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• Abstract

A resonance theory of acoustic scattering from penetrable
• bodies has recently been developed CL. Flax, L. R. Dragonette,

and H. Uberall, J. Acoust. Soc. Am. 63, 1690 (1978)) which
describes the features of the scattering amplitude in terms of
a background amplitude like that of an impenetrable scatterer
with superimposed resonances at the known eigenfrequericies of
the body. In the present study (carried out for the example
of a spherical gas bubble in a f luid which in spite of its

~ ~~
. simplicity contains all the essential features of the scattering

~~~~~~~~, process), the existence of these resonances is explained by the
C_) phase—matching of surface waves on the scatter whose phase and

U.J group velocities are obtained here. In addition, we study the
ç _ j  dynamics of the interior motions inside the body during the

scattering process , which are shown to undergo resonances in
the radial and angular directions except for the radial motions

C..~3 on the surface, resulting in the fact that the modal surface
deformations do not exhibit any particular resonance effects at
the eigenfrequencies of the body
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FOREWORD

In this study, we investigate the dynamics of surface

• motion of a penetrable spherical body subjected to an inci-

dent place acoustic wave. The results should be valid for

• objects of rather general internal consistency since they

are based on quite basic physical considerations, but they

are illustrated here by the example of a gas bubble in a

fluid. It is shown that-surface waves generated in the

scattering process circumnavigate the target sphere and, by

a process of in—phase “resonance reinforcement” , excite its

multipole resonances at those eigenfrequencies at which n + 1/2

wavelenghts (n being are integer) span the circumference.

Phase matching is achieved here due to the fact that the surface

wave suffers a phase jump of 7~ /2 at each of the two “caustic

points ” on the sphere at which the surface waves converge.

Surface motions and circumferential waves on the bubble are graphi—

cally demonstrated , both on and off resonance. It is shown that

the resonance manifests itself by a large—amplitude angular oscil-

lation of the gas contained in the bubble.
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Introduction

Recently, some progress in dynamical studies of sound

• scattering from elastic objects1 was achieved by linking the

excitation of resonances of the target body duxhg the scattering

process to a resonant reinforcement of diffracted “creeping

waves” in their multiple circumnavigations of the body. In

this way , the occurence of acoustic scattering resonances, and

more fundamentally , the very existence of the eigenvibrations

of an elastic body, has been traced back to a dynamic orig in

rooted in the phenomenon of circumferential waves that exist

on the surface of the body, and partly also in the ambient

medium. Correspond ing resonances appear in the surface waves

themselves , and, as shown by Flax, Dragonette and Tiberall

who following a suggestion of L. Flax used the methods of

nuclear scattering theory for this purpose, these resonances

become manifest also in the individual partial waves of a

normal mode expansion of the field where they interfere with a

smooth “poten tial scattering ” background characteristic of an

3,4 . . 5 .impenetrable (rigid, soft , or intermediate ) target object.

Similar results were also observed to hold in the scattering of

elastic waves from cavities
6 10.
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The link between creeping waves and eigenvibrations for a

spherical target takes a somewhat different, and more interesting,

form than for the cylindrical bod~es discussed earlier
1 3”0. The

eigenvibrations and related creeping waves of spherical bodies will

thus be discussed in the following , considering the special case

of gas—filled bubbles in a fluid medium. Although this example

constitutes the simplest kind of scattering problem, it exhibits

all the bas-tc features of the creeping-wave resonances to be dis-

cussed here; and it represents an interesting problem in its own

right, for which prior to our recent discussion11, only scant know—

ledge existed12 concerning all the higher multipole resonances

(apart from the we~ 1—known
’3 fundamental “breathingLmode” monopo-].e

resonance, of course).

It will be shown below that the sound scattering phenomenon

with a spherical target bubble can be resolved into the creation

of a manifold of circumferential waves (represented by “Regge poles ”

in the scattering amplitude), which circumnavigate the target with

various phase velocities that depend on the frequency. Their dis—

persion curves (as well as their trajectories in the complex mode

number plane) may be obtained from the calculated progression of

the modal resonances to higher frequencies with increasing mode

number, as studied by us earlier11. These resonances were shown



there to be superimposed on, and to interfere with, a smooth

background amplitude corresponding to the scattering from a pressure—

release sphere, for the case of an air bubble in water. We now demon—

strate that resonance takes place in the nth mode at any such frequency

at which one of the circumferential waves spans the circumference of

the bubble n + ½ times, n being an integer. It is shown in addition

that all these creeping waves converge at the vertex and at its anti—

pode on the sphere, and lose a quarter—wavelength (corresponding to

a phase jump of %/2) upon passage through each one of these two

caustic points. One full circumnavigation thus leads to perfect

phase matching when the above condition of n + ½ geometrical wave—

lengths equalling the circumference is satisfied, and hence to a

resonant reinforcement of the creeping wave during its repeated

circumnavigations. This phenomenon forms the basis for the resonant

eigenvibrations of a gas bubble in a fluid, an explanation which will

also hold for target bodies of more general (e.g. elastic, layered,

etc.) consistency and for the excitation of their eigenvibrations

by more general, non—acoustic forces. The very existence of the

eigenvibrations of elastic objects may then, in a sense, be referred

back to the existence of circumferential waves on their surface, and

to the resonant reinforcements of the latter in the course of their

repeated circumnavigations.
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We have carried out numerical calculations in order

to demonstrate the phase matching of the surface waves.

Further numerical calculations were done for study of the

displacement of the air particles in the bubble on and

off the resonance . It is found that at resonance, the air

motion in the bubble is enhanced by a factor “ lO
s
,

except for the radial component of motion on the bubble

surface. This results in the fact that the modal bubble •

surface deformations do not exhibit any particular

resonance effects at the eigenfrequencies of the bubble.

~~~~ - - •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • ~~~~~~~~~~~~ ---~~~~~~ --•-- - •--• • •-~~~~~~~~~~~~~ ~~~~~• •--~~~~~~~~~~~~~~ ••• ~~~~~~~~~~~~~~~~ -- -•—-•• •-- •~~~~• - - -



r ______ —---- --

~~

--

~~~~

— 7-

I. Modal Resonances of a Gas Bubble in a Fluid

The scattering of sound by a fluid (or gaseous) sphere imbedded

in another fluid may be discussed in terms of a velocity potential

-0
4i (r), from which the particle velocity field V is obtained via

-.
V~~ — V5P. (1)

The total (incident plus scattered)field is given11 by the normal—

mode series -

~ (2)

- . . - - 
(1)where j  is due to the incident and h to the scattered wave.n n

Here, is the amplitude of the incident plane wave, and k = 6)/c

its wave number is the ambient fluid. Satisfying the boundary conditions

(continuity of pressure and of normal particle velocity) at the

spherical surface r = a determines the scattering coefficient A of

the nth mode as

A ~~~ x~~~ (s~~)~~~~ Cx) - 
~~W ~~ 

• 

(3)
• ‘vi. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cx~ )&~~oc)

where x = ka , = kba. with k~ = W/C
b 

being the wave number of sound

inside the bubble; ~ and 0 are the fluid density inside and outsideb .Pw

the bubble, respectively.

-~~~~~ ~
ii_i~

_ _
~ _ _  

~~~~~~~~~~~~~
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Following our previous study , we rewrite Eq. (3) in the form

• 
54 (0) ~~~~(2)  

~ j )

_ _ _  

fl~~~~~~~~~~. 
(4) H

where

= — (x) , (5a)

f l (~_) n ( . ~~
)

~~~~~~~~~~~~ x-4~ (x) / - ~L ~~~ c. = 1.,2 (Sb )

(5c)

The last term in Eq. (4) corresponds to the scattering coeff ic ien t  for

• the limit of a pressure—release sphere, where f~/f~~~0 and F -,co

Reference 11 fur ther  showed that  a f t e r  a Taylor expansion , Eq. (4)

becomes approximately

~ ~~ ~~~~~~~~~~~~~~~ 

+ 
(6)

where is the !th resonance frequency of the bubble contained 
-

in the nth normal mode of the scattering amplitude as determined

from the eigenvalue equation

‘Re ~~ = F~ . (7)
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The resonance width is given by

(
~ / ~~~ ~~~~ 

~~~~~~~~~~~i) 

(8a)

where

13 = (d/d~~) {~~~~~~~-f ~~I ‘It~ ~~~~~~~~ {8b)

Eq. (6) indicates that the amplitude consists of a smooth background

due to scattering from a pressure release sphere (second term), super-

imposed upon which there is a series of interfering resonances (first

term). This is demonstrated in Fig. 1 where we plot the quantities

I f -n. (~9 ) J  for i9~~~Tr (~~~~) vs. x ka up to x = 4 for

an air bubble in water, where

~~~~~~ 

(~~
)
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(9)

is the asymptotic scattering amplitude (“form function”). The smooth

background is clearly visible, and the interfering resonance peaks are

labeled by (n,~~~). The tall resonance peak (0,1) represents the well—

known
13 

giant monopole bubble resonance. The resonance frequencies ,

obtained from a numerical solution of Eq. (7), are also given in

Table I up to x~~ 4. - 

~~~~~~~~~~~~~ • -~~~~~-- •-.- - •-•~~~~~~~~~~~~~~~~~~~~~~- •-~~~~~. •- --—-
~~~~~~~~~~~

- •
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II. Circumferential Waves and Their Resonances

In the nuclear scattering theory formalism’4, one usually rewrites

• Eq. (2) as = . where the amplitude of spherically out-

going •waves is

= (2n+ ~~~~~~~ ~~‘a ~(k ) T (cos ~~~~) 
~ 

(10)

with the “ scattering t~rnction ”

& = 2 ~L + 1 .  (11)

Due to Eq. (6) , Sn has poles in the lower half of the comp1e~ x—p lane ,

located at

X C&~’~ ) 1
~~~t g  ( 12)

These may , however , be rewritten in the form of poles in the complex

n—plane , by treating n as a continuous variable and expanding

X~~ ~ + (‘~ - v ~~)x~~~ ÷... (13)

(X
~~~€ 

>0 , cee~~g. t,wh e e X , (d/ d t) ç~~~, about an n-value

• chosen so that ~~~ (the given incident frequency). The S—
1

function , which reads 
-

(14)

t ~~~“°~~ 

~~~~~~~~~~~ f~ ~~~~ &:°~I 
)( -)

~N e  -a/i) r 2
~ ,e~ 

X -X~~~~ (~/2.)c~
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(note that the various terms in the sum are accurate only in the

immediate vicini ty of their resonance peaks) , can then be rewritten

• in the form
A

~~~~~~~~~~~~~~~ ~~-~~~~+(c/2~)) 
_ _ _ _  (iSa)

!~ c’ 
?)1_

~1.~
..((/2.)cL ,tO ‘~~ ‘~1

where

• A

( 15b)

indicating the existence of “Regge poles”
14 

in the scattering function
A

located at the positions , where - -

-4 = ‘ n * / Z ) J  (15c )

• -in the upper half of the complex n-plane.

These Regge poles, and their residues, are conventionally obtained

by performing a Watson transformation on Eq. (10), whereby a series of

the form is rewritten14 as a contour integral:

P (cos i~~)- (~/Z) 
E~~ ~~~~~~~ dv , ( l6a)

~ 0 
- CoS 7?- P

C being a clockwise contour enclosing the positive real axis in the

complex V plane. Applying this to Eq. (10) with an appropriate

expression for ~~~~~~, one may then re—evaluate the contour integral 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j
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at the Regge poles of the functionr 4 , written in the

form o~:) (/7 )
fp

L

~~~~~~~~~~~~~ ~II ~~~~~~~~~~~~~ 
(l6b)

in order to exhibit the denominator in Eq. (15a). This leads td the

exact expression
00 

L P (~
e) ‘rr P~,(-~osi%) ( 17a)

J~o 
~~~~~~~~ co r ( ~t~+~~)

with

e~~~ ’~ (4+~~)Qt ,JL~ (ks ’-) ~ ~~~~0)

for the scattered wave of Eq. (10), which has the same poles and

residues in the variable at all the integers n as does Eq. (10)

• with the approximate expression of Eq. (15a) , and we see that our

consideration of the Watson transformation has furnished generalized

resonance denominators which interpolate between the resonance positions,

and which will be seen to provide us with a physical p icture of the

very origin of the resonances.

Such a picture may be obtained by using the asymptotic fo rm14

(val id for V si n~~’>)l) ,

T~ ~~~~~ ~ 
(~~(y~~~)~ j 1j~~) 

cos{(v~.t) (7r-$) _
~~7r] - 

(18a~
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in Eq. (17); even for small values of n, this shou ld provide an

approximate description of the general behavior of the amplitude.

One may then split the cosine in Eq. (18a) into two exponentials,

and expand the denominator of Eq. (17),

~/ cos1r(~~+~~)~~— i/~i’niri~, = 22 re  ~~~~~~~~~ 

- 

(18b)

so that

) ~~~~~

With the time factor exp(i~ 1~ - )  of Eq. (10), this shows that for m = 0

and a given value of £ . two surface waves with angular propagation

A
constant n~ + ½ propagate in the counterclockwise ( ~ , =-l)  and in

the clockwise (~~ = + 1) direction around a meridian of the bubble.

with an amplitude spreading factor sin ½~3, that describes their con-

vergence at the north and- south poles (i.e. the vertex of the sphere

as seen by the incident wave, and its antipode). These “tidal waves”

are joined by other such waves with m > 0 that already have encircled

the bubble m times previously (of course with larger and larger atten-

uation,  wh ich is furnished by Im n,~ ~ 0), corresponding to steady-

state scattering. The wavelength of these surface waves is obtained as

_ (20a)

- 2~~~/(~~~~4~)
(2 Ob) 

~~~~ • • - •~~~~~- 
• - -•-

~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~ - —j
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if Eq. (l5c) is used , with  n determined by the equation x ,=~(
~1

Due to radiation damping , these waves decay as exp(— i97~t ) ,  where

the decay angle #‘i9~ is fci.ind as

• (x )  (2la)

~~~~~ 
iç~ (21b )

if Eq. (15c) is used , with 1 
~ 

and ~ given by Eqs. (8a)
.1

and af ter  Eq. (13), respectively. Such surface waves have been termed

“creeping waves ” by Franz15, althotigh their discussion goes back to
16van der Pol and before.

The phase velocity of the Jth surface wave is seen from Eq. (19)

to be

_ _ _ _ _ _  
x‘C (x ) = = — ‘C• ~~~~~~~~ ~. -‘ (2 2)

dispersion curves for the surface waves based on this expression will

be shown below.

Using the above picture of circumnavigating surface waves excited

in the scattering process, one arrives at a physical explanation -for

the origin of the resonances themselves. Equations (20) show that at
A

a physical resonance (Re n.
€ 

= integer = n , c f .,  e .g. ,  Eq. ( 15 a ) ) ,

the wavelength of the surface wave is given by



r • _____ 
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~ 2ir~ / (~v~9 
~~~

) .  (23) -

A
The resonance condition , Re n

2 
(x) = n, is therefore tantamount to

the requirement that the bubble circumference measure an odd number of

half-wavelengths of the surface wave, which may also be considered the

eigenvalue equation for the resonance frequency ~~~~ A resonance

condition of this kind has already been noted by Junger and Feit’7.

Equation (23) actually leads to phase matching of the surface wave after

each additional curcumnavigation, in spite of the fact that a half—

integer number of wavelengths fit around the bubble circumference.

This becomes clear from inspection of Eq. (19), which reveals that

owing to the factors exp(-i-~ ’W/4), a phase jump corresponding to

exp(— lit /2) takes place every time the surface wave passes through the

convergence zones at the north and south pole of the spherical bubble

= 0, ~r ). During such a passage, the continuing description of

a surface wave encircling the bubble in a given sense passes18 from

one exponential in Eq. (19) to the other one , the relative difference

in the factors exp(— ~€1r /4) provIding the mentioned phase jump.

Since the latter amounts to a back Ward, shift of the wave by an

extra ¼ + ¼ wavelengths (at each pole) = ½ wavelength during one complete

circumnavigation , the condition 2lr a.= (ii. + ½)A actually results in

_ _
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an exact phase matching of the surface wave with i tself a f t e r  eaci.

complete circuit, which explains physically the appearance of a resonance

as a resonant reinforcement of the tidal waves in the course of their

repeated circumnavigations. If unattenuated , such a reinforcement

would cause infinite amplitudes. The radiative attenuation of the

surface wave leads to finite amplitudes and a finite resonance width.

As mentioned, the north and south pole represent caustic points

for the surface waves on the bubble. A corresponding phase jump of

i(/4 for a wave passing through a caustic is well-known for other

examples in acoustics, e.g. sound propagation through the inhomogeneous

19oceanic medium

The phase matching condition may be viewed somewhat differently,

namely as a coincidence condition for phase velocities. The vibrational

modes continued in Eq. (10), being standing circumferential waves

around the bubble circumference, may each be decomposed into a pair

of modal waves propagating in opposite directions with phase velocities

using the separation2°

• T~~ 
(~~os~~ ~~~~ 

(-t.o~&)- ~~~Qv
(_co

~~~]+ ~~~~~~~~ (o s ~~)~

[a/ (
~‘ ~

) ~~~~ ~ ~ fly. .
~ ~~~~~~~~~~~~~~~ 

, .
~ .e: ~~ ~~~~~~~~~~~ 

~ (Vt)

as shown in Fig. 2 for the quadrupole (n = 2). The acoustic scattering

process generates a series of surface waves with speeds c
j 

(x)  around 
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the bubble given by Eq. (22), while using Eqs. (10) and (18), the modal

speeds are given by

~~~~~. w 
/ ~~~~~~~~ ~~~~ 

t)
(25)

From Eq. (22), it is seen that a resonance occurs at that frequency

at which the speed of the 2 th surface wave launched during the
scattering process coincides with the phase velocity of the modal wave

corresponding to the nth natural multipole vibrational mode of the

bubble. Again, this coincidence condition for phase velocitie s may

be viewed as an eigenvalue condition for

III. Numerical Results

In the following , we shall obtain some numerical results of the

properties of surface waves as they are excited by plane acoustic

waves incident on an air bubble in water.

1.) Phase and group velocities.

The phase velocity of the ,Lth surface wave is given by Eq. (22).

In Fig. 3a , we plot the ratios C
A 

Ic as a function of x ka for ,~~~ = 1

through 14. The ensuing dispersion curves , which are not unlike those

for the Lamb wave s or a fluid layer in a vacuum21, come in from infinity

at some low-frequency cutoff- (except for the,! = 0 wave), and at high
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frequencies they allappear to approach the common ‘alue

= 0.22 , where Cb is the Sound velocity in the fluid

contained in the bubble (here , a i r ) .

If we introduce a trace velocity C
tr = c/sin ~ of

the incident plane wave on the surface ef the sphere ,

where ~~ is the angle of the surface normal with the

direction of incidence, then Cremer ’ s “ coincidence

condition ” 22 c = c between the incident—wave tracetr £
velocity and the surface wave speed determines the angle

0.. at which the surface wave is launched. The inf ini te

values of C
L 

at the cutoffs  in Fig. 3a. thus correspond

to a launching angle ~ = 0. At those frequencies where

iC
2 ~~ ‘C , the launching presumably then occurs at

lancing incidence , ~ = 90 0 
, if an excitation of

these waves does take place at al l .

The group velocity of the J ~! surface wave is given
1by

,a. d~=4 4 ’Re(,~ .~ )/cLc..~ dn1 (26 )

In Fig 31. • we plot the ratios as a function of

X ~ ICI~ for = 1 through 14. They were obtained from

our calculated resonance frequencies which only covered a

limited region , so that some portions of tie graph remained

open .

2.) Circumferential Waves

We shall here i l l u s t r a t e  the propagation of the previously 

• -~~ • ~~~~~~~~~ • •-~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~ - - - -
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discussed circumferential waves around the bubble during the

scatter i~ g process , exhibiting the .-lt/Z phase jump at the

po).es of the sphere and the phase matching at resonance.

Note that the field of Eq. (19) actually describes the

total field ( = ~~~~~~~~~~~~~ outside the bubble, since

does not contain the S function with its Regge

poles , hence furn ishes no contribution in the residue

evaluation of the Watson integral.

After expanding the denominator of Eq. (17a) as in Eq.

( 18$) , we obtain using Eq. (24):

I. (/3,L,~~)4 L(p,E,~t) (27a)

~ m =0 I,m =o
with

I~ (p, e,-~~ 
.

~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ (271

or, asymptotically:

1~ 
(j3, ~ ‘7r(: ( ( A2 , ,

~ )I
’L~~~ (t)

.
~ c2~M+ i )ir~~~ ± ‘fl (27c)

where o(= i t’—~~ ’ , and 3= 2 m it ± ci is the continuosly

increasing phase angle aroun d the sphere , ef. footnote 18.

For a given label characterizing the order of the

surf ace wave , this describes two waves encircling the bubb~ 

~~~~~~~~~ .-- -—~~~ • - - ••
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in oppositz directionswith angular propagation constant

4 . We shall represent graphically one of these

waves by the surface deformation which it causes. The

deformation is determined by the deformed radius~

~~~~ (~~)~~) ~~ + (~~ ~~
), (28a) 

-

and the radial displacement is given exactly by

Re = E (~~ )
Lk 

~~ (-~~~-~~) ) ~i~~~ (x )I
In
) (2Gb)

B ~ ~~(2~~ + f.)7r2 ‘vi~ [P (—co s3) ;  ~~ GL~, (- uc19’

or asymptotically (for in~S *~1 ) by

‘Re U~f~ 
(
~~1’~~

) 
~ Z ~ ( L ) ~~ j~ (L) (~) J ~~~~~~~~

2 (28c)

• CoS (~~ +~~ ) [ o ( ± ( 2 ~n+ i) 1r 1 (2,~1 + i) ~~ ;

with an amplitude factor

= 
[ 

( ) 1/i/
] 750 (28d)

where due to the narrowness of the resonances (F ig .  1) and

the ensuing weak attenu.ation , we were able to approximate

for the case of the a i r  bubble in  water.

In Fig. 4 and 5. we plot the amplitude of the su r f ace

deformation caused by c i rcumferent ia l  waves as given by Eq.

(28 & ), for  various cases on and of f  resenance . The plots 
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are done on an arbitrary scale, only the wave which

progresses in the clockwise sense is shown , and ~~~~ (x)
’
~

is approximated by a constant in the vicinity of each ; 
-

resonance. In addition , we multiply the displacement

amplitude Reur~~~ ~~ ~~~ in order to remove the

corresponding singularity which is merely cau sed by the

geometrical convergence of the waves at the poles of the

sphere.

Fig . 4a shows a surface wave with n
L 

= 4.7, so that we

are close to the resonance case n~ = 5 at which 5.5 wave-

lengths span a meridian of the sphere. It is evident that

at each of the poles at -.9~ 
=00 and 180° a phase jump

by a quarter  wavelength takes place , and also that a f t e r  one

circumnavigation the wave does not close into itself , so that

no resonant buildup of the amplitude will result.  The solid

curve has been obtained u~’ing the asymptotic form Eq. (28~c

which is quite adequate for  this value of , and the

dashed curve (shown here only in the vicinity of = 180
0 )

was obtained from the exact Eq. (28 d) in which and

Q with non—integer  index were calculated numer ica l ly

22in terms of hypergeometric series.  It is seen that  in tie

exact calculation, the phase j ump is not abrupt but takes

place in a smooth fashion .
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In Fig. 4b, the same quantities are plotted for n
,€ 

= 5.0,

so that the surface wave closes into itself and a resonance

results.  We see that at -~~~ = 180’ , the exact displacement

vanishes; this takes place in such a fashion that if the geometri-

cal amplitude factor (sin ’s ~ 
2 is retained , the resonating

amplitude remains finite at = 1800 . This is shown by the

light dashed line on the extreme right of the figure, while the

light solid line represents the asymptotic calculation, in which

(‘ -~~-the factor ( -cin a)~ ~ 
2 causes the geometrical divergence of the

amplitude which is evident here.

Analogous results are shown in Fig. 5 near and at the

= 1 resonance where 1.5 wavelengths fit over the meridian

of the sphere. Fig. 5a shows the surface wave below tie

resonance, at n
,~ 

= 0.7, and Fig. 5’l, at the resonance,

= 1.0. Again the solid line results from the asymptotic and

the dashed line from the exact calculation.

3 ,.) Displacements of bubble surface and interior  f lu id

The particle displacement in the sound field is related to

the velocity field i~ by ,U.~ 1,- , so that

= ( t/ (~) ) -~)- = (~~j )~t 
V9~, (29)

see Eq. (1). The change of shape of the bubble surface is

governed by the radial displacement u , which is continuous

~

--——

~

. --. ~~~~ •- - - -~~~~~~~~~~~ -~~-.—~~~~~ 
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across the surface . (The angular displacement ~t.&.4, . Eo first

order , only moves the air particles along the surface without

shape change. It is discontinuos across the surface , since

the air can slip relative to the water particles) .

• Using the scalar potential within the bubble,U

- çb0 ~~~~ ~i: (2n*i) ~~~~~ (k~v)1P~ ( c oc ~~~
), (30a)

where

B,~= (z ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ , Xb~~-~ i (X b). (x)] 
(30b)

we find for the displaced radius R~~of the bubble in its extreme

positions, if only the nth mode is excited:

~~ ~~~ = ~~ ±(~~/~~~
) 2~~+ i) IB~ x~~~~(~~)T~(co~~). (31)

This has the typical shape of a spherical multipole of nth

order ; it is plotted (choosing the positive sign) in Fig. 6 for

n 0 (monopole or breathing mode , a radially symraetric

in-and-out pulsating motion), n = 1 (dipole or, to first order ,

rigid back—and— forth motion), n=2 (quadrupole , or alternation

between prolate and oblate ellipsoidal shape), and n-= 3

(octupole, or pear-shaped deformation). The plots in Fig. 6~

are made at the fundamental resonance frequency of each mode 11

(shown in Table I), and in addition at 3% below and above

each resonance frequency, respectivley. The scale is arbitrary

but is the same for a given value of n. It is seen that no

_



pronounced (i.e. factors — 
~~w / ~~ 

_ / Q 3 ) resonant enhancement

takes place in the radial displacements of the surface, while

some moderate (factors ~ 10) enhancement does seem to occur.

Mathemal-ically, this arises as follows. As shown in Ref.

11 (Eq. 35), one has at resonance:

~i~’ (x~~) = 0 
~~~~~~~ , 

(32)

so that B in Eq. (31) will be of order 1
~,/c?~,

.-.
~
I03, while off

resonacnce , it is of order unity. However, only the combination

(x
’

) appears in Eq. (31) so that R (it2 .
1

L9~ 
) remains of

order unity at resonance and dOes -not show any significant

resonance effects. The physical reason for this lies in the

boundary condition of continuity of the radial displacement,

linking the interior radial motion to that of the external

fluid on the boundary. Since only the irterior fluid reson tes
23

at the resonance frequencies of the bubble, this linkage

prohibits a proriunced resonance motion of the shape of the

bubble surface.

We now proceed to plotting the motion of the air particles

in the interior of the bubble, and shall find that it is here

where the pronounced ( order .-‘ /~) 3 ) resonance effects

occur. This shows clearly that the bubble resonances are

• resonances of the interior fluid. First, we consider the radial

particle displacements inside the bubble which may be described

--- -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—~~~~~
. - -

~~~~~ --•.-~~~~~~~~ •-
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by the deformation of an originally spherical surface of

radius r; this will be changed in the extreme position according

to 
= (�~~/~~ w )  (2n+j )  

~~~~~~ ~~~~~ 
(
~~b~~

)
~~~ 

(cos~~). 
(33)

In Fig. 7, we plot the quantity R (r,o) — -r, i.e. the

displacement at = 0 (where it assumes its maxirnun value since

,~~ (1) = 1) as a function of r. This done for the cases (n, £ )

equal to (o,1) and (0,2), i.e. monopole fundamental and first

overtone (Fig. 7a), further (1,1) and (l,,2), i.e. dLpole

fundamental and ~.rst overtone (Fig. 7~ ), and finally (2,1)

and (2,2), i.e. quadrupole fundamental and first overtone

(Fig. 7c). As before, the displacement is drawn at the

corresponding resonance frequency of Table I, and at a

frequency 3% below (—) and above (÷) resonance.

The following information is obtained from this figure:

(a) A resonance enhancement takes place in the radial

displacement inside the bubble, which is of order ~~ fPz~ 
I~.!O

(or at least 10 ) while no comparable enhancement occurs a~ the

surface. The fundamental monopole (0,1) is an exception to

this.

(b) Not counting any nodes in the low—amplitude portion

near the surface , the number of radial nodes N in the radial
r

displacement is given by N =) - 1 (the monopole n = 0 being

an exception). Generally , N is determined by the behavior of
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~~ as a function or r, for k1, at the appropriate

resonance frequency.

(c) For higher multipolarity n, the pattern of large radial

displacements shifts closer to the surface.

(d) Due to the narrowness of the (n , -e ~ ~ 
( Q ,1)

resonances , a ± 3% frequency shift brings us well away from the

resonance while for the monopole fundamental ( 0 ,l), it still

1eav~ us high up on its shoulder.

ect
The mentionrresonant radial enhancement occurs mathematically

because the factor ~B~jin Eq. (33), which shows the mentioned

enhancement as the frequency passes through the resonance

frequency , is now accompanied byJ~ (kbr)rather than by

~ (x~ ), and only the latter factor has a compensating minimum

at resonance as mentioned above.

In Fig. 8, we present some graphics of the full angular

pattern of radial displacements directly at resonance, plotted

at originally equidistant radial intervals. This is shown for

the case (n,L) = ( 0~1) and (0,2) in Fig. Ba (monopole funda-

mental and its first overtone), for (1,1) and (1,2) in Fig. 8b

(dipole fundamental and its first overtone), and for (2,1) and

(2,2) in Fig. Gic.(quadrupole fundamental and its first overtone),

indicating the uniform radial shifts that take plance in the

fundamental mode and the non—uniform shifts in the overtones.

-

~

--- ~~~~~~~~~ -- -~~~ -- -  • -~~ - -  
_
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We finally consider angular displacements of the bubble

contents, and the resonance effects that occur in ~ em. From

Egs. (29) and (30), the extreme values of the modal angular

displacements of the air particles inside the bubble are

obtained as

~~~~~~~~+0/~
-w) (2,n+&)IB~~~~(t cr)~ I’M P ~

’(co~~). (34)

The argument after Eq. (32) now indicates that u ~fr ~~) will

also show a resonance enhancement as the frequency passes

through the resonance frequency since the coefficient B,~

• does; the latter is here accompanied in Eq. (34) by the

- factor j  ~ (k~,
q
~ ) which is of order unity throughout, so

that unlike R ,~ (OL,t3~ ), the angular particle motion shows a

resonance maximum at the resonance frequency even at the

bubble surface.

In Fig. 9, we plot ~tt$’~ (r~~ ) indicated by arrows ,

for a number of appropriate values of and at equidistant

radial intervals, for the modes n = 1 and I (no angular

motion takes place for the monopole n = 0 which constitutes a

radial in—and--out pulsation) zt the fundamental resonance

frequency of each mode and at the f i r s t  overtone

_ _±_ _ _

~

_ _ _  ~~~~~---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ------•• • • - • • • ••
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frequency . All scales are relative here.

It is seen that the dipole has angular modes at ~~ 0°

and 180° , and maxima at and 270° ; the quadrupole

has nodes at = 0° , 90° , 1800 and 270° and maxim at

= 45 ° , 135° , 225° and 315°. The octupole has nodes

at ~ = 00 
, 60° etc. and maxima. at 30° , 900 etc.

In Fig. 10, we plot the angular displacement oi the modes

n 1 ,2 and 3 at the angle of its maximum vs. the radial

coordinate ; in Fig. 10 a for the fundamentals of the n = 1,2

and 3inodes,in Fig. 101~ for the first overtones. We also

mention that as in the case of the radial displacements, the

values of ~~~~ (-r1’~ ) drop by values of the order l0 2 when

we move the frequency away by ± 3% from the resonance

frequency; this effect is not graphically represented here.

Fig5.9 and 10 together with what was just~~ id, indicate

that a~ stated above, the angular displacements exhibit

resonance effects throughout the interior of the bubble, right

up its surface. At that place, the air motion slips against

• 
- the motion of the water particles which does not show any

resonance effects.

Our foregoing discussion of the radial and angular Jisplace-

~

• ~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - ---~~~~~~~~~~ - --- - 
_ _ _ _

— 29 —

ments of the air content of a bubble indicates that a resonance

manifests  itself here by a violent motion of the air particles

inside the bubble , rather than by a resonant deformation of the

bubble surface. It can be expected that similar results hold

for the interior motion of the elastic medium i~it the case of

resonant sound scattering from a solid object. 
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IV. Conclusions

We have analyzed the dynamics of the resonantbehavio r of

a penetrable spherical body which is subjected to an incident

plane acoustic wave , in terms of circumferential waves as

described by Regge pole theory. Considering the air-filled

spherical bubble immersed in water as an example , it was

shown that an infinite set of Regge poles labeled by

= 0,1,2..., moving along trajectories in the complex

n—plane with increasing frequency, generate in succession the

fundamental (A? = 0) and overtone ( ,
~ ~ 1) modal resonances of

succesively higher multipolarity n every time a pole moves

past the integer value n.

We have shown that the Regge poles cause the appareance

• of circumferential surface (or tidal) waves on the sphere

that are generated due to the action of the impinging sound,

but which could equally well have been created by a more

general external force since they are a property of the scattering

• object and not of the particular excitation mechanism. The

• occurence of the resonances themselves was tien recongnized

to take place at frequency at which an integerjlus—half number

of wavelengths (the irteger being equal to the multipolarity n 

~~~~~~~~~~~~~~~ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of the collective bubble vibration) could fit over the

sphere ’s circumference, so that the phase matching of the

repeatedly circumnavigating surface waves (taking into

account a phase jump of —7t/2. of the surface waves when

passing through each of the convergence zones at the north

and south pole) will lead to their resonant reinforcement.

Graphical illustrations were presented for the

propagation of these surface waves, as well as of the modal

surface deformation arid of the gas motion inside the bubble.

The latter manifestly exhibit the resonance effects, while

the surface deformations do not, on account of the boundary

conditions.

The here—analyzed dynamic effects around spherical

gas bubbles in water are expected to be of very general

validity, and to be applicable to spherical scatterers of

much more general nature (e.g., elastic bodies in fluids,

fluid—filled
23 

cavities or solid inclusions in an elastic

medium24 etc.) In fact, we have been able to describe
25 in

very similar terms the phenomenon of the giant collective

resonances of atomic nuclei which, on the basis of a

hydrodynamical model of the nucleus, may also be thought 

~~~~~~~~~~ - - . -~~~~—- -~~~~~~~ •_ - •• -~~~~~~~-— — •~~~~~~~~~~~ - ~~~~~ --••



of being caused by the phase matching of circumferential

“nuclear tidal waves ’ generated by various kinds of nuclear

reactions.
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Table I

Resonance f requencies X
ra 

of the fundamental (P.~ = 1)

and overtones (t 2, 3, ... ) of the lowest multipole resonances

(ri 0 ... ti) of an air—bubble in water.

multipole 1 2 3 5 6

monopole 0 0.01391 1.0161 1.71467 2.14658 3.1792 3.8938

dipole 1 0.14712 1.31433 2.0617 2.805014 3.5229 —

quadrupole 2 0.7555 1.61+85 2.14000 3.1311 3.8539 —

octupole 3 1.02114 1.91411 2.70714 3.1+1478 — —

- -~~~~~~~~~~~~~~
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Figure Cap tions

Fig. 1. Moduli of indiv~ dua1 partial-wave backscattering

amplitudes Jf (i>~ir)~ (n = 0 3) plotted VS.

a. for an air  bubble in water , showing resonances

superimposed upon a smooth background .

Fig. 2. The nth (here sketched as 2nd) normal mode vibration

decomposed in a pair of traveling waves with phase

velocities and surface  waves labeled by

, with phase velocities

Fig. 3. (a) Phase velocities of surface waves = I

through 14 as a function of )c’~ J~d.. (dispersion curves)

relative to sound velocity in water, iC , for an

air-filled bubble in water. (~) Group velocities

of the same surface waves.

Fig. 4. (a) Surface wave amplitude on a sphere -slightly below

a resonance ( 4th, = 4.7), with no phase matching .

Quarter-wavelength phase jumps at the poles are evident.

(b) Surface wave at the ,~) 
= 5 resonance , with phase

matching. Solid line: asymptotic calculation ; dashed

line: exa ct calculation . The heavy curves disregard ,

and the light curves retaiTL, the convergence factor

• ~~~
.

Fig. 5. Same as Fig. 4-, for ( a ) = 0.7 and (b) ‘fly = 1. 
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Fig. 6. Surface displacements of an air bubble in water, set into

oscillation by imp is~ing sound , for the modes (a) n = 0

(monopole or breafhing mode), (b) n = 1 (dipole), (c)

n = 2 (quadrupole) and (d) n = 3 (octupole) . Plots

are at: 3% below the fundamental resonance frequency

given in Table I; at the resonance frequency , and

at 3% above the resonance frequency (fundamentals

only). Scales are arbitrary , but are the same for a

given value of n.

Fig. 7. Radial displacements inside the bubble as functions

of r , at the appropriate resonance frequency as well as

3% below ( - ) and above ( + ) the latter: (a) for

monopole fundamental (0,1) and its first overtone (0,2 ) ,

4’ ) for dipole fundamental (1,1) and its first

overtone (1,2!, and ( c ) for quadrupole fundamental

(2 ,1) and its first overtone (2 ) .  Scales are arbitrary ,

but are the same for a given (n,,e).

Fig. 8. Resonant displacement of originally equidistant spherical

sr’rfaces inside the bubble, plotted at the resonance

frequency for (a) the monopole fundamental (n,~~) = (0,1)

and first overtone (0,2), (b) the dipole fundamental

(-n P ) = (1,1) and first overtone (1,2), and (c) the 
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quadrupole fundamental  (2 ,1) and first overtone (2,2);

arbitrar~’ scales.

Fig.9. Angular displacements u~~~(r,~~~) indicated by arrows (ar-

bitrary scale) for n = 1 and 2 at the fundamental re-

sonance frequency, i.e.(1,1) and (2,1), and at the f i r s t

overtone, i. e. (2,1) and (2,2).

Fig. 10. Angular displacements u,~~(r ,~~~) of the modes n = 1, 2 and

3 vs. n a , each taken at the angle ~~ at which maximum

displacement occurs.
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