous nonlinear equations, the solutions
to which are the breakpoints in one of the basis change constructions.
We conclude this introduction with a remark on the optimal
control problem formulated earlier, Because of the presence of mixed
control and state variable constraints, the problem is very different
in character from and substantially more difficult to solve than the
usual control problem having the state variables unrestricted. See
e.g. [15]. Indeed, the distinction between state and control variables
becomes artificial, in general yielding no additional insight. When
it is reformulated as a continuous linear program,l the state and
control variables are lumped together in a single vector. Thus, rather
than thinking of choosing a control to steer the system along a certain
trajectory, we instead take the combinatorial approach of choosing the
active constraint sets from amongst both the state and control

variables.

1.1. Notation
Let n denote (1,2,...,n}.
For B T n, let |B| be the cardinality of B.
For an m X n matrix, A, and aCm, B C n, let Aa' denote

the submatrix of A whose rows are indexed by a3 let A.B denote

1By integrating both sides of the system equation.

e




the submatrix of A whose columns are indexed by PB; let ay denote
the ith column of A, and &ij its (i,j)th element., All matrices
will be denoted by upper case letters.

Vectors will be denoted by lower case letters, with the
distinction between row and column vectors being omitted when the
meaning is clear from the context. When necessary the transpose
symbol 'T' will be used to indicate a row vector, LT, for some column
vector b. The components of a vector b will be denoted by bi'
The distinction between this and the ith column of the matrix B
will be clear from the context.

ep will denote the pth column of the identity matrix, and e
will be used to denote a vector of ones.

g(l)(t) will denote the ith derivative of g evaluated at

. g(l)(t+) will denote the ith right derivative of g, and similarly

for g(i)(t-).

|| will denote the Euclidean norm.

If I =(t',t") 4is an open interval then T will denote the
interval [t',t").

R and (@ will denote the reals and complexes respectively.

Lm[O,T] will denote the space of all real valued, Lebesgue

measurable, essentially bounded functions on [O,T]. L,[0,T] will

1l
denote the space of real valued Lebesgue integrable functions on

[0,T]. When the time interval is clear from the context, these will

be written as Qm and L1 respectively.

¢” will denote all infinitely differentiable functions

from R -R.

Ik i e L
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1,(t) =0 for t<0, =1 for t >O0.

Chapters are numbered from 1 through 5, with sections and
subsections denoted by 4.1, 4.2.1, etc. Appendices are numbered A
through E with subsections likewise denoted by C.1, C.2, etc.
Equations, lemmas, propositions and theorems are all part of the
same numbering system within a chapter. L4(25), 4.2(25), 4.2.1(25)
all refer to the same equation 25 in Chapter 4, and will be used when
referenced from another chapter.

[6] will denote reference number 6 in the bibliography.
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CHAPTER 2

ON EXTREME POINTS AND THEIR CHARACTERIZATION

AS BASIC FEASIBLE SOLUTIONS

The simplex method of linear programming is based partly on
the following fundamental results [6].

(i) If f£:R® 5R is linear, and f is bounded below on

P ={x€ R:Ax = b, x > 0)

where A€ R°*" and b€ R®, then f attains its infimum
on P at an extreme point of P.

(ii) x € P is an extreme point of P if and only if A.B has full
column rank, where P = {i:xi > 0}.

Because of the characterization in (ii), extreme points of
polyhedral sets are also called 'basic feasible solutions.’' Note
that there can be at most m positive components in any basic f:esible
solution.

In this chapter we shall investigate to what extent similar
statements may be made in the context of continuous linear programs.
We shall begin with the general case, and then specialize various

aspects of the problem.

The general problem under consideration is

10




Minimize
T
fix) = [ e(t) x(t)dt
0
(1)
Subject to

%
B(t)x(t) + [ K(t,s) x(s)ds = b(t)
0

x(t) >0

Xn n

where K(t,s), B(t) € R™*", x(t), c(t) € R%, and b(t) € R" for
al) 8, t€ [0, 8 <%
It will be useful to write the constraints in operator

shorthand:

where A maps the function x to another function denoted by Ax
and defined by
t
(Ax)(t) = B(t)x(t) + [ K(t,s) x(s) ds.
0
In order to complete the problem definition we necd to specify
the spaces in which the variables and coefficients lie, e.g. Lw.
This will be done when required.
For a given space X and constraint coefficients B(.),

K(+,*) and b(:) define
P(X) = {x € X":Ax = b, x > 0)

where denotes all n-vectors of elements in X. P(X) is easily

seen tobe convex, and will be assumed nonempty.
11
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We shall identify any two functions that are equal a.e., and
likewise require the constraints to be satisfied a.e. 1In particular,
if x 1is an extreme point of P(X) and y = x, a.e., then y is

also an extreme point of P(X).

2.1. Extreme Points as Optimal Solutions

The result that would be most desirable is the following:
if X 1is a given space of 'nice' functions, and if a continuous
linear functional f is bounded below on P(X) then f attains its
infimum on P(X) and moreover does so at an extreme point of P(X).
However, without severe pre-conditions on the coefficients defining
the problem, the only case when this appears possible is when X = L,
and P(Lm) is bounded. One complicating factor is that while the
notion of extreme points is purely algebraic, one seems to require

heavy topological machinery to establish merely their existence.

(2) Theorem. If the components of c¢(-), b(+), B(+) and K(-,*)
are all in L, and there is an M >0 such that x € P(L ) = [x(t)[<M
a.e. then f(°) attains its infimum at an extreme point of P(ym).

The proof of this result will follow immediately from the
following well-known lemma once the compactness of P(Lm) is

established in a suitable topology.




(3) Lemma. Let Y be a locally convex Hausdorff space and let
f:Y >R be concave. If Q T Y 1is compact and f 1is lower semi-

continuous on Q then f attains its infimum on Q at an extreme

point of Q.
Proof. See [16, p. T4]. o

(4) Lemma: Compactness of P(Lw)

Under the conditions of Theorem (2)
(i) P(Lm) is weakly compact as a subset of Lg.

(i1) P(L_) is weak * com.pa.ct.l

Proof.
(i) sSee [14, p. Lo].
(ii) The proof of this is in the same spirit as that of (i) and will

be omitted. ]

Proof of Theorem (2).

n
&

(4) P(Lm) is compact in Y. Since ¢ € L:, f is continuous on Y.

Let Y be the space L. with the weak topology. By Lemma

Noting that Y 1is a locally convex Hausdorff space, we can apply

Lemma (3), and the proof is complete., O

lFor interest sake we state both compactness results even though
only one is required.

13
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Remark. The same proof is valid if we choose Y to be L: with

the weak * topology.

In practice we would like to have optimal solutions that are
more manageable than general measurable solutions, for example piecewise
analytic solutions having only finitely many breakpoints. Theorem (2)
unfortunately is the best statement available and it is still an open
question whether or not it can be improved upon even in very special
cases. Even if we know that the optimum has, say, a piecewise analytic
solution, there is no guarantee that there is a piecewise analytic
extreme point solution. However, there is a motivation for continuing
the study of extreme points in more useful spaces, given by the

following simple result.

(5) Proposition. If £:X* 5 R is concave and x 1is the unique

minimizer of f over P(X), then x is an extreme point of P(X).

Proof. This follows immediately from the concavity of f and the

definition of an extr:ame point. 0O

2.2, Extreme Points as Basic Solutions

Let us begin by reviewing the proof of the characterization
of extreme points in R? given at the beginning of this chapter.

We have a given x € R® satisfying

Ax = b, x>0,

14
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The necessary and sufficient condition for x to be an extreme point

has full column rank, where B

is that A. {is5c. > 0],

1
N + (1-A)z for

p
To show the sufficiency, we write x

A€ (0,1) and some y and 2z satisfying the constraints, and then

show that x =y = x., Set o = {i:xi =0}. x O, y>0 and 2z >0

[0

implies y_=2z_ = 0, Therefore A, b. Since

=A, .z, =A, x =
o o B¥p BB BB
A, has full column rank these equations have a unique solution, and

g

we are done,

To show the necessity, assume that A.B does not have full

column rank., Then there exists a yB # 0 such that A'ByB = 0.

Setting ¥, = O and noting that x_ > O, there is a 6 > 0 such

B
that x + 6y >0, x - 6y > 0. Hence writing x =

=

(x +0y) +2(x - 8)
shows that x 1s not an extreme point.
It is precisely these two steps that we shall mirror in the
continuous case, namely
(1) Dbeing able to solve uniquely for the positive components when
the remaining ones are held at zero, and
(ii) being able to perturb the positive components to either side vhen

they are not uniquely determined.

Before continuing, we remark that in order to obtain a similar
characterization in a function space we shall have to severely restrict
the class of admissible solutions as well as the constraint coefficients.
The reason for this is that the constraints in (1) can have extreme

points for which no characterization of the above form is possible.

15




Example B(1l) is such a case. Also, for computational purposes it would

be preferable if we could solve locally for x(t) at time t, without

any considerations of the future. In Example B(l) the values of x

on [0,1) are determined by constraints that hold over the interval

(1,4). In Example B(2) the slope of x at O, and hence the whole

solution, is determined only at time T by the restriction x(T) = 0.
As in the case of linear programming we are here aiming at

the following restatement of the continuous linear program (1):

Choose a partition of [0,T] into time intervals [Ij] and an

associated partition of the variables {(aj,sj)) such that with

2, = 0O on Ij’ the remaining variables xB are uniquely determined,
J 3

and yield the optimal solution. By our comments in the preceding
paragraph, we moreover want the value of x(t) to be determined only
by our choice of which variables are to be held at zero on [O,t],
and not by what happens to the right of t.

In the remainder of this chapter we shall work with the space

of right analytic functions, defined below.

(6) Definition. A function g:[0,T] - R will be called right analytic
if for each t € [0,T), there is an ¢ > 0 and an analytic function

h: (t-e,t+e) > R such that g(s) = h(s) Vs € [t,t+e).

We shall let ar denote the space of bounded right analytic
functions on [0,T]. The required properties of these functions are
established in Appendix A. Our motivation for choosing the class Gr
is that it seems to be the largest class for which the local uniqueness

result, Proposition (9) below, can be established.
16




The following is a key result in the subsequent analysis.

(7) Lemma. Let g:[0,T] - R® have right analytic components
gi(-), i=1,...,n, Then there exists a (possibly infinite) disjoint
family of open intervals, (Ij}, such that U Tj = [O,T),1 and such

that for each interval 1., each 8 satisfies

J
i g is analytic on 4
i i lyti IJ

(ii) either ]gil >0 on Ij or g =0 on Ij'
Proof. See Appendix A. O

For a given x € P(ar) and its associated partition [Ij}’ let

),

"

o [i:x1 =0 on I

J J

and

>
]

{i:xi >0 on IJ) .

Let t' and t" denote the endpoints of I Then using the constraints

J J J
(1), the equation for x on I becomes
P3
> 3
(8) B., (t) x, (t) + [ K., (t,8)x., (8)ds = d’(t)
B B e P B
J 3 tj by J

. t
for all t € [t},t]), where a’(t) = b(t) - J K(t,8)x(s)ds .
0

e 1= (t',t") 1is an open interval then I denotes [t',t").

17




(9) Proposition. Let x € P(Gr) and let {Ij] be the associated
partition of [0,T] given by Lemma (7). If equation (8) has a

unique right analytic solution on each interval T then x is an

'j)
extreme point of P(Gr).

Proof. Suppose that x 1is not an extreme point. Then there exist
y, z € P(&r) and A€ (0,1) such that x = Ay + (1-7\)z

and for some t € [0,T), x(t) # y(t). By Lemma A.5 there exist
0<r<s<T suchthat x =y on [0,r) and x#y on (r,s).
By Lemma (7) there is an interval Ij = (t&,tg) of the partition

such that t! <r< tg. By analogy with the sufficiency argument

J
presented in Rn, it is clear that on Ij’ yB satisfies
J
t :
B.B (t) Vg (t) * [ K'B (t,s) Vg (s)ds = ed(t)
J J té J J

for gll € [té,t;] where

!
(5] = b(t) - IJ K(t,s) y(s)as -
0

However, since y = x on [O,r), it follows that eJ(t) = dj(t)

on IJ' Thus satisfies (8) on I.. Since Ty =X, =0

N
Py J y %

on IJ’ Vg # Xg on Ij n (r,s) # ¢, contradicting the uniqueness
J J
hypothesis, O

18




Remarks.

(i) In sum we have shown that being able to solve uniquely for the

positive components locally is indeed a sufficient condition for

a right analytic solution to be an extreme point. The important

part in the proof played by the right analyticity was that when
given x, y € P(Gr) with x £y, we could find an earliest
interval, Ij’ in the partition, on which x # y. An example
where we cannot find a first interval is the following: Let
x(t) = [% sin(l/t)]+ (i.e., positive part), and y(t) =t on
(0,1]. Clearly, in the partition of [0,1] induced by x,
there is no first interval on which x and y differ., Note
further that the theorem is false if the solution is right
analytic but we choose a partition {Ij] that does not satisfy
(0,T) = u;:l TJ.. This is illustrated in Example B(2).

(ii) Example B(1l) shows that local uniqueness is not, in general,

a necesgsary condition for a solution to be an extreme point.

We can now proceed to find algebraic conditions on the coefficients

that ensure unique solutions to equations of the type

t
(10) D(t) x(t) + [ L(t,s) x(s)ds = g(t), t < [tr,t")
tl
Since, by Example B(1), such conditions cannot in general also be
necessary conditions for uniqueness, we shall confine ourselves to

the case where the necessity has been established. This is the time

invariant case, i.,e, when D and L are constants.

19
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Before doing so, we remark briefly that in the event
D(t) = I, equation (10) is a Volterra equation of the second kind, and
it is well-known that such equations always have unique solutions,
provided that the coefficients gi(') and Lij(-,-) are in L,.
See for example (25, p. 10]. Thus if D-l(t) exists a.e. and
(D-lg)i, (D-lL)ij € L,, we also obtain uniqueness. In general, however,
D(t) may be singular. This case has been studied by DoleZal [11],
and in differential equation form by Silverman [2%]. However their
work provides only a partial answer, and a general succinct unique-
ness condition has, to our knowledge, yet to be discovered.
In the time invariant case, equation (10) reads
t
(11) Dx(t) + L [ x(s)ds = g(t), € T8, 80 .
£
This equation has been thoroughly studied in its more conventional
differential equation form by a number of authors. See for example [5],

[11], [23], and also Appendix C. The uniqueness condition we

require is the following:

(12) Lemma, If the components of g(+) are analytic and x satisfies
(11), then a necessary and sufficient condition for x to be the
unique analytic solution is that there exist a scalar | such that

uD + L has full column rank,.

Proof. See [5]. O
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Remark. This full rank condition has several interesting interpre-
tations, If D and L are square, then D + L has full rank iff
det(uD + L) 1is not identically zero as a function of u.l On dividing
by . and setting ¢ = 1/, the condition reads: D + ¢L has full
column rank for all ¢ sufficiently small. If we replace (11) by

its discrete time analog using time intervals of stepsize ¢, we
obtain a block lower triangular coefficient matrix with each diagonal
block being D + e¢L., Clearly this block triangular matrix has full
column rank iff D + ¢L has full column rank. Another interpretation
can be made by taking Laplace transforms on both sides of (11) with
dummy variable . The coefficient matrix of the Laplace transform

of x so obtained is precisely D + & L.2
vl

In order to show that this full rank condition is also a
necessary condition for a solution to be an extreme point, we require

the following lemma.

(13) Lemma, If there is no scalar |, such that ;D + L has full
column rank, then given any 1 > O, there exists a nontrivial analytic
solution to the homogeneous equation

t

(1k) : Dx(t) + L [ x(s)ds =0, >0
0

1Note that det(yD + L) is & polynomial in . Hence it is zero either for

all |, or for at most finitely many .

2‘)See also Appendix C,

2%
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satisfying

Proof. We use an argument similar to that given in [ 5, p. 418].

By assumption, for each u there exists a nonzero (constant) vector

® such that (yD + L)p = O.
M M

If D has k columns let M > 2k be any integer and let

s ooy be any distinct scalars. Let G be the following

2k X M matrix:

Since M > 2k the columns of G are linearly dependent. Hence there

exists a nonzero vector n = (ql,...,nM) such that Gn = 0.

Set
M u_.t
X(t) = T]ip,ie 4 0} .
i=1 ek

Then it is easily verified that x satisfies (14) and that
U

[ x(s)ds = 0. Moreover, x 1is not identically zero. 0
0

We can now obtain the main result of this chapter.
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(15) Theorem., Characterization of right analytic extreme points.

Let x Dbe right analytic and satisfy

t
(16) Bx(t) + K [ x(s)ds = b(t), x(t) >0, &t € [0,T],
0

where B and K are constant. Let {Ij} be the associated partition

of [0,T] given by Lemma (7), and define

Q
I

{1:xi =0 on Ij]

™
]

e
{1.xi 0 on Ij}

Then a necessary and sufficient condition for x to be an extreme
point is that for each Jj, there exists a scalar My such that

1 .Be + K. has full column rank.

g N B

J J

Proof. Sufficiency. By Lemma (12), x is uniquely determined on

B

fj' By Proposition (9) x 1is an extreme point.

Necessity. Suppose there is a j such that for all |, “B°B b K.B
J 3
does not have full column rank. Since Xq &) >@ on Ij’ there
J
is a closed interval [u,v] < Ij and an ¢ > O such that xi(t) > e

for t¢€ lu,v] and 1€ Bj. By Lemms (13) there exists a nonzero

analytic Ya (+) satisfying
J

23




#
Bio ¥, (t) K., [ v (s)ds =0, t € [u,v)
Bj ﬁj Bj % Bj
and
v
[ ¥, (d)ds =0
u Bj

Rescale so that ]yi(t)| <e forall t<[uv) and 1€ Bj'

By construction of in Lemma (13) this can always be done.

Set y,=0 on [u,v) and y =0 on [0,7]\ [u,v). Then by
J .
construction y satisfies

t
By(t) + K [ y(s)ds =0
0

and

x(t) + y(t) >0

x(t) - y(t) >0
for all t € [0,T]. Hence both x +y and x -y satisfy (16). .

Since y 1is not identically zero, it follows that x is not an

extreme point. 0

2.5. Definition of a basic feasible solution

With the above characterization of right analytic extreme
points, we can now make precise the notion of basic feasible solutions
in continuous time. This will be fundamental in laying the ground
work that will be used in the remaining chapters to develop a con-

tinuous time simplex method,

ol
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From now on we shall concern ourselves only with extreme points

having finitely many breakpoints,

(17) Definition. Let x:[0,T] —» R® satisfy

t
Bx(t) + K [/ x(s)ds = b(t) , x(t) >0, t € [0,T]
0

where B, K € ijxn. Then x will be called a basic feasible solution

if there are finitely many points

= < oo =
0 to tl < < tk £

and for each j = 1,...,k, a partition (aj’Bj) of the variables such

that
(1) gyl =w
(ii) xaj(t) =0, t € (tj_l,tj)
(iii1) det(uB., + K., ) #0 for some .
5 B
J J
If in addition Xg >0 on the open interval (tj_l,tj)
we ol # 2
for each j, and xr(tj) >0, xr(tj) >0 for r & aj n Bj+l 3
then x will be called non-degenerate. On the interval {tj_l,tj),
XS and X, will be called basic and nonbasic variables respectively.
J J

Note that if b(*) is analytic then by the result of
Proposition C.3(18) any basic feasible solution x will, for each

interval tj), agree with some function yJ(+) that is analytic

O
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on a neighborhood of j t 1
the left and right limits, x( )(

§=.o0,k 204 812 £ =0,1,2 ..

In particular this implies that both

t7) and x(l)(t;) exist for all

26
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CHAPTER 3

THE SIMPLEX METHOD IN R"™ AND CONTINUOUS TIME VERSUS DISCRETE TIME

The purpose of this chapter is to motivate the approach we
shall take in developing the theory of a simplex method in continuous
time, In Chapter 2 we saw that it was possible to characterize all
right analytic extreme points as "basic feasible solutions" in a
manner very much akin to that of linear programming. Here we show
that the naive generalization of the simplex methcd to continuous time
is inadequate for this class of problems and that additional new

techniques are required.

3.1. The Simplex Method in R"

We first briefly describe a single iteration in the simplex
method. While this is well-known [ 6 ], we present it to illustrate
and motivate the approach in continuous time.

The problem is

minimize: cx

(1)

(1
=

subject to; Ax = b, x >0, x <

Let x be a given feasible solution. Then for any A

ex = cx + A(b - Ax) .

a7
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Upon rearrangement this becomes

(2) ex = (¢ = M)Xx + Ab. 2

To obtain an algorithm, the following condition is

required,

(3) Complementary slackness condition.

X > 0= ey - %A.i =0, 1=l een

The following simple but fundamental lemma follows immediately

by inspection.

(4) Lemma, Let x and A be given as above and suppose that the
complementary slackness condition (3) holds. Then if e - }A.s <0,
and Xg (currently at zero) can be increased so that only the
positive components of x need be adjusted to maintain the relations
Ax = Db, x > 0, the new solution obtained in this way will have a lower

objective value. O

The simplex method uses this lemma in the following way.
Begin with any extreme point x, and let B = {i:xi > 0}.
For this discussion we assume ''mondegeneracy,'" i.e. the matrix A'B

is square and nonsingular. Proceed now as follows:

Step 1. Solve for the prices. Require complementary slackness, i.e.

cB - %A.B = 0, and solve uniquely for ).
1c - M 1is called the reduced cost of x.
28
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Step 2. '"Pricing": Select £ such that B, xaz < 0. If no such
f exists we are optimal--stop.
Step 3. Represent the incoming activity: Solve the system A,ByB = az.
Step 4. "Minimum Ratio": Increasing X, to some level 6 yields
a new xB given by
! =X - y.6
B 5%

To obtain the maximum decrease in the objective, increase 6

as far as possible, but maintaining xé = xB - yB

Under nondegeneracy precisely one component of xé, say

6 > 0.

x;, will be zero., r is determined by

R
r = argmlnl ;; s yi >0

and the maximum 6 is given by

(s

]
'<:I »
R IR

where we set y;B = 0. Define the new basis to be

B' =B U {£} ~ {r}, set xé = 6, and proceed to Step 1. m]

3.2. Continuous Time Versus Discrete Time

A priori there appears little reason why, without any further

qualification, we cannot apply the above simplex steps to the continuous

time problem, The point to note, however, is that if we are to work

with solutions having activities basic over intervals of time, then
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in order to get a decrease in the objective value by a change of basis,
this change will have to occur over an interval(s) of time. The
discrete time analog of the above process would correspond to a simultaneous
exchange of many activities outside the basis with those in the basis,
This differs from the simplex method where we do these exchanges one
at a time,
In this case, however, Lemma (4) still applies: By a simultaneous
increase of several activities having negative reduced costs, we can

still obtain a strict decrease provided we only adjust existing positive

(basic) activities to maintain the constraints. What goes 'wrong' in

continuous time is that without some basic variables becoming negative,
this can seldom be done. In order to make a change of basis over an
interval of time, we usually in addition have to adjust nonbasic
activities, which may well have positive reduced costs. However, once
we do this there is no immediate reason why the intended change of
basis should yield an improvement.

Let us illustrate with an example,.

(5) Example.
2
minimize: é {(t-2)xl + 2x, + txj}dt
¢ t
subject to: A : xl(t) -f xe(s)ds = 1=t
0
xgx x2(t) + xB(t) =2
x (8) 20, te€[o,2].
30
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We shall first show that what happens in continuous time and
then interpret this carefully in discrete time,

Begin with the following basic solution:

= [0,1): xl(t) 1= %, xg(t) 0, x3(t) = 2

n
o

[1,2): xl(t) x (t) = xj(t) =‘l

2

By requiring complementary slackness over these two intervals,

we can uniquely solvel for the prices A(-), and obtain:

hs % ey = =
(1,2): Al\t) 1
A(t) =t
El(t) = £=1 >0
[0,1]: Al(t) = t-2
xgkt) =t

where Ei(') is the reduced cost of the nonbasic variable xi on the

appropriate interval.

Examination of the reduced costs shows that we should increase

X, in the first interval. Suppose we do this by exchanging X, and !

X on the interval [0,¢), e > 0. This will yield the following

solution on [0,1):

1This procedure will be well defined later on,
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[O;E): xl(t) =2, X5(t) =

[611): xl(t)

]
—
+
n
o~
!
ct
-
~
no
—~
ct
~
I
]
no

= 0, x5(t)

To obtain the new solution on [1,2], we would like to maintain

basic the same variables as in the original solution, i.e. x, and

2
Xy Thus, keeping x, = O over [1,2], we require x, and X5 to
satisf
¥ t
- [ x,(s)ds =1 ~t + 2¢
1 T E[1L2]
+ X = 2,
xg(t) xj(t)
However, the only solution to these equations is
xg(t) =1 - 2e¢5(t=1)
£ € [1,2]
x,(t) = 1L + 2e5(t-1) ,
7
where 5(t) 1is the delta functional.l
We observe immediately that x_(t) = = a%t t =1, and thus

X, there fails to satisfy the nonnegativity restriction. Hence it

is not possible to adjust only the basic variables and remain feasible,
If we did not require X, = O over [1,2], and instead held

it fixed at xl(t) = 2¢, its value immediately prior to t =1, we

would obtain the solution

xl(t)

n
no
m~

x, (t)

"
—

t € [1,2]

)
[
.

X, (t)
w

15 may be thought of as a "function" that is zero everywhere except at

the origin where it is so large that it integrates to 1. See Appendix C,
32
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However, this solution is not a basic solution and moreover has an
objective value that is greater than that of the original solution.
This is because the reduced cost of X, over [1,2] 1is positive,
and in this case keeping x1 at 2¢ over [1,2] yields a positive

contribution to the objective that dominates the decrease obtained

over [0O,c). See Figure 1 below.

xl “

\\ attempted new x1

\——-o—-——-c - - o

FIGURE 1

The approach we shall pursue will be to allow the breakpoint at
t =1 to adjust so that x, can be allowed to reach zero continuously
and then be kept at zero level from then onwards. This will yield the

following solution:

33
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[0,€): xl(t) =1+t 2.{t) =2, x.(t) =0,
¢ 2
[e, 1+2¢): xl(t) =1l+2=-t, x(t) =0, xﬁ(t) =20
[1L+2¢, 2): xl(t) = 0, x;)(t) =1, xﬁ(t) =1,
\.--._-——-s-- e
€ 1 1+2¢ 2 %
FIGURE 2

Here we have preserved on t > ¢ the same sequence of basic
variables as before and have only altered the timing of the change
over from [xl,xj] to {xq,xj}. Thus we end up with a new basic

feasible solution. In addition, even though x, 1is now positive

L
over the interval [1, 1 + 2¢) where it has a positive reduced cost,
it turns out upon recalculation of the objective value that an over-

all strict decrease is achieved for ¢ sufficiently small, Indeed,

3L

— — U PTUSS————

xR - o e o TR

e,
% e

o~




setting ¢ = 1/3 yields the optimal solution (easily verified by
recomputing the new reduced costs).

If, for a given ¢ sufficiently small, we consider this to be
a single iteration, then it is certainly not a case to which Lemma (L)
applies. However, as the analysis of the discrete case will show,
we can think of this as an infinite number of basis changes, switching
back and forth between t = O+ and t = 1+, and accompanied by
repricing an infinite number of times.

To discretize the problem, we divide the time interval [0,2]
into N intervals of equal size, and approximate the integral using
the leftmost function values. Let 5 = 2/N} Then the discrete formu-

lation becomes

N-1
minimize: 2, {(k&-2) x,(kd) +2x (k&) + kbx,(k5)}5
i 2 B
k=0
subject to:
r-1
Al(rﬂ): xl(rﬁ) = 2 x2(k6)6 + (1 - rd)

k=0

A2(r6): x2(r5) + x3(r6) =2

xi(rS) >0, eyl

The detached coefficient tableau is given in Table 1,

The initial discrete basis, corresponding to the initial
continuous basis (6) is indicated by the heavily circled elements
in the tableau. These are the pivotal elements. Note that for

lNot to be confused with the & functional.
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<1, Xq and x are basic; at t =1, all of Xy, %5, x5 are

5

baglie; for 1<t <2, X, and X,
2

are basic, and at t = 2, only
o

xj is basic. Thus in the discrete case, we have a surplus basic
variable at t =1 and are one short at t = 2,

We now solve backwards in time for the prices. As in the
continuous case it turns out that xg(O) has a negative reduced cost.
Increasing XP(O) has the effect of dropping x?(l) from the basis.
This exchange is indicated in Table 1 where the element - with

the dotted circle is not the new pivotal element for xq(O). Note

that the surplus at t = 1 has now shifted to t = 0.

Table 1
x(0) x(8) x(28) x(1-8) x(1) x(1L+8) x(2-8) x(2)
(cosT) c(0) cls) c(28) c(1-8) e(1) c(1+8) c(2-8) c(2) (RHS)
0 0

A(0) P R

o 1 @)
A(B) 0 - O

0 0 0
ey [ e

0 0 0
M) [0 2 00 00 0

0 0 0 0 00 0 0 @
ay [0 8 oo 0 0 0 0 o@® oo

o 00 0 0 o 0 0 o0 1@

s —‘

Aaeg)f0 ® QO © 00 5 0 rmr 0o -5 00 @od 00

0 00O O OO OO EXCHAWE O 0 0 0 0 0 0 1@

0O <86 00 6 00 <80 o 600 -600¢€o0T1
Maay[0 2 00 800 50 0O <6 00 500 50

0O 000 00O 0O 6 500 060 090
Aa2-s) [0 8 00 800 60 0 % 00 <50 0 <6 0

0 000 000 00 e 0900 600 00 Y
\#) [0 400 00 50 O 5 00 <600 -850

0 000 00O 0O 0 0600 000 0¢

e(t) = (v-2, 2, t)
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The next step is to solve again for the prices. However in
this case we cannot sequentially solve backwards for A(+), since the

value of Al(l + &) can only be determined once the value of xz(o)

1.4 3) = s% - %, so that as

5 -0, %l(l + 5) » o, The reduced costs of the nonbasic variables

has been found. Solving yields Al(

are all of order unity except for that of x

3 3
G- of = o

1(l + &) which has value
<< 0. Hence we now introduce xl(l + &) into the basis.
This has the effect of dropping x5(0), and so transfers the basis
surplus from t =0 to t =1+ &, See Table 1.

Below we sketch the effect of these two iterations on x,(-).

Clearly, the simplex method in discrete time is behaving in
the same way as the proposed step in the continuous case for small e.

The remainder of this thesis will be devoted to making
rigorous the above principle in continuous time, viz.: if an activity

prices out favorably, then without further pricing, it can be in-

creased over a sufficiently small interval to yield a decrease in the

objective value,.

x }
) nitial solution
iteration 1
iteration 2
&
X . - —
0 o) L 1+5 1+26 2 %
FIGURE 3
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CHAPTER 4
ON A CONTINUOUS TIME SIMPLEX METHOD
In this chapter we develop a theory for a continuous time simplex
method. First we consider the optimality conditions and the notion of a

reduced cost in continuous time. Then we show how to move from one

basic feasible solution to a nearby one with a lower objective value.

4,1. Optimality Conditions and Weak Duality

As in the simplex method, or most other constrained optimization
problems, the first step is to modify the cost functional by adding to
it certain linear combinations of tlhie constraints.

Recall that our problem is

i
minimize: [ c(t) x(t)dt
0
t
subject to: Bx(t) + K [ x(s)ds = b(t)

0

x(t) >0, te€ [0,T]

where we assume that b(+) and c(*) are analytic, and B, K € I el

The following Lemms is easily obtained.
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(2) Lemma, Let x(-) satisfy (1), and let 01t0<t1(-~<tk:T

be any points such that the derivatives x(J)(ti-) exist for all

v .
SRS PR mdogjgz} Mt%:mﬂjaﬂ Mamfmdmf

and le’ j=0,,...,£4, i =1,...,k be any vectors in B, Then

T
(3) é c(t) x(t)dt

T T
=/ N@®) p(e)as + X X vt (e,)
0 i=1 j=0
T N ST T
+ [ S(t) x(t)at - ¥ % 3ot x'9 (t7)
0 i=1 j=0

where o(+) and (39} are defined by

. * L & ¢
(4) c(t) =c(t) =N (t)B-f AN (s)dsK - Z v K 1,(t, -t)
t i=1
(5) L S L P

Ji

and we define v =0 for J > U

Proof. By assumption we may differentiate the constraints (1) and

evaluate all quantities at t = t;. Thus

lSome k, £.
2 *
We assume both x and A are integrable,

%1, (¢)

n

O 2 Tt <0

]

1 32 20,

9




where we define

t
x(-l)(t) = [ x(s)ds .
0

Now left multiply the (i,j)th relation by in and add it to the cost
*
functional. Also, left multiply (1) by A (t), integrate over [0,T],

and add that result to the cost functional. This yields

T
[ e(t) x(t)dt
0
5 B ¥
= [ c(t)x(t)at + [ N (t){b(t) -Bx(t) -X [ x(s)ds)dt
0 0 0

i Sy . :
% L ox vjl[b(J)(t.) i Bx(J)(t;) - Kx(J'l)(t;)]
k=1 j=0 "

Interchanging the order of integration and regrouping terms yields

the result. &

We remark that Lagrangian constructions of this type con-

sidered by previous authors in this area (see Chapter 1) have been

concerned only with the case le = 0. F¥or our purposes, however,

allowing them to be nonzero is essential. We shall later see that

the le can be interpreted as the coefficients of &'s and their
(3) 1

higher order derivatives, & .

lSee Appendix C for definition of 6(3).
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Observing that x(t) > O and that the derivatives x(J)(t;)
are unrestricted in sign for j > 1, we can now use Lemma (2) to define
the natural dual of problem (1), and make a statement about weak
duality.

The dual problem reads as follows:

Find time points O:rt0< tl(---<”tk> T, constant vectors

3 *
(VJi = Rm, and a function A :(0,T] - R® so as to
- e R
maximize: [ A (t) b(t) dt + ¥ X v b (t;)
0 i=1 j=0
* T « X o1
(6) subject tos A (t)B+ [ A (s)dsK+ 2 v K1+(ti-t) < c(t)
& i=1
vOlB & V1,1K <o

yitg + T hidg o o

S E (0,81 320 diccisds £=Lnk

(7) Lemma. Weak Duality.

5 ;
Let the triple (N, {v13), {t;)) be any feasible solution
to the dual constraints (6), and x any feasible solution to the

primal constraints (1) that possesses left derivatives x(J)(t;).

Then
T S B0 i
(1) [ e(t) x(t)at > [ AN (t) b(t)at+ & T o (t,)
0 0 i=1 j=0
L1
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(ii) Equality holds in (i) if and only if the following conditions hold.,

For r =1,...,n and almost all t € [0,T)

(a) xr(t) > 0 implies
T K
* * 01
A (t)b + [ N (s)dsk + vk L (b -t)  =c (t)
t i=1
(b) x.(t]) >0 implies
\pib + vl’ik = 0
i 5 r

(iii) If equality holds in (i) then x is an optimal solution to (1)

*
and the triple (A, {vji}, [ti}) is an optimal solution to (6).

Proof. This follows immediately from Lemma (2). a

Conditions (a) and (b) are complementary slackness conditions.

" i
In order to make them apply to any triple (A, [in], [ti}) that

need not be dual feasiblel, it will be convenicnt in addition to make

a statement about when we require the higher order terms v

to be zero.

(8) Definition. Complementary Slackness Condition

i

b+
1

L
o

*
Let (A, (vji], {ti]) be any triple, and x a feasible

solution to (1) that possesses left derivatives [x(j)(t;)]. Then

*
"The triple (A", (vil}, (t;)) will be said to be dual feasible if

it satisfies the constraints in (6).

L2
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% .
x and (A, {in}, [ti}) will be said to satisfy the complementary

slackness condition if (a) and (b) of Lemma (7) hold, and in addition

condition (c) below holds:

(c) xr(-) is not identically zero on the interval (ti - 5, ti)
for any © > O implies
lebr+vJ+l’lkr=o, 1< 3<8 ., 0

Note that if (A, (v'1), (t;)) is dual feasible and satisfies
(a) and (b), then (c) is automatically satisfied.

Lemma (7) provides us with a useful means of verifying that
a candidate solution x 1is an optimal solution. We simply pick
any time points (ti], find (if possible) a %*(-) and {vji)
that satisfy the complementary slackness conditions, and then check
to see if the triple (A*, {vji], {ti}) is dual feasible. If so,

x 1s an optimal solution.

In order to exploit this fact, it will be important

to use the complementary slackness condition to define the dual varisbles,

As in the simplex method, and as we shall show here, this can be done

when x 1is a basic feasible solution., For such an x, we use the

*
[ti] given by its induced partition of [0,T], and then require A

and [in] to satisfy

T K
*
(9) Ny +[ N(sdas Ky + I vPKeg =g ()
o i rei i i
vjiB.B + v3+1’ix.6 -0
i i
03<i, L€ (ti-l’ti) flor &= L.,k
L3
e e W N % -:Jﬁiiﬁx T
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% :
Note that if A and [vjl] satisfy (9) then complementary
* ’
slackness holds between x and (A, (in), {t.}). However, the
i
converse is not true in general since even a nondegenerate x may have

xr(t;) =0 for »€E B (some r, i) which then relaxes the

1
restriction

p
N R e B
r r

This will become important later on in Section L4.5.
Note also that in terms of &(+) and {EjiJ defined in (k)

and (5), (9) reads

T i
CBi( ) =0, te (¢, ,,t)

gt ag, 0< j<2 \
By =00

for 1=1,...,K.

We now show that (9) uniquely determines A* and (vji],
and interpret the {Vji] as the coefficients of the & functional
and its higher order derivatives, 6(3).

For the following lemma we shall assume that the reader is

familiar with Appendix C which contains definitions of and facts

about the [6(3)} and more general distributions.

(10) Lemma. Let {ti] and {Bi], i=1...,k be given, and assume
-1
)

that for each i there is a scalar |, such that (uB.B ¥ K.B
i -F

exists. Then if £/ > m,




‘ WD s e

" .
(i) (9) has a unique solution (A , [in}), which moreover necessarily

satisfies in =0 for j>m.

- :
{11y €x, {in]) is the unique solution to (9) if and only if A(+)

defined by

% k m e Z
M) =A(8)+ T T VJl&(J)(ti - %)
i=1 =0

is the unique distributional solution to

T

+ [ A(s)ds K.B "ty (Bt e N (E
2 RS i =

(1t) A(t)B.B

> e
Proof. Note first that if (A, {v2')) 1is a solution to (9) then A

defined as above is a distributional solution to (11). By Proposition

C.3 (18) and the assumption that (“B'B + K.B )-l

1 i
it follows that (11) has a unique distributional solution of the form

exists for some |,

given above for A. Further if any such A satisfies (11), then
8(1)

equating coefficients of on both sides shows that the components

. e
A and (') of A satisfy (9). O

With the aid of Lemmas (7) and (10) our initial step in a
continuous simplex method is now complete. We begin with a basic
feasible solution, x, and compute the unique '"prices" k* and
{vji) after requiring that (9) holds. We then evaluate the reduced

costs c(*) and [aji)-

—r ""'—""_‘b_/: f - . VR Tl 7 R 1 ”‘i’”‘?i' 2
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If
c(t) > o, t € [0,T]
3t <o
for 3 =21,,..,m 4 =1,...,% then x 418 an optimael solution. I

not, we use the fact that one of these conditions has been violated

to attempt to obtain an improved solution. This will be the subject of

the remainder of this chapter.

Remark on the Statement of the Dual Problem

In general the dual problem as stated in (6) will not always
have an optimal solution. This is because we may in géneral require
more than a finite number of breakpoints, and thus m;re general distri-
butions than firite linear combinations of functions and the b(i).
ﬁowever it seems that this will only occur when the primal problem (1)
has an optimal solution x with infinitely many discontinuities
either in x or in x(jX

In the space of distributions the dual problem thus

reads:
B
maximizes [ b(t) A(t) dt
0
b
subject to: At)B + [ A(s)ds K < e(t) , t € (0,T]
t

for A€ p', where the terms with | signs have their usual distributional

meanings.
L6
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e

Since the only signed distributions are measures, any feasible
A will have to be such that 7(t), defined by
i

m(t) = AM(t)B + [ A(s)ds K,
t

is a measure. This corresponds precisely to the requirement

Ji

41 i
i 4 VJ Lok

K =0, i>1
in (6), i.e. the "distributional part" of 7 must vanish.

That a strong duality theorem always holds for A € D' is

still to our knowledge an open question.

.2. Improving the Solution When Some Reduced Cost Ee(t) <0

We are now in a position to consider moving from one basic feasible
solution to a better one. Assume that we currently have a basic feasible
solution x, and that we have computed the reduced costs E(') and
{aij} after sclving (9). The case we consider here is where
Ez(t*) <0 forsome £ and some t € (tj_l,tj). Since 52 is
continuous on any such interval, there will be an interval about
t* on which EZ < 0. Without loss of generality, we shall assume
that t = o0. |

The following major assumptions will be made throughout the

remainder of this chapter.

L7




(I) The constraint set is bounded (in L ).
(II) All basic solutions encountered are nondegenerate,

as defined in Section 2.3.

We shall now attempt to introduce x into the basic set

Y/
over [0,e), some sufficiently small ¢ > O, in such a way that a
decrease in the objective and a new basic feasible solution are achieved.
This will be done in two stages. The first will be to make a local
basis change on [0,c) without regard to what happens beyond t = e.
The second stage will consist of adjusting the solution on t > ¢
(if necessary and/or possible) so that our new solution satisfies the
constraints.

It will be important to remember throughout that all con-
structions depend on ¢. For clarity of exposition, this dependence
will not be written explicitly.

)) (o |

el e

1. Making a local change over [O0,¢).

On the interval ‘O,t]), the first constant basis interval,

the current solution x satisfies

(12) B., X, (t) + K.

If we are to increase x then the new solution, to be denoted by

z!
x', will have to satisfy

L8
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t
(13) B‘B x4 (t) + K.ﬁ f xé (s)ds
i e | ) S 1.
t
=b(t) - b,6(t) -k, [ 6(s)ds
/ Ly
where 6 denotes the level of x

'
/e
Since x 1is a basic solution, there is a . such that
(B * Ky )-l exists. Thus to solve for xﬁ in terms of 6,
i ! g’ 1
we can apply the result of Proposition C.3(18). However the expres-

sions become cumbersome; instead we rework the solution directly using
the techniques of Appendix C,

Taking Laplace transforms on both sides of (12) and (13),

and multiplying both sides by (B. $ e K. )—l yields
Py %y
s 1 =1
2. (8} =(B, +=K,.. ) " bls)
Bl B, s By
and
a 1 o 1 -1 1 o
% (8) = (B._,+=K._ ) b(s) ~ (B, *+=K._ ) (b,+=k, )0(s).
By By s By Bl S Bl e 80
Thus
(14) %, (s) =%, (s) = h(s) 6(s)
Bl 61
where
= 1 -1 1
h(s) = (B., +SK,) (b, +Sk) .

Py

~

Now h(s) is an m-vector of rational function in s, each having
the same denominator. Using a partial fraction expansion of h(s),

we obtain, as in C,3(14),

o




e

(15) T R
15 8) = 2 . A 45 1 v
>,

for f{u.} CR", [vkr] cr®, {gk} C .

k

The following Lemma allows us to assume that there is some

w #0, 0 <k<m

(16). Lemma. Suppose there is a subset y of the rows of B and

K such that KY = 0 and every column of B has a nonzero

element. Then U # 0 where {u ) is given by (15).

k

~

Proof. From (14), h satisfies

(B.  +
Bl

1}

o |-

5 1
K.Bl) h(s) (bz ¥ kz)

Since K'Y = 0, the equations y read

B h =b
By (s) Y4

By assumption, brl # O. Substituting (15) into this relation and

equating coefficients on both sides yields BYB Uy ¥0, i.e, Y £ 0,
1

as required. O

In our case we have made the assumption (I) that the constraint
set is bounded. Thus, if B and K do not already satisfy the con-
dition of Lemma (1€) we can either add sufficiently large simple upper
bounds on the variables, or add a single row

50
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ex(t) + v(t) = M

where v(t) >0 1is a slack variable, e 1is a row vector of ones,
and M is a large constant. In either case we obtain the required
form for B and K. Accordingly, in (15) we shall let q be the
largest integer such that Uy # 0, where now 0 < q < m,

Following Section C.5 we can take inverse Laplace transforms

and use (14) and (15) to obtain

aet 8 (k-r=1), +., _(r)
(17 v (%) = &)~ & X 6 (07)) 8"/ (¢)
e ol ker+l K 4

. § uk9<k)(t) - /t y(t-s) 6(s)ds, t >0
k=0 0

where

-1
3 P mk I E'kt
(18) y(t) = 2 L % oot @ 3 £ =0,
k=1 r=0 o6

Expression (17) tells us precisely how to go about choosing
the appropriate 6 over the interval [0,¢). The first point to note
is that the Loundedness assumption (I) implies that all solutions are
functions, Accordingly, our choice of 6 will have to be such that
the coefficients of [b(k)] in (17) vanish, Thus at t =0, ©

must satisfy

-] - +
% uke(k ¥ l)(O ) =0, e 05l eee5a=1
k=r+l

o) 5

Py

Joroey S



uqe(o)(o+) =0

n
(@]

w6890y + qu(l)(O+)

g-1

ule(o)(o+) + oeee + uqe(q'l)(o+) =0.

Since Uy # 0, this implies that

(19) a(0") = da*y = ... = oleN(gty o

k) in (17) are absent,

Clearly, if q = 0, i.e. the terms in 6(
then these restrictions on (e(k)(o+)] do not apply. As mentioned
in Appendix C, a sufficient condition for this to occur is that
BTl exists.
61
Next we consider what happens at t = ¢ . Since we are making
€ Dbasic only over [0,e¢), we must have 6(t) identically zero for
t in an interval to the right of ¢, This implies that G(k)(f) =0

for all such t > e. However to meet this condition without having

to introduce ©&'s at t = ¢, the term
q
L uke(k)(t)
k=0 :

(k)

in (17) implies that 6'"/, k = 0,1,,..,9-1, must be continuous at

t =€, i,e. we require

52




(20) B(e”) = 6(1)(e-) o ot G(th)(e-) =Gl
Once again, if q = O then these restrictions do not apply.

Since Ez <0 on [0,¢), ¢ sufficiently small, we wish
to have 6 1in some sense as large as possible over [0,c). Clearly
any feasible O that is positive over {05e) and satisfies the
restrictions (19) and (20) will yield a local decrease in the objective.
However, we need first of all to choose 6 such that the resulting
solution is againa basic solution. We shall do this by thinking of
Q(q) as a bang-bang control variable that will alternate over
successive subintervals of [0O,e¢) between positive and negative
levels that are as large as possible,

In order, secondly, to satisfy the restrictions (20) we shall
require at least q switching times for change of sign of O(q) in
the interval (0,c¢). We shall here make use of exactly q such time

points. Denote these by Tle, T

s - % & o &L s e
5€s Fn e O, T Tq

q 1l
We now proceed as follows. At t = 0, (17) reads

' " & (a)
xﬁl(o) = xﬁl(O) uq@ (0)

assuming that (19) holds. We increase e(q)(o) as far as possible,
maintaining

(q)
xBl(O) - uq@ (0) >0 .

Under nondegeneracy exactly one component of xé (0), say x; (0),
p & L
will become zero. This is exactly the same as the minimum ratio test

in linear programming. r is given by

&
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(21) r. = argmin ty; >0

where Y. = v ¥, - 0. Note that the boundedness condition implies
15

T Ty
that uq has a positive component since otherwise we could increase
o U et henss xi (0), indefinitely.
i3

Let oy = Bl Uz} ~{r be the new basis at t = 0. We now

1
wish to maintain this basis change over the interval [O,Tl(), assuming

for the moment that T is given. To do this we need to check the

following: (i) there is a  such that (uB.U + K.cr )-l exists, and
gt i )
(12) =* {t) >0 for % € [0,1.¢e)s
oy - 1

(22) Lemma. If ry is determined by (21) then there is a | such

that (uB. + K. )™l exists.
g

Proof. We shall use Laplace transforms. Let p be such that, from

(21),
(23) TR = )

where qu is the pth component of uq. Write

K., )+ [(b, + % k,)-(b_ +

(2k) (B,Cr + % K. _) = (B., # z) . B T

This holds by definition of 0y By factoring out the matrix

(Bon ™ 2K, ) on the right hand side, and noting that (b_ +
By 8 By o 1

is its pth column, we get

w |-
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K. )= (B, +3 x.al)[x & [Ala) = ep)eg].

~

Now the matrix I + (h(s) - ep)eg is the identity with its pth
column replaced by h(s). Thus it will be nonsingular iff hp(s) # 0.

From (15) we see that

9. lower order terms .

h &) = v 8
P( ) ap
Since, by (23), Uap # 0, we obtain that hp(s) #0 for s sufficiently
large. This implies that for s sufficiently large, the left hand

side of (25) is the product of two nonsingular matrices, and hence

is itself nonsingular, O

To obtain xé (t) we can either solve the equation
0y :

%
(26) B. x (¢} +X. [ x (s)ds = b(t)
' 105

from scratch, or equivalently, use (17) to compute the 6(%) that
keeps X! (t) = 0 and then, again by (17), obtain the remaining

1

components of xé . The latter approach yields the (q+1)th order
1
integro-differential equation

(g-1)
i (q) \q t) + o0 +u. 0(t
(27) u_@8'% (%) » uq-l,p9 (t) b, p )

. ét tp(t-s) 0(s)as = x, (t)

with boundary conditions (19).

25
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(28) Lemma. For e sufficiently small, x! (t) >0 on [0, 7,¢),
1

any choice of Tl:O < T <1,

Proof. Let y = gy~ {£}). Under nondegeneracy x;(O) > 0. Since
x& is analytic, it follows that x}(t) > 0 on a neighborhood of

) 2
t = 0. Since e(q)(o) >0 and 6 satisfies the boundary conditions

(19), it follows that xk(t) = 6i(t) >0 for € (O,Tle). =
The next step is to decrease Q(Q) as far as possible on

[1ye, 'Z‘ge) while maintaining x(t) >0 on [Tle,’ree). This will
cause the variable X, that dropped out of the basis on [O,Tle)
i
to become basic again, and another variable, X, to drop out of
2
the basis. r2 is given by
‘ Xi(Tl€-) '

(29) L. & argma i —=————— iy, <10

2 ' ¥y i ‘

where y is as in (21). To see this note that the only discon-

€ occurs in S(q).

tinuity on the right hand side of (17) at t = .

Thus we may write

T4 €

q-l 14 ].
9 (4}, *
oy = 2t (s e+) =x (1,e) = X 8\ (1.e) ~u 08\ Y (1. M) -~/ y(t-s)e(s)ds
Py e S TR
- x;a (Tf-) & uq[e(Q)( [l€+) o e(q)(f]_E-)]
&
from which (29) follows. Note that
56
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(31)  x (1,¢7) = -qum(“)(Tls*) . o(Q)(ng')} ¢

1 1

Since u > 0 and O(q)(rlc-) > 0, and since nondegeneracy implies

G(Q)(rl‘+) < 0 for sufficiently small ¢, (31) verifies that

1
xrl(rlt )30,
Let o, =0, U {rl] ~ {r ). This is our new basis on

[TlE, qu). That we indeed have a basic feasible solution on this

interval for sufficiently small ¢ and = close enough to ¢

2 1

follows from an analysis similar to that given in Lemmas (22) and

(28). However, it is possible that 6 may go negative if t, is

too large. It will be established in Corollary (L4.2) below that
the choice of {ri] that satisfies (32) below ensures that 6
does not go negative.

We now continue in this way over the (g+l) intervals

[O,rlg), [Tle, T2€), Bkl qu,e) alternating the sign of s(q)

}s

and obtaining (g+l) basic sets {ci] where c.+l==cilJ{ri]-{r

i ot o

i=1,...,9-1. Each r, is determined as in (?9), and under non-

degeneracy, will alternate between ry and r2 for e sufficiently
small, Also it is easily checked that for all [ri] the x; remain
> 0 except possibly . xk = 6.
What remains is for us to find the points {ri] and show that
for this particular choice, 6(t) >0 on [0,¢). Once this is done
we shall have succeeded in making xk = 0 basic over [0,¢), and in
so doing, only have adjusted other basic variables over this interval.
In doing this recall that we have not been concerned with the possibility

of some basic variable becoming infeasible at some t > ¢, This will

be the subject of the next section.
o7

s 7 o R e L ,\}'r’qwaf_-—agtm B o T
: 3 7



T
In principle we can compute [6( )(e )} as functions of the

parameters {Ti] and then solve for the {Ti] with the equations

G(l-]rl,...,t ) =0

q
(32) 9(1)(€-|r1,...,‘rq) -
(9(q-l)(+-|11,...,fq) =0 .

In practice, some iterative technique will have to be used. Below we
show how a very good starting solution can be obtained.

In the following let

where y 1is as in (21). Under the boundedness condition, both Py

and p, exist., Under nondegeneracy, both are positive.

(34) Theorem. For e sufficiently small, equations (32) have a

unique solution O < Tl < ees < Tq < 1., Moreover, the Ty are

given to first order by

35) it Rt T 0(e)
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where the z.1 solve

z2) = %, + + (-1)% g =P
zi - zg + + (-1)q+lz§ = p
(36) .
z% - zg + + (-l)Q+lzg o
l>zl> >z >0
where

1 +
o =p/(p; * 0,)
We shall prove this theorem using the following lemmas.

(37, Lemma. Let O < LY < eee < Tq < 1 be any partition of [O,1].

Let the bases {ai] be determined as above. Then as ¢ — 0
o' (t) - p, +0(c)

, and
o( (¢ - ~p, + 0(e)

for t€ fre,1,e), [156,7¢), ...

Proof. The result on [O,rle) follows directly from the analyticity

of @ on this interval and the fact that e(Q)(o) = p,. From (30),

59
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G(q)(rle+) = max { + e(q)(rle-) 1y, < O} -

Since x' and G(q) are analytic on [O,rle)

x'(rle-) x'(0) + 0(e)

G(Q)( G(q)(O) + 0(e)

Tl€-)
Also, by definition

x'(0) = x(0) - y (Do) .
Thus

x{(rle') xi(O)

i Q(Q)([l€') -

#0

Y O(€): ¥
i

from which

Q). Fy
0 (Tle ) = - By * Ole)
Since G(q) is analytic on [rle,r2€), the result holds over this
interval,
We may rnow continue in this way and thereby establish the
lemma, O

(38) Lemma, Under the conditions of Lemma. (37) 6 satisfies

X Jd Koy * 5.} 1el : .
(39) ol ey = o B4 -El—i L (1% (ter.e)d + oIt
1 M s k=l k

for ¢t & [Ti_le, rie), i=1...,q+1, j =0,1,...,q, where 1. =0,

rq+l = 1,




ST p————— R

Proof. We shall expand 6 1in power series that are centered at T4€
and hold to the right of T4€. We proceed by induction on 1i.

For the case i = 1, observe the boundary conditions (19), and
write

a(t) = 6(9 (o) t3/q: + o(t%'Yy |
Differentiating yields
6(a-3) (1) = 6D (o) £I /51 + (s

Now G(Q)(O) = p, by definition. Since t = e) for t € [0,¢),
the result is true.

Suppose it to be true for i. Write

ot) = T o (M)t - 1) /rt 4 06T
r=0

By differentiating, noting that t and t - y¢ are 0(e¢), and

using the result of Lemma (37) we obtain

; j=1 ;
g(q'J)(t) - JZ e(q'J+r)(Tie+) (t - Tiﬁ)r/rz
r=0

+r(t - 1,e)3/30 + o(I)

where
ol i even
Y:
- d
02 i odd
61
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Using the continuity of G(k) at t =1.¢, k=0,1,,..,q-1,

i
and using the result for the case i, this becomes

(39)  0(3=3)(y)

Ll i i
J-1 (ol 02) £

= T (-j') s ' k .

+ o<~,3‘r*l>} (b=, €)/r! + yp(t=r,e)3/50 + o(T*

Now the following relations hold:

j=1

1 T (1, ) It - 1 ) /(g1 21 = T e i n o)
Jul 11
(11) Z I («1) ([L-ft)J r(t-TE ) /(3~r)! r!
r=0 k=l
{1 : :
= 2 (-1)k 31;- {(‘t-'rke)'J - (t—TiE)J]
k=1
- j=r+l r j+1
(111) T o(e?™T (¢ - v, e)/rh = o(e™)
r=0

Substituting these into (39) yields

(b +p,) i-1

o(a=3) 4y - 5).1. (tda(t-n )7 Iy 4 gt L (~1) {(t-rk@)‘j-(t-Tie)jl

k=1

J e !
,j (t-Ti&) + O(e )
J (o +p,) 1-1 .
=olt,'—‘+—l.'—'“z (l (t-’re)'J
Je Je fenl
(oy+ p,)(1-1) '
+ -—1—,— 2 (-1)k+l(t -TiG)J +
J* kel
62
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By now considering the cases i even and i odd, the appropriate terms
cancel and the result is established for i+l.

By induction, the proof is complete. O

In addition to these Lemmas we shall require the results of
Appendix D. These are concerned with properties of the system of

Z

equations (36).

Proof of Theorem (34), Using (39), equations (32) become

3 key¥e) g K - 41
o S—,- + ——l——.;) N &)J = O(e'] )
4G Je Sk k

for J = Li«sy9. Thus the T satisfy

=")+O<')} J = Leeesd

Now by Theorem D(2) the equations (36) have a unique solution

12 8y 2 sws. B Eq > 0. Also by Corollary D(9) the Jacobian of the
system is nonsingular for such {Ei}. We can therefore invoke the
Implicit Function Theorem [20, p. 128] and conclude that (36) has a #
unique solution for 0(e) changes in the right-hand side. Moreover
this solution will not differ from (Ei] by more than O(¢). From

this it follows that the solution to (LO) is given by (35), and

the proof is complete. 0

63




Remark. Note that since the r, are determined within 0(¢), the
actual breakpoints {et;] are determined within O(e”),

f

We now establish that 6(t) >0 on [0,c).

(41) TLemma. Let h:R - R be continuous and have a derivative that
has at most finitely many simple discontinuities. If h(t') = h(t") =0
for some t' < t", and h(l)(t) changes sign1 k times in (t',t"),

then h(t) changes sign at most k-1 times in (t',t").

Proof. Suppose that h changes sign r times at the points

£ <wy < cre <w < t". Then, since h(t') = h(w

(1)

= h(t") =0, h "’/ (t) changes sign at least once in each interval

where w. =t', w = %', Thus h(l)(t) changes sign at

(Wiswy) 0 r+1

least r+1 times in (t',t"). Hence r+l <k, or r < k-1 as required. O

(k2) Corollary. 6(t) >0 on [0,¢).

4 i (
Proof. Since e( )(o) = 9(1)(g) =0, 1 =0,1,...,9=1 and since O\Q)(t)

change sign q times in this interval, we can apply the Lemma repeatediy
to obtain that 6 has no change of sign in [0,¢). Since e(i)(o) =0
for 1 =0,1,...,9-1, and since e(Q)(o) > 0, the analyticity of 6
ensures that 6(t) > 0 in some neighborhood (0,8). Thus 6(t) >0

on [O;¢). DO

lBy a "change of sign," we mean going from positive to negative or
vice versa.
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With this result, our basis change over
sufficiently small,
simply a single exchange for the duration of the interval,
q > 0 we require
from its predecessor in one activity.
[0,¢), and the bases {Oi]

Below we illustrate the cases

q+l

is complete.

In the event that q = 0, thi

subintervals each having a new basis differing
Moreover
are all subsets of ﬁl Ul

a=0,1,

[oy’ )) for

dpence = cenen ==

)

6
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FIGURE 4
(,f’

is basic throughout

See also Example E(1).
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L.2.2. Adjusting the basis on t > ¢

So far we have obtained an x' from x that satisfies

t
Bx'(t) + K [ x'(s)ds = b(t)
0
x'(t) >0
for t < [0,¢). We now wish to determine the remainder of x' that

satisfies these relations on [¢,T]. There is in general no unique
way of doing this, and indeed, it may not be possible at all. When
no adjustment to the right of ¢ 1is possible, then neither is the
basis change over [O,c), and we shall then have to pick some other
interval of perturbation. This aspect will be considered in Section L4.5.
Our approach here will be to find an x' over [¢,T] that is
close to x 1in some sense, and that can be obtained in as natural a
way as possible, What we shall do is try to preserve on [¢,T] the
same sequence of basis changes as in x, and only adjust the timing
of these changes. This is the approach we took in Example (5) of
Section 3.2.
In addition to assumptions (I) and (II) of the previous section,

we shall now assume the following:

(III) All basic solutions are such that consecutive bases Bi’ B*+l

differ in only one element.

This assumption is a kind of nondegeneracy assumption: if Bi and

B differ in more than one element, then we can insert bases of

i+l
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zero time duration between them to achieve any two consecutive ones
differing in only one element. The assumption is then that all time
intervals are of positive duration.

In order to facilitate the presentation and understanding of
the material in this section, we shall need to develop additional
notation.

The superscript will be used to denote an adjusted
variable or parameter. Thus x', {ti},... denote the adjusted x,
adjusted breakpoints,... . We remind the reader that all adjusted
variables or parameters will depend on ¢, and that this dependence
will be assumed understood throughout.

li and r, will denote respectively the entering and leaving
variables at ti. Thus Bi+l = Bi u {zi] ~ {ri}.

It will be useful to work with variables wi(-) that coincide

with x, () on [ti_l,ti) but that continue beyond t, as if the

B
1
breakpoints ti’ ti+l’ ... did not exist. Thus, given x on [O,ti_l),
LA is defined by
t ti-l
+ = =K
(43) B.Byzi(t) K.a_/ wi(s)ds b(t) - K [ x(s)ds, t >t g
i i 6, 0
i-1
In addition let gi(') and qi(~) be respectively those
components of Wy and Winl that correspond to X, and x£ v
3 i
{6, xri(t) = gi(t) on [ti_l,ti) and xzi(t) = qi(t) on [ti,ti+1).
As in the derivation of (17) we can represent x on

B.

1

Lti’t1+1) in terms of ¢ 0 88 follows:
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m,=-1

- N T WO T
LU S R J_zi) (kzé_:ﬂuk g0 (8)) 81 (¢)
m,
- kEOuk Ny (t)-.gi Wi(t-s) ni(s)ds
2 [ti’ti+l)

for some m, >0, {u;} and wi(-) where these are found similarly
to their counterparts in (17). Here they are determined from the

partial fraction expansion of

K.B.)

1
S . .
it o &

B,o F
( B.
i
As was done for (17), we can assume u; £ @,
it

Of considerable importance will be the behavior of Xx and

x, as they approach ti. Let Py > 0 be such that
i

(3) & :

i

(45) (p.)
e, (t) #0

and 9 > 0 be such that
($ee®y o ‘

(L6) (q,)
Ny : (ti) £0.

The following Lemme relates u and gi on t> ti.




(47) Lemma. For each i > 1

- - i
(1) m <q <m +p
: 1% i ine:
(ii) There are [vk}kdo‘ R, vqi # 0, and Ji( ) such that
q. :
~ 9 s (p;)
; i
(48) Lvi a8 (e) + g b (bs) 1 (s)ds =€, * (8), 3%,
k=0 t 1 g
i
Proof. Since the lhs of (4l) contains no terms in B(J) the coefficients

(5 . ;4 :
of 5 () on the rhs of (Lh) must vanish. Since u_ # O this
i

implies, as in the derivation of (19), that

(Bt :
n (ti)—O, OEJ<mi

By definition of ;. this implies qi > m .

Since x_ (t) =0, t € {ti,ti+l), (4Y4) yields

b 2
1
0 =¢,(t) ;i 1 () (g ; (% (s)d
Bk oy yeo EIM s i, ¥yt Bea) 1 B0

1

where j 1is such that Ty is the jth component of Bi. Differentiating

the right hand side p, times and noting (45) yields

m,+p.

iy (k) t (p;) . (p,)
I Sep,g M (8% 1{1 ¥ig (b=s)ny(s)ds = ¢; © (%)
and
m,+r (
c i K)paty
(49) kz; Ser g Ny %) =0, 0<r<p,
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By Py (p,)
(50) T ow .y (t) =g C (%) £0
k._o u]( PirJ 1 1 b
where
) - (k=1)
LERE e 1<k<p,

From (50) there is some k such that u; 20 Let
-pi,J
ai be the largest such k. We show that ai =q;- Clearly,
> ai >q, by (46). Suppose that ai >q,. Setting

r=q =M, ..., Py -1 in (49) and noting (L6)

i

1
u , = Cre=m . =0
mi:J qi pi+l’3
But u f() and mi 2 ai - pi = qi - pi + 1 yielding a contradiction.
1 i i
i = ., 0<k<gq, and ¢ (t) =vy..” (t) completes the
Setting v uk_pi’J, <k<aq () Vi ) p

proof. O

Below we sketch the cases in which Py and q; are one of

0, 1, or > 2. Any of the pairs (pi,qi) is possible,

Remark, Note that pi and qi are dependent on ti, or rather, the

behavior of gi and ni at ti. However m, and the relation qizimi

do not depend on ti. mi is determined solely by the coefficients

5.°

] e i

K. be,&ndk
i ) g |

We are now in a position to consider the adjustments of the
ti in order to obtain the desired x . The construction will be
done inductively on i,

For i =0, the adjustment has already been made: t

Analogously to (L43), given adjusted time points t'

9 “
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and x' defined on [O’ti-l) by the bases oj on [Tj-l,ﬁ,1jh) ]
j=1,...,qt1, and B, on [t' _,t'), j =1,...,i-1, we can define
J 31" |
w! by
]
t i-1
(51) E.B.wi(t) Ky S wi(s)ds = b(t) - K[  x'(s)ds, t > tf ;.
i i B 0
i-1
In attempting to find t{ we shall try to satisfy the follow- .
ing:
(1) %! =t, as ¢ =0.
i AL i
ot ; ¥
(ii) Wi, may not contain &'s.
(iii) On neighborhoods to the left and right of t,!_’ we must have {
: i
w!l(t) >0 and wi+l(t) > 0 respectively.
s 1 1 i i
(iv) wi+l must be 'close' to Wigp In order that future breakpoints \;
can be adjusted.
We begin by considering w]'_(t) - wl(t) for t > tl. From
(17) and the construction of 6, it is clear that
y
(=
(52) wi(t) = w (t) = [ y(t-8) 6(s)ds .
L 1
0
The following lemma gives an important estimate.
(53) Lemma, There is an M > 0, independent of ¢, such that
€
: " 5
[ 6(s)ds = M2 * O(gq’+ )
0 |
where q 1is as in the previous section.
e
R o —— — _— S a s e
b " e . “‘




Proof. From (39) we have that

a (p, +p,) i-1
v L2 T (1" (5= * 0T

o(t) = py o7
1 ql q. k=1

for t € [Ti_lc, TiE). Integrating over [0O,¢) and simplifying yields

€ o} q g+l
1 K+l a1l e g2
[ e(t)at = (p, *+p,) - 2 (1) T (1-)! }T_ + O™ ).
0 RO R g = Lk

By Lemma D(3) and Theorem (34) the term in { } 1is equal to

L)l q
— 1 (1 -2) + 0(c)
PL ¥ Py g k

where the z  satisfy (45) and are independent of ¢. Thus

/‘C q EQ+1 q+2
/ 9 = 11 - G
Mt T Todee o G
Since 1>z >+ >z >0 and p) >0, setting 1
q( )/( )
M=op, T (1-2.)/(q+1)!
: S k

gives the desired result. O

(54) Corollary. Let g:(0,o) - R be such that for all t < [0,¢)

g(t) = g(0) + 0(e) .

Then there is an M > 0 such that
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fC g(s) 6(s)as = g(0) M<Tt 4+ 0(cT*?)
0

Proof. This follows immediately from the Lehma. 0

We apply this corollary to (52). Since w', w, and y are

| S
analytic, differentiating (52) yields
(3) e :
(wi = w)9(¢) = é ¥ </ (t-s) 6(s)ds, 20 .
By Corollary (54) we obtain, for i =1,
: (3) q+l .
(55) (wi = w,)'/ () =0(e™ ), J20.

Thus not only are Wy and wi close together but so too are all their

higher order derivatives. It will be important that the pairs W wi, i =l

inherit this property as well as the same order of magnitude difference,

a+l

Let us now make the induction hypotheses that

L ] - 1 2 o
ti_l »t, , a8 ¢ -0 and that w, and wi satisfy (55)1.

Under nondegeneracy, we have that wi(t) =00 for t & (ti-l’ti)'

Preassign any small & > O. Then by this remark and the induction

hypotheses there is a v > O such that for all ¢ sufficiently small,

(56) gi(t) > T for t £ [ti_l + B, ti - 8],
(57) les ()| > for t€ [t, +8, t, + 28],
74




and all other components of wi are >y for t€ {ti-l + 5, ti + 28].
Relation (57) follows from the fact that since £y is analytic, it
has at most one zero in (ti -5, ti + 5], and is nonzero on

[t.l + &, t.1 2Bl

In Figure 6 below we illustrate the possible cases. The

dotted curves below are éi(-) and the solid curves are éi(-).

It is clear from these figures that a good candidate for ti
5 : e ; ; : e & .
is either ti ti if gi has no zero in [ti 5, ti &l or i
equal to the leftmost zero of gi in {ti - 5, ti + &]. We shall
show that this is indeed the case whenever adjustment of ti is

possible. What determines this is whether or not qi and ¢! can be

1
i
related analogously to (48).

The following is the main result.

(58) Proposition, Adjusting ti'

Assume the induction hypotheses that ti-l —’ti-l and that
wi and W, satisfy (55).
From the above discussion we have that for all e sufficiently

small, the number of zeros of gi in [ti - 9, ti + &] 1is constant.

Determine ti as follows: if there are no zeros in this interval,

let ti = ti; else let ti be the leftmost such zero., For this ti

define wi+l as in (51). 1In addition let pi > 0 be such that

=




1} _____ ei
. ¥ '
Py =0 y ' ]
a = ‘t - - 1
tf"'l
J
{
Py =1 1
1
- —— 1, 1
0

(1)

(@)

(ii1)

0 \
FIGURE 6, ¢, andé! b
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Then, if pi — pi, the following hold:

(1)

(i1)

(iii)

Proof.

(1)

Sl o qtl :
HER 0(e Y AP p; >0

: (3) _ a(.9%1 :
(wi+1 - wi+1) (t) =0(e* ") for all t > max(ti,ti]

and j >0

= & -
wi+l(t) 20 for t= [tf, t Bl

i+l

Write 5i(t) = gi(t) + y(t). Differentiating this p;-1

(p,-1)
times and expanding gi * about ti yields
(pi-l) (pi-l) (pi) 5
& (t) =¥ (8) + g, b (8,) (t-5,) + 0((t~t,)%)

Now from (55), (56), and (57) it follows <chat ty ot as

p.-1) :

€ »0. Further ¢! " (ti) =0 and g, 3 (ti) is indepeacent
of ¢. Thus

(py-1)

y (t]) (py)
— -k, © (%) £0 as € -0 .
i i
(p,-1)
2l

Since, by (55), y = (t}) =0(e¥) ,

B - O(eq+l) as required.




(ii) Since P{ = Py> it is clear from Lemma (L47) that £l and n}

satisfy
(59) f:v; it s S B ) vi(t-s) Wi(s)ds =&} (6) , ©>%¢
k=0 . t!
i
and
8 =0, ock<q

q'(qi)(ti) 0.

We wish to solve for Ny and qi in terms of Ei and
gi, respectively. Since the equations (43) and (59) have the
same coefficients, and since both Ny and qi have their

first qi-l derivatives initially zero, it is easily seen

(by using Laplace transforms, for example) that

v py) (p,)
ny(t) =ve, © (¢) + { 9y (t=s) &, = (s)ds
and g
nt(t) =¥ P'(pl)(t) + ft (t-s) ¢! i)(s)do
v = Vg Sy % -
i

o~ 1
for some \A and Py Differentiating these yields for j >0

(61)  (qf - ni)(j)(t)

~ (p,+3) =k O (p,+j-1-k)
- Vi(F:!L ;1) i (t) + “:‘ék)(o)(gi 'Fi) . (t)
%
< s i)
a7 {* TgJ)(t-S)(Ei 'Ei) = (s)ds + 'i(t)
;4
151 =0 iff q, >0,
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for all t > t% where t¥ = max{t!,t.] and
— 2% ) & 3 1

Qi(t) == ?Ej)(t-s) £y Y (s)ds if ti >t
ot
and (
P P.)
Qi(t) = {? ?gJ)(t-s) 3 Y (s)ds  if £ < t,
i
(p,) (p.)
Since ti - ti = O(eq+l) d N(J)( Y, 3 - (+) and gi a (+)

are bounded, we have

2, (t) = o(e™™h)

By (55) we also have that all the remaining terms of (61) are

O(eq+l). Hence
(62) (g - 1) Pty = 0¥, 530, £> t%

Now since the components of LIFEY except Ny are all

components of xz for t € [ti, t.,.), we see from (44) that

P 5 6 7
i

' - Fey = S
(w! wi+1)k (%) (wi wi)k(t) + finitely many terms in

(ng - ni)(j)(t)

where k runs over all compconents of w,

41 except for Ny

By (62) and (55) this implies that

9




o

PR

(Mg = ) P (0 = 05

for t > t¥, Jj >0, as required for (ii).

(iii) This follows immediately from (i) and (ii) and since
(q,)
Ny (ti) > 0. ]

Since the induction hypotheses of the Proposition were shown
to be true for i =1 we can now inductively perturb the breakpoints
ti provided at each step we have pi =D When p, = 0 or b, = e
it can be easily seen that this is always the case. However, when
p; > 2, we only obtain pi =D in the cases (iii) and (v) of Figure 5.
The remaining cases in Figure 5 for pi > 2 all have p{ < pi. When
this occurs, statements (i), (ii) and (iii) of the Proposition need
no longer hold. This may result in infeasibilities or in very large
perturbations further on. As we shall see in the next section, state-
ments, (1) and (ii) are crucial in establishing improvement in the
objective.

The only breakpoint requiring special attention is the endpoint
t, = T. If the effect of 6 1is to move t! to the right, then we

k k

simply truncate the new solution at T. However, if ti moves to the
left, then the attempted basis change will only be possible if there
is some feasible extension of x beyond T. As will be indicated

in the next section, even when we can move ti to the left, we may

not be able to obtain a decrease in the objective value.




In the event that we get 'stuck' at the endpoint or at some
ti because pi < Py it may be possible to take advantage of an

ambiguity in the dual prices, See Section 4.5.

4,2.3. Proof that x' is an improved solution.

Assuming that the adjustments of the breakpoints on t > €
were successfull we now have a new basic feasible solution, x',
specified by the bases o, on [Ti_le, Tie), and f, on [ti-l’ti)‘
To show that

T T
[ c(t) x*(t)at < | e(t) x(t)at
0 0]
we shall show that the decrease obtained over [0,c) dominates any
possible increase due to the shifting of the breakpoints. Of course,
as discussed in Section 3.2, if none of the breakpoints have shifted
the result is immediate.

The case where ti < T 1is special and will be considered
separately at the end of this section.

The change in the objective may be found using (3) and the fact
that complementary slackness, (8), holds for the pair (x,A). The
expression se obtained is

T T

(63) [ c(t)(x'(t) -x(t))dt =

[ oet) x'(t)at -5 ¥ g9t x'(j)(tT)
0 0 i

1

li.e. pi = Py all i, and t&: T, where tk = T,
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We need to show that the right-hand side is negative for sufficiently

small, Define
€-
b.(e) = [ eft) x'(t)at
L 0

T

ny(e) = [ 3() x'(t)at - T T 3t (e
€

Al T i
19

(64) Lemma. There is an M < O such that

hl(e) = M T 4 0(c%*2)

Proof, By complementary slackness

hl(e) = é Eg(t) 6(t)dt .

Since Eﬁ(-) is analytic on a neighborhood of t =0, and ¢ (0) < O,

we can apply Corollary (54) and obtain the result.

o
We next show that h2(c) = O(eq 2). By complementary slackness
and Proposition (17), we can break down this expression into contri-

butions due to ti moving left or right. We obtain

e
iL i 3
(65) myle)= T E, (8) ny)ae - T A (D))
i such that 2 i o I B
RAN
4
+ 2. / Er (t) gi(t)dt :
i such that ¢, i
t, < t! S
i &
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Note that the terms in ti = ti make no contribution. Thus for all

appearing in (65), we have, from the construction of the t, that

pi>0.

(66) Lemma, For all i such that t, < %,

i
. 1 - q+2
cri(t) gi(t)dt = 0(e )

ch— ¢k

i

Proof. gi(t) = (gi(t) - gi(t)) + gi(t). By Proposition (58)

el
g1(t) - g, (t) = o(e¥)
Expanding gi about ti yields

Py
£, (8) = o(t - £) 1)

By Proposition (58)

2 g+l
tzl-ti_o(e )

Since Py > 0, combining the above establishes the Lemma, O

Before continuing we need to establish an important connection
between the reduced costs immediately before and after the basis change

at t T < B,

b S
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(67) Lemma. Let p be such that (B,) = r.. Let ﬁi >0 be

1'p
such that
=(3) pty -
cr.(ti)—o, 0<Ji<nm
2 8
n,)
-1 + 1
cri (ti) #0 .

~

Let hz(s) be defined by

AP (b, + = k)

1 -1 ik
S £ s

and let w and n 4 be such that the leading term in the Laurent

£ ~ nZ
expansion of hﬂp(s) is ®,s °. Then
ok i .
(1) dg 0 for j > max{O, n, ni]
n -n_-1,i n, (n,)
=g i i s e
(1) if n, - n >0, 4, = (-1) ®, cri (ti)
(iii) if Ty = ﬁl < 0,
=(3) =(3) . * G
c, (tl) =ie, (ti), O£J<n =n
and
(n,-n,) (n,-n ) S i
=1 8- =i 74 i B ="k
R =T ) - (g T

lIf no such ﬁi exists then Er (t) is identically zero to the right

o

of ti. Set ni=0.

8k




Proof. We shall use Laplace Transforms. By (11), A sa.tisfiesl
ti iy
At) B + [ A(s)as K., =c, (t) = J n(s)ds K,
By 3 B Ry 5. By
3l
for t € (ti-l’ti) in the distributional sense. For convenience we

shall reverse the time direction and shift the time origin to ti'

Define

(€8)

where

pooon [O)oo) by

t

u(t) B.Bi + é u(s)ds Keg = gB.(t), t>0

g(t) = c(t.l -t) -] AN(s)ds K

(o)
i

and we assume that c(+) has an analytic extension from [0,») to

(=0,).

Further,

of 8'd)

(69)

Clearly

(n

u(t, =t) =n(t) for te (t, .,t.)

i-17 71
it is easily seen by definition that -521 is the coefficient
in éz(')’ defined by

t
éz(t) = gz(t) A H(t)bz 5 Cf) H(S)ds kz )

and that Ez(t) is the functional part of éz(ti-t)’

lStrictly speaking we should write

1Y 1
[ N(s)ds as [ N*¥(s)ds +
t

t, :
X p

Ok

7 s




s .

Taking Laplace transforms of (68) yields

~ ~ l _l
ue)d =g, fa) (B, +2 K. )
Bs By s By
and substituting into (69) yields
(70) g,(s) = g,(s) - gB_(S) h,(s) .

4

We now wish to relate ég(s) to the reduced costs taken with

respect to the basis B Denote these with the superscript '*',

i+1°
Thus we define

% &

g,(s) = ;g(s) - sBi+l(S) ﬁ;(s)
where

ﬁ;(s) = (B.Bi+l + % K'Bi+1)-l (b, + % k,) .
We shall show that
(71) g,(s) = &x(s) - §;i<s> T

Note first that hz(s) and h*(s) are related by

£
N
= - * * |
25(8) h;j(s) h;ij(s) th(S)/hrip(S), J#0p
(72)
= * *
th(s) th(s)/hrip(s) .
i -1
This can be easily shown by relating (B.B = K.B ) and
' i
86
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r

(B.Bl+l + % K.Blﬂ)'1 Rewrite (70) as
8(s) = &) + &, (o) myle) - g, () B, (s
and ;Bi(s) ﬁz(s) as
5, () By(0) =&, () by(a) + (g, () -8, (=) by (o

Combining these two yields

(13) Eyls) = E5(s) + (5, () - &, () By (o) + &, () 5(6) -y ().
il i it

From (72) we have that

~ ~ ”~

ny (s) - ﬁzj(s)

1}
=

*
W
(=g

h* (s) - h

(s)

(ﬁ;ip(s) - 1) ﬁz (s) .

£p b

Substituting this into (73) and rearranging yields (71).
From (71) we can now establish the lemma. Observe that
é;(ti -t), t< t;, is the reduced cost Ez(t), t < t,, had there

been no basis change at t.. Hence é;(ti - t) is an analytic

function and we obtain

(-0 &P o" -3} |
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Applying Lemma C.4(19) to (71) yields

éz(s) = _Z (-1)3 Eéj)(tz)/sj+l B ('Z (-l)j Ei?)(t;)/sj+l)(mzs E+...)
J=0 j=0

Inspecting this expression we see that there are no terms in s?  for

j > max(0, n, - n,). Hence agl =0 for such j, and (i) is established.
3 n,-n,-1 ﬁi+l _(ﬁi) o
If n, -n; >0, the coefficient of s is (-1) @,y (ti),
establishing (ii). If By - ﬁi < 0, the coefficient of g 4.
(3} =L3) .+ oz =(3) (e=y _ 2(3) (4*
(-1) cy (ti) for 0<j<n -n, sothat c, (ti) =, (ti).
-(ﬁi-nz)-l
Further, the coefficient of s is
n,-n (n ,-n) n, (n,)
X g = 4 Y ot 5 s i
(DT - (b taE Ve
so that
(n,-n ) n,-n) n (n.,)
TR TR R DS G - ot e
c, (ti) =c, (ti) (-1) ﬁﬂcri (ti)
as required for (iii). O

(74) Corollary.

(1) 321 =0 for j>max(0, q, -p, -1l
i

(13)  1if q; = p; =0, >0,
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(111)  if q -p =1 < 0 ,
E(j)(t-) 0 0<j<n, +p, -q
£ i 1 : i
and - -
(n,+p.-q.) q.-p.+1 ., (n.)
= - = +
&, & 7 UEE T o ey W TR i R gy
2. i T i
il i
where v; is given in Lemma (L7).
i
Proof. From the proof of Lemma (47) it can be easily shown that
) e | . : .
n, =q; -p; endthat o Va.* Since x, is basicon [t,,t,.,),
: & & 1 Al
it follows by complementary slackness that Ez (t) =0, t ¢ [ti,ti+l).

wl Ay, i
Hence CEJ)(ti) =0 for Jj > 0. Applying the lemma yields the
i

result. ||

+
We now continue with our proof that h2(e) = 0(e% 2).

(75) Lemma., For all i such that t! < t,
¥4 o 23t _,(3) q+2
1.y (t) ni(e)at - & " 0y (5.) = 0lc™ )k
B % . o T %
i
Proof. Since ti —;ti, and since

g (q,) q,)
ng (t{) -1y (ti) #0 as e =0,
we may write, by (60),
b P 9~ :
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Since ti - ti = O(eq l) we obtain

3 (q+1) (g,=3)
n{(J)(ti) = 0(e XA~

Thus

q:!L(J)(ti) = 0(c%*2) when 0<j<aq -2.
By Corollary (74)(i), since p; > 0,

=ji
de

=0 for j> ma.x{qi -1, 0},
2

Thus
=Jji j +2
5 dj qi(J)(ti) = o(e¥ey
i
We next show that
ti 2
[ 8, () nie)at = o(eT™=)
t i
If g >1 it follows since t! - t. = 0(c™) and since

q,
73 (8) = o((t] - ;) *). Suppose that q; = 0. Then since p, >0, we

have by Corollary (74)(iii) that EZ (t)

o(t! - t,). Since
i i it

e
-t = 0({c®™), we are done.

This completes the proof. O

Combining Lemmas (66) and (75) with (65) shows that
h,(e) = 0(¥*%),

We now state our main result.

e Bl e i et .. i 5 = -t s - — - -




(76) Theorem. Decrease in the objective

Let x' be constructed as in Sections 4.2.1 and 4.2.2. Then

there is an M < 0 such that

7 T X
[oe(t) x'(t)dt - [ c(t) x(t)at = M 4 o(cT2)
0 0

Proof. This is immediate from the above and Lemma (64). O

In concluding this section we consider the case ti < 1. Zhis

can only occur if some x (T) =0, r_¢< B,» 8nd x has a feasible
k

extension on a neighborhood to the right of T. Let zk and Q. refer

k

to the new basic variable beyond T, in keeping with Zi and 9 at
the other breakpoints.

The reason why this is special is that Lemma (67) does not apply
at the endpoint tk =T, In the event that Q. > 1, this means that

we may have azk £0 Por 3= - 1, and therefore that Lemma (75)

k
is no longer generally true. Following the proof of Lemma (75), we

+1
ol

G

see that this covld yield a positive contribution of O(e to the
-1,k

<0. If q =0, we may have EE (T3 > 0,
k k
with the same effect.

_qk
objective value if dZ

9. =1,k
From an algorithmic point of view, when d = <0 if Q. =

by

or Ez (B} >0 2P qk = 0, we suggest first finding an alternative
k

extension beyond T for which these do not hold. Should this not be
possible, simply allow ti to adjust. If a net increase has been
obtained then the whole iteration must be disregarded and we either

select some other interval of perturbation or use the technique of

Section 4.5.
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Note that the question of adjusting t will in any case only

k

occur at isolated iterations.

4.%. Improving the Solution by Adjusting a Breakpoint

This section considers the adjustment of some breakpoint ti
to obtain an improved solution. As in Section 4.2 we begin with a given
basic solution x and its associated reduced costs c¢(-) and {EJIB.

The only case we consider here is that of p.l =0 d.e.x [t.) > 0.

The reason for this is that adjusting t, when X, (t;) =0 (i.e.
o

D, > 0) usually causes the occurrence infeasibilities, or changes on
t > ti that have greater orders of magnitude than the adjustment at

1

1
i
That an improvement can be obtained by adjusting ti will be
- + - -
signaled either by one of c (ti) <0, c, (ti) < 0, or by some

.. al 1
521 # 0. While the former is a special case of that considered in
i
in Section 4.2, it is much more convenient to think only in terms of

adjusting a breakpoint.
Throughout this section 1 will be held fixed, and O < t,
We shall let ti be one of ti - €, ti + € for € >0 and small

then adjust the remaining breakpoints tr > ti in the same way

done in Section L4.2.2, All notation will be as in the previ

1 > : et /e
Cf. Remark after Proposition (586).
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Observe that setting ti = ti - ¢ makes xl basic over
il

[t!,t.,) and that setting t! =t, + ¢ makes x basic over
3 Ly L fi r,
[ti,ti). As in (65) we can obtain the local contributions to the
objective, attributable to this change, in terms of c, [313}, gi(-)
and qi('). Let gL(e) and gR(e) respectively denote the contributions

due to moving left and right. These may be written as

.
p U
(77) (&) =f &, () ni(tyat - % 3t (D gy
g€ ii °zi Ny i Ny i
and ti
(78)  egle) -—{i Eri(t) g, (t)at

We illustrate these two cases (Figure 7 below) in the event

that Qy > 0. When q = O, n and 7' will look like gi in

Figure 6 with the time direction reversed.
The following lemma relates gL(e) and gR(e).

(79) Lemma. Let n, be as in Lemma (67).

i
i) B,+1 542
(1) gle) =2 1 (¢%) x_ (¢7) & +0e )
gg\€ cri i xri i (ﬁi+l)! (e
ﬁi+1 ﬁi+2
(i1) g (e) = (-1) ggle) + o(e |
Proof,
M)By@ﬂﬂﬂmcfﬁf
(8,) , ( )ﬁ1 B, +1
= 5 ni + t-ti ni
cri(t) e N y +o((t-t,) = ) .
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t! >t
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Also

£s(t) = xri(t;) *+ 0(t-ty) .

Substituting these into (78) and integrating yields (i).
(ii) By Lemma (47), €, end nj are related by
t

% owin ) + 1 g (ts) ny(s)as = ¢, (8)
k=0 ty

for some [vi] and mi('). Since gi(ti) >0 for e
sufficiently small, and since ni(k)(ti) =0 for 0<k< a5

we obtain
i n'(qi)
i

9

v (t) = g,(¢)) .

Expanding gi(-) about t, yields

(q,)
i -
(80) vqi ni k! (ti) = xri(ti) + 0(e) .
Expanding qi(') about ti yields
q,-k

'(k) '(qi) : (t-ti) : qi-k+1
(81) ng o (t) =nj (t]) —TE;:ETT—_ + 0((t-t]) )

for 0<k< q -

Hence
q,~k o
(82) v '(k)(t ) = x_ (t]) % s +0(e k+1) for 0<k<q
qi"i i 78 (qi-'kS!' = g ‘
b
!
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Next, apply Corollary (T74). If q - ﬁi > 0, then the leading
at 4 (77) 1s

%
a -n -1,1i n _(I-'l )
dzi i = (-1) : v; c. i (t;) :
i i al
From (82) we then have
q,-n,-1,i (q.-n,-1)
- i +
1 M R e (£}
Ei i i
Bl @) S B +2
= (=1) c, (ti) X, (ti) - + 0(e Ny
i i (ni+1)x

n,+2
Also by (82) it is clear that all other terms in (77) are O(e - )

Hence gL(e) is given by the right hand side of (83).

If q -, <O thenall the &' =0, and we may write,

i
by Corollary (7k4),
& n,-q -
e q+l , _(n,) (t=t,) n,-q +1
¢, (t) = (-1) - v; c. ; (t;) ~ - +0 ((t_ti) e S )
i g | (ni-q):
for t} <t < t;. Multiply this expression for Ez (t) by that given
P i

for ni(t) in (81) with k = 0. This yields

c, (t) nj(t)

i a -q
B+l oy (q) (@), (t-tpqi (b,-t) *
= (-1) vq1 H (ti) ¢, © (tg

+ 0(e
i

! (a; - q)!

for ti st ti‘

ni+l

)




To evaluate [ -,
t g

<':z (t) ni(t)dt observe that since t!=t
;]

the value of

a f,-q
rt (t=t1) i (t,-t) e P
%

is proportional to a beta-function, and indeed evaluates to

e T e
q! (ni qi). eni+l

(E;1 +1)!
This then yields
5
[ " e, (t) nj(t)at
t! i
i -
- & +1 -
n,+1 (a,) (n,) By n, +2
= (Dt vl T e )0t ) .
9y i (n,+1)!

i

Using (80), we obtain that gL(e) is equal to the right-hand side
of (83).

We have thus shown that gL(e) is given by the right-hand side
of (83) for all q, ﬁi. By (i), (ii) now follows immediately, and

the proof is complete. ]

This lemme tells us precisely what to expect locally when

adjusting the breakpoint, and only requires information about the

behavior of Er at t = t;. We summarize our conclusions in Table 2
i

below.

T e Y S
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Table 2, The Local Contribution to the Objective by Moving ti

1
Yo t; - ¢ and ty * e
(n,) (n,)
+ -
Yufy»o s Y <o
r i r i
i i
ni even ni odd ni even ni odd
ti = ti - € - + * -
ti = ti + ¢ + + - -
n,+1

The '+' and '-' denote increases and decreases of O(e s )
respectively, and were obtained from Lemma (79) by noting that
xri(ti) > 0,

The case that we shall be most interested in is that of 51 =0,

i.e. Eri(tz) # 0. This is because, as we shall next indicate, it is
the only case in which a decrease obtained by the above adjustment

always dominates any possible increases due to the adjustment of the
time points tr > ti. However, if, for example, no other breakpoints
need be adjusted, then shifting ti according to Table 2 will yield

a decrease for Ei > 0.

It is interesting to note the analogue of Lemma (79) (with

ﬁi = 0) 1in the simplex method: if a variable x, enters a basis p

£

1

Recall that 51 is the least integer such that Eﬁ“i)(tz) ¢ 0,

i
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replacing x, and forming a new basis PR', then the reduced cost of
X, with respect to B' 1is opposite in sign to the reduced cost of

x, with respect to B.

£
To complete the procedure, it remains for us to follow the same
course as in Section L4,2.2, and determine whether or not the breakpoints

tr o> ti can be adjusted so as to accommodate the change at t and

i
yield an overall decrease. It should also be checked that the adjust-

ment at t, has caused no immediate infeasibilities, i.e. some other

1
variables becoming negative near ti' i
This can all be done by directly applying the tools and results
of Section 4.2, and the details will be omitted. Proposition (58) 1
applies as it stands with q = O; that is, the shifts in the break- \l
points, t} - t, are 0(e) and (w; - wr)(J)(t) =0(e), r>1i, When
ﬁi = 0 and we have determined ti by Table 2 so as to yield a local
decrease, Theorem (76) too applies, with q = O, to yield an overall

decrease of 0(e).

L.k, Improving the Solution When Some 321 #0

From section 4,1 we see that the {3211 are dual infeasible
if for any i, £, and j > 1

-01
dl >0,

or atgo. 1

lprom now on 1t will be understood that . "3J% # 0" means 50
L Y/
when Jj =0,

9




In such a case, even though we may have c(t) >0, t € [0,T], it may
still be possible to improve the solution by making basic, in some
suitable way, the variable xz(t;). One such case was considered in
Section L4.3 where with £ = £;, it sometimes paid off to move the
breakpoint ti. In general, however, a construction along the lines of

that given in Section 4.2.1 is required. Thus, if aji # 0, we wish

to increase x, = 6 on a neighborhood of ti in such a way that

e(j)(ti) >0 B W,
(8k4)
9(3)(t;) <0 1f aji <q .

This is because -agi appears as the coefficient of xgj)(ti) in (3).
It is important to note that if Egi # 0, we are able to make

(a)

0(1) changes in x, only for some q > j. This follows

from Lemma (67). From this we also see that if we are to
make x, =6 basic over [ti - €y ti + 62), €yt €, =6, the

dominating local contribution to the objective will be given by
=J*,1 ,(3%)
-, ] (ti)
where j* 1is the largest j such that
=31
dy £ 0,

Thus we shall pick our perturbation 6 such that (84) holds with

j = J*. See Figure 8 below for an illustration of the case g% = L
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FIGURE &

In the event that £ = li and, say, 3;1 < 0, with
ol

could obtain a perturbation of the following form:l

1Since x is basicon [t

i’ t1+1)'
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FIGURE 9
=3%
We remark that when d% 5 > 0, a local improvement can always
i
be obtained by just shifting ti. This follows from Table 2, since
by Corollary (74) and vé > 0,
i
ha BBy
di g syt gL (t;) > 0.
1 i

The unfortunate part about in general attempting to improve
the solution when some agi # 0, is that even though we may be able
to obtain a local decrease in the objective value, adjusting the break-
points to the right of this change may sometimes yield an overall
increase in the objective value. This was seen to be the case in
Section 4.3 with n

> 0, or when we needed to adjust t =T,

B k
Further, when Py > 0, we may not even be able to obtain a local
improvement in a neighborhood of ti‘ However, these are precisely
the situations in which the complementary slackness conditions yield
alternative dual variables A*(+) and {in] and which will be

considered in the next section,
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One particular case where an improvement in the objective value

is always possible, is at the endpoint t

x = T when Xg (T) >0, The

k
construction is as follows:

- ¥
(1) 3" E s,
2
Carry out the first step of the construction of 6 in Section
4,2.1 on the interval [T - ¢, T], for ¢ >0 and small. Thus simply
make the first basis change from ﬁk to o, over the whole of this

interval, This will yield

5 # - K =t .2
o() (1) = M 4 o(1IHY,
some M > 0, and also

ol imy = o(c™dy , 0z 3< g,

where q is determined as in (17). The contribution to the objective

value then becomes, using (63),

T g
[ E,(t) e(t)at - $ ajk (9 (1)
T=c j=0

- ¥ - - 96
- Ak W (g - g1 4 0T

While Lemma (67) does not apply to the endpoint tk =T, it can still
be easily shown, by using (70) in the proof of Lemma (67), that q > j*.
From this it therefore follows that a strict decrease is obtained for ¢

sufficiently small.
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(1) ag*’k <o.
Partition [T - ¢,T] into several subintervals over which we
alternate‘the sign of G(Q), as in Section 4.2.1, in such a way that
8\ 2y < 0. "Indesn; By tha vesilts of Sseblon b.5.1, we csn shosse

the intervals so that

1% - g - %4
G(J )(T) - -MEq J o O(Eq j l)
for some M > 0, and also

6 (1) = 0(c%), 0<J< 3,

As before, this yields a strict decrease for ¢ sufficiently small,
When j* =1, the 6 so constructed will be as in Figure 8
except with the solution truncated beyond ti.
At points ti’ 0< ti < T, we remark only that a similar
construction applies with the exception that we need to continue

beyond t., to meet requirements of the from (20). In the event that

i
£ = zi, these requirements need not be met, as illustrated in

Figure 8.

k.5, Ambiguity in the Dual Variables

In the previous three sections we considered improving our
given basic feasible solution when the dual variableq, defined by
complementary slackness as in (9), were infeasible. However, as was
noted there, obtaining an improved solution was not always possible,

for the following reasons:
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(i) Making a change of basis over an interval of length e may
force us to adjust other breakpoints to the right of this
interval, and these may violate the condition of Proposition (58),
namely pi =Dy
(ii) Should this change of basis force tk =T to move left, it has
to be disregarded if there is either no feasible extension of
x on a neighborhood to the right of T, or if the result
of allowing ti to adjust yields an overall increase in the
objective value.
(iii) As was noted in Section 4.3 and k.4, making a change of basis
on a neighborhood of some ti when some agi # 0, was in general
not possible when ps > 0, Even when we had Py = 0, there were
seen to be cases where the need to adjust later time points led
to an overall increase in the objective value.
What these cases all have in common is that they are being
'blocked' by some ti

leaving the basis Bi is zero. This means that the complementary

having p, >0, i.e. the variable x_ (t;)
i

slackness condition

(t° L
xri ti) >0 = dri =R

does not apply, and therefore that the dual variables are no longer
uniquely defined.

For such a t,, let us now relax the restriction agi =0 by

i)
" i
setting 501 =y (y some scalar) and determine the dependence of the

ISee Section 4,1,
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dual variables and reduced costs on y. Denote these by k*(tly),
{er(r)}, c(t|y) and {ajr(r)), where i here is fixed. In this
enalysis we shall maintain as before all the remaining relations in

(9) defining A\* and [vjr]. Let p be such that r, = (Bi)p.

(85) Lemma., Let 7*(-) and {pjr] satisfy

(1) 7 (t) =0, t € [t,,T]
AP e r>1, §>0
L
: * * 0i
(ii) = (t)B.B1+ { m (s)ds K.Bi + 4 K.Bi = 0, t € [tl_l, 1)
0i Tr O
M B. e u K = e
Ji J+1,1
B., + K. 0, S |
M Bi %) Bi
% i
* * ov
(1ii) 7 (t)Buo+ [ 7 (s)ds K. + ¥ s LB E Y e,
Br t Br v=r : Br i
T [tr-l’tr)
JrB'B + “j+l’rK'B =0, § 20, ;3 TR 1%, 5
i r
Then
* * *
A (tly) = A (t[o) + ym (t)
vIi(r) = v'7(0) + Yujr
T i
(86) S(tlr) = &(5[0) - yln ()B + [ 7 (s)as K+ L "k 1 (¢ -t))
t v=
) = 370) + v( "B+ I
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*
Proof. This follows by noting that A (+|r) and {vji(r)] by

definition satisfy (9) with the relation

replaced by

*
The relations in (86) show that the dependence of A (:|r),...
*
on y takes on exceedingly simple form. Note that 1 (-) and
jr]

m are uniquely determined and are independent of y. Note also

that by construction, k*('lr) and {v'F(y)) satisfy the complementary
slackness conditions for any vy. In particular, if for some v,
the triple (x*('lr), [vjr(r)}, {t,)) is dual feasible, then our
current basic feasible solution is optimal,

Using this device of setting a‘f = v and parametrizing the

i

dual variables in terms of y 1is an essential ingredient of any
continuous time simplex method. This is amply demonstrated by
Example E(2), where the constraints are such that there is only one
feasible solution--hence trivially optimal--and yet the dual variables
defined by (9) in the usual way are dual infeasible. However,
parametrizing in terms of y does yield (A*(-|r), {Ljr(y)],
[tr}) dual feasible for y < =1.

Both Lehman [1%] and Drews et al. [12] recognized the need
for this, and suggested extending the concept of a basis. We now

interpret their approach within our framework.
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Suppose that we are attempting to find an improved solution
using the techniques of Sections 4.2, 4.3 and 4.4, but that we get
"stuck" in one of the situations mentioned at the beginning of this
section. For example, suppose that at some t*, Ez(t*) < 0, and that
in trying to increase X, on [t*, t* +¢), we find that for all ¢ > 0
we are forced to move a breakpoint ti that fails to satisfy p; = pi.
We then parametrize the dual variables in terms of y by relaxing
the restriction aii = 0, and thereafter fix the value of y by

i
imposing the restriction

(87) 5,ty) =0 .

This correspondsvin discrete time to making X, basic at the point
t*, and dropping xri from the basis at the point ti, with no change
in the objective value. In the simplex method it is therefore a
degenerate pivot whose only effect is to determine an alternative
complementary set of dual variables. The same can be done in continucus
time by redefining which variables are basic at certain isolated points,
In [12] this is termed as a '"point pair,"

Since our boundedness assumption does not allow any &'s in
the primal problem, assigning basic and non-basic labels to variables
at isolated points can have no effect on the primal solution., However

this does have & marked and important effect on the dual variables.

Observe that making x

*
s basic at t and dropping X, at the
-
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point ti gives a count of mtl variables basic at t = t* and m-l

basic at t = ti.l

The next step is now to move t either left or right,
depending on whether or not Egl)(t’) is >0 or < 0, while simultaneously
adjusting 1y so as to maintain (87). The aim of doing so is to try
to obtain either dual feasibility, and hence a proof of optimality,
or a new interval over which we can attempt another basis change.

Whether or not a procedure of this nature will always yield
either a proof of optimality, or an eventual strict decrease in the
objective value is not known. It is also still an open question
whether or not use of this "point pair" technique is needed only to
obtain a proof of optimality. Posed another way, can we have a solution
that is not optimal, but has the property that at no point where the
dual variables, defined in the usual way by (9), are infeasible
can we make a change of basis using the techniques of the previous

sections and ohtain a decrease in the objective value.

1By Theorem 2(15) we know that every right analytic extreme point has
at most m variables positive over any interval. Hence having a
pair of intervals with this surplus-shortage property is not possible.
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CHAPTER 5
CONCLUSION

This dissertation has been aimed at establishing some of the
fundamental concepts and results required to develop a continuous time
simplex method (for the case of constant coefficients in the constraints),
To this end, we have accomplished the following:

(i) A characterization of all so-called right analytic extreme
points that allows us to work with them as we would with the
basic feasible solutions in linear programming.

(1i) A distribution free statement of the optimality conditions.
(iii) A means of moving from one extreme point to another, with an
improvement in the objective value.

Much remains unanswered from both the algorithmic and purely
mathematical points of view.

On the algorithmic side there is the need to combine the con-
structions of Chapter 4 with an effective heuristic that chooses the
intervals over which to attempt a basis change, and also decides on
how large to make ¢ Dbefore recomputing the prices. Developing such
A heuristic should go hand-in-hand with the design of a computer
implementation. Based on small examples solved by hand, it would
seem that an initial implementation should be highly interactive in
nature. Of great importance in any implementation will be the question

1 of how to solve, numerically, equations of the form
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Dy(t) + L ft y(s)ds = d(t)
0

where the only condition on D and L 1is that (uD + L)'1 exists
for some scalar . |

More fundamental is the question of convergence, about which
nothing has been said. This is related to the (unanswered) question
of when is the optimum attained at a piecewise analytic solution
having only finitely many breakpoints. It is also intimately connected
with the question of whether the need to take advantage of ambiguities
in the dual prices, alluded to in Section 4.5, occurs only (if at all)
to obtain a proof of optimality, or whether it can occur before the
optimal value is reached.

The last major open question is whether or not the sufficient
conditions for optimality, presented in Section L.,1, are also necessary ?
conditions when the optimum is attained at a piecewise analytic solution |

having finitely many breakpoints.
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APPENDIX A

RIGHT ANALYTIC FUNCTIONS

This appendix contains the propositions about right analytic func-
tions that are required in Section 2. The main result is the proof of
Lemma 2,2(7) which we restate below as Lemma (3). For completeness we review

the definitions of analytic and right analytic functions.

(1) Definition: [22]. Let 2 © R be open and g:% — R. Then
€ 1is said to be analytic on Q 1if to every open interval I CQ with

center a, there corresponds a series 5 t-a)i which converges to

10 C1
g(t) for all t € I.

(2) Definitions A function g:[0,T] - R will be called right analytic
if for each t € [0,T) there is an ¢ > 0 and an analytic function

h:(t-e, t+¢) > R such that g(s) = h(s) for all s € [t,t+e).

(3) Lemma: Let g:[0,T] —»R™ have right analytic components gi(-),
i =1,...,n. Then there exists a (possibly infinite) disjoint family

of open intervals, [Ij] such that [0,T) = U 1 4 and such that for

- S
each interval Ij’ each CH satisfies

(1) gy 1is analytic on I_, and

J’

(11) either Igil >0 on IJ or g =0 on IJ'

¢ 1« (t',t") 1is an open interval then 1 denotes the interval

[t',t").
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The proof of this result will require the following lemmas,

(4) Lemma, Let I TR be an open interval and [Ji} a family of
open intervals whose union is I, Let g:I - R be given, If g is

analytic on each J then g 1is analytic on I,

i

(5) Lemma, Let K C R be a compact interval, and let h be an analytic
function defined on a neighborhood of K. Then either h =0 on K

or h has finitely many zeros in K,

(6) Corollary, Let I CR be an open interval, and let h:I - R

fl

be analytic., Let Z(h) = {t € I:h(t) = 0}). Then either Z(h) = I,
or Z(h) has no limit point in I, In the latter case Z(h) is at

most countable,

The proofs of both these lemmas may be found in [22].

(7) Lemma, Let [Ja} be any family of open intervals, and (IJ} be

a disjoint family of open intervals such that u Then

j Iy = Uy 3
Uy T €Yy Ty

Proof., Since the collection (I,) 1is disjoint, the connectedness of

J
intervals implies that each Ja is contained in a unique IJ. Thus
3& g‘fj for some j and we are done, O
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Proof of Proposition (3). We shall prove the proposition for the case

n = 1, since from this, the general case follows immediately.

By definition of g being right analytic, for each t € [0,T)

there exists an e, >0 such that g is analytic on K_ = (t, t+e,) < [0,T).

t t)

Let V = Ut Kt and W = Utlit. Since V is open, there exists a disjoint

family of open intervals (Ji]t=1 whose union is V,
On each J;, we now obtain the following: By Lemma %) g fs

analytic on J By corollary (6) either g =0 on J, or g =0 on

17 i
at most a countable sequence {tl’tg"“] = Ji‘ In the latter case write

J; = (t',t"). Since the sequence has no limit point in J,, and since

1)
by definition g agrees with an analytic function defined on a neighbor-
hood of t', the only possible limit point of (tk] is t". Hence we
may assume that

£t < t2 < eee < ",

1

With this partition of J, we can now conclude that there is a (possibly

i
infinite) collection of disjoint open intervals {Lg] such that

k 5 K (e
[g] >0 on Ly or g =0 on L;, and such that dy = Uk Ly

Now it is clear that W = [0,T), By Lemma (7), it follows that

~ - ~k_
Ui vy = [0,T). Hence Ui,k L =

{Lg] as {Ij), we obtain the desired result. O

[0,T). By relabeling the fami y

(7) Lemma, Let g, h:[0,T] >R be right analytic. Let ty € [0,T) be
such that g(to) # h(to). Then there exist O < r < s < T such that

g=h on [O,r) and g #h on (r,s).
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Proof, Let E = {t:g(t) # h(t)). Since
r = inf E, Then by definition of r, g =

g and h are right analytic there is an

t

h

0

€ >

€ E,

on

0

E 1is nonempty. Let
[0,r)., Since both

such that g and h agree

with analytic functions on [r,r+e]. Again by definition of r, there

isa t€ (r, r + €) such that g(t) # h(t).

By Lemma 5, g - h

has finitely many zeros on [r, r + ¢]. Hence there is an s € (r, r + ¢)

such that g # h on (r,s). 0
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APPENDIX B 1

EXAMPLES OF EXTREME POINTS 1

The constraints are all of the form
t
B(t) x(t) + [ K(t,s) x(s)ds = b(t)
0

x(t) >0 J

for a.e. t € [0,T]. B(t) and K(t,s) € R™X%,

e

(1)

An extreme point that is not locally uniquely defined, and is 1

independent of small changes in T.

m=X n=3 =5 8t) =0 on [0;8), Define K(t,s) =

[kl(t,s) kg(t,s) k5(t,s)] on the triangle 0 < s <t <5 as follows:

s £ kl(t,s) ke(t,s) kB(t,s) 1

(s, 1) 0 0 0
[1’2) e-St 0 0

[O: 1] [2’3) 0 e-St 0
[5’h) 0] 0 e-St
[h; 5] 0 0 0

(1,5] [s,5] 0 0 0
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Set

>
—~
ct
S
I
I
]
o
=

ig(t) = ij(t)

]
o
o
=]

¥ (£) = i2(t) = ii(t)

and then define b(+) by

t

b(t) = [ K(t,s) x(s)ds, t € [0,5]
0

Consider now the specific values of K(t,s):

(i) For t € [0,1) the equation is trivial, i.e., 0 = 0O

the values of x on [0,1) are not in any way determined by

the coefficients on [0,1).

(ii) For t € [(1,2) the equation reads

o t
i xl(s)ds = b(t) .
0

PR - PSS SNSRI S

The left-hand side is the Laplace transform of x

on the interval

[0,1), evaluated at t. By the uniqueness theorem for Laplace

transforms (see Theorem C.12) the above equation has a unique

(a.e.) bounded solution x, on [O,1),

7!
soclution is Xy =% = 2

By construction this

(ii1) For t € [2,3) and t € [3,4) we obtain similar equations in

X and x

o 3 respectively, and conclude that the only possible

solution is x2 = x2 and x5 = x3 on

- oy

iy

: ————————ielh
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The above shows that x on [0,1) 1is uniquely determined,
independent of the choice of x on [1,5]. Thus choosing x =0
on [1,5] yields x = x on the whole interval, and this must be an
extreme point solution.

Notice that we have one equality constraint in three nonnegative
variables and that on [0,1) all three are positive while on [1,5]

all three are zero, O

(2): An extreme point that is locally uniquely defined except at the

origin, and whose values throughout the interval depend explicitly

on T,

m=n-=1 B(t) =t, b(t) = <t and K(t,s) = -2, Thus
T
tx(t) - 2 [ x(s)ds = -t
0

x(t) > 0, CRER IO

One can easily show that the only solutions to this equation are of

the form x(t) =1 + at for @ an arbitrary scalﬁr. a 1is the
derivative of x at O which, once determined, yields a unique
solution over the remainder of the interval. To obtain an extreme
point solution we choose the least « such that 1 +at >0 on [0,T].

Thus the only extreme point is x(t) = 1 - t/T.
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Note that if we set « = O (say) and choose the partition
{IJ.} with Ij = (1/3+1, 1/3), then x(t) =1, t € [0,T], is uniquely
determined on each interval [(1/j+1, 1/j). However, it is not uniquely

determined on [0,T], and is also not an extreme point, ]
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APPENDIX C

DISTRIBUTIONS, LAPLACE TRANSFORMS AND EQUATIONS OF THE FORM Dx + L [ x = g,
This appendix summarizes the techniques and results required
to study the solutions to equations of the form

t
(1) Dx(t) + L [ x(s)ds = g(t) , t
0

v
o

where D, L € Rm)(m and g(+) 1is analytic. We remark that by a
suitable change of variable and time direction, all the results
pertaining to (1) will be equally valid for equations of the form
T
(2) At)D + [ A(s)ds L = g(t) , k€,
t
The material presented here is well known, and we refer the
reader to [27], [11] and [ 5] for further details.
When D_l exists, (1) becomes the much studied Volterra equation

ot the second kind, This can be shown to have the unique solution
t o
- - -D lL t- -1 1
(3)  x(t) =plg(t) - 0L [ & L(t-8) ply(gyag
0

However, when D is singular (1) may not have a solution in any Rn-valued

space of functions, Consider the following example.

nn

Q
ct

lIf G e Rm)<m then th denotes the matrix exponential

ims
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(k) Example.

xl(t) - é xz(s)ds 0

x=1t) =

1 ¢
Clearly, if x, 1s restricted to be a real valued integrable function,
then these equations have no solution. However we can meaningfully

work within a larger class of 'functions,' the space of distributions,

where these equations do have a unique solution.

C.l. Distributions
Let © denote the space of all ¢® functions ¢®sR - R that

vanish outside some bounded interval (depending on ¢ ). Then the space
of distributions, f', is defined to be the set of all continuous linear
functionals on D.l Thus, if h € p', then to every ¢ € p, h assigns
a real number, to be denoted by (h,p), Locally integrable functions
may be considered a subspace of p': if f:R - R satisfies

M

[ |f(t)]|at <

for all M, then the functional defined by

lSee [27] for the notion of a sequence [wn] converging in 9.

21




(f,0) = [w £(t) o(t)at

is a continuous linear functional on ¢, and hence is a member of

D'. Distributions generated this way are called regular distributions.

Of particular interest here will be the & functional and its

derivatives., & 1is a distribution defined as follows:
(8,9) = (0) , P p.

Thus if we think of formally integrating & against o,

00

[ &(t) p(t)dt, then & may be thought of as a 'function' that is zero

=00 0o

everywhere except at the origin, where it is so large that [ &(t)dt = 1.
Indeed, distributions were invented precisely to make formal ;Ztions
of this kind rigorous.

Distributions allow us to differentiate functions that do not
have derivatives in the usual sense. The motivation for the definition
of distributional derivatives is the following. Let f:R - R be con-
tinuously differentiable., By definition

¢W,0) = 1 £ M) g(v)as
-0

Integrating by parts and noting that ¢ vanishes outside a bounded

interval, yields

00

-1 et) oD (g)at

(2, 1))

(f(l),w)
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(1)

is also in p, the right hand side makes sense when regarding

(1)

Since ¢

f as a regular distribution. Thus for ¢ € p, h € p', define h

by

6, §) = -, o),
and more generally

m1,0) = (1)} (n,0!1y .
In the case of &, we get
(5) 6%, o = apt oMoy |

With the above notion of the &, we can now solve Example (k)

by inspection,

x, (8) = 1,(¢)

5(t)

]

x,(t)

What we mean by writing the solution formally in this way is that, for

P€ o,

{x1,9) (f) p(t)at

and

9(0) .

(x5, %)

In general, it will turn out that the solutions to (1) contain linear
i
(1),

combinations of (5

o




An important concept in the development of solution techniques
for (1) is that of convolution,

If f, g:R - R are two continuous functions that vanish on
(-0,0), then their convolution, f*g:R - R 1is defined Ly

t
(f*g)(t) = [ f£(t-8) g(s)ds
0

Notice that f*g = g*¥f., This definition can be extended to the case

of f and g being distributions provided f, g € p}, where

p; <o denotes the space of distributions 'vanishing' on (=»,0).

By this we mean that f € p! satisfies (f,9) =0 for all 9€ p
vanishing on [0,»), See [27, p. 122] for further details, Of importance
here will be the result

*f
(6) 0

]
]

for £ € DL.
We shall be applying (6) to functions of the form 1+(t)f(t)
where f:R - R 1is infinitely differentiable, Clearly (l+f)(i)

exists only in the distributional sense. It can be shown that

(7) (l+f)(i) - 1+f(i) + 521 ) (0) 4 eee 4 5(1°1) gy |

124




P —

C.2. Laplace Transforms

The Laplace Transform is an extremely useful tool for computing

and manipulating solutions to equations of the form (1). The reason for

this is that it allows us formal algebraic manipulations, the results
of which are correct, usually requiring no further justification,

If f:R - R 1is such that f(t) =0, t < 0, and for some
c € R, e.ct f(t) is absolutely integrable over R, then the Laplace

transform of f 1is defined by

2(a) = [ &% £(t)at
0

where s € €, Re s > c¢. The alternative notation F(f)(s) will also

he used.

With some care, this definition can also be extended to distri-

butions.

For f € D'+, define

~

$(s) = (£,e%%)

whenever the right-hand side makes sense., This will occur when, for

some c, P £(t) 1is in a certain subspace & ' C9' called

_distributions of slow growth, Any such f will be called Laplace-

transformable, For our purpose it suffices to remark that the family

(1)

{8 7’} is Laplace-transformable, and moreover that

(8) L) =6t
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Other Laplace transform formulae that will be important are

(9) L 5 1,(8)) = 51 Re 5 >0
S
(10) ;((i%-tk oH® 1,(t)) = "“l'iii N Re s > Re u
* (s=-p)
(11) Fu(s) = 2(s) als)

The following uniqueness theorem gives a 1-1 correspondence

between Laplace-transformable distributions and their Laplace-transforms.

(12) Theorem, (Uniqueness Theorem). Let f and g be Laplace-

transformable distributions in p}. If f(s) = g(s) on some vertical

line s =c¢ + Lnl in their regions of convergence, then f = g,

Proof. See [27, p. 225]. 0O

C.3. Solving the equation Dx + L/x = g

With the above results we can now proceed to solve

5
Dx(t) + L [ x(s)ds = g(t), t>0
0

~ ~
L1y suffices to require that f(s) = g(s) over some segment of an

arbitrarily oriented line in their common regions of convergence,
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in the space of distributions., We begin by rewriting the equation as

(13) (D8 + L1+)*x =18, Xy € o} .
Taking Laplace transforms on both sides (assuming x 1is Laplace-

transformable) yields

(0 + 1) X(s) =&(1,8)(s)

by using (8), (9) and (11).
Assume now that (D + % L)-1 exists for some s (and hence

for all except finitely many s). Then

~

x(s) = (D + % 1) X(1,e)(s).

From (11) we see that if H = (hij) is an m X m matrix with entries

h13 € p} and whose Laplace transform is (D + % L)-l, then x = H*(l+g).
By Cramer's rule for computing the inverse of a matrix, it is

clear that (D + % L)-1 = (rij(s)) has entries that are rational functions

of s. Indeed each ri has the form

J
p,.(s)
713 = gty

where the p1J and q are polynomials in s of order < m, and

q(s) = det(sD + L). A partial fraction expansion of each yields

Ty
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iy  @rzu- P e
k=0 k=1 z%) (s-8,)
where Z§=1 m = degree of q, {gk] are the roots of q with multi-
m Xm —~ M Xm
plicities {mk], and the matrices [Uk}<: R % {Vkl} el

From (8), (10), (14) and Theorem (12) we obtain (D + % L)’l

as the Laplace transform of

. (x) 2 i 1 .8 %P
(15) H(t) = & UB‘“/(t) + L Vv,=t " 108,
k=0 * ko1 g0 KT S "

To obtain the solution x, we compute the convolution H*(1 g).

Using (6) and (7) yields

m m=1 m
(16) x(t) = £ v g®e)+ T (T ug V(o)) sy
k=0 £=0 k=£+1
t
+ [ ¥(t-s) g(s)ds, £>90
0
where
el £t
17)  ¥¢) = L . a¢e* 2 t>0
Rel g X4 4 . -

We have thus established the following result.

Lt can be shown that Y(t) € R"™™ gsince the imaginary parts cancel

in complex conjugate pairs,
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(18) Proposition., Let D and L€ Rm)(m’ and g:R —» R* be analytic.
If there is a u € R such that (uD + L)-l exists, then the unique
solution to the equation

t

Dx(t) + L f x(s)ds = g(t), t
0

v
(@)

in the space 9} 1is given by (16).

Proof. By construction, x given by (16) is a particular solution. To
show it is the unique solution in Dl, suppose that y 1is another
solution, Then both x and y satisfy (13). By construction H(t)

given by (15) satisfies

H* (D& + L1,) =18

where I 1is the m X m identity matrix, Convolving H with both sides

of (13) then yields

5%x = H*(1,8)
5%y = B*(1,8) .
By (6), it follows that x = y. a

We remark that alternative expressions for the coefficients

{Uk] and Y(t) have been found using the Drazin inverse of a matrix.

See [ 5]. 1In particular it is shown that there exist matrices
F, G € B®*™ guch that

¥Y(t) = Fth.
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Since these expressions yield little additional insight into the nature
of the solutions, we shall omit them here,

Finally, note that since g 1is assumed analytic, x is the sum
of an analytic function and a finite linear combination of {6(1)}. In

the event that D-l exists, it can be easily shown that U, = 0,

k
K= 1,iue;ly since q then has degree m. In this case, all the terms

in 6‘1) in (1€) vanish, and we obtain the same expression as in (3),

C.4., An initial value result

(19) Lemma. If g!R - R is analytic and 1,6 1is Laplace transformable

thegﬁ 3
(k) T 7 ) P
(L a8 41g)(s) = & + L (0)
X 5 8 +1,8)(s g 8, 8 hA g s

Proof. Use (8), (9) and Theorem 8,3.3 in [ 27, p. 231]. O
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APPENDIX D

AN EXISTENCE AND UNIQUENESS THEOREM RELATING TO THE {Ti]

In this Appendix we study the equations

1)t
Ty = B, * + (-1) 2 =
2R s (TR
(1)

.
.

AR RN et g
z 2, + (=1) zq o

on the simplex
S =(z€RY1>2 >0t >z > 0}
q - l —_ - q -

for given 0 < p <1,
These equations appear in Section 4.2.1.
We remark that they are closely related to the study of the

Vandermonde metrix (see e.g. [17, p. 36])

[ 2y Ty e 2
Z2 Z2 Z2
V(z) = 1 A~ R |
q q q
| Zl 22 Ve Zq ]

151

gt o L.\ g O . P - v -y - e







However, the usual application is to solve a linear system of equations
whose detached coefficient matrix is V(z), for some given fixed z.

Here we are given a solution

g -
ki
§C0 il
to the equation
V(z)y = pe

and wish to determine z.

The main result of this Appendix is the following:

—
o
~

Theorem. The system of equations (1) has a unique solution in

the interior of the simplex Sq’

We shall require several results for the proof of this theorem,

(3) Lemma. For any p and any z € g3 satisfying (1),

q
(4) PP e P (08 L\ Y § I S ¢ RPA
1 2 q 1=1 i !

Proof. Define the polynomial

q

Plw) =w T (w = 2,)

- ¥

i=1
and let it have the expansion
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flw) = wq+l + a.qmq + eee + a,lm g

Multiply the ith equation in (1) by ai and sum over i =1,,..,q.

It is easily seen that the resulting equation is

(£(z)) = 23] + -oe 4 (-1)q+1(f(zq) ¥ Zgﬂ] = p{£(1) - 1].

q
TE (1= Zi)’ the result follows. =)

Since f(z,) =0 and f(1)
’ i=1

(6) Corollary. For O < p < 1, the (q+l) equations

q .

K+ !
R z; =p, 4 % 142,00 ,0t1
k=1

have no solution in the interior of Sq.

Proof. For 2z in the interior of Sq, the right-hand side of (4) is

< p, and the result follows immediately. 0

(7) Corollary. Fer O < p < 1, equations (1) have no solution on the

boundary of Sq.

L Proof. Let 2z be the boundary of Sq and satisfy (1). By examining
the form of such 2z and the form of (1), it is clear that there are

1 <4y <ees <2 <4q such that (zl seeesZ, ) is in the interior of

: 18 r

Sr and satisfies
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= pt , J = 1,2,...,!‘+l

where either p' = p or p' = l-p. By Corollary (6) this is a

contradiction, O

(8) Lemma, Det V(z) = i il (z, - zi) J
I<k<q 1<i<j<gq

Proof. See [17, p. 36]. a

(9) Corollary. Define £:R% 5 )Y by

Then

where

Proof.

q .

k+1

£z} Z (1) zﬂ y 3% Y iesntl
J k=1

q+l

det Df(z) = q! (-1) I (z, - 2,)

Lsi<i<g s

Df(z) 4is the Jacobian matrix of f(z).

This follows directly from the Lemma and elementary properties

of determinants. 0
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(10) Lemma. Let YyreeYq € R be given. If the equation

+ teoet
¥y + ¥, Yq

n
-
=

g 2 2
+ oot =
Y1t Y, o

q .
9 'aq

1
-

y% + yg‘ +eeeo+t y

have a solution, then this solution is unique up to a permutation

of the variables.

Proof. This follows from [L4, pp. 2k2-2L45], O

Proof of Theorem (2). Existence: The proof will be by induction on q.

For the case q =1 the result holds trivally.

Suppose that the result is true for q, and that z, in the
interior of Sq, is a solution, Define the maps H:Sq x (0,11 - R

and hiS; X [(0,1] » R by

q :
k+
Bi(zt) = L (-5 4 + (-2)¢ o e e
k=1
and
a + +
h(zt) = I (1) 21+ ()%t

k=1

We need to find 1>z, > «-. > zq >t >0 such that H(z,t) = pe and

h(Z,t) = P
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Now H(z,0) = pe, and by Lemma (3), h(z,0) < p since 2z 1is in
the interior of Sq. Also by Corollary (9) the Jacobian, DZH(z,t) is
nonsingular for all 2z 1in the interior of Sq and all t. By the
Implicit Function Theorem [20, p. 128] there is a & > 0 such that
for all t € [0,5), the equation H(z,t) = pe has & solution z(t)
in the interior of Sq. Moreover z(t) varies continuously with t,

We now show that we can increase t from O to some t* while
maintaining H(z(t),t) = pe, z(t) in the interior of Sq, Or<s ot < zq(t),
and such that h(z(t*),t*) = p. If this is possible then (z(t*),t*)

will be in the interior of S i and will satisfy (1) in the case of

qt+l
q replaced by qgtl.
Since DZH(z,t) is nonsingular for all =z in the interior of
Sq’ it is clear that the only time we can no longer increase t 1is

when either t = zq(t) or 2z(t) hits the boundary of Sq. In the

event that t = zq(t) or any two components of z(t) are equal,

we can use the technique of the proof of Corollary (7) to obtain a
reduced overdetermined system having an interior point solution. By
Corollary (6) this leads to a contradiction, The case remaining is when
for some t', zl(t') =1 and 1 > z2(t') S zq(t') St >0, Th
this case (ze(t'), b zq(t'),t') satisfies (1) with the right-hand
side replaced by 1 - p., By Lemma (3) we get
3 k g+l q+l q+l
L (-1) 2, =+ (<1) tt
k=2
q
= (1-p) (1 - (2-t') T (1-2)).

k=2
Hence

q
h(z(t'),t') =1 - (1-p) (1 -~ (1-t') ™ (1-zk)] .
k=2
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Since the term { )} 1lies in (0,1) we have

h(z(t'),t') >p .

However, h(z(0),0) < p, and we would have reached an earlier t* < t'
at which

h(z(t*),t*) = o.

This completes the proof that the result holds for gq+l. By induction

the existence is established.

Uniqueness: (This proof is due to T, J, Rivlin.l) Suppose there
are two solutions z and z. Upon rearrangement, it is clear that

z and z satisfy

Z. + 2 + Z_ + ees = El + 2 4+ Z, + ee

5

e 2 =D o =D
+ + 4+ eee = + o + eee

Zl 22 25 Zl Z2 22

9., 34 8 4 sxs =33 45 5 ..

Zq + 22 + z3 A z1 + 22 + 23 + »
By Lemms (10) the vector (21’22’23"") is a permutation of
(21,22,23,...). Since both z and z 1lie in the interior of

=2 1:1’-u¢’qo

1,

S , it follows that 2z
q i

This completes the proof. 0

1Private communication,
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APPENDIX E

EXAMPLES OF SOME STEPS IN THE CONTINUOUS TIME SIMPLEX ALGORITHM

(1). Making a change of basis over [0,e) with g = 2.

t
xl(t) + é xz(s)ds =2 + 2t 1

i
x2(t) + é xj(s)ds =2 + % |
:

+ x =2

| X, X,
2] *ox), = |
xi(t) ZO, i=1...,5 tE€ [0)1] . \]‘

| Since we are using this example only to illustrate the pro-
cedure for making a change of basis over [0,¢), we have omitted the
objective function, ‘

The detached coefficients are:

10000 5 %0 0%
01000 00100
Prle o T 03 K=lo 000 0
100010 00000
2+ 2t
2+t
b(t) = 5 F
2
[
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£3.2.%,5)

We begin with the initial basic feasible solution Bl

over [0,1]. This yields
xl(t) = xg(t) = xa(t) = xs(t) = il xh(t) =0 ,
Next we introduce x) = 6 into the basis over [0,e). Follow-

ing Section L4.2.1 the first step is to find the partial fraction

expansion of

£ 5 1 -1 1
h(s)-(B.B+SK.B) (bu+skh).
1 1
Substituting yields
-1
j O TR N 0 1
- 0 1 /6 © 0 -S
h(s) = g o 1 1 S s
2 O (1 (0] 1 -5
whose expansion is
0] 0 1
~
n(s) = Y g%} ®
0 0]
-1 0 0

-




Following (21), (29) and (33) of Section 4,2,1 we find

Far Pys For Fo

We obtain

by taking minimum and maximum ratios on the vectors

X(O) o (2; 2, 1, O, 1)

¥ (O: O: 1) 0: -1

Since q = 2, we partition the interval [0,e) into three sub-

intervals [O,Tle), [T1€, T2€), and [T2€,€) on which we shall have

the basic sets

To obtain 7 and T

0y Oy Oy respectively, where

2

- (l,E,h,S)
= (1,2,3,4) .

q
1

q
|

1 , we begin by solving the equations L4.2,1

0 _ 0 _
(36) for z, and z,, and then set T, = 1 - 2y, T, = 1-2z, asour

initial guess.

then these will

2 satisfy

2

2
Should we obtain

0 O) 2

o(elty, 7

|

6(1)(€'1 rg, rg) =0

be the desired values of 11 and r2. Now z1 and
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b

Solving yields

and therefore

Solving the equations with these values for = and

Z1 = j/h; 22

T(i = 1/L, T

n

n

/k,

3/k .

i

sho
r2 WS

that 6 does satisfy the above conditions at t = ¢~. The solution is

given as follows:

8
[0, T €) [i— € %e) [15; €, €) [e,1)
& 1
2 =t 2 - 5 t
1 1 2 JE
x, 2 -2t +(t - fe) +(t - e)? 2
- (t - % 6)2
X - s 2. * 2 €e-t 2=c+t &
2 2
p 0 2 0 1
2
1.2 1.2
3t 2"
X &2 1 2 e
x, =8 5 t - [t = £ €) - (t - % €) 0
+ (t - % e)2
x5 0 0 2 1
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Below we sketch the solution.

L

FIGURE 10

1h2
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(2). Using ambiguity in the dual variables to obtain a proof of optimality

minimize

t
subject to xl(t) + [ x.(8)ds =
) 2

The detached coefficients are
14 0 0
B = 2 K
L0 1 2
[ 2 =%
LORS N o(t)

:
f xl(t)dt
0
=1=-1t
( =
x2(t) + x§\t) 1
x,(t) >0, t = [0,1]
0 -1 0
000
=1 © 0] .

It can be easily seen that there is only one feasible solution,

given by

xl(t) = 1-t, xz(t) =0, x5(t) =1, te fo,1] .

Hence this must be the optimal solution,
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FIGURE 11

Determining the dual variables by solving 4.1(9) in the usual

way yields
* *
A (€)= 1, Ay () =0
ety ¥atd o is00.

=0, j=0,1

and we observe that EP(t) <0 for 0<t<1l,

Noting that x,(17)= 0, we can relax the restriction ag = 0,
and parametrize the dual variables in terms of y = ag. Solving the
equations given by Lemma 4,5(85):
1l
Lt gy - T T BRI ST T

e

J
\1




1

% “ 1 0 * * 0
o ) G D[ mas € D)+, W0

(uy 1) (g )+ (uy, w2 ) = (1,0)

l 0
(U. ) O l) = (OJO)I
yields
¥ .
wl(t) =T,(t) =0
0 1
Uy = 1, all other W (570
Thus
% »
)\l(tl'r) =1, A (tlr) =0

v?(Y) =Y, all other vi(r) = 0,
The reduced costs of x? now become
CP(t,T) t-1-17v

ai = 0, atl ¥, 3

0O O

0 0) = (O;O)

We see that E tlY) >0 for y < -1, Since this also yields

ag =y <0 for sucH y, our dual variables A (+|y) and

are dual feasible in this range, as required.

]_"!/

(v ()

- 1
J




(10]
[ET]

(12]
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