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1. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION |
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The scattering of an electromagnetic wave by a dielectric wedge
is an exceptionally difficult problem which at the present time has no

(1 (2)

known analytic solution, though Radlow, in the special case of a
right-angle wedge, was able to use a double-Laplace transform method that
had been found successful in treating the quater-plane problem to analyze
the wedge exactly.” All other treatments yield approximations of one kind
or another. An approximate numerical solution for the diffraction
coefficient has been given,(s) but the shortcoming of this sort of approach
is that, although engineering and other applications eventually require
numerical calculations, the wedge field is a compound of several different
components, such as specularly reflected and refracted rays, surface waves,
lateral waves and tip diffraction, and a numerical calculation of the com-
posite effect throws very little light on the real nature of the response.
An analytic solution, even though not exact, is highly desirable in order
to enable the different components of the solution to be separated,
recognized and understood. A study of the functional form of the result
can yield considerable insight into the rather complex properties of the
wedge, and in particular the behavior near shadow boundaries, as well as

the effect of varying such parameters as wedge angle or dielectric constant.

Balling,(4)

in his Licentiate thesis, provides an analytic treatment
based on tracing the multiply-reflected rays inside the wedge, In two later

papers,(5’6) he applies his results to evaluate the role of surface fields

) (11)

» »

Radlow's resul{?,?re too involved for use, and Kuo and Plonus
and Kraut and Lehman “’ have attempted alternative formulations. The latter
authors in fact find Radlow's analysis to be erroneous. In any case the

method seems incapable of generalization to other angles.
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and lateral waves in the radiation from a wedge excited by a line source
inside the wedge. All these treatments utilize formulas for successive
ray reflections, and Borovikov(r) has also obtained a recurrence formula
for the calculation of the terms for an edge wave, provided none of the
edges are located near shadow boundaries. A somewhat different approach
by Tricoles and Rope(s) based on the penetration of the field in a dielec-
tric slab calculates the approximate effect of a hollow dielectric wedge
made by two slabs meeting at a bevelled edge. The application is to
radomes, where the hollow structure is used.

(9)

Kaminetzky and Keller, in the most recent published results,
analyze the wedge in two cases in which the tip diffraction can be cal-
culated approximately as the first term in an expansion of the field in
terms of a small expansion parameter. The two cases they treat are

i) a small difference in the dielectric constants of the materials inside
and outside the wedge, and ii) small wedge angle. The latter complements

(10)

an earlier treatment where the wedge angle is nearly 180°, and the
expansion is relative to the reflection of a wave at a plaﬁe dielectric
surface.

The wedge problem is an important one in at least two areas. The
first concerns radar reflections and EMP pulse response from dielectric
objects which may be in free-space or else buried. The second concerns
the use of the geometric theory of diffraction (GTD) to calculate the
radiation properties of antennas and other reflectors. For example, a
dielectric support may be used to locate a subreflector or splash-plate
and the effect of the dielectric in modifying the diffracted fields from

metallic edges needs to be taken into account. The radiation from most

composite reflectors can be represented in terms of specular reflections
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and edge effects, and the advent of a new class of formulas involving
dielectric wedges, ecither on their own or in contact with a metallic surface,
can be expected to extend the range of application of the GTD method.
The shadow-boundary terms are an important part of the toal solution
and should be shown explicitly.

"Although the geometry of the arrangement is quite simple, nevertheless
the existence of propagating waves inside and outside the wedge, with

different velocities, makes the problem a very formidable one.

1.2 SUMMARY

Three separate investigations were made. The first, based on a
spectral decomposition method, was the one on which the contract proposal
was originally based. It turned out to have a built-in flaw, which was
not discovered, however, until rather late in the analysis. As a con-
sequence the method was abandoned. Just at that time, attention was drawn
to two Soviet papers, both of which claimed to have solved the wedge
problem rigorously and completely, though by completely different methods.

The first paper, by :avadskii,(ls)

was examined and found to be faulty.
Efforts made to correct the errors were to no avail. However, a semi-
trivial result emerged from these studies which, in retrospect, could have
been found by elementary methods. The second paper, by Aleksandrova and
Khi:nyuk644): also turned out to be faulty, though the complex analysis
involved a great deal of study to pin-point exactly where the errors
occurred. It was not found possible to solve the problem by their method
with the errors corrected.

It appears that at the present time there is still no valid and

rigorous solution to the wedge problem, though several approximations, =™
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\Jparticularly Balling's,i j have appeared in the literature, and should

provide useful results in practical applications.
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DIFFRACTION BY A DIELECTRIC WEDGE: SPECTRAL ANALYSIS

ABSTRACT
A spectral analysis of the field inside and outside a dielectric wedge
is made, and field matching in the presence of an axial incident wave is

made, both on-axis and on the wedge faces. The method involves unknown

-

spectral functions among which a relation (14) is imposed in order to
lead to Wiener-Hopf-like equations (21) and (22). However an examination
of the pole locations of these equations shows that they self-generate

an unending pole-sequence, which makes the method unusable. No modification

of the method that would render it valid appears possible.




2.1 INTRODUCTION

Despite 1ts simple geometry, the problem of a dielectric wedge excited
by an incident wave is an extremely difficult one, and no exact solutions
are known. Various features have been treated by different researchers,
including an examination of the field near the tip, specular internal and
external retflection, and properties when the dielectric constants of the
wedge and the surrounding medium arve nearly the same.

In this paper we attempt an exact formulation from which useful results
can be extracted. In view of the extreme ditfticulties encountered, the
total wedge angle has been restricted to less than 90° (other features
apparently enter when the wedge angle is larger than this), and the analysis
is further confined to symmetrical incidence of a plane wave with parallel

polarization.

2.2 FORMULNTION

Initial attempts to provide a formulation in terms of cylindrical
tunctions were discouraging, and eventually an expansion of the fields as
an integral of plane waves was selected as more promising. However, a number
of features had to be closely constrained in order to permit field matching
in a constructive way and this accounts in part for the form taken by the
subsequent analysis,

Figure 2.1 shows the configuration in which a dielectric wedge, of
angle 20 and refractive index n is immersed in a medium of refractive index
n, The latter would normally correspond to free space, but it turns out
to be essential to allow both media to possess a small loss term.  This will
be taken to the zero in the limit, but for much of the analysis it has to be
retained, since it determines the all-important feature of whether certain

singularities are inside or outside integration contours.

e S e
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(n)

2a

Fig. 2.1 Geometry of Dielectric Wedge
Figure 2.1 shows a rectangular coordinate system with the Xx-axis
bisecting the wedge and the z-axis along its tip. A cylindrical coordinate
system p, ¢,

z is also erected, with ¢ = *aq at the interfaces.

The total region is divided into four, as follows:

N —_———

Region I a<$<m

11 0< ¢ <a

< v e

| < <2t -

II' -<a<¢<o0




In view of the chosen symmetry of the incident wave the fields in Regions 1'
and 11' will be mirror images of those in I and II, and can be allowed for
by replacing (T - ¢) by !? - Q} and ¢ by f;; respectively. However, this
does not automatically ensure field matching on the axis, since ”s
proportional to -(1/p)oE /39 will in general be discontinuous on axis due
to the presence of the modulus terms in the azimuth angle. However, by
requiring 3E_/3¢ to be zero on axis, corresponding to Hp = 0 there, as
required by symmetry, the necessary continuity is obtained. The reason
for this choice, rather than for the more usual one of selecting functions
of cos ¢, which are automatically symmetrical on axis, stems from the
form taken by the fields at ¢= *a . To enable matching in a form that is
mathematically tractable it seems aecessary to work with the above

formulation.

2.3 FIELD EXPRESSIONS IN REGION 1
Throughout this paper we take w as a spectral variable and build

solutions in region I from the basic plane wave
b

7 S Y
-l -n2) sin(p-a) - jucos (§-a)] S
E =e

In this expression p is the radial distance from the tip, normalized with
respect to the free-space wave number Kyr 10 o= kopo where 0, 1s the
actual radial distance. The exponential is put in this form, one of many

possible, in anticipation of eventual field matching at ¢ = «

As mentioned earlier, n, contains a small loss term, and we put

"iS ~ . S
R |“0l° TR [nol (1-38) {2)




Equation (1) has branch cuts at w = n, and in order to avoid divergent

1
2 (.

waves at infinity that branch of (w~ -n;) has to be chosen to give damped

waves as w > *». This leads as one possibility to the branch cuts shown in

Figure 2. 2a, but there is some latitude as to where the cuts go.

o

Branch Cuts in w-plane

: 4 byl iB
Since & < ¢ < m in region I it is found that if w = Re’" as R =+ « that

i8
;

0 < B <a is a possible range, whilst if w = Re’™ as R = then

- < 3 <0 is a possible range for B. It turns out from other consider-
ations that a branch cut at B = -0 is needed at w> -~ and this leads to
the modified branch cut shown in Figure 2,2b. For the time being we take

w exactly on the real axis and get, for the scattered electric field in

region I




B B ,
Ez = J f(W)e—p[(w _nO) Sln((b"'(l)‘JWCOS((b-a)]dw (3)

with £(w) an undetermined spectral function. Before proceeding we need to
check both for completeness and performance at infinity. As far as the
latter is concerned, this is covered by the convergence of (3) as p » «
due to the choice of branch cut. However, individual plane wave components
need not, in isolation, satisfy the radiation condition, which is a restraint
on the total field only. Specifically, when -]no| < W< [n0| we can put
0[ cos O with 0 < 0 < mw, and an individual term in (3) becomes like
a plane wave” travelling at angle ¢ = 7 + a - 0. When 0 < 0 < a this gives
waves at angles greater than w, which would not, in the absence of
attenuation, be acceptable in isolation. The fact that (3) is integrated
to +% ensures in any case the correct performance of the Egiﬂl_Field, as
is eventually confirmed when the fields are found.

As far as completeness is concerned, it might appear that a term

2l Pl
similar to (3) but with the sign of (w~ —n;j

1
z

reversed would also be
needed, since such a term would also satisfy the wave equation. However,
= 2 2
for w > [n)l the wave would diverge, whilst for -[n)] < w < Inol the

C C
wave components would represent incoming waves at angles from m + a to
2m + a3 not only are they physically irrelevant when taken in isolation,
but they turn out to have inward attenuation when w is real, i.e. they

are incoming waves from infinity, and form no part of the solution.
—jpnOCOS ¢
An incident field on axis of unit amplitude is simply e $

whence we get the total fields in o < ¢ < 1w ,

2 s
The § term in n, ensures that these waves are attenuated outward when w
is real. Sl Ak



4=0

oy )

2. % . :
Ez s e-jpnoco5¢ . f e—p[(wz—no)"51n(¢~m)-3wcos(\:~-'x)]f(w)dw
i (4)
y OF RS
% w " Tl Eintl Bl
oy
el o e Sl R o |
n J . pl(w no) sin(¢~a)~jwcos (¢ “)]f(w)[(wz-ng)%cos(»-w) }
|
+ jwsin(¢-a) Jdw (5)

(The latter expression is proportional to Hp).

2.4 'FIELD EXPREGSSTONS IN REGION II
The analysis follows, in part, the considerations

L
2 2—nz)‘; but
o

L
outlined in section?2, 3 with (w -nz)‘ replacing (w
there are some important differences. In region II the waves

; : ; 2__2.%

corresponding to reversing the sign of (w ' -n“)‘ are not only
acceptable, from the point ot view of convergence at infinity;
they are also required, and in fact represent those waves
incident in region II from region II', where they are generated

by refraction at the boundary at ¢ = -a and cross the axis into

region II. Accordingly we get, for O < ¢ < a

o

Ez 2 J e—p[(w2—n2)Esin(a—¢)—jwcos(d‘¢)]gl(w)dw
2 : :
* E ‘nz)ssl“(“'¢)+3wcos(“-¢)lgz(w)dw (6)
¢
OB 1 - AP T L S
" % Tif - J o~ P (W =n%) *sin (a=¢) -jwcos (a ¢)]ql(w)[_(WZ_nZ)SCOS(«_¢)

-jwsin(u=¢) Jdw +




o

C

-jwsin(a=¢) ] dw

9 5 \‘ : p e
J o"[ (W=n") “sin(a=¢) +jwcos (a=b) |

v

2 - 2.%
g, (w) [(w"=n") ‘cos (a=¢)

(7)

Herein 9 and g, are two spectral functions, which we may expect

-

to be simply related to

integrals represent

within the wedge. The

for ¢. is not,; since its

“

w oo axis. In

on

R » & in order

to give an

Q $ < ®, a non-positive

later choose this contour

exponent at ¢ &, but Lt

suitable contours exist,

be tilted upwards (at

feature.

y ot

1.9 FIELD MATCHING ON

As mentioned earlier,

by replacing (n=¢) by

way artfect E_,

“

which is

each
cqual downward
contour
integrand

fact we

and that

infinity) by an angle «

AXIS

]

therefore

other in view of the

for 9 is the

1

does not converge

'\\
need w Rv) and -Re

integrand which has, for

real part to the exponent.

to correspond to a purely

is sufficient at this

the

to

AT ¢ n

the field in I' is

At ¢ = 1 this does

continuous at the

fact that

real-axis,

—j\i

the

stage
left-hand branch

accommodate

obtained

not

and upward waves respectively

(for O <
as

range
We shall
imaginary

to note

cut

from

in any

boundary; but

/3¢ changes sign when operating on |n = ¢§| as & goos

through wn.

Since JdE_/d¢ is
‘“

proportional to llp, whic

h in the

the

but that

nust

this




symmetrical case vanishes at ¢ = m anyway, i

matching on the axis requires GEZ/3¢ = 0 at ¢

with ¢ = m we thus get
0 = “]~é*pbf(w)[(wz-ni)%cosa‘jWSi““]dw
where
2.2 % . ~
U = (w'-n_) “sina+jwcosa

2

Now JdU/3w = j(w —ng)-%[(w2~ng)%cosa-jwsina],

new function F by

2,%

2
f(w) (w —nO

="F(U)

then (8) can be written

W=+
I e PUr(u) au = o

wW==—x

It is clear, therefore, that (ll1l) can be sati
F(U), qua function of U, to be free of singul
region Re U > O. Moreover, convergence of (1
F(U) = O(|U|-l) as U approaches infinity alon
in the U-plane corresponding to the real axis
is shown in figure 2.3;it starts at U = we-j(n
to the imaginary U-axis, rises to a maximum a
drops to the right before rising asymptotical

U = mej("/z.a). The closeness of approach to

t is clear that

= m, From (5)

0<p<= (8)

(9)

and if we define a

(10)

0O <p <o (11)

sfied by choosing
arities in the

l) as p + O requires
g the contour Cl
of w. This contour
/2_“), comes in close
t U= ng and then

ly to

the imaginary axis

is proportional to §. Also shown on the contour is the line
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Cy
§ra—-1- U-PLANE
8:20,2a--4
Us= jno COS (9-0)
g - i |
2 r_a
2
S
2

Fig. 2.3 Contour C, in the U-=plane

1
U = jnocos(ﬂ-q) corresponding to w :nocos 8. This intersects
the contour Cl at 6 = % and (almost) at 0 = «; and between these
positions the line w = n_cos 0 corresponds to values of U to

the right of the contour. Since we shall later be concerned

with poles at various positions along w =n_cos 0 it is clear

that poles for 0 < 9 < n/2 cannot be permitted. It is also clear
that F(U) free of singularities for Re U < 0 is unnecessarily
restrictive; it is only necessary for it to be analytic between

the contour Cl and infinity.
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It should be noted that F(U) analytic qua U is not the

same as f(w) analytic qua w. 1In fact such a function as
F(U) = U is clearly analytic in U but because of (9) it has

branch cuts at w = ino

Around the point w = nocos(u+W) we have U = jnocosw which

is therefore symmetric about y = 0. Accordingly, if the left
hand part of the real-axis contour in the w-plane is swung around
the point w = n cosa, in fact to be asymptotic to the line

-j2a

w = we , the corresponding contour in the U-plane can be made

to collapse to a curve doubling back on itself. Figures 2.4a & 2.4b

ORIGINAL
w - PLANE CONTOUR ¢,
a j -
~No &= /no COS a Jn?
\ . /
/
T-2Q :,To |
ZI"Q
2
|

Fig. 2.4 Contours in the w and U-planes




outline the corresponding contours and show that there is a
region in Im w < 0 which is outside the region which gives the

o5

contour C Since the contour of Figure 2.4b lies within the

1°
contour Cl it is apparent that (8) is satisfied for F (U)
analytic, qua U, between Cl and infinity.

2.6 FIELD MATCHING ON AXIS AT ¢ = 0

In the same way as described in section 2.5 we require

3E2/3¢ to be zero at ¢ = 0. If we write
W, W = + (w2-n2)5sinu—jwcosu (12)

then (7) gives

W=+

a3 I gl(w)(wz‘n2)%e-pwdw 3 j (w)(w -n )Lﬁ —oW*

dw*

Bt i (13)

O << p <K

The contour w real gives the contour C2 for W, as shown in figure
2. 5. The contour C for w in the 9, integral is somewhat at
choice. The larger Im w is on this contour the larger is the
real part of W*. There is a lowest contour, shown in
figure 2.6 for which Re W* = 0 and C cannot be taken below this
if the second integral in (13) is to be convergent. A little
later it will be seen that we wish to make the two contours in the

W and W* plane as close as possible, so we choose w = C to give

W* imaginary on it. If we further choose a new function G such that*

}
This choice is not mandatory, but the method of this section
is dependent on it.




W-PLANE

Fig. 2.5 Contour C, in the W-plane

g, 0 (wP-n?)d = cw, gy wPen®)t = W) (14)

then (13) becomes

j\\ﬁ
- - *
f G(W)e pwdw + J G(W*)e o dw* = 0 O<p<g = {15)
C =jw

2
Now in (15) both W and W* are functioning merely as dummy

variables, so in the second integral we can replace W* by W.




~

Fig.2.6 Contour C in the w-plane

Moreover the contour C, can be joined to the imaginary axis by arcs
at infinity (which give zero on integration), to produce the
closed contour C3 of figure2.7 consisting of (1) the imaginary

axis;,; (2) arcs at + j», (3) the contour C, of figure 2.5

5 e Sl
Equation (15) can now be written simply
S 1% -pW .
f G(W)e dWw = O 0O < p <« = (106)
3

and it was in order to achieve this form that 9 and g., were

chosen to be related as in (14). Equation (16) is satisfied if

G(W) qua W is analytic in CJ. Also shown in figure *.7is the line




permitted to posses

concerned with poles along the line w = ncost, O < 8 < 1, the

O
"
S|
I
Q
I
|
#_
|
N

W-PLANE

o / =-jn COS (8+a)
g+Z~-1f/

Fig. 2.7 Contour C, in the W-plane

W = <ncos (¢ +.a) corresponding to w = ncost. It lies inside the
contour when n/2 - a < 8 < n/2, a range for which G(W) is not

7

singularities. Since we shall later be

range

- a < 8 < /2 must be excluded if (16) is to be satisfied.




2 7 PERELD MATCHING AT ¢ = &

From (4) the incident field at ¢ = a varies as g gl toss
and before we can field match it is necessary to put this in the
form of an integral compatible with the others. This is achieved

through writing

(2o

e-jnopcosa o gl el
213 w+nocosa

-0

ow

dw (L7)

a result that is readily verified by deforming the contour into
Im w > O, whence the pole at w = ~n cosa provides the necessary
residue. This is only valid when a < m/2, but since we are later
restricting a to be not greater than n/4 the constraint is of

no consequence. Accordingly, with ¢ = a, equating (4) to (6)

gives
© Jpw © . & |
Zij J w+§ cosa W * f £(w)el®™ aw = f gl(w)elpw o
o i J
il (18)
<

Before proceeding further it is necessary to deform C to the
real w-axis. This could not be done before because with the
more general exponent for O < ¢ < a the integrand was not
convergent; but with ejpw in the integrand it can be done,
together with non-contributing arcs at +~. Now if gz(w) has
any singularities between the real w-axis and the contour C

they will give rise to a contribution on collapsing C to the real
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axis. To prevent this, write g, = Sﬁ + 9 where 9 is that

part of g, carrying singularities (poles or branch cuts) between

C and w real, and is free ingularities above C. Then by

~

3 ) & S
deforming C to +j~ we see that J (w)e pwdw = 0 and (18) can
(13

be written

J’W"lf(w)—ql(w)-@?_(w)+(l,'2nj)(w+nocosan)_l]dw = 0

g~ §
[¢/]

0<p<w (19)

If we define a plus function h+(w) to be free of singularities

for Tm w > O then (19) can be written in the form

1: 1 5 & = >
AL 217 [w+nocosa h+(w)] =y Sy g (Wi k25
Since w = -n is above the C-contour the presence of branch cuts

at this position doesn't affect g (w). On putting £ and g in

terms of F and G through (10) and (14), equation (20) becomes
F(U) 1 1 4 _ G(W) +G (W*)
2% " 2 IS oms = Bail = =gy U

(w (wS=n®) *

Here, G(W*) comes from G(W*) by dropping those singularities,
if any, that occur in the w-plane between C and the real axis.
If a similar process is used to match Hp at ¢ = a the following

relationship is obtained

n_sina
-F(U) +

[ 1

oL WHh_cosa - k+(w)] = G(W) = G(W%*) (22)
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where k+ is a similar function to h+. Equations (21) and (22)
are the basic relations from which G and F can, in principle,

be found, and which then determine the fields via (4) and (6).
2.8 POLE CONTRIBUTIONS TO THE SOLUTION

Equations (21) and (22) both exhibit a pole at w = —nocosa.
This is at a position where, if gz(w) (or G(W*)) possessed a
pole it would have to be subtracted out to form 52(w). Hence
G(W*) in (21) and (22) cannot contribute such a pole, and only
F(U) and G(W) can do so. That both must do so follows at once

from the different ways in which F, G and the pole enter into

the two ejuations.

Let UO and Wo be the values of U and W at w = —nocosa.

It is easily found that

Uu_ = -jnOCOSZa (23)

v ‘ - =
Vo ]ncos(eo a)’where ncoseo n cosa (24)

since, from (24), a < 60 < m/2 it can be seen from figures 2.3 and
2.7 that U0 and wo are in regions where F and G may possess

poles, and so we put, in the neighbourhood of these poles

F(U) ~ —2 G(W) ~ =B

- ' - (25)
U-u, W=W,,




o
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where A and B are constants to be determined. The residues at
W =-n_cosa are readily found from (25) and the definitions of

U and W in terms of w, and give

A . A/2jcosa
U~-U wW+n cosa (26)
fe) o)
i n B
B . B/2jcosa 2nSln“o
. - — (27)
U-9 w+n cosa n_sina-nsind
o o (! o
Hence, to match the poles at w = -n_cosa in (21) and (22),

since they cannot be provided in that position by h+ and k+,
we find, after a little simplification, that & and B must

satisfy the two equations

A - 2cosa 2B (28) ;
n sina 273 n051na—n51neo
2n_sinacosa -2Bnsing®
A + 2 = = (29)
215 nosina~nsineo

with solution

n_cosasina nsin® -n _sinag
) o aie]

A =B = : . : =
m™) nsind® +n _sina (30)
o 0

Unfortunately, with G(W) given by (25), it is implied that
G(W*) ~ B/GW-—WO) and this introduces an additional pole into
(21) and (22) at the value of w for which W* = Wo, i.e. at

W =-ncos(80 - 2a). This pole requires further additional poles

in F and G to satisfy (21) and (22), with still further additional




sets of poles arising in the same way. Apparently this series
does not, as had at first been supposed, terminate in anyway,
and so both this method of solution, and also, apparently,
equations (21) and (22), must be considered faulty. The reason
for this is not known, but may be tied up in the choice implicit
in (14). However, without this choice there seems to be no
obvious way to proceed beyond the setting up of the initial

equations, and the method fails.

2.9 CONCLUSIONS

The spectral analysis has led to the two relations (21)
and (22), which bear a superficial resemblance to the more
familiar Wiener-Hopf equations. However, an examination of
their pole behavior suggests that these relations are faulty

and rather reluctantly the method has had to be abandoned.




N GRITIQUE QF
SAVADSKET'S METHOD OF SOLUTTON TO DIFFRACTION
PRORLEMS  INVOLVING A RECTANGULAR DIELECTRIC WEDGE

ABSTRACT

\ thorough investigation of Zavadskii's method is made in an attempt to

obtain solution to electvomagnetic dittraction problews involving o

rectangular dielectric wedge (0>¢>n/2) and (i) infinite metal plate
along ¢=tn/2, (ii) semi-infinite metal plate along ¢=-m/2, (iii)
pertfect magnetic conductor along ¢=-m/2 and a semi-infinite metal plate
along ¢=n/2. In all the cases it is shown that Zavadskii's method, as
it is, gives a solution containing branch cut integral!s that grow
exponentially in the farticld thus violating the radiation condition.

For case (i) involving an infinite metal plate a simple way of modifying
Zavadskit's solution i1s shown so that the resulting solution conforms

with the known exact solution. Several modifications to Zavadskii's

method are tried to obtain the corrvect solution to cases (it) and (1i1)

but none ot thew proved to be successful. A method involving a socondary
solution, with branch cut integrals alone, is shown to  lead to two
coupled integral cquations. However it is not clear if a solution to
these integral equations eoxists.  Finally a unique solution is given to
the problem of illuminating & rectangular diclectric wedge, resting on

a semi-infinite metal plate, such that there is no net diffracted wave

from the edge. |
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INTRODUCTION
Ihe problem of wave diffraction by a perfectly conducting metallic
wedge has been solved [1,2]. The analogous problem of diffraction by a

wedge with impedance faces has also been solved [3-10]. A generalization
of this solution to the case of a dielectric wedge, either free or resting
on a semi-infinite metal plate, entails serious mathematical difficulties.
Apart from being a classical boundary value problem the diffraction
of electromagnetic waves by a dielectric wedge is of particular interest
in the theory of dielectric wave guide matching [11, 12], radio propagation
over the earth [13,14], and in radar, for the effect of scattering by
dielectric radomes [15]. An analogous problem to that of the dielectric
wedge is encountered in the field of acoustics [16] and in seismological
situations involving the behavior of Rayleigh waves at the boundary between
the ocean and the earth [17, 18]. It is not surprising, then, that con-
siderable rescarch effort has been directed towards the problem of dif-
fraction by a dielectric wedge [19-30].
An understanding of the diffraction by a dieclectric wedge resting
on a semi-infinite metal plate is of importance in assessing the effects
of dielectric supports for a wave guide feed illuminating a reflector
antenna. A number of years ago Zavadskii [31] proposed a method, which,
he claimed, would give exact analytic solution to a class of two-dimensional
wedge diffraction problems. However the solution obtained by his method
contains branch cut integrals which he does not evaluate. Upon examining

these branch cut integrals we found them to "explode" at infinity in




complete violation of the rvadiation condition.

Several attempts were made to modify his approach so as to remove
this drawback but did not meet with success. In this report, after giving
a brief summary of Zavadskii's formulation we proceed to discuss various
modifications that were tried to circumvent the failure of his approach.
We also present the solution to what we call, a "quasi-trivial' problem,
that of illuminating, a rectangular dieclectric wedge resting on a semi-
infinite metal plate, such that there is no diffracted wave from the edge.
Though most of our discussion will concentrate on the problem of diffrac-
tion by a rectangular dielectric wedge resting on a perfectly conducting
metal plate, we will also touch up on other related problems to which
Zavadskii's method might be applicable.

It is well known that the problem of ditfraction in a wedge with per-
fectly condicting faces was solved a long time ago by Sommerteld |2).
Malvuzhinets [3-7] has proposed and developed a method of solving dif-
fraction problems in angular regions, with application to a wedge of
arbitrary apex angle with ideal impedance faces, to sectored media repre-
senting a system of wedges with a common edge and common faces. This method
is based on the representation of the field in a diclectric medium by the
Sommerteld integral and it reduces the diftraction problem to functional
cquations for the integrands. But solutions to thesce functional cquations
could be obtained only in very special cases. To circumvent this dif-
ficulty Zavadskii introduces the generalized, two-sided laplace transtorm
which we denote as the t-transform. Upon application of the t-transtorm
to the functional equations, and after some algebraic manipulation one
obtains a functional ecquation, with periodic coetticients in the trans-

form domain, which is amenable to algebraic solution. 1In the next section




we give a brief summary of Zavadskii's formulation and in the subsequent
three sections we proceed to discuss the various approaches that were

tried to obtain a correct solution to the diffraction problems involving

the tollowing geometries:

i Rectangular diclectric wedge resting on an infinite metal plate.
Rectangular dielectric wedge resting on a semi-infinite metal

plate.

itii. A mixed boundary value problem involving a rectangular dielectric

wedge (0>¢>-1m/2) with a metal plate along ¢ = n/2 and a
pertfect magnetic conductor along ¢ = - /2,

Conclusions are given in section 3.6.
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2 ZAVADSKIIT'S METHOD

2.1 Statement ot the problem

We begin with the following problem in cylindrical co-ordinates.
Consider two homogeneous scctoral media which have a common edge (p = 0)
and a common tace (¢ = 0), cach occupyving respective wedges with apex

angles ¢o and ¢ as shown in Fig. 3.1. The remaining outer faces of

1

the wedge are resting against perfectly conducting metal plates. To

Figure 3.1.Geometry of dielectric wedge ditfraction problem.

simplify matters we assume that one of the media is free space and the
second medium has a magnetic permeability equal to that of frece-space and
a refractive index of p > 1. Later it will be necessary to restrict

. < g
Ql to be a multiple of = but at present we will assume ¢, to be

2 1
arbitrary. We assume that a monochromatic, z-polarized plane wave of
unit magnitude is incident on the diclectric wedge at an angle wn with
0\00\¢0. Then the diffracted electric field will also be polarized
in the z-direction and we have a two-dimensional scalar problem.
We use the scalar functions E(p, ¢) and Fl(n.¢) where p = kr

to represent the total electric fields in the free space and the dielectric

medium respectively. The fields E and E, must satisfy the wave

1




equations in their respective regions, the boundary conditions at
¢ = 0, Do and —¢1.thv radiation condition, and the edge condition. A
S

mathematical description of these requirements is given below.

a) The wave \‘\(HJ!ix‘I\I

(A + KO)E(p,d) = 0:

2 0<Pp<¢ .
“’ = Y (1a)
(A + K"nO)E, (p,d) = 0; -$, <@<0 (1bh)
1 -7 -
where

5 Al

A as 1 9 1 &
a - Se— * i e p k = w/c¢ (1c)

e r or - 3
1 P o

0 is the angular frequency and ¢ is the velocity of light in free space.

b) The boundary conditions at ¢ = 0, ¢ \ and w“l:
\
>3 N ~ - al
I (¢ .WO) = (2a)
2, (P,=9.) = 0 20 )
Ey(P:-9, )
l‘l‘\"” = l:](‘\“” l-‘\‘\
E'(p,0) = l';p‘,ﬂ) (2d)
where
\ 3
Yy g L 2 £) - . 0 (o & B 2 T o o
I (U6 ) = ‘\3 I (p,\, ,, and 1 1(; o = l\\: I l(‘ ) {2¢)

The conditions (2a) and (2b) follow from the requirement that the
tangential electric field be zero on the metal plate and (2c¢) and (2d)
follow from the requirement that the tangential field and the normal
derivative of the field be continuous across the boundary.

¢) The radiation condition:

Lim r(‘ - - )l\l:) = (0; for 0 <$p<d (3a)
ar b Q
1" »v
(‘\l 1 \
Lim r oy - ikn = (O, for ¢, << 3h)
r g ‘ 1 \

) N




where

E(p,d) = E(p,9) - Ey(0,0) (3¢)

and F0(3.51 = cxp[-jDCOS(O—UO)] is the incident field, and the time

. b . t TR -jwt
reference, following Zavadskii, is taken as e ~ ,
Physically the conditions (3a) and (3b) mean that all the reflected,

refracted, and diffracted fields must be radially outgoing at infinity.

A detailed discussion of radiation condition may be found in reference [32].

d) The edge condition [12, 33-35]:
The edge condition requires that the electrical and magnetic energy
stored in any finite neighborhood of the edge must be finite; that is,
5 5

J’ {e|E]= + y|H|]” Ydv =+ 0 €}

v
as the volume v contracts to the neighborhood of the edge. For a smooth
edge, which may be regarded as locally straight, the differential volume
in (4) is dv = rdrdddz. Then condition (4) states that in the neighborhood
of the edge, none of the field components of (E,H) should grow more

rapidly than o—l+r with T1>0 as 0. |

o e |

2.2 Sommerfeld integrals
To obtain a solution satisfying (la) - (2d) Zavanskii begins with the

following representation for E and FE

7 -iocos(a-90)
E(p,d) = :;j J s(a)e jocos (a-¢ dac 039500 (5a)
Y*¢ :
. 1 r -joncos (o-2) =
0,0) =& — y S C) 'y =d . <P S
]1(‘. ) T3 ¢ s, (& d: ¢ o<t (5h)




where Y is the Sommerteld contour of integration as shown in Fi

p.32

Fhe shaded portions in the q-plane vepresent the regions where the real
part of the c¢xponent of the integrand in (3a) is negative and ensures
convergence as q goes to infinity. The path of integration Y+¢ shifts
as ¢ 1is varied. E(p,¢) as given by (5a) clearly satisfies the wave
cquation since it represents an infinite sum of plane waves cach of which
satisty the wave equation. Since the end points of the contour Y + ¢ lie
in shaded regions an infinitesimal displacement of the contour does not
change the value of the integral, which implies that

=Jpcos (4 ‘\\)} .\'(\\) da (0)

"

fhe contour ' is so chosen that under the transformation

-1 cos -
z(a) = cos 5—;1—«— (7a)
with the choice of the branch such that
ca) = - o(-a) (7
and
clotmw) = g() + w (7¢)
y transtorms to ' in the L-plane.
In the a-plane lil is given by
’ -jpcosa =
l'l(n.\:) = f $ (f.(\\)*\.") e T () da (8aj
)
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where

1% () S1nQ E
T() = e T —— (8h)
il s S
YN -Cos T
; - ) -1 - g
The branch points at « £¢os nfmnm, m=1,2,... are joined pair wise
as shown in Fig.32, and the square root n 1s so chosen that the following
relation holds.
T(@) = t(-a) (8¢
By differentiating (7¢) we note that
T(a+m) = t(a) (S8d)
and (8¢} is consistent with (7b).
The relations (7a)-(7¢) ensure that the mapping from the Q-plane to

the

The normal

(5a) and (5b) with respect to ¢

\\lr-( 0.,9)

23 v
\‘\,

RIS
o

gy

= -jpfnsin;sxtg+oic

derivatives of E § E

N} —ne = —.').\Jnsinki.-\.“\,ﬁ

C-plane is one-to-one.

pare obtained by differentiating

— : ~-jpcos (x-¢)
-jp] sin(a-¢)s()e -’ R 30 1

\*\:‘

; s ¢ -jocosa
= _‘“\ !Sll\\\ '\L‘\*‘:‘)C J ML kd\\ LQ] {

Y

=joncos (&-9)

(Z)e dg

1

‘l *q“

- JONCOS

g 2 de
1

r

% ¥ - - jocosa
-JQISlHdSI(u*C)C

¥

da ( 10) 4
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We have here made use of the relation T(a) = sina/nsing.

Using the expressions (5a), (5b), (9) and (10) for E. El’ %? and
GEI
W respectively we obtain the following set of functional
equations for s and $; S0 as to satisfy (2a)-(2d).

| s(a+g,) = s(-a+d,) E1an
s(a)-s(-a) = T(®) {sl[;(a)]-sl[-;(a)J} (11lc)
s(a)+s(-a) = sp(E(@) ]+ [-E(@)] (11d)
3.2.5 Generalized Two-sided Laplace Transform

In order to solve (lla-IId) Zavadskii introduces the following trans-

form relationship.

(o5}

o(a) = f t(a,B)e *ap G:un 2 t(a,BO (12)

-0

which represents a function of one argument in terms of a function of
two arguments. If t(a,B) is not a function of B then the above trans-
form goes over to ordinary two-sided Laplace transform [36]. It should
be noted that given o(a) the function t(a,B) is not unique since to
any given t(a,B) satisfying (12) one could add any other function

to(a.ﬂ) with the property,
[ tyla,8)e ®Pag =0 (13)
-c0

In the case when the function g(a) has a pole, at the point a-= wO' with

unit principle part, in the strip Red<Rew0<Re(d+¢0), we then have




(S0

BUy = B9

0
e d@

o(a+¢>0) = J [tmhpo,b‘) + &
-0
The second term in the brackets corresponds to the pole of the

function at the point «o = | The convenience of the representation (12)

0
lies in the fact that in certain problems the function t(x,8) may be
regarded, without contradicting the conditions imposed on the problem,

as periodic in the argument o, whereas the function 0(®) is not periodic.

An example is the case when 0O(@) satisfies the functional equation

o) = q(d)d(u+¢0) el

where q(a) = q(a+m) and f(a) 1is representable in the form

o) = f”F(B)c_aBdS, ¢0 = constant

=00

Taking the transform of (15a) we obtain

¢ .8

£(a,8) = qeave D t(owd 8) + F(B)

0?

whose solution may be written in the form

=048

t(a,B) = F(B)L(D [q(@)e |
0

where

[88)

K
Ly (P(@) =1 + 1y p (v ) (18a)
0 k=0 v=0

-¢“B
p(a) = q(a)e (18b)

Since q(a) = q(a+m), it follows that L¢[p(a)] is also periodic with

¥ ’ - i ases, assuming the Serie: 8a) c 3rges,
period In special cases, assuming that the series (18a) converges




we have,

Lwlp(w)l = 1/[1-p(a) ] (19)
f=2 1 5
|+ \ I P+ H\\ 1)
u=0 v=0
L"UJ“(J‘ Al ERD ~v>|nv
5 { 1 -1 pla+ —m)
A v={) :
n lsdy
{ | R (20)
Now we turn to the functional equations (lla) - (11d) and invoke the

following representations tor s(a) and sl(a): s() = t(«,B),

sl(ctd)) = tl(d.ﬁ). with the restriction that ¢l is an integral multiple

of m/2. Continuing the representation s(a) # t(q,8) bevond the pole

at o ;Q\1' we obtain
Y 5 < 1
bC'U -Qp-¢ B
s(av¢u) = ( lt(w«¢“.ﬁ) + ¢ |e dp (21)
oo
Since T(a) = T(o+mw), the functions t(a,R), ll(“’ﬁ) have a period n

with respect to «. With this fact in mind we obtain the tfollowing system

of inhomogencous functional equations tfor t(a,8) and tl(d.ﬁiz

3. B BU. &8
e By, ~®b ‘ BY, =
[t(\‘th,”,;\) + Qo lL‘ lt(-xxh"‘l).—p) % & | ¢ (228)
'-.v‘\:‘ ‘;
t‘(d.ﬁ) 2 tl(-\l.-ﬁ)c‘ (226)
[(\\.ﬁ) - l(*\\,";{) = Il“)[(l(\“"\‘ - tll‘&\.‘.{)l (..‘.‘\"
t(x,8) + t(-a,-8) ll(\l,i” + (l(-\I,—L{) (22d)
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which can be reduced to
. L =RRpRC o e
t(a,B) = [t(a £ 8 )¢ + e shi by =9, )]
l—‘«(\\)th\,"‘lﬁ
l}i(difhbiﬁ [23)
[he sotution to (23) may be written in the form
¢ B ' [ =20 B l-t()thd, B
t(,8) = 2¢ O sh(y -¢.)8 ‘l d l ! )
(& 2% = &€ S ¥\ = ’ Koty > R o e Ty gy = -
¢ O RO 20 ; [+T () the, B ( {
O L 1
We may now obtain  s(@) by integrating (24).
o
; -
s(a) = J t (e, B) e “J.\ (25)

w©

To find the function slta(q)). which in turn defines sl(a) implicitly,

we may cither find tl(ﬂ.ﬁ) through (22¢), (22d) and (24) and integrate

or substitute for s(a) in  (ll¢) and (1ld)  and eliminate sl(-f.pi)\.
In principle one could invert (24) for any arbitrary ¢“ with ¢l

being a multiple of #/2. However when ¢n is not a multiple of n/2, it
may not be possible to obtain a closed form expression tfor s(a) through

(25

3.2.48 A note on the solution to functional cquations
Even though  s(x) and sl(g(d)1. as obtained by the above procedure,
will satisfy (lla)-(11d) there may be other solutions to this system
of equations.  There are two reasons for this. The first is that t (. 8)
as given by (24) may not be the only solution to (22a)-(224). The second

and the more important reason is that as we mentioned carlier, given  s{u)




the transtorm t(a,B) is not unique. Hence the eqns (22a) - (22d) do

not represent a unique transtorm of the functional equations (l1la)-(11d).
Hence the solution to s(®) and s, (4(@)) as obtained above does not

1
constitute a unique solution to the problem but it is only a particular
solution to the functional equations (1la)-(11d). To check the correctness
and the validity of the solution one must evaluate E(p,¢d) and l‘l(« ,9)
and verify it the ficlds s0 obtained satisty the radiation condition and
the edge condition. But as we shall show, through specific examples later,
the fields obtained through Zavadskii's method diverge at infinity and
hence fail to meet the radiation coundition. When -?l, is a multiple of
m/2 it is possible to obtain the most general solution to (lla)-(l11d) with
out taking recourse to t-transtorm. However any solution to this system
of cquations is found to result in either an undesirved incoming plane
wave or a branch cut integral with exponential growth at infinity. Both
or cither of these conditions constitute a violation of the radiation
condition. Since the system of equs (IHla)-(11d) and the representation
of the ficlds as a Sommerteld integral over the path Yy are the key
steps in Zavadskii's method we concluded that his method fails to give
the correct solution to the diffraction problem. We demonstrate this

through a few specitic examples.




3.3 RECTANTULAR DIELECTRIC WEDGE RESTING ON
AN INFINITE METAL PLATE

3.5.1 Zavadskii's solution
Let us consider the case when ¢[ = ¢” = m/2, for which the exact
solution is well Known through gecometric optics.
In this case (24) simplifies to
25hB (V- "—) ich}a-ua\sh ury:

g4 o 168 B) 8 —me—e—— m m——————

{1+1()} shmi (20)
which upon integrating results in the following expression for s(a)

cosy cosy

i) 0 1-1T () 0 (27a)
S e R R R R T s N T AT ] [ Vg
] S 1NN sxttv() 1+T () SinQ+ S1ny,

The function sl(&(a)) may be obtained by substituting for s(a)
in (11¢) and (11d) and is given by

N :
~COosy
Yo

S C &Y S5 ————— e —— e ——— -
\lkkt‘)) [l+t(a\|(sxnm-s1nw0) (27b)
At this point Zavadskii stops with a somewhat bland statement which
we quote here. "The poles of the function s(a) situated in the strip
=LA for & =%

0 {with principle parts cqual to 1 and [1-1(;031/

Il*l(v0)|, respectively}l and for o = 4 (n—vu) {with principle parts -1,
and ~ll-t(¢“)]/|1+1(wn)} make it possible to compute the Sommerteld
integral (5a) and to obtain the field in the wedge (0,n/2) in the form of
a sum of four plane waves. In this case there is no cylindrical wave
radiated by the edge of the wedge."

However Zavadskii overlooks a very important tfactor. To evaluate the
integral (5a) one has to close the contour y in order to pick up the

poles lying on the real axis. One would normally do this by adding two




paths of stcepest descent D_,D  which are deformed around the branch

cuts, due to T(a), as shown in Fig.3.3. [In this particular case D ,D

+
are spaced apart by exactly 2m and s(@) being periodic with period 2w
the integrals on D and 0, cancel each other. Then we are left with
the branch cut integrals (along the paths BU’ B, as shown in Fig. 4)
in addition to the residues from the poles at & = *P_  and a= £(7m-y ).

0 0

As we see from Fig.id the upper portion of B“ and the lower portion of

Bn lie in the unshaded region where the exponent of the Sommerfeld
integrand has a positive real part. Thus both of these branch cut integrals
grow exponentially as p>© and fail to meet the radiation condition. In
Appendix I we show that the branch cut integrals over the paths Bl and

B: do not cancel each other. Thus we conclude that Zavadskii's solution

1s non-physical and is of no practical use.** We know that for this
particular geometry the exact solution is just the sum of four plane waves

as obtained by the geometric optics method. As we noted earlier the solution
obtained through the t-transform is one particular solution to the svstenm

of equations (lla)-(11d), but not necessarily the correct one. Any correct
solution to our problem in addition to satisfying these equations must

also satisfy the radiation and the edge condition. It turns out that there
is in fact a solution to (lla)-(11d) which meets these requirements. We

proceed to obtain such a solution as follows.

3.3.2 Correct solution

Let s(a) and sl((,(a)) meet the following requirements.

* %
This was pointed out to Zavadskii in a personal communication to which
there was no response.
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Fig. 3.4 Branch cut contours B0 and Bn in the plane of the complex
variable a.
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i) s(a+m) = s(-a) (28a)
il) s(@) = s(a+2m) (28b)
i \
s i a)-s(=-)
11i) Sl(i(u)) = l }5‘}31:ﬁ-f- + S(\?‘SL—J)\ (28¢c)
R il '

Then s(a) and sl(;(a11 will also satisfy (lla)-(11d) with
@, = ¢, =1m/2. Any odd function with period 27T or any even function
with period m will satisfy (28a) and (28b). Thus one has an infinite
number of solutions to (lla)-(11d). 1f we impose the condition that the
resulting field must have only one incoming plane wave at ¢ = Yo We
narrow down the solutions to two. One solution is that given by (27).
But, as already noted, it fails to meet the radiation condition, and hence
1s not the desired solution. The second solution which uniquely meets
all the requirements is simply obtained by replacing T(a) with 1(1'0) in
(27). Thus

0.-0.\';"0 I'T(l,"n) COSVO .
S(0) = s - (29a)

sing- *i“VB L+t (y,) glna+sinpo

Sll“\.’titllting (2%9a) in (28¢) we obtain the t'ollo\\'ing Cx}‘l\‘.\“\’i\\n for
S: (T ()Y«
1( A

:rw;o)co.\“vvn .\'invn/r(;"o\ + sina/1 (@)
Sl(t,(a” e T e

T1+T (Y g vk
: \VU) sin - sin y
0
Yy (1 ~ayell) s 3wl / TR - 3 C
-1(uu)un>\n s1ny0,1(u0 nsin (29b)
PR O ) i SmelEin IR O
. Wo)  cos Y. - n“cos“g
]
It immediately follows that sl(n\ is given by
2T(Y . YcosY . siny /T + nsina
: (Wgeosy, siny, ¥y) :
,\l (11) B cumseinbausiin e Mt
l*l(l,"n) Cos Yy - n Ccos g
21 (0 Cost) L sing + osing Y I PSS i (29¢c)
" t(yy)cosd, sina Wy  <tlyylcos g, 1
- 3 _-‘_.h__,_ RGN SO e R See— "~-U———- L S
I +t(y,) cos”a ~cosa 1+ () sin a -sin @




I

where

cosxk) = ¢cosy . ./n (29d)

Q

It is now easy to verify that s{o) and sl(E(A\i, as given by (29a,b)
do indeed satisfy (lla)-(l11d). Since the only singularities of s(a)

are the poles at a = ".*U and a = *(m-y U‘ we have no branch cut integrals
to evaluate and the electric field E(9,9) is simply given by the follow-

ing sum of four plane waves.

-_i.\gnsu‘-vo) _ig‘\‘\\.\'(\f+~,n)
E(0,0) = e -
l—l'k;’ﬂ\ i -_ig‘\‘\‘.\'({‘*,l)\ _in\'\‘.\'(\:-»ow ]
TN s - e | (30)
'Y { J
0 >

Also since sl(d) does not have any branch cut singularities, the eclectric
tield inside the dielectric, EI[D.QW 1s given by the sum of two plane

waves, due to poles at o = 00, m -G‘
L

After evaluating the residues we find the following expression

for Fl(n,¢):

. 2T (Yy) i‘-i“"““sw“‘o) jt’ncosw“\owl >
E, (0,¢) = ———— (e - ¢ {SE)
1 T (y,)
0 L [

)

The field expressions E § El as given by (30) and (31) correspond
exactly to the geometric optical solution to our problem. Thus we have
shown a way to overcome the difficulty in finding the solution to this
problem through Zavadskii's method. Untfortunately, however, the same
Kind of approach does not work to other non-trivial geometries as we will

demonstrate.




3.4.1 Zavadskii's solution:

RECTANGULAR DIELECTRIC WEDGE RESTING ON A
SEML-INFINITE METAL PLATE

Consider the case where a semi-infinite metallic plate is resting

against a rectangular dielectric wedge as shown in FigXS. This situation

Rl S ,_ -
corresponds to ¥ > and :l = /2 in Figsd.
\ -

Hence all the equations through

) a

(24) hold for this problem. Sub- o

- =

: . ) ; " 0O

stituting the values of q and w >
¢ 0

w o

Ol we obtain, after some simplif- Sg

a o

ication, the following expression

s

for the function t(a,B).

Figure 3 5. Rectangular dielectric wedge
resting on a perfectly con-
ducting semi-infinite plate.

. T T s
t(‘\_'\\ = .‘.\‘h('\c'()- .;~),; [\'h =L - T(\\‘ Sh —;b}

[1+T(a)]shang + [1-T(®) Ishmp (33

As shown in Appendix i, eqn. (32) leads to the following expression

for the functions s(x) and sl(;.(\\)\:

1 - - L 1es G
.\(\‘) = S I(\,Uh\-l‘ ;- : lks.ﬂn\—._\‘
+ "\l“n"‘\'ﬂ + .\I(;Um‘.,‘ m) (33a)
$ &) T+ (o) {Ty*a-m) + [(y,-a-2m} (33b)

where A and t are defined by




S=Ll

1 1—'(\\\
T R R S TR 35¢)
il L+T () o B Lot
and (37}
- i 1 | )
I sh xy dy - S o o2 X
1(x) el = e -k;»~'- (L-A)sin =)
fosh Ty (chiy+A) - : | Pl 2
: (L-A" )sanx L J
(55\”
the poles of s{a) are located at o = ‘LO'MT where m is an integer.

o evaluate the Sommerfeld integral (Sa) we close the contour Y by

means of two stecpest descent paths D and D as shown in Fig. 3,

Then E(p,$) 1is given by the sum of the following three terms.

E(0,9) = Ep(0.¢1 * Fh(n.¢\ + Pd(S,D) (34)
where
E,(0.0) = Y Residues (35a)
/

1 -jpcos (a-¢)
T s@) e - X da (N

E Y &) = BU*B’I
hkt.w S
1 ~1Pcos (L -9) [IESWES ;ﬂ
| 75 ( s @) M g il (35b)
By +B

f

g I [ = jocos (a-¢) . 4

th‘-c) . :r' J s(ade da {O5C ]

D +D
- +

34.1.1 pole contribution

the steepest descent paths D and 0, intersect the real axis of

e




i
]
"
(95}

@ at -m+ ¢ and T+ ¢ respectively. Accordingly the combination of
poles enclosed by the contour changes as ¢ 1is varied. After some algebraic
manipulation (Appendix [II) s(a) wmayv be put into the following form

which is more convenient for the evaluation of the pole solution E_(p,9):

p
X L.‘.\‘+.~\-1)L.‘sin\\casc”\ - U*:\-.‘.-\")sin_‘,‘
s(a) = S ——— (
1-A~ cos2a - cos.‘;'o
i U \ X
1 i o ( ot St) (at St)
= = = NSENLL COSt—— = =] COS{ == = =—
(L1-A7) (cos2a- cos2y ) i
- 0 S Ut % |
{ - / » !
S e D ot) . (\\t 3t
+ sm-msm&»_w - 5 sin|{— - 35—
2 m 2/l
(9t -0\ / . P
1 (70 3t at 3t o
= ——5— Sif|— - 5—Jc0s (T - (30)
(1-A" ) . i

|

1s then given by

The residue R(on) at any pole « = &,
[ sinly >Sind cosy 1
§ 1 / 5 b -y 3 Fa COSY
2 ) 2 ) )
o= Er-{ (1ea,-203) 5ol - (:"\u*‘\o'ﬁ v o—
1-A; I s 2H%y PR
QO
L s1m Wy - . -
sin2y o
3 sin Yo y Dtk\ oto /Q UrO Jt“
4 7 T i W et cosk e
- S =X & | v
(l-:\u ) U

where

= t(v

‘1’01 [;—.1\\

L 0

1}

and .\0 A( '.,:U) (57¢)

The residues of poles, that are of interest to us are given by
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R(-2m+ U): R(-w+;u) = R(u-yn) = RL'+JU) = P(‘r-l“) = R(2m+y ) = 0
l{('”"ﬂ1) = 1\3 -1 ]
l\(—,‘u) = —.f\“
l{L;‘)) =1
RL';.TWU’ = -1 (38)

The location of poles, along with the residues, are shown in Fig. 6 for
three different ranges of the incident angle. The points of intersection
of D and D, with the real axis of Q-plane are also shown. By
looking at Fig.36 we can immediately write down the pole solution E(p,$)

for different ranges of ¢ and vy as given below.

0) 0Ly, & -72r—
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-2 -'1r ke O _:;‘ E\' é1r S 3'7r
3 i 7 f‘
Sm o
¢c) v L WOL >
L A
-280 Y 1 -1
2w 1o 0 vx iy 3r
- b
g oy i |
‘4’0-1’

Figure 3,6, Pole and residue structure of s(a) in relation to the contours D‘ and D .
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| l‘“ ) l\;. v\“ " 0= Vo
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A : an
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L%} Yo 5
¢
!
: & Yl .. =1
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U 0 0
J()
3
P 1 2=y <P (39¢)
(‘ ) v
11'0 1l ‘1’() '
~
where
H . . ) ¥
P o Jpcas(¢-0) (59d)

(8]
When the ancident wave is in the first quadrant we obscrve the incident
wiave and the reflected wave from the dielectric boundavy, until ¢
approaches the value =P after which the reflected wave disappears,
When p exceeds the value LA the incident wave also disappears and

we are in the dark rvegion.  When :."“ is in the second quadrant the incident

wave exists in the entire range  O<p<dn/2  and illuminates both the faces
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of the wedge, thus giving riseto two reflected waves. The reflected wave

from the dielectric boundary exists in the range U\¢\"~$0 and the

reflected wave from the metal plate exists in the range 2w~y <$p<3m/2.

0
When WU is in the third quadrant we arve in the dark region until |
approaches the value L after which we just see the incident wave.
When ¢ exceeds the value Jﬂ-vn the reflected wave from the metal
plate also comes into the range of observation. Thus the pole solution
is consistent with the geometrical optics theory.

S4.1.2 Diffracted field

The integrals over the contours D and D, represent the diffracted

waves due to the edge. We choose the paths D and D, such that the

following conditions are met for o = prijv € D_,D

Relcos (@-¢)} = cos(u-¢) chv = -1 (40a)

and Im{cos(a-¢)} = -sin(u-¢) shv <0 (4ah)
Then o and v oare defined through the relations

Moo= —gd(v) + ¢ + (41a)

and  sin(U=¢) = + th v (41b)

where gd(x) is the cudermann function given by

gd(x) = cos-l(l/chx) (41¢)

We should note that D and U+ as detfined through (4la,b) mayv
but the branch cuts, for certain ranges of ¢, in which case we deform
D and D* around these branch cuts as shown in Fig.3J3, and the result-
ing branch cut and end point integrals must be evaluated separately.
However for large values of p  the contribution from these integrals is
negligible compared to the dominant contribution from the vicinity of

the saddle points at o = ¢ ¥ w. Now we proeced to evaluate these saddle

point contributions.




2
1
(%]
~

Let lid_(pw\) and |:.d+(p‘\:)) denote the integrals over D and D+

respectively. Then

-Jjpcos (a=¢)

lid* (p,d) s(a)e da

S
- )
L +

21

[ toleostnen-ssint-ami(an . ),
dv y

il o)

= _‘er i—f s(\\)C'm_"th\"\‘hY—l/ch\)+_i ) dv (42a)

-0

Now we approximate s(a)(-1/chv+j) by its value at the saddle point

P
a=m++j0 and thushv by V-  to obtain

g
OO
L"l ; dv

S(T+p) (-1+j) f

-

1
3 S
Ld+(0.,) ST

oo
= smsd)el P D v/Fm

(42b)
Similarly we obtain lil as
d-
TS
Bt == e
Ej_(0,9) 2 - s(-msp)elt 3 I (42¢)
and taking negative of the sum of (42b) and (42¢) we obtain
. . ) n ,’l"“lr\
E (1,0) 2 - {s(rad) -s(-madyle! P* 7)/vame
8
o £ | -
._.\mtl ‘ o lg'“tl .xtl i /q\tl St]
= - 5 L '.sln_lllocns A :‘m(m”- - —
(l-:\I )(cosl@-cos:w“) ' ey “
Yg*y 9% #5y Stﬁ‘
- .\‘in_‘qwsin(»~-—-— - - CO_\-(--_,V - f
il 2 m z2
: "
lsintl ” (w”rl 5(1) H <~I‘t1 .xtl)l T nﬁ)
= sp—— SN == o 00 0 e B ‘ (= 4 =
(L-AT ) 't - ! « =" (43a)
1 <V 21p
where
& = W) (43D)

(43¢)
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[f the retfractive index ot the dielectric medium is made to approach

unity, thus reducing it to free space, then (43a) simplifies to

. m
JiRE =) i i
1
lilU‘v‘“l = 15“)“”‘\) i ‘_,“N ﬁ‘ A.__*l_,ﬁ_;.’_, = _.__l.;) — (44)
E n=l ° Wnp | W ikl
Lsin — COos ———
which, with proper interpretation of ¢ and W“, corresponds to Sommerfeld's

solution [2 ] to plane wave diffraction by a perfectly conducting semi-
infinite plate.

In passing we should note that EJLQ.Q) as given by (43a) is only
good when there are no poles, of s(a), in the vicinity of the saddle

points « = ¢+

3.4.1.3 Branch cut integrals
The contribution due to the branch cuts enclosed within the contour
y+tD_+D_ is given by (35b). [If we try to evaluate these branch cut

integrals we find that the top halves of BQ and B, and the bottom

-

half of B" give rise to terms which increcasce exponentially as o in-
creases and thus these terms fail to meet the radiation condition. On
these branch cut contours the exponential term in the Sommerteld integral
(5a) has a positive real part which isproportional to psh(|v]) where v = Ima
[t can be casily verified that these exploding branch cut integrals do

not anihilate each other and the presence of these terms makes the solu-
tion, obtained through Zavadskii's method, physically mecaningless. In

the next section we describe several approaches to try to correct this

problem.
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Attempts to correct Zavadskii's solution

3.4.2.1 Is a branch cut free solution possible?

[f we replace T(a) by L\;“\ in (30) the resulting function which
we call s(a) still satisfies the equation (lla) with \,\“ = 3/ 2
3m 3m =
Sfo* =) =  Bf-or 2= (45)
: s 3 e
thus meeting the boundary condition at ¢ = lr. However the modified
function §1(;(u)) as given by
N 1 ¥ . . \ |
sl(i(d)) = T :S[u)—S[—d) + T(a) [s(a) + s(-u)]: (46)
does not satisfy the boundary condition at ¢ = -m/2. That is
.El(r,m) # f\‘l(r,(-u-nn (47)

We note that sS(a) as obtained above is non-periodic. In Appendix

IV we show that any branch cut free solution s(a) to (lla) with
¢0 = 3mf2 must be periodic in @&, with period 2w, so that the result-
ing function §J(L(d)) will satisfy (11b) with ¢l = /2. However, as

we shall show later, any such non-trivial

to more than one incoming plane wave thus

periodic solution would give rise

violating the radiation condition.

Thus it seems impossible to obtain a solution to the functional equations

(lla-11d), with ¢0 /2 and ¢1 = -m/2, such that s(a) is free
of branch points. Futher, we know that, such a solution would not have
any diffracted waves since D and l)+ are then spaced by 2m and are

in opposite directions. We know that for the problem under consideration
there must be diffracted waves from the edge and the associated lateral

waves. Normally one would expect to obtain lateral waves from the branch

cut integrals; hence seeking a solution which is completely free of branch
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cuts seems to be a step in the wrong direction. For the trivial problem
considered in the carlier section we knew that there would be no diffracted
or lateral waves and our attempts to obtain a branch cut free solution

then met with success.

-4.2.2 Is there a solution with zero contribution from the unshaded part
of the branch cuts?
To answer this question one must look at the most general solution
to (Ila-11d). We have obtained such a general solution, in Appendix V,

which is given by

at 3t T s "
s(a) = J, (@) + P (&) cos(— - =59 + P _sin(—-=) (48a)
2m e i 2 on T2
where P T and PUT are any even and odd functions of a with period
€ i i)

T and J,T(u) is any function of @ with period 27 and satisfying
2

the condition

3m 3 8
J:n(a+ —Eq = J~ (~Q+ j-} (48h)

The function t(a) is defined as in (33¢). 1t is easy to see that
s(@) as given by (30) is indeed in the form of (48a).

the periodic part J:”(a) in (48a) may be chosen such that it is
free of any branch points. However the non-periodic part contains branch
points due to t. In Appendix VI it is shown that for the branch cut con-
tributions from the unshaded branches to vanish the functions ]‘ov. and
l‘”1 must identically vanish. As we shall see a little later any solution
of the form .l:”m) gilves rise to more than one incoming plance wave which
is again a violation of the radiation condition which requires that there

be no incoming waves other than the incident wave. Thus there is no
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solution s(&) which, after integration over the contour Y, would give
fields satisfyving the radiation condition, and we conclude that Yy 1is

the wrong contour to start with. This immediately gives rise to the follow-
ing questions: What other possible contours are there to start with,

so that we could write down the boundary conditions as a set of functional
equations for s(a)? Is it possible to combine the solutions obtained

through Y and some other contours in such a manner that the radiation

Y

condition is uniquely met? We will make a thorough examination of these

possibilities in later sections, but before we do that we would like to
make the following comments about the periodic solution ‘,"r(‘”'

If J, (@) is free of singularities then the resultant fields would
"

be identically zero. Any branch cut singularities involving T (@) would

give rise to exploding waves at infinity. Thus, J., (@} c¢an only have

poles. We specifically require a pole at & = ‘q'n corresponding to the

incident wave. However, because of the periodicity and the requirement

(48b), J - (@)  cannot have an isolated pole. Any pole with a residue
a' at @ W gives rise to a chain of poles with residues as indicated
in Fig.37a. If we introduce a pole with a residue 'b' ata = Yy this

gives rise to a different chain of poles as shown in FigdJ7b. Thus the

most general pole structure of J, (@) 1is as shown in Fig.37c. Since the

.
&h

poles at ""0 and '{?'l) correspond to the incident wave and the retflected

wave from the diclectric we require that

)

a =1 (49a)
and b = -[1-1 wn) 1/ [1+1 W”) ] (19h)
Then J, (a) 1is given by
\-n,\‘:,'u 1-1 wn‘, cus;‘“ .
""I(“) sina-sing.  l+t(y,) sina+ siny (50)
& SINng- Yo ‘(‘,n . O s Vi
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a -a a -q a -a
-évrn - o T ';‘v 2m 3w
2
b= Y5>
(b)
-b b -b b
-2 - 0 ” 2w 3n
(c)
a -a -b b a -a =-b b a -a
+—X— X——%¢ XN N——X L
-2n -7 (0] T 2w 3r

Fig.3.7 Pole and residue structure of J.
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The resulting solution for the fields is given by

~ipcos (¢=y ) T -jpcos (¢+V )
\ jocos (¢ Yy 1 (s()) 10cos ( 0
E(p,9) = ¢ = Tarwy °
L+t(y )
()
iocos(d+L ) =T (W Y io(¢- )
10C0Ss (u 0 1 “Vn 104L LU =
- e * Ty ® (51)
4
T,
But E(0,9) has two undesired incoming plane waves at angles 7 -

and T + Yo and is not the solution to our problem. However in the process
of the above discussion, we have found a unique solution to a ‘quasi-

trivial' problem which we give next.
i §

3.4.2.3 Solution to a ‘quasi-trivial' problem
Can we illuminate a rectangular diclectric wedge, resting on a semi-
infinite metal plate, in such a manner that the resulting field will have

only plane waves and no diffracted waves? The answer is ves, and the

solution is the following combination of incident waves.

1
l—r(vn)
ie . Ps9) = P = S e e {52)
inc Ul - 1+1 W mM+y/
ne Yo Yo LVU) Yy :
|
where PO = expl-jocos(9-0)] represents an incident wave of unit ampli- :
tude, at an angle ©. The three plane waves P , - P and -RP
s v = My
Q 0 0
(R = =[D=t@@)1/[1+t(¥,)]) and the corresponding reflected and refracted
0 0 :
waves produce continuous fields in the entire region O<p< 2m as shown

in Fig. 8, where the incident waves are shown with solid lines and the
reflected and retfracted waves are shown with dotted lines. The discontin-

uity of ll (=P, ) at ¢ = LA 1s cancelled by the reflected wave
0




Fig. 3.8 TIllumination of a rectangular diclectric wedge, resting

on a pertfectly conducting semi-infinite plate, such that
there is no net ditftracted wave from the cdge.

incident plance waves
reflectad and retracted plane waves
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R,,(=P, ) and the discontinuity of l; =-RP } is nullified by the

reflected wave R,1(=~RPw+ ) which exists only in the range 0<¢<y
- " - -

The

tfills up the shadow region of R

up by

I\

M+

v »U

Q

§ 0 0

incident wave 1. gives rise to a reflected wave R which precisely
> 3 <

The sharow region of T, is filled

r
er which is the reflected wave corresponding to I‘1'
If we let () to be the diffracted field due to an incident wave

then f£(y¥) must satisfy the following functional equation.

f(p) - f(m-Y) - Rf(m+yY) = 0 (

(7]
2]
v

In Appendix VII we show that the mo:t general solution to (53) is given

by

where

pl y! 12 : N x.\?' ‘\
£(P) = [(n"-cos™y - siny F - L cos =) 54
L [{n"-c ¥ vl \ em 071 3 ) (54)
B is an arbitrary even periodic function of ¢ and FUW 1s
(24 I

an arbitrary odd periodic function of ¢, both of period w. Thus any

solution for the diffracted field f£(¥) must satisfy (54).

and

e e

Solution using asymmetric contour Y.

In the previous section we raised the possibility of starting with

a contour other than y and obtaining a solution. Such contours do exist
and the asymmetric contour Yy = Y,-Y_, as shown in Fig.3.9, is just one

of these. If we write

E(p,0) = —}W f s(a)e tPeosla-¢) 44 (55a)

Y+

5 P aha iy = ey .-iONCOS(T5=9)
Ll(-.¢) ) ( sl(u)(
J

dg (SSb)

‘l‘ +\:‘
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\symmetric contour y

complex variable

X

(shifted by ¢) in the plane

ot the




with T

obtain the following set of functional equations for < and s

The most

where J

& and

being the mapping of Y under the transformation (o6a,b

! NS TO1 1T 1< (

1
- b . - N
S{OF —) = o S+ — ) (56a
S 15 (@) - ] -~ S l p ) i (S06b)
l 2 5] 5 (
s(a) + s{-a) () ss. [g({@)] + s [-5(x) ] (56¢)
1 1
s(a) - s(-a) = Sll"“\'] - 5, [-Z(@)] (56d)
general solution to (Soa-536d) is given by
= = T St = X 5t =
S(O) = Jop @) + Psinz= - 35) + | e COS (— - =) (57a)
" 3 < 3 o
J,. (a+ =) = -J,_(-a+ - (S7b)
oree (O8] is anv function satisfying (57b) with a period T in

P (), l‘“..m\ are any even and odd functions of a with period
i

o

However, such a solution, apart from having exploding branch cut

integrals, gives rise to incoming diffracted waves. To see this we

replace

as shown

Y by its equivalent sum of the contours DU' iy B, B

and <B_
- +

0:

in Fig3.10. In doing so we pick up the residues of poles situated

between the Strip -m+@<Rea<m+d, and we may write the integral over Y as

the following sum.

o

J S(ade

-jpcos (a-¢)

e : / - =Jocos(a-9)
da = 2nj \L Residues + | s(a)e - o
S
[‘\\ m
[ = "i“k‘\\\".‘r*) 5 ( = -jipcos a=¢) -
+ j s(a)e - e e 2 J Si(a)e ° s da (58)
D +D D
- + (4
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Fig. 3.10 Decomposition of Y into D , D, D, B and -B_.
' (o} + - 0o ‘




Equation (57) comtains branch cut integrals over lin and I%“. I'he
integrals over the upper halt of HU and the lower halt of Ii” diverge
as  p  becomes large. Due to the different forms of s() and  s(a)

it is not possible to mutually cancel the divergent branch cut integrals.
Further the :'-Glu(inn from s() contains an integral over the path 1‘“

which, when evaluated using the steepest descent method, can be shown =

to have the form

1), ~
lih (Ps9) F(dre /o (S9)
()

which represents an incoming dittfracted wave, and can form no part of

a physically meaningful solution. Thus the use of the asvmmetric contour
Y introduces additional difficulties, In the next two sections we
examine alternative contours of two other types but discover that any
solution obtainable by using these modificd contours has identical torw

to cither of the solutions we discussed betore.

3.04.2.58 Shifted symmetric contours,

(\.f..‘un‘.) + oy _-2mn)

We note that any solution obtained by integrating, s(a)  of the general

form (48a) and the corresponding tunction s (2(a)), over any arbitrary

|
contour \‘lo.,“. where Y, is symmetric about the origin, will satisfy
Maxwell's equations and the boundary conditions, We could choose T~
be Y where Yo 1s shown in Figd.ll for m=1. Let us examine the
solution |[“")(,“.:\) over such a cantour,
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5.11  Shifted symn




Y 1

(60)
where

S MDA (m) , (m) ot 3t SO (1 at 73»{\
s @) = J:” @) + lcn cos | — - + l(m sin| 3= - 5 (ol)

indicate a shift by

and primes on f and y
I Ynf bif Y

.
: iy . < : m) m m)
By noting the periodic Lty ot the functions . \# v B ; ) \ Pl)& 2
& e
t and making use of the decomposition relation
£+ [ 3 (£,+£,) + 2 (f-f) (62)
1 2 2 ]2 2 1.2 ¥
v ) A RS L
! Fa 349 34
where fl,f, are arbitrary functions integrated over arbitrary contours
. (m
Fl- Fl we can write h( )

(p+¢) in the following form

-~

JnjE(M)(p.¢) = f Jgﬁ)(a) + cos2mt [P ;m)cos (%§'~ gg)
& € 1
Y*¢

+lﬁw)5“l(%i'£§)lj R L
2 g Xt 3t (m at 5

+ sinZ2mt | -P lm.lln L e )cos - ~Q»)]
en 2 On mn ¥y

il /)
-\—+ q')

-ipcos (a-¢) -
x e o (a-¢ da (03)
and Y are symmetric and asymmetric

where vy

m) -jipcos (- 0" -ipcos (a-9)
= f b(l t\‘t‘f_:llm)t‘ JPCOos (¢ \')Ll\x . J’ St ”(!- mi) e JPCOoSs (&

da



J.

! 5 : L(m) . . ’
contours that we discussed carlier. We note that h( (P,®) 1s of the

form

yes 2o IR -jPcos (w-¢) - -ipcos (a-)
_W)l‘ )(p.Q\ f s(Q)e 4F (e da + sitoe & Lo da (64)
Y+¢ Y+¢
while s and s are of the general form (48a) and (57a) respectively,

& solu-

Thus any solution over Y, may be represented as a combination of
tions over Yy' and Y'. But we have a lready noted that any combination
of solutions over Y' and T' will have diverging branch cut integrals
and/or incoming diffracted waves. Hence any combination of solutions over

", Y', Y' will have the same difficulties and fail to give a physically
mn

meaningtul solution,

}.2.0 Shifted asymmetric contours,
= (Y, + 2mm) - (Y = 2mm)

In a manner similar to the previous scction, any solution, over an

asymmetric contour of the form Yy!' = *

t‘
m Y n

¢, may be represented as a sum

of solutions over the contours Y' and Y'. Hence a solution over such

a contour does not possess any additional advantage.

4.2.7 Contours with the end points separated by 2mm with m>l

ALl such contours may be decomposed as a sum of the tform y + ¥

or Y * L depending upon their symmetric or asymmetric nature as shown

in Fig.312 for the case of a symmetric contour with m = 2
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Thus we have exhausted all possible symmetric and asymmetric contours
which do not cross the real axis and whose end points at infinity start
in one shaded region and end in another shaded region. The end points
of any moving contour must lie in a shaded region at infinity so that the
Sommerfeld integral does not alter as the contour is shifted with ¢.
Further any contour whose end points at infinity are in the same shaded
region are trivial since any integral over them would identically vanish
unless they enclosed singularities by crossing the real axis. Any
contour that crosses the real axis is not usetul in our method since such
a contour would cut a branch cut as it is shifted with ¢.

We consider two other possibilities. One is to extend the branch
cuts up and down wards to infinity rather than joining them pairwise.
This is definitely not workable for our present geometry since such a
definition of branch cuts would restrict the movement of the contour to
less than W whereas we require it to be moveable by 31/2 without
cutting branch cuts. However we explore this possibility in the context
of a different problem where a movement of 7n is sufficient. The second
possibility is using finite and fixed contours. We discuss both these
approaches in the next section, and conclude that both of the approaches

fail to give the desired solution.
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3.5 A MIXED BOUNDARY VALUE PROBLEM

Let us consider the problem of diffraction by a rectangular dielectric
wedge, resting against an infinite plane whose upper semi-infinite segment
(¢ = n/2) is a perfect electric conductor and the lower segment (¢ = -m/2)
1$ a pertect magnetic conductor. The incident wave is assumed to be
polarized in the z-direction as shown in FigJ3.l3. Because of the differ-
ent boundary conditions on the lower and upper scgments of the infinite
plane the problem is non-trivial.

E:z =0

I
|
|
|
|
I
!
|
|
|

LHZ//
7
7 2

Figure 3B. Geometry of the mixed boundary value problem.

3. 5.1 Zavadskii's solution
Proceeding in the manner described before we seek the fields E(p,¢)

and FI(;,Q) in the following form.




i
[l
o
op

= 1 -jpcos (-0 n Y
E(p,9d) = 5— f s(a)e Jpcost \')du. 0 < ¢ < 5 (65a)
213 v -~ - 2
_'l. 08 (C=0 n z
E, (P,9) = 5 f g, (e POty Xchcn (05b)
1 L) ' 1 L =" -
1 res

where the variables «,7 and the contours y and I' have the same meaning
as before.
The boundary conditions are given by

Elp,m/f2) = O (boa)

3!'11 (0,¢)
ety S =0 (oob)

3o T
==z
E(p,Q) = El(a,O) (ooc)
B
3E (0,9 » _ %, (p,0)
e e | (ood)
i h=0 i $=0

and (66a)-(06d) lead to the following set of functional equations for

s(x) and S (C(x)):

s(a) = s(-o+m) (67a)
5, (@) = -5, (5 (-a-m)) (67h)
s(a) - s(-a) = 'r(a)[sl(:,m.)) - le.'.(—v.l))l (67¢)

s(@) +s(-a) = s (@) + S (Z(-a)) (67d)

Proceeding in a manner similar to that shown in Appendix V we obtain

the following general solution to s(a).




at . t 5 (o §j 4 t,
s(@) = P _cos — = =) + P sin(—— - —=) 08¢
( en - il 2 on” ke T 2 (68a)
where
cost, = S ot ; st (08Db)
2 I+ 7] T =

and P and P\'r have the same meaning as before.
Cil (9,

i
It we proceed by using the t-transform, as shown in Appendix VIII,

we obtain the following particular solutions to s(a) and 51(;(.1\).

P, - Q Y,+a-T1
S0S . 0 : ) \
“)\t_‘ sin{—— U—t:\} sint : = (m-to)}
s(a) = — . . £ e
sint | sin(y, - a) sin (Y, +a)
2 0 0
Yo * o Yo-a-m
1 sin{—r« (m-1t,)} sin{-———;—w (n-t_d‘»
A : R e (69a)
sint) Sln(l,”n +Q) sxnwo - Q)
g”n + QO l,"n = Gk =1
1+ 1(a) S“““F (m-1t3)} sin{—————” (w-t)}
s, (g (a)) - ) : + —— sint .
1 2t (o) sin(y, + Q) sin WU - Q) 2

(69b)

s(a) may be put into the following form so as to conform with (68a)

wot ¢ t 3 at 5 t ,
s(a) = .Zsin_"!rocos(—7~“— - ==)cos( .
ul > 5 L % 5 at . t - |
Vet Yu e 3 e o et el L ik i
P P JSARA m ) Cosly - cosla
\
Y )t 2 L at, ,.

- 2sin(—— - -;]cosLT“— - ) (70a)

I




Similarly sl(:(a)) may be transformed into the following form.

Wt t s Uots t, ot. t.
sin2¥ncos e Z =) - sindoiss s SYeos
S 1+1(a) sin2ygcos ( = :)>1n( e 2) sin2asin( = :)LOS(vY + 3)
S (‘)Ld)): f PRI AT
1 T(a) LOS-QO - cos2a
Aw)t: t, ot &
- sin( —= if)Sln( n- + 5\ SInE. (70b)

From (69b) and (70b) we obtain the following two equivalent expres-

sions for sl(a):

\,')(tﬂ t. Ok o e _w)t, s at, t,
sin2ypcos (—=- =) sin( —* =) - sin2asin(—=- —)cos( )
HOR Ly - R
(cos"wo - cos &)
I Ry "
i 62 S ol ety
- 2sin( = —)sin( e ) ————= sint, (712}
< < ZT((Y,) & 7 4a
where
o i ‘ o
a = cos (ncosa) (71b)
ty =t () (71c)
or
wo + 0 ~ Y,-a-T N
; i e Ll 1 -
& jsint———(r - t3)] sin{ (% - t2) } 5 T8 .
sl(x) = sint, ~ + - - (72)
B sin(wo + Q) sin(u’fU - ) 21 ()
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o 1 ; :
It should be noted that a = cos ;1S not a pole of sl(q\ since
N
sint, also vanishes at this point. We write E and “l as sums of three
terms corresponding to pole contribution, diffraction and branch cut

contribution as below.

Elp.d) = Ep(o,¢) + Ed(p,¢) + Ehnn,y) (73a)

El(n,é\ = Epl(n,¢) + Fdlkn.O) + Fhl(h,$) (73b)

3.5.1.1 Pole contribution

To find hp(o,¢) we consider the following two cases:

In this case the poles at -7 + P and Tr-uh contribute to

-t U
0' ‘101\100
the solution with the residues cost‘n.—cost,o 1, and -1 respectively,

L - .,

where

t:U = tjkwol (74)
i ) B0 B wn < ¢ < m/2
In this case the poles at m+y ,-¥ ¢ , and 7=y, contribute to the
- 0 0 gl 0
solution with the residues cost‘o,—cosr‘o,l, and -1 respectively.

Thus in both cases EP is given by

o JPCOs (9-¥0) _ oHipcos (d+yo)

1 - r(wo)

1+ 1(;T;T o

-jpcos (d+y +ipcos (d-U
jocos (¢ “’0) - jpcos (¢ L'(ﬂ} 0<d < u/2




Similarly we consider the pole contribution from 51(1). The only

poles of 51L11 that contribute to the solution are at o = wo and 7 -

‘V'U
— e
both of which have a residue of 2siny /[V n~ - cos ¢, + siny,] and E
0 0 0 [w],
is given by
o X .
2siny : . ;
E . (p.,8) = 2 [C-JCncos(b-kﬂ) + ¢+J9“C°5(¢+TU\]
O T
2 nth w siwl
n COs Yo 1~~1n,0
where
~ CcCosy! ~
Py = cos—l ——— 0 < Y. S B2
0 n 0
3.5.1.2 Diffracted field
n
Excluding the shadow boundary regions, where ¢ = *o or ¢ = wo, we

obtain the following asymptotic expressions for the diffracted fields

. and Bis s
lJ 1N dl
: T
.‘(D"T)
Ed(o,¢) ~ ~{s(m+¢) - s(-m+d)} e /V2mp
" Yy-9 Vg - ¢-m
i to vy | eoslm——ti - 1.} Jeos L 7-t.)}
S ilp 4) cost————(m t¢) no>t¢ + cost - ( t$1
Sl e —
v Tip sin(y, - )
Yo+ - V. +9
cost 2 — (7 -t ) lcost +co<{—ll———(n- £, )}
Wy i ¢ TP i T ¢
sin(uo + ¢)
(77a)

(76a)

(76b)




’ T
J (np+=2)

E, (p,9) = -{s, (¢+m) - s, (¢-m)}e ~/V2mp
d 1 1
1
G gw-p—w A ub+¢ - -
2sin”"t  fcos{———(m-t )}  cos{ ==t 3} il +3)
= — - . - ‘ — e /¥2mnp
-COS sin(y -o sin (U +)
1 LO\tQ \1n(.n ) >1n(,n b)
‘h::-- v), + 17 -["‘U [—'—'!)
where
t‘3 = t,(o) (-"-C)
Q¢ 24
t, = t,($) = t,(9) (77d)
Q % -
& -1, : R
¢ = cos (ncosd) (77e)

If we let the refractive index n to approach unity(77a(77b)take the

identical form given by

i(o+y
: 1 | sy
Tk Vg - TR {ea
L cos(——) sin( L, )

Ed(p»‘vh)
n

0 < wO < m/2; ¢ £ % wO (78)




3.5.1.3 Branch cut integrals

The branch cut contribution lihLa..;\) to the fields

0 < ¢ <m/2 is given by (Figsg3.14a,1l4b),

-10cC S (L=
iib(:,:) - f s(a)e eSS ‘)\1\ o f

BU+

+ f S(‘\E)L‘_"'\COS(‘t‘\ﬂd\x + f s(a)e

BO-

lmcxA

t
-

=2 0

w

ro

/ %

i

s(ﬂc-'l

pcos (a-¢)

-jpcos (a-d) o

in the region

da

add

e

iz

Figure >14a. Closing of the contour

R
Y

Y.+

by

means of

the

contours D+ and D

(79)
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Figure 3 b, Branch cut contours HW' !%U e H“. and li‘l in the plane ot

the complex variable .

The integrals around By and R'H are well behaved, but the integrals

around Hm and R“ arve both divergent at infintty as discussed before.
In sectiongd.l we considered all possible solutions over infinite
contours and failed to obtain a solution free of diverging waves for the
problem of rectangular wedge on a semi-infinite plate. In the next

Al

section we explore two other methods of modifying Javadskii's solution

to the present problem.

3. 5.2 Attempts to correct Zavadskii's solution
In the first part of this scetion we aim to tfind a solution (l.'.lA'l\
obtained by integrating over fixed tinite contours, which when added to
cavadskii's solution would exactly cancel the f{irst two branch cut

integrals in (79). In the second part of this section we explore the

possibility of obtaining a solution by re-defining the branch cuts

vertically to infinity.




3.9.2.1 Secondary solution using fixed finite contours around the
branch cuts

We detfine the fields E and lfl as follows.

\ - ADCOS (Ctat)) i 0COS l\{r_\:,\
2ujE(p,$) - f s(a)e L do - f s(x)e APEGSS do

I‘(H “'1

R

m+

< d < /2 (80a)

. - FORCOS (T =d , -fpncos(s-¢)
_‘;U]‘lh\.\‘n : f “:(_«_) " l"\f.)ln‘ JRneos (4 ']\l.'.' f “;“.) ‘ l~(",\]v Iencos( de

l‘no l»\:i -

N f (L) » Ble) Jo " IPNCOSE-0) 40 f [6(E) - Gig e 1Pneosli-el g,

A i
Bge D

0> ¢ > /2 (Sab)

where the contours of integration are shown in Figg ldc.
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" 2 - PLANE
B_w- \ 1 B_r+
\.—.5%-—.: :'._._1 ——g— Re
e
Bo. Bo,
Figureddde. Branch cut contours lil“, R“». R_‘H , and 1_‘\_‘_:_ in the plane

of the complex variable

[t should be noted that all the integrals except those over l‘\m and

B are convergent. The integrals over R(“ and R'I appear in E(p,¢) in i
= 5=

such a manner that the sum E + E will be free of any divergent waves.

Since all the branch cuts in T-plane are along the real axis \11 and E

will be free of any divergent waves. Now we examine the possibility of

finding the functions ¥, ¥, G, G, h and h such that B and E, satisfy the

1
following boundary conditions.
E(p,n/2) = O (81a)
E(p,0) = izlu.m (S1D)
E'(p,0) = iz{(p,o) (81¢)
iziw,-u/:\ = 0 (81d)
By a suitable change of variable we can write l.i, li“'. l'.]‘ and l'1 as

follows.




E ( -Jpcos (a- : ipcos (a+d
2m)E(p, ) = - \rsu)c e Md.w js(—a+'n)cj')w\m+’)da

B()+ 1)0+

ot f [h(-a) + H(' \t)]c:)*)cost““‘nd.\ & j [h(eem) - ﬁ(kHiT)JC'wCOS(‘\-Md\t

BU+ B()+
(82a)
2 s -1pcos (a-d ! inocos (a+d
& ——”‘)E' (0,9) = - »j‘ sin(a-¢)s(a)e Jecosia ”)dm + J. sin(a+d)s (-a+n o) PEOS (@ )dx\
P B B
0+ 0+

+ \f sin(a+¢)[h[—d)-+H(—a)]c—JQCOS(“+¢)dd - J‘sin(a—¢)[h(n+ﬂ)-ﬁ(d+w)|cjp003(“-?)

BO+ Bo+

(82b)

2niE) (0,9) = J (F(2) +Fy]e 3P0 E 0y [ (prgom) - Fog-meIPneos Gy

Q B0+ h0+

- f lu(-«:)+(“:t-r,))c‘”’“"““’*“dc+f [G(z-n) - G(z-m)]e IPNCOs(E-4)y,

&

0+ B(N

(82c¢)

da




210
(- IE (0, 9)

B
o+

BU+

where

f (LY.)
?(\Y.)
g(a)

g(a)

i

R(h—

= f nsin (g

BU+

i f nsin (g

B
0+

= j nsin (7,

B
304»

= F(g)T ()

]

F(5)T()

L}

G(Z)T()

= G(2)t (@)

‘( nsin(g

-joncos (5-¢)

-0 E) + E() e i
al

1 \l ~ - - A
jpncos (5+¢)
8

+9) [F(-5-T) - F(-g-m) ]’ it

+$) [G(-T) +G(-0) ]c-j oncos (Z+¢)

~-0) [G(z=1) - G jencos{c
) [G(z-m) - (.(:,-n)]c-"‘“‘0‘\("_Md:

(82d)

.ZTT][‘ = » T i
- lb\’()) H J U(d) +f(d))C_JDCOS\xl ‘ >
ag - lf(_d'_”) 2 jpCcos
> t(‘d-lT)Jo-l"\o‘\“
. da

I
3l)+

. f [g(-o) +g(—a)]o"j”°05dd ‘
/ o [\‘Lk“'n = i\‘)-
£ ) - g \X—IT)]@“‘ .\d.kh

R(H-

(S4a)

(S4b)

(84d)




Similarly we may write El(p,O) as

sina

-jpcosa
T() ¥

[f(@) - T@)]e

1o

-2kt =
o]
B
0+

cosa

da

sShnclc - = S [
- \f T(u)[r(-a-n)-t(-a-a)]c
B
0+

sina - -ipcosa
+ X TmJ[g(—a)+g(—«x)]c do

0+

ip cosa
8

sina —
S %%&%{g(d—ﬂ) - g(a-m)]e 1o

O+

The boundary conditions (8la) and 81d) lead to the following

functional equations.

h(-a) = h(a+m)
h(-a) = -h(a+m)
f(a) = -f(-a-m)
f(a) = +f(-a-m)
gla) = -g(-a-m)
g(a) = g(-a-m

(85)

(80a)
(8ob)
(86¢) 1
(Sod)

(Soe)

(Sot)




The boundary conditions (81b) and 8lc) at ¢ = 0 lead to the follow-

ing functional equations.

-s(a) - h(-a) -h(-a) = f(a) + £(a) - g(-a) - g(-a) (87a)

s(@) + h(a+m) - h(a+w) = -f(~a-m) + £(-0-7) + g(a-1) - g(a-m) (87b)

-s(@) +h(-a) +R-0) = P + F@) + g(-a) + §-)] (87¢) i-
s(a) - h(a+m) + h(a+m) = - (la) [-f(-a-m) + F(~a-T) - g(a-7) + g(a-m)] (87d) 1

Combining (87a)-(87d) with (86a)-(86f) we obtain

-s(a) - h(a+m) + h(a+m) = f(a) + £(a) + g(a-m) - g(x-m) (88a)
s(a) +h(a+m) - h(a+m) = f(a) + F(@) + g(a-m) - g(a-m) (88h)
-s(@) +h(a+m) - h(a+n) = [f(@) + (@) - g(a-1) + g(a-m)]/T (@) (88¢)
s(a) - h(a+m) + h(a+m) = [f(a) + F(a) - g(a-m) + g(a-1)]/T(Q) (88d)

The structure of equations (88a)-(88d) is such that they represent
four equations in three unknowns and they are incompatible. Thus we

cannot find f, f, g, g, h, and h such that E, E. would meet the boundary

1

conditions (8la)-(81d). However the boundary conditions (81b) and (Slc¢)

may also be satisfied by requiring that




-s(a) - h(a+m) + h(a+m) - £f(a) - T(a) - g(a-m) + g(a-m) = Py (@) (89a)
s(@) + h(a+m) - h(a+m) - f(a) - T(a) - ga-m) + g(a-m) = P,(a) (89b)
-s(a) + h(a+m) - hi(a+m) - [f(a) + (@) - g(a-m) + g(a-m) ] /T(@) = P (@) (89¢)

s(@) - h(a+m) + hi(a+m) - [£(a) + T(@) - g(a-m) + g(a-m)]/T() = P, (@) (89d)

where Pl’ Py 1‘3, l’1 are arbitrary functions of o without any branch

points. By solving (89a)-(89d) we find s(a) given by

s(a) = —i—[l’_,u) - Pl () + [‘4(;‘1) - Ps(a)] (90)

which is not possible since s(a) has branch points. There remains just
one more way of satisfying the conditions (81b) and (8lc¢), that is by
directly equating E(p,0) to lil(p,()) and E' (p,0) to F.'l (0,0) which leads to

the following two integral equations.

i f [s(a) + h(a+m) - h(a+m) ]sin(pcosa)da

BO+

= f [£(a) + £(@) + g(a-m) - g(a-m)cos (pcosa)da (91a)

BO+




i f sinafs (@) - h(a+m) + h(a+m)]sin(pcosa)da

BU+

= J- [f(@) + £(®) - g(=-1) +Eu-'1)]%—‘L—%;cns(.‘cosﬂd\\ (91b)
B i
O+

Because of the nature of the path of integration it is difficult even to
answer the question of existence of a solution to these equations. Thus
we seem to have come to a dead end. In the next section we investigate
the possibility of obtaining a solution by extending the branch cuts

vertically to infinity.

3.5.2.2 Formulation with infinite branch cuts
In this section we formulate the problem by extending the branch cuts

vertically to infinity as shown in Fig.3.15. We define E and E, as follows
b, ) 8 1

- -jpcos (a-d R
2mjE(p,$) = JPSku)c Jpcos ¢ \)dd 0<¢<w/2 (92a)
Y+

3njﬁ1(9,¢) - J\Sl(;)c>JpncosL;~®1d:

: 0>¢ > -w/2 (92b)
[+d ¥

-1 cosa
n

where L = CoS

) (92¢)

and ' is the mapping of y into &-plane. With such a definition of branch

cuts (@) and t(a) satisfy the following relations
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gla) = g(-a) (93a)
Sla+m) = -g(a) + m (93b)
(@) = -t(-) (93¢)
T (+m) = -T(20) (93d)

As shown in Appendix IX the boundary conditions of the problem lead

to the following functional equations in s and S

s(-a) = s(a+m) (94a)

$.(-8) = -5, (-5 (a*m)) (94b)
1 ; , o

T 5@ -sta)] =5,@) -5,(-0) (94¢)

s(@) +s(-a) = 5,(8) +s,(-¢) (94d)

If we try to solve these equations, as we have done in Appendix X,

we obtain expressions for sl(;) and sl(—:) which are not compatible with

each other.
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report we have made a thorough investigation of Zavadskii's
method to try to obtain a solution to electromagnetic diffraction problems

involving a rectangular dielectric wedge (0 >¢ >-m/2) and

i) Infinite metal plate along ¢ = = w/2
ii) Semi-infinite metal plate along ¢ = - /2
ii1) Perfect magnetic conductor along ¢ = - 7/2 and a semi-infinite
metal plate along ¢ = m/2.

In all the cases that we considered we tound that Zavadskii's method,
as it is, gives a solution involving branch cut integrals that grow
exponentially in the far field thus violating the radiation condition.

For the trivial case involving an infinite metal plate we have found a
simple way of modifying the solution so as to conform with the known

exact solution. We have made several attempts to modify Zavadskii's
method to obtain a solution satisfying the radiation condition for the
cases 1i) and iii) above but none of our attempts proved to be successful.
However one of the methods involving a secondary solution with branch

cut integrals alone lead to two integral equations whose solution seems
to be either very difficult or impossible. In the process of these
attempts we discovered the solution to the quasi-trivial problem of
illuminating a rectangular dielectric wedge resting on a semi-infinite

metal plate with plane waves such that there is no net diffracted wave

from the edge.
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APPENDIX I

In this appendix we obtain an expression lh for the integrals

over the branch cuts B (=B. +B. ) and B (=B_ +B ) and show that these
0 O+ 0~ n m+ =

integrals grow exponentially as prw,

-ipcos (a-¢ -jpcos (a-¢
1 = f s(aye IPcos(a-®) 4 . J s(a)e 1PcOS(@-0) 4
J

b
B()+ B()-

-i1pcos (a-¢ -ipcos (a-¢
: f s()e Jpeos(a-9) da + f s(a)e i da

B B
m+ m-
(A1.1)
where B B 5 OB e ahde N B are shown in Fig. Al.l.
0+, 0- m+ Ii=
Ima A
4//<::k:: >
-2 "'// il Re a
7
// 1
. |
/ ;
q
|
/ g
. |
!
Fig. Al.1  Branch cut contours H(H, B . B, and “,]

0- . - !




By a suitable change of variable we may write [b as

[h = [ S(u)e-)pcos(a-w)du _ J S(_u)c-JOcos(u+¢)
BO+ BO+

+ j s(aem)elPCOS(0-0) 4o _ f s(-a+m)elPCOS(4*0) 4o (a1.29)

BO+ BO+

Noting that s(-a) = s(a+m) we may write Ib as

I, = J s () [:c-jDCOS(d—M _ C,iocos(mm] e
BO+

g [ siad [C-jocostuﬂb) 3 C.iocosm-ub)] oo

B0+
= -2j J s(a)e—JhSLna sin(acosa)da  + 2j J S(-d)eJh51"a sin(acosa)da
B B
L e (Al.3a)
where
a = pcosd (A1.3b)
b = psin¢ (Al.3¢)
coswo M-sina COSWO 5
s(a) = - — - =~ - ~ (A1.3d)
S1inQ- >1nw0 M+sina stna+>1nw0
i

M = (n"-cos”a) (Al.3e)

and the sign of M must be chosen as shown in Fig. Al.1. Noting that

e gt L
e o "




only the second term in

integral and choosing the proper sign tfor M

(A1.3d) will contribute to the branch cut

we may write Ib as

the following sum of two line integrals.

I8,
e JMLsina 1 ~jbsina_.
[b = hJLOSWO f 3 P s iy sin(acosa)da
0 & 0
1bg
+ Sjcosy [M]s ina 9 *Jbsxnasin(acosa)da
¥ 0 2 sinQ-siny
0 n -1 0
BO

= Sjcosy quhB v——ﬁl—f——~— chthin(achB)dB
0 2 ishg+siny
n -1 0
0
i
e, M| shB 1 SDSHB
- 3);0511)0 f 5 TshB-siny e sin(achB)dB
0 n--1 0
where chBO = n
Since a and b are positive when

clear that the

the second integral converges for all p.

corresponds to the unshaded branch cuts B

first integral (Al.d4a) grows exponentially as

p—kv

0+ and B“_

(Al.4a)

(A1.4b)

0 < ¢ <m/2, it is immediately
while

We note that the diverging integral
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In this appendix we obtain s(a) as given by (33a) by inverting

t(a,8) which is given by (32).

ch(38) -1 () sh(28)

s()  may also be written as the sum of the following integrals.
w o

0 0

After substituting for t(a,R) and t(@,/8) we obtain

N

; : M .
sh| Wﬂ-fm/:u%] l¢h [Tlp Ycha+T () shsshad |

s (a) = J [t(a,8)+t (o, -8) Jchaddy - I [t(,8)-t(x,-B)]shapdl (A2.3

(A2«

a,B) = 2sh(P.=3T/2)B: +————r e ——— A2,
lo.8) \m“o MEL)6 [1+t (@) Jshand+[1-t()] shmp ( )
s(a) = [ t(a,B8)e “Pdg (A2.2)

s{a) = 2 T+ Q)] Tehng+ATshid BT A e
0
where
A l, ﬁl.:.zr_h‘). ® = COSET U R LS (A2.4b)
2 Ist{w)
Noting that
> LehTBchod+t () shT@shal] = [1et() Jeh (3 +) B+ [1-1 (@) Jeh(h -8

5)




we write  s(a) as

o : : \ .
sh[(vu-Snxjipllch(g +a) R+ 2Ach (5 ~qa)B ]
j s(a) = G0 - dB

r =

| ( sh[wn-nnndlah[\;;k).h':]_\\\,;[&_‘.\{shl(L"O-'r-am]*shl(t.‘f{g.‘nm)ﬁl}

| (chap+A) shig

AR (A2.0)

which can be immediately put into the torm (33a).
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APPENDIX III

In this appendix we transform s(q) as given by (33a) into the

form (30).

s() = { Ly +Q=m) + &l(v ~0=21m) +AT (Y ==Y +AL (Y A= 21) (A3.1a)
a Q & Q O 0
where
- 2 o(n- > Q
I(8) = —‘~~zJ~~-- Jsin ‘}lF}) - (1-A)sin™ =
(1-A7)sind oF =
= ‘--{}-~—- Ili} * lﬁﬁ cos O - cos\ﬂ~0tfﬂ\l (A3 1)
(1-A7)sind \ i - ]
and
A= -cos t (AS.1l¢)

We note that 1(8) has a periodic and a nonperiodic component. Denoting

$,. as the periodic part of s(a) we obtain

-1/ -1/2 1/2

A A
§..(0) 2 e (e b e e  —e
Fol) (1-A) )sing siny sy siny
S d d s
1/2 Cosy Cosy osy cos
S - Dol B S icorc. R i
(1+0) Y2 siny 2 sin;‘ \1nv| siny
\ \

(A.3.2a)

where




e

——

-1/2 )

1 !
8., (o) - < \- ) (sing ,~siny ) L.
e . g g ] 1‘,1\"\\.\‘..‘\\—\*0.\‘_,“\

1

!
o~
e
i
-
7

Lf 2
7 (A# b (cost sin ‘
(1+\) 2 L Ve Yd Sing

1o @\'«\»H(_‘shmcos;o\ '(QA\“‘\—I\.\'in.‘;\

S T T
COSQA-COS Y

)

The non-periodic part of  s(a) is given by

172 Jeos[(v-m (1-t/m)) cos [ (¥,-2m) (1-t

-siny siny
S5 8

1

.\'\\\‘.»sw\\n = — 1- e T
1-A

+

——————————ae. S —

siny
S

. _‘.\cnsu'd -yt *t\ . _‘;\\'usws -'\."St,’f"z"fi ll

siny siny
d S

-1 e
R Cos(y -y t/mestYsing +cos (V-
(1-A%) - R d d 'd

\‘\‘.\.V\c e = iy L
d s[ %s(cos2a-cos
|

t/m)siny 1 F(cos20-cos
S ¢

Q0

JAcos | (v l-n\(l-t,’ﬂ\] l;\coslh\_—.‘?'-\ (I=t/m) ] 1

J




where we have made use of (A3.1c¢) and decomposed the cosine products.

Upon further decomposing (A3.4) we obtain

+ sin(2y -¢ t/m) + sin(20+Y . t/m)> (cos2a-cos2yP )
0 d | 0

d

t/m+3t/2) cos(at/m-3t/2)

> 5 P21 I
% e SR

0
(1-A )

+ cos (20-at/m+3t/2) sinL‘»'(,b’ﬂ-Sﬁf)} (cos2a-cos2y,)

— {}sinl;ocos(vot/ﬂ-St/l) -coslwusin(worﬁn—St/E)lcos(‘t/ﬁ-it,iﬁ

)

+ [cos2acos(at/m-3t/2) + sin:asin(ut/ﬂ—Stf:\lsin(yot/ﬂ—St/Jiyﬂcosla-coslt

= | O
s =1 b | S b
= —————— {sinYP cos (Y, t/T-3t/2)cos (At/T-3t/2) +
2 5 " i 0 0
(1-A )chs_w-cos_vo]
sinldsin(uot/ﬁ-ﬁt/l sin(at/nrgt/l)\
SESRE e ¥t/ -3t/ 2)cos (at/m-3t/2) (A3.5)
1-A
8

By adding (A3.3) and (A3.5) we immediately obtain (30). ﬂ
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APPENDIX 1V

In this appendix we show that anyv branch cut free solution s _ (1),
to the functional equations (lla-11d) with ¢U = 3W/2 and ¢. = W/2,

must be periodic in a with period 27,

The functional equations are as follows:

s(®) = s(-a+3m) (Ad.1a)

- 1 . [ ’ .

>1\.(A1\ = ——— [s(@)-s(-) ] *+ 5 [s()+s(-)] (Ad.1b)
27 (o) i

sl( (®w)) = slki(~a-ﬁ)) (A4.1c)

where (Ad4.la) and (Ad.1c) are modified forms of (11a) and (11b) and
(Ad.1b) is obtained by combining (llc) and (11d).

Let 50(d1 be any solution of (Ad.la) with no branch points. Then

50(-d) = sn(a+5n) (Ad4.22)
Tl e (A4.2b)
=T3S e : igfon L 3y Wity -
sl(,ka)) gl l>0(d)->0(d+on]| + 3-[sn(d)+>0(n+.”ﬂ (Ad.2¢)
2t (a)
and
S 4 = 1 3 T s 7 l S < T e
.\1( ,(-\\—n') = m [.\0(\\'*-1‘1‘-.\0(\14‘.])] ) i :l.()(\\‘hln)*’\\ot‘\‘*ﬁ‘I L\"'—d\

Since sl(;(d)) has two terms one involving TtT(a) and the other
independent of  t(a), we must equate these terms separateiy to the
corresponding terms in sl(:(-m-n) so that (Ad.lc¢) is satisfied. This

results in the tollowing two functional equations for SNCY




3718
so(u) + 50(4+3¢) = so(q+n) + 50(q+4ﬂ) (Ad4.3a)
and
sn(A) - 50(u+3n) = - so(a+w) + so(a+4n) (A4.3Db)

Taking the difference of these equations we obtain

50(J+3H) = so(1+n) (Ad.3c)

which implies that so(u) must have a period 2T with respect to «.




APPENDIX V

In this appendix we obtain the most general solution to the follow-
ing system of functional equations which arce equivalent to (1la)-(11d)

with ¢0 = 3m/2 and wl = /2,

s(a) = s(-a+3m) (AS.1a)
slk,hﬂ) = E?%GT»[s(u)-s(-a)J * %—[s(a)+s(—a)] (AS5.1b)
slui(u)) = sluj(-u-ﬂ)) (AS5.1c)

From (A5.1a) and (A5.1b) we obtain the following relations.

s(-a) = s(a+3n) (AS5.2a)
s(-a-m) = s(a+dn) (AS5.2b)
Sl(i(a)) = T% [s(a)-s(a+3m)] + %»[s(a)+s(a+3n)]

= 5t [(+0s(@) - (-1)sarsm)] (A5.2¢)
Sl(ﬁ(-d~ﬂ) = %F [ (1+T)s(a+dm) - (L-1)s(a+m)] (AS.2d)

Substituting (A5.2c¢,d) in (A5.1c) we obtain

(I+)s(a) - (1-1)s(a+3ir) = (1+T)s(+dm) - (1-T)s (Q+T) (AS.2¢)
which upon dividing by 2 (1+T) results in
1

)

S(O+dm) 4+ Os () (A5, 2£)

l;l-—

s() + Os(a+3m) =

where

1
1

=)

]

Ll
o] —

=T )
+T = cost (:\5._31]




Now we rewrite (A5.2a) and (AS.2f) which are equivalent to (AS5.la

(AS.1c); as follows

We add and subtract s(a+2n) to the left hand side of the last

cquation and write

) -

S() = s(3m-wt) (AS5.3a)
[s(a)-s(a+dm)] = os(a+n)-s (a+3m)] (AS.3b)

l‘ [s(a)-s(a+2m)] + ~l‘» [s(a+2m)-s(ardm) ] = O[s(a+m)-s(a+3m) | (A5.4)
Let
s(a)-s(a+2m) = g(a) (A5.5a)
so that (AS5.4) becomes
gla)+g(a*r2n) = 208 (a+m) (AS5.5b)
We divide (AS5.5b) by g(.otn)  and obtain
h(a)*+1/h(a+tn) = 20 (AS.6a)
where
h(a) = gla)/g(a+n) (AS.0b)
Since o is periodic, with period i, h(a) must be periodic of the
same period, satisfying
h+1/h = 2o (AS.7a)
or
.
h - 20h+l = 0 (A5.7b)
We may write the solution to h as
/5 N
[ e e 6 Q
h = otvo =1 = costtjsint = ¢ (AS5.8)




Now
/ Ejt
g(a)/g(a+m) = ¢ -
We let
L | /7
" at/m
g() fla)e JAL/T

S0 that

. kFjat/m :
flae jat, kit
S Sjat/mat - ©
f+me AL

and hence
£() £la+m) F”(u)

Since (A5.5b) is linear in

-jat/n

g(w) l"”(w)k‘ + (;‘I(\”C
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Jjat/q

= :.‘_ll\ﬂ + )‘,_‘l\ﬂ

(AS

(AS

(A5

(AS

(AS.

Since (A5.5a) is linecar, s(a) is the sum of the particular solutions

ot

s(a) - s(a*2n) = 8y o

and the homogencous solution of

s(a) - s(a*2n) = 0

e, fi, (0, any function of period

Consider

s(a) - s(a+2n) = .\:I(M

and  let

S = plade (@)

)

=0

(A5

(AS.

(AS.

23

L10a)

.10b)

. 10¢c)

1EL5)

Jd2a:h)

«1aa)




which gives

p(a) - p(a+2me = 1 (AS.13b)

-j2¢t

Now we make the substitution

p(a) = q(a)/(l-vnj“t) (AS5.14a)
which results in
q@) - qa+amye =t = _ gTilt (AS. 14b ]
Let
Q@) = 1 +k(@) (AS.15a)
giving
L+ k(@) - e 1°F[1ek@samy] = 1.¢792¢ (A5.15b)
and hence
k(@) = k(a+2mye It (it i)

Now let

K(®) = m(a)e¢

which gives

m(o)er

jat/m

jot /m
Jat/ (AS.1oa)

jat/w

= m(a+2m)e (AS.10b)

whose solution is

m(a) = m(a+2n) = M‘”(a) (AS.1oc¢)

Theretore

s(w) F

jot/m
( l \l S !
“(jlj_:_ﬁﬂfigi__._‘_l oo dat/m
(I—L‘-']ht)
. 5 -jat/n
G (@) [1+N, (a)e /*YT) |
e Jat/m, H, (@) (A5.17)

(1-("'~ )
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|
which may be written as
& -jat/m - ! i : 7
s(a) = J, (@) + F (x)e Jat uw(m)cJ“t/ (A5.18a)
& ! i
where
: WM, (o 1 (N o
J‘”(n) = H‘”(d) v lw(”'Jkn( )+(wl :ﬂ( ) (A5.18h)
- ' _““".‘"\"""__ PRm==S TR P
o %L
Jp T A 1-¢’
Fr(@) = F () g-e73¢Y (A5.18¢)
and
G =g +j2t s
(un(\l] = (1[[(«‘(‘[1_0 J ) (A5.184)
Since F". L:1 arce arbitrarvy tunctions with period m  and M‘W, N,”
I ol &
are arbitrary functions of period 2w, Fﬂ, C” arc also arbitrary

functions with period m, and J:“ is an arbitrary function of period
2. This follows from the fact that t is periodic in « with period
m.

Equation (A5.18a) is the most general solution to (A5.3b). But

$(Q) must also satisfy (A5.3a), which means

-jat/m jat/m
: e

J:"(d) + F”(a)c v G"(a)

+jat/m-35t -jat/m+ §3t
B | i i

= J:n(sﬂﬂ\’* F“(—a) G”(—a)o (A5.19)
SO we require that

Ja () = J‘n(Sﬂ-d) (AS.20a)

= -, ] 3t e A
I'n(&l) = h"(-\t)t“ (A5.20bh)




Gn(u) = F"(-u)c7

Equations (A5.20h) and

trom (‘.W in terms of F

y - B ‘-.ist
l”[ﬂ) = l,"(ﬂ.)t

we obtain
S (¢ = J + P
Hia) _‘UN) [n

which may be written as

) = I

where

and Pu is an arbitrary even function of «

and P " is an arbitrary odd function of «a

j3t

(A5.20¢) are self-consistent.

n

/2

-j (at/m-3¢/2) | P (-a)e

()e i

) e - ) ) - o Y
(v) + lcnm,x(at/n .at/.)+l(m sin (at/m-3t/2)

Now substituting

from the last cquation and letting

j(%%—- 3t/2)

with period m

with period

(A5, 20¢)

(AS.22)

(AS.23b)

W
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APPENDIX VI

In this appendix we examine the branch cut integrals (35b) and show

that, for the contribution from unshaded region to be zero, the functions

P i and PO" must identically vanish. From (35b) we have
el n
f fromrie
R { -1pCos (a=¢)
213k (0,9) = | s(we IRCASL0=) 4o (A6.1a)
B

where

B + B 0 < ¢ <m

B & B T <Y< 3In/2 (Ao.1b)

and

0 0+ 0-
B =8B + B

i m+ m=-
Bog = Bop, # Bo (A6.1¢)

B are in unshaded region tor the

As we note from Fig. A6.1, BO*' i

range 0 < ¢ < wm. In this range of $  we may write

2jE (0, 9) = uhl(n,¢) * By (0.9 (A6.2a)

where

-' ~ ~ _.‘h
By, (0:9) = s (a)e?Peosia=®) g (A6, 2D)

B()«'BH -

and




=86

{ i 1PCOS (X=¢)

¢ da

7 g Re}-a
//4

Fig

I'he

whe

ure

most

s(a)

e

dig,. L)

\o. 1

gseneral

J,. (@)
s

relation

Branch cut

solution

to

contours

S (&)

1t

\
¢ P () cos(=— =
el

1

R
.

3t

is given by

\ y
- ' l\“:

)

N
() sing ,,t

is any periodic function, of period

St

(Ao 3a)

', satisfyving the
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Jyp(@+30/2) = J,_(-a+31/2) (A6.3Dh)
and P “ and PU" are arbitrary even and odd periodic functions,
(S n
respectively, of a of period m. t is defined by
1 y .
cost= - = [l-t(@)]/[1+r ()] (A6.3¢)

We may choose J‘w(d) to be free of branch points, so that it does
not contribute to Kbtp,¢1. Now let us examine the branch cut integrals

in unshaded region which are given by (A0.2b), and write

2 R 5 g O 3t -jpcos (a-9)
Yy @) = J ‘-1-\___,_«+‘- S e N, C
lh (0,9) lc“uksk - 3 ) lnnsln( < 5 )P ¢ da
1 +B
O+ m-
Xt St : Xt 3t -jpcos (-
= f P cos(%« - =) +P_ sxn(iur— )P € Jeces(a o)dd
8 em i 2 on il 2
B
O+
[ 1t t W s t +j0cos (+)
- F cosf ® 2y 4 P 3 —_ = SiHeA C
l;J’llM“‘\(n 3 * PopsinlGr * i e 4o
\]
(Ao.)
where we have made use of the periodicity of P - and Pon and transtormed
Qi
the integral over Bn to an integral over “U#'

In (\0.4) we do not see any possibility of the mutual cancellation
between the two integrals because of the difterent nature of the exponential .
terms in the integrand. The only way in which Ehl\g,o\ could vanish
for all p and ¢ 1is that the non-exponential parts of the integrands

be either identically zero or be free of branch point. Since t does have

p— | y




e

a branch point we conclude that the integrands must be identically zero

which implies that P " and l‘m must separately vanish. We arrive
o

at similar conclusions for the range = < ¢ < 3n/2.




APPENDIX VII

In this appendix we find the most general solution to the following

functional equation.
flp) - flw-¢) - RE(@+P) = 0 (A7.1a)

where

. 2 2. % ; 2 P
R = [sin$- (n7-cos™9)?*]/[sind+(n"-cos™9) 7] (A7.1b)
Substituting for R and rearranging we obtain

2, y L bl )
£(¢) [sind + (n"-cos~¢)* ] - £(m-¢)[sind + (n'-cos"¢)%]

P 3 1
+ £(T+9) [sin(T+9) + (n~—COS-(ﬂ+¢))2] =0 CA7.2)
Let
f () = g(@)[(n‘—cos'¢)% - sinQ] (A7.3a)
then
g(®) - g(m-¢) + g(m+¢) = 0 (A7.3b)

putting -9 for ¢ we obtain

g(-¢) - g(m+d) + g(m-¢) = 0 (A7.3¢0)

Adding (7.3b) and (7.3c) we obtain

| 4




3-90

Hence g is an odd function of ¢.

Let

o

gld) = ". sinlo £(\d\ (7.8

and substituting in (7.3b) we get

{ E(\) [sind¢ - sin)(w-¢) + sin} (w+¢)] dX = 0 (A7.0)
which gives
%
f f(A) (l+2cosAm)sindeddd = 0 (A7:7)
5
1 5 5 e
Hence cosAm = ~ =i X = 2n¢t 2/3 (A7.8)
and
(S8 w
() = ¥ A sin 2pm+1/3) + Y B sin 2¢§(n-1/3) (A7.9)
e n s

which, after combing the terms, may be rewritten as

oy W\
& v o . 2 ]
g9) = cos ==V C sin2¢ + sin = ¥ D cos2ne (A7 10)
d 0 n 3oy on

The series in (7.10) represent odd and even periodic functions of ¢

with period g7. So that g(&) is given by

g < ———— -




ey e 5
ER) = [(nT-cos™9)* -sing] \{ i"‘_,.\:n = Z”,ws e (A7.11b
L f




APPENDIX VIII

In this appendix we obtain a particular solution to equations (67a)-(67d)
using the t-transftorm.

Defining t(a,3), tl(c,J) to be the transforms of s(a) and sl(iLaJ)
and continuing the representation s(a) = t(x,8) beyond the pole at

a = ;U, we obtain the following system of functional equations in t

and tl.
. B¥. _gn/2 ‘ By Brs2
[t(+m/2,8) + e le = [t(~a+m/2,-B) + e le (A8.1a)
=

tl(u,s) = -tl(-a,—d)e B (A8.1b)
t(o,8) - t(-o,-B) =t(a)[tl(a,3)—tl(—a,—5)] (A8.1c)
t(a,B) + t(-a,-B) = tl(a,B) + tl(-a,-S) (A8.1d)

The first of these equations may be transformed to
B, B) = t(-a+w,-5)c”5+ Jcﬂb/" sh[S(ﬁ/J—wO)J (A8.2a)

Eliminating t1 from the last threce equations we obtain the following

relationship between t(a,8) and t(-o,-8).

‘nB

t(-0,8) = 228 __
J-Xe P

t(a,B) (A8.2b)




where

=N CoSE = L-F(a)

. A AS.2c
2 T T+i(a) (A&.2c)

Combining (A8.2a) and (A8.2b) we obtain the following single functional

equation for t(w,B).

-mR

t(o,B) = it(«mn,ﬁ) e 2e“6/zsh[8(¢0-n/:)1} ;—_C—T—é\ (A8.3)
which has the following periodic solution
= 5. TB/(2 ; K p(a,B)

t(a,B) = 2e shiB(y-1/2)] T (AS.1a)
where  p (a,B) = (e ™0-0)/(r-e™) (A8.4b)
Upon simplification we obtain

. 1 sh(pm/2)-(1-))ct 2 e
t(,B) = shipyy-n/2)) LMAELEANAEUD .5
We obtain s(a) by inverting (A8.5)
s(a) = f t (o, 8) e B
= I [t(csB)+t(a,-B) JchaBdB - J[t (a,B)-t(x,-B)]shaBdB (A8.6]
0

0

Substituting for t(a,8) we obtain




H»\\-;hl,i(;,v“ n/2) |sh(Bn/2)chas+( \)¢i|\|»1lt.“ 1/2) leh(mB/2)shal

chup-A ' i o
Q0
SWIB (Y =/ 2) [ sh[B( 200) | +ASHB (Y =1/ 2) | sh[B{n/. |
\ { T

) chip=A\ A

Q
¥ ¢

h| s o) | =ch [B (i, =c=1) [ eR[B (-~ [-ch 8] WA
| <hl (W, ) | -ch| (- | e ‘ ch W, ¥) | -ch| Yot | .
: chin \ ‘,4 J chiry \ L
(AR.T)

We make use ot the tolloving mtegral relationship [37)
amw=-t.,)
sin :
chax l { I

chitx-cast ., sint ,sina

and obtain

| l-;inl(«.‘“».\l(:\ (.‘1 il \ml(,n -1 (n (.‘) il l

ld) ; +
sint 1 Sin(iy  +Qx) Sin(y . -0) J
4 Ul 0
n\s(.‘ Jr-lnlun Q) (n (.‘\ n ~;1n|(i,'\‘o.\ ) (“) :||l
+ t
.\'ln(._l sy, o) Sy e { ‘
(AS.9)
1 A0 ) s obtained through the rvelation
] 1 Js()-s(-q) :
S L)) 3 (¢ & ( = AR.10)
¢ () 5 (o) +s(a) + s(=q) ( 1
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APPENDIX IX

In this appendix we derive the tfunctional equations (94a)-(94d).
The branch cut structure in a-and ~planes i1s shown in Fig.3.15. We
introduce a small amount of loss tactor in the dielectric constant of the
medium s0 that the branch points are slightly displaced from the real
axis in the «-plane.  When the branch cuts arve defined as in Fig.3.15,

(@) and  T()  satisfy the following relations.

G (=) (A9.1a)
(o) = < () (A9, 1h)
T(Q) = =T (=) ' (A9.1¢)
(o) = -g(w) (A9, 1d)
We detfine the fields E  and l{l as in  (92a) and (92b) , and

write

- jpcosa
(

205E(p,¢) = f s(a+d)e 1o
Y +Y

i -

= 1PCosx
S

= J [s(Q+dh)-s (-a+d) Je e (A9, 2)

Y
+

For the tield |".l(p.~,“) in the dielectric we write

.‘n,il'.l (py9) = f Sl ( 0-\"\)(“_‘1‘[\\-\\\'.' dr

‘( Isl(‘.-*‘f‘]'-\.l(".- ) lv-'l,\npo.\'- dr

—— L
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f @) [5) (GHd) =5, (=5+h) Je IPE08%,, (A9.3)

hl
+

1 1
Now we obtain expressions tor the ¢-derivatives [ (0.9) and Fl(p.$].

256 (p,9) [ g(u\kV'“\\“;Vl'*‘dn (A9.4)
Y +4h

1

Vor

. ~10cos -
(—)E* (p,9) = J sin(u=9)s (e IReOSLS “‘dd

b
)
Y+

N + = 1RCOos
= [Sllh\ﬁ(x(*w‘(‘ A da

J

)

- jpcosa

J SINA|s (@) s (~ard) Je
Y o+

da (A9.5)

-jpncos (4-¢)
e IF (&9l ge (A9.0)

(_ﬂw‘“i(”'¢) ( nsin(l~$\sl(:)o“jpncus(”-¢)d.
b
l‘ﬁ:‘

JONCOS, .
dr

f nsin&sl(i*¢)0_'
T

JONCOS!
- d

. r nsin*[sll'o¢10ql(hg.¢)|v

[+

5 1 " . JPRCOSN -
J thd‘Hl( H)*s (- +$) e “da (A9.7)

Y

»

S —
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where we have made use of the relation 1(a) = sina/nsing. Using the relations

(A9.2), (A9.3), (A9.5), and (A9.7), and enforcing the boundary conditions
at ¢ = 0,41/2 we obtain the desired functional equations. By equating

the field E(p,¢) to zero at ¢ = n/2 gives (94a), and by equating E(p,0)

to IZIU\'()) and  L'(p,0) to l:;‘\.‘.l‘! we obtain (91¢) and (94d). By equating

lii'\,\,—:i.f'_‘) to zero we obtain

S| C-T/2) = ~ sy (-6-1/2) (AD.8)

which is equivalent to

\l() - _Sl(-;,_“) (A9.9)
or
\l(‘] = _51(\'_-11) (:\f).l(”

Now we make use of (A9.1b) and write

Sl(‘f»(\‘” = ~s;(-S(a*n)) (AY.11)

which is same as (94b).
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APPENDIX X

In this appendix we attempt to obtain a solution to the functional

equations (94a)-(94d)  which we reproduce here.

s(a*r) = s(-a) (Al0.1a)}
_\-l(,-‘) - -;l(-'.pn:u) (A10.1b)
1i,@)lsh)_ﬂhnl =5 )-sl(— i, \10.1c¢)

S() +s(-0) = sll,)vsl(-"j (AL, Id)

From (AlQ.1¢) and (Al0.1d) we have
8. (=) = -,l-ll(l*[).\'(-“)-(l-()ﬂ‘l\l (A10.2a)

l

and

Sl(— Jlorm) = 7.-:— [(1-1)s(~a-m)-(1+7)s(a+n) ]
= :r:‘ [(L-1)s(a+2m) - (1+1) s (a+m) ] (A10.2b)

where we have made use of (AY.1d) and (A10.la). Substituting

the last two equations in (Al10.1b) we obtain

(I+o)s(atm)-(l-t)s(a) = (1-T)s(Q+2mW)-(1+T)s (+1) (A10.3)

Dividing (A10.3) by (1+1) and rearranging we obtain




As (@) -s(Q+m) = s(Q+m)-As (a+2)

where
A = (1-1)/(1+1)

Dividing (Al0.4a) by VX we have

VA s(a) - lf-s(a+n) = —;~s(a+n) - VA s(a+2m)
VA VA
Noting that
A(orm) = 1/X
we have
P(a)-P(atm) = P(a+m)-P(a+2m)
where

P(a) = VAs(a)

Q(ﬂ.) Pk\ﬂ-l‘(d*ﬂ)

then

Q(x) Qo) = Qﬂ(a\

where QnLa) is an arbitrary function of « with period 7.

Substituting (Al0.7b) in (AlQ.7a) we have
P(a)-P(a+m) = Qn(a)

Therefore the most general solution to P(a) is given by

"

P(a) bﬂ(a)+dh"(a)
so that
s(a) = “""[«U*a(;” (@) ]/V)

where Fry Gp

(A10.4a)

(A10.4b)

(A10.5)

(A10.0a)

(A10.06b)

(A10.6¢)

(A10.7a)

(A10.7b)

(A10.8a)

(A10.8b)

are arbitrary periodic functions of «, with period .




3-100

But s(a) must also satisfy (Al0.la). We decompose

their even and odd parts and write

and
G”(x) B uQ(xy + UU(M)
Then
s(-a) = SF (@) - F (@) - aG () +aG (o)
C {2 O e o) /
and

t

G into

(A.10.9a)

(A10.9b)

(A10.10a)

b . ) s ; 5 g s
s(a+m) = \‘bc(a) + Lo(a) +ﬂ[ho(d) + ho(a\l +n[uc(x\ s uo\a)]} VA

Now to satisfy (Al0.la) we must have

lroka}+:u GCL“)+"1GC(“)+GO(“)| =0
which requires that

(lc(ki) =0

o)

and (i)“‘) i Fo(a)
so that
sy = [Fc(a\+(1-:q/n)ro(q1|/»\

which may be written in the following form,

s(a) = [Po(u)+(u-n/3]rutd)]/v\

where l‘C and P, arc arbitrary even and odd periodic functions of « with 4

\

period {8

(AL0.10b)

(A10.11)

(A10.12a)

(A10.12b)

(A10.13)

(A10.14) .g




Now we must verify it the resulting functions sll‘) and s

are consistent.

From (Al10.2a) we have

SRR R S LR TS R TN R Rl TR -/2)P ] N

L |
= l‘..__\vr-& [‘UL;() (A\ll‘. 15)

and "
i/ %

J

1 +T l /o
e e — > % =T 2
2 1 [ o (a-m/2) “]

3/y
(1-1)72 /3Yp
- g [Pt/ 2)P )

(L+T)™* J

= —°—"“—‘ [l‘o*'x‘t[\”l - -‘;‘E e 110 l() (_\10.1(!)

Equations (A10.15) and (Al0.16) are inconsistent and thus it appears

that there is no solution to the equations (Al0.la) - (Al0.1d).




AN ANALYSIS OF THE METHOD OF
ALEKSANDROVA AND KHIZHNYAR FOR INVESTIGATING A SOLUTION
TO THE PROBLEM OF DIFFRACTION BY A RECTANGULAR DIELECTRIC WEDGE

ABSTRACT

\ detailed study of Aleksandrova and Khizhnyak's method of obtaining a
solution to the problem of electromagnetic plane wave diffraction by a
rectangular dielectric wedge is made. The spatial integrals involved in
deriving the integral equation by their method are systematically carried
out in full detail and the implicd convergence criteria are thoroughly
discussed. Besides pointing out some typographical and expository errors
and a mix up on the sign convention in the time variation in their paper,
it is shown that Aleksandrova and Khizhnyak omit some terms which, if
properly accounted for, would lead to an integral equation that is not only
different from the one they have solved but is also not amenable to solution
using presently known standard techniques. A formulation using a modified
contour of integration was attempted with a view to obtaining a singular
integral equation for the weighting function that might be amenable to solution,
but the attempt did not prove to be successful. It is concluded that the
problem of wave diffraction by a rectangular dielectric wedoe has not been
solved by the method under review, and that this conclusion must hold also
for the later work on arbitrary wedge angles using the identical method -

though since no details are given no detailed analysis can be made.
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INTRODUCT ION

4.1

The problem of wave diffraction by a perfectly conducting metallic
wedge has been solved [1,2]. The analogous problem of diffraction by a
wedge with impedance faces has also been solved [3-10]. A generalization
of this solution to the case of dielectric wedge, either free or resting
on a semi-infinite metal plate, entails serious mathematical difficulties.

Apart from being a classical boundary value problem the diffraction
of electromagnetic waves by a dielectric wedge is of particular interest
in the theory of dielectric wave guide matching [11,12], radio propagation
over the earth [13,14], and in radar, for the effect of scattering by
dielectric radomes [15]. An analogous problem to that of the dielectric
wedge is encountered in the field of acoustics {16] and in seismological
situations involving the behavior of Rayleigh waves at the boundary between
the ocean and the earth [17,18]. It is not surprising, then, that consid-
erable research effort has been directed towards the problem of diffraction
by a dielectric wedge [19-30].

The problem of electromagnetic diffraction by a dielectric wedge, with
or without a semi-infinite metal plate on one face, is a special case of
scattering by sectoral media. The specific¢ problem of the diffraction of an
E-polarized plane wave by a right angled dielectric wedge, whose refractive
index is limited to a certain range of values, has been solved theoretically
by a number of authors. Radlow [19], Kuo and Plonus [20] and Kraut and

Lehman [21] offer solutions to the problem by a generalization of the
function theoretic method of the Wiener-Hopt technique [22] from one to

two complex variables. However they do not simplify the final results and




as remarked by Kuo and Plonus [20] '"...the solutions are too complicated
to be used practically". Kraut and Lehman [21] claim that Radlow's solution
[19] is incorrect. Kurilko [23,24] obtains a solution in the form of a
rather complicated system of Fredholm integral equations which have to be
solved by numerical techniques. Latz's [25-27] final result ends up as an
infinite system of Hilbert singul&r integrals which he states are suitable
for numerical computation. However he does not actually obtain any explicit
results of practical use.

Karp and Soltrev [14] have used an aspproximate technique known as the

Raleigh-Gans-Born (R-G-B) approximation [28], to solve the problem of a

dielectric wedge, whose refractive index is near unity, placed on a perfectly

conducting infinite plane.

Rawlins [29] formulated the boundary value problem, of the diffraction
of an E- or H-polarized electromagnetic line source by an arbitrary angled
dielectric wedge, and obtained a solution in the form of a Fredholm integral
equation. Using a standard perturbation technique he obtained a Neumann
series solution, to the integral equation, which converges when 1 < n < 2

where n is the refractive index of the dielectric wedge.

A number of years ago Zavadskii [30] proposed a method, which, he claim

would give exact analytic solution to a class of two-dimensional wedge
diffraction problems including the problem of diffraction by a rectangular
dielectric wedge resting upon a semi-infinite perfectly conducting plate.
However the solution obtained by his method contains branch cut integrals
which give rise to waves "diverging' at infinity in complete violation of
the radiation condition. In an ecarlier work [31] we made several attempts
to modify Zavadskii's method so as to remove these drawbacks but did not

meet with success.,

ed,




Recently Aleksandrova and Khizhnyak [32], hereafter referred to as
AK-1, claimed to have obtained a rigorous solution for the problem of
plane-wave scattering by a rectangular dielectric wedge and in a later
paper [33], hercafter referred to as AK-2, to scattering by a wedge of
arbitrary angle. Their method seems to be quite appealing. They start
with the integral form of Maxwell's equations and reduce the problem to a
singular integral equation which lends itself to exact solution. However,
in their first paper, on scattering by a rectangular dielectric wedge [AK-1],
the authors omit numerous details, supposedly for the sake of brevity and
in their later paper [AK-2], on scattering by a dielectric wedge of an
arbitrary angle, they give only the final expressions for the total electro-
magnetic field with a statement that the method used is the same as in
[AK-1]. Hence it was felt that, in order to make use of their results, a
thorough understanding of their work on the rectangular dielectric wedge
is essential. While doing so we found that, besides a number of typo-
graphical and expository errors, the authors' expression for the incident
wave has the wrong sign in the exponent to start with. Further, in obtain-
ing the singular integral equation the authors ignored some terms which,
if properly accounted for, would make it impossible to obtain a solution.
In this report we give a detailed exposure of these discrepancies. We
looked at several possibilities of modifying their approach with a view
to obtain a singular integral equation that can be solved using standard
techniques [34,35]. Among these methods a seemingly promising approach,
as described in this report, was to seek the diffracted fields in the
wedge in the form of a weighted plane wave integral on the real axis of
the complex t-plane. However this method also failed to give the desired

singular integral equation for the weighting function.
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In section 4.2o0f this report we give a brief account of their method
and point out the discrepancies in their evaluation of the integrals and
the interpretation of the residues. In section 4.3 we start with the
correct expression for the incident wave and systematically reduce the
integrals involved to the desired form and show the missing terms in their
integral equation. We conclude that if these terms are properly included
the resulting equation is not amenable to solution using techniques known
to us. The finer details involved in proper evaluation of the spatial
integrals, which are not mentioned in [AK-1] are given in appendices.

In section 4.4we give a brief account of our modified approach to this
problem. Conclusions are given in section 4.5. In our analysis we will
make frequent reference to their paper on rectangular dielectric wedge
[AK-1], and equation numbers quoted from it will be annotated with the

letters 'AK'.




1.2 FORMULATION QF DIELECTRIC WEDGE PROBLEM USING THE INTEGRAL

FORM QF MAXWELL'S LQUATIONS

1.2.1 The integral form of Maxwell's equations
Maxwell's equations, in integral form, give the electric field E and

the magnetic ticld H evervwhere via the equations

¢
E() = B () + — (grad div + k°) 1 (e-DEEN (| F-F"|)dr!
%] In -
\
[}
ik ‘ iEe !
v curl Joeennah e ar (2.1a)
1 5

(grad div * k%) ) w-DREDEE-E D dr

H(r) = H (v) +
QO \

AN

‘l"‘l curl | (e-DEEDC(e-vhar! (2.1b)
, :

(2.1¢)

whoere K u\’\"; ¢ oand I are the relative \lit‘l\‘\‘ll"‘l\' and magnet te constants
of the medium; l" and H‘ are the electric and the magnetic tields in the
\ 8

incident wave; Vo is the volume of the scattering body and a time dependence
. =iwt ,
of © 15 assumed,
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The first feature of the solution of (2.1) is that the internal field
in the medium (re V) is directly determined through the unperturbed field
of the incident wave. The scattered field for (r3 V) is determined through

the known internal ficld by the same relations (2.1).

The second feature is that a formal expression for the desired field
in the medium is the sum of the ficlds of the unperturbed incident wave
and of the waves formed by the integral terms [36]. In evaluating all
integrations this term should yield a series of terms including a wave with
a propagation constant coinciding with that of the unperturbed incident
wave.  In accordance with the Oseen-Ewald "extinction principle! [37-39]
this wave must exactly cancel the unperturbed incident wave. By imposing
this condition one obtains the amplitudes and the directions of propagation

of the penetrating plane waves.

4.2.2 Plane wave scattering by a rectangular dielectric wedge
We now consider the specific problem treated by Aleksandrova and

Khizhnyak i.e. the scattering of a plane electromagnetic wave

i(K,.vtk., .2)
.
Efr) =k & *0 N (2.2a)

(%) O

i(K,. y+k_.2)
5 I S
Rir =l o %0 = (2.2b)
Q O

by a rectangular diclectric wedge (Fig.i.l) with a relative permittivity
2 . . . -~ . . .
£ (=n7), and a relative magnetic permeability of unity. The incident wave

is polarized in the x-direction so that b = (]'\.O,M and 1 U‘.”\,,H_\.




z

INCIDENT
RAY

Fig. 4.1 Geometry of the rectangular diclectric wedge showing the
incident ray and the ray refracted at the face :z @,




From (2.1) we then have the following fundamental integral equation for the

determination of the internal fields (reV):

k:(* 1) ( Clkll-l'l
3 By = B (% it AT N e dr' 9l %
Lx(x) Lox(l) + W ' lx(x ) IF_F'| X (2.3)

The magnetic fields are given by

o ik|®-7'|
H (r) = H_ (1) - —‘fﬁL‘}S—L 3~J EIF') S gf’ (2.4a)
y oy dn 82 ¢ X o
¢ i V r-T [
iki{e=1) 3 oik| Tt
H(F) = H (F) + —‘@r‘_ =) e (") e a5’ (2.4b)
2 [§) 4m d) v |?-FW

where the region of integration V is the first quadrant (-« < x < o,
y >0, 2> 0).

A solution to (2.3) is sought in the following form, which consists
of a superposition of a plane refracted wave and an unknown wave from the

*
edge (AK5) :

1(k3y+k3:) : J o1t_v+1s:

E (F) = Ae ~—— F(t)dt (2.5a)

Q

Aleksandrova and Khizhnyak use the same functional notation for the
weichting functions in t- and n-planes which is potentially confusing.
We denote the weighting function in t-plane by t(t) to distinguish it

from f(n).




where

ke 4 k2 = £k (2.5b)
= &
t: + _s: = €k3 (Z2.5¢)

and the contour a, as implicitly defined later, is shown in Fig.4.2. 1In
this report we will only consider the case where the incident wave is in
the fourth quadrant (3uw/2 < ®o < 2m) and illuminates the face ¢ = 0 of the
wedge.

To evaluate the integral on the right-hand side of (2.3) the following

representation for the Hankel function is used.

(Se)
ik[F—?'[ 5 .
J = dx' Hél](kJQy—y')" wlzg=-2")")
SRy
oo
o i | —expliely-y'l+iv]z-2"]] (2.0)
v
-0
where i
v =YKk -w" ; Imv >0 when w is real . (2.7}

In doing so it is assumed that the surrounding space is characterized by a
small loss [k = ko(l + i§); § > 0] which ensures convergence of the integrals

at infinity [exp(iky) + 0 as y + =],
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Im
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- - -

)

-nk

Ihe contour of integration a in the plane of the complex

vartable
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Re




We now write

where, after integration over V (Appendix I), we obtain

®  jwy+ik.z
< >

2 lov+ivz
. < e -
S, = 1A 2 —— dw - J ——————
1 2 2 vik,-w) (K.-v)
-0 U\_‘—“))U\S—\' ) -0 ! 2 ; 2
[ oo fwy+i > LWy +iv
A { iwy+isz wy+ivz
s - [ E(t)de } 2e i S
h2 v J___??w“_\ PR e
Q ’\'m (t—w‘) (5 ~v ) - 00

(2.8a)

(2.8b)

VE G W[ (280

S0 far we are in full agreement with Aleksandrova and Khizhnyak.

However it must be pointed out that the expressions for S and S,, as given
I I 1 2 !

by (2.8b) and (2.8c), are true only if the following conditions, (Al.4)

and (Al.6), are met for W real and t ¢ .

Imk, > 0

Im ( Kz +v) >0

Imt > 0

*

Im(s ¢+ v) >0

*

This condition is not met on «.

(2.9a)

(2.9b)

However as shown in Appendix IV the

expression (2.8¢) for S, is still correct provided that the contour a is

deformable, into a cuufnur on which this condition is met, without crossing

Taantlawitiae AF Fre)




4.2.3 Transformation to &- and n- planes

The following

and t-plane integrations into contour integrals in &- and n

respectively,

k sin &

<
"

nk cos n

s = nk sin n

giving equations (AKY) and (AK10)

expliko(cos i cos &

(n cos ¥ -cos &) (n

_——
L2

[ exp[ike cos(5-9)]dE

P

! f‘('])(l']

G
O

inkp sinn sind
&

; t£(n)dn i’
J
v,

.
I'he

term sin 1s missing from

.

] (n cos ¥ =cos &) (n sin ¥ ~sin §)

exp(iko ] _
(n cos N -¢os &) (n sinn =sin &)

f-integral over F

transtormations are introduced which convert the w-

Y

plane

(2.10a)
(2.1L0b])
(2. 1a)

(2.11b)

n sind sin P)]sin § df
5

N

sin Y ~sin )

(2.12a)

[ £

N

o

pliko cos & cos ¢ |sin

(n cosn -cos £ (n sin” n=sin &}

1

cos \'-.7-\,“ ]J\]f., ) (2.12h) -

in (AK10).

1




g

where

£(n) = £(t) = £(nk cos n) (2. 12c)
and
k; = nk cos ¢ (2.13a)

K. = nk sin ¢ (2.13b)

" (2.14a)

Y = P COS ¢

T = O sing (2.14b)

The contours Fl' F,, and G are shown in Figs. 3a and 3b and Go is shown in

se o 4 e . : T B s

Fig.*4. The contours a and G which depend on G 0/ (] »oare defined
P2 s

below (see Appendix 11 for a discussion about the choice of the contour G):

% -1 ; o S 5 & c
£ = cosh ™ (1/cos £); sin & sinh 5 50 (2.15a)
- .

for £, * 18, = EE€6
r i
-1 SOS ‘r- “ & (]
cos (———)=N6G_ when E €g (2.15b)
n Q
nk cosn = t€ & when NEG (2.15¢)
\

The shaded portions inFigh3a and Fig..3b corvespond to the regions where

Imcos § > 0 and Im cos (& - ¢) > 0 respectively.




Fig. 4.3a. The contour of integration F_ in the plane of the

complex variable £(9§
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Fig. 4.4 The contour of integration G (G + G ) in the plane
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of the complex variable n(§ = 0).




4.2.4

Deformation of contours in the “-plane

lhe crucial step, in Aleksandrova and Khizhnvak's method, of obtaining

a singular integral equation, involves the closing of the contour l-’1 at

infinity and deforming F

4.2.4.1 Reduction of integrals in S

Let us consider Sl as given by (2.12a). According to Aleksandrova and

Khizhny
sin
n cos

at sin

other,

y onto G. In what follows we will

1ation ot these steps.

il

rak the first term in 5 gives rise to poles at cos E, = n cos

SR ¥ and
1

= n sin Y and the second term in SI gives rise to poles at cos ".1 =
and sin &_ = n sin . They seemingly, conclude that the residues,
&, = n sin Y, in the first and the second terms of S| cancel each

and write down the following expression (AK11l) for S

/

3 ) N N

exp[ik{ny cos ¢+ ‘,/_lj“,h cos Y ,\]‘J\

5 ; / 2 2 / & &
(n sin P -vV1-n"cos P) v1-n"cos {

\ expliko cos($-8)dE

+ 1 —

k" (n cos ¥ -cos &) (n sin Y -sin &) -

(2.16)
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where the first and second terms in (2.10) correspond to residues at

cos £ =n cos P in the first and second terms of (2.12a). Further, they
claim that if A and ¢ are given by [equations (AKIS) and (AKL4) ]
2} sin
Q O S
g = ~ r= (S hva
nsin @+ sin ¢
(8]
n ¢cos P = cos ¢ (2.178)

then the first term gives rise to a wave which is exactly cqual to the
refracted wave A explik,y + ik;.'.] and the second term gives rise to a wave

which exactly cancels the incident wave E exp |ik,u\' + 1k .U:]. However there
C v i o |

are several inconsistencies in their statements, as described below.

i) With the time dependence of the form expl-iwt] the correct expression

& )1

for the incident wave, in the fourth quadrant, is given by expl-ikp cos ($-4 i
L §

with 3n/2 < Lb) < 2n. Since from (2.7) Imv > 0, the square root expression
[§

Y Al
kV1l-n®cos™ ; in (2.16) must be interpreted such that it has positive

imaginary part. This in view of (2.17b) and the fact that sin \,‘v’ is
(¢

—
negative implies that k¥1 = n“eos” = -k sin «,'\). Consequently, the second
A8

term in (2.16) takes the form
constant X exp [+ikp cos (¢ *+ ¢ )]

which cannot cancel the incident wave.
ii) When k, and k. arc given by (2.13) [equation AKS] the first term
- | =

in (2.5a) [equation (AK5)] becomes A exp [+inkp cos (& - @) ] which is not the

correct expression for the wave refracted at the face § 0. The correct

expression must have a negative sign in the cxponent. This might lead us to




suspect that the time dependence  that they used

+iwt ’ d
¢ . However this will not

extinction wave. Also the far
solution has a space variation of

wou'ld be an incoming cylindrical wave it a time dependence

is assumed.

implies a time dependence of e

is actually of the form

account tor the discrepancy (i), regarding the

field diffracted wave that

- iwt

lHence we

rule

the form exp [+inkp + i1

More importantly the type of Green's function

out the

results from their
4]/ nkp which
of exp [+iwt]

used in (2.3)

possibility of

the exp [+iwt] time dependence and conclude that their expression for the

refracted wave is incorrect.

Since they do not explicitly state the values of k

use (2

and K,

are interpreted as
a0

- ‘os &
k:() K cos P

K., = -k sin ¢
S0 0

i11) Matters will not be resolved by simply taking

[contrary to equation AKS]
K, = -nk cos ¢

K, = =nk sin ¢

because, with §
(8]

.2) [equation AKQ] to represent the incident wave

20

provided that K

and k., one may still
=

(4]

20

(2.18a)

(2.18b)

K, and }\; to be

(2.X9a)

(2. 19b})

and hence § being in the fourth quadrant, k, will now have

a negative imaginary part which is in violation of a necessary condition

(2.9a) for obtaining (2.8b).

so that lf‘(r) as given by (2.%

Nevertheless k, and k; must be given by (2.19)

a) will contain

the

correct

refracted wave.

|
|
|
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Later in section 4.3 we show a way of getting around these difficulties,
which involves the decomposition of the y-integral in .\‘l into two integrals.
We will find that the result would not only contain the correct refracted

wave but also the correct extinction wave as well.

4.2.4.2 Reduction of integrals in S, |
Aleksandrova and Khizhnyak write down the following expression for S,
[equation AK13] without any clear explanation, except saying that "We consider
the singularities in §, in similar fashion...'",
= -dm - ; <
S, = —/——— explinkp cos(m=-$) |t (n)dn
N K™ (n"-1) G
%)
|
\ 4 - . £(n)dr 1
- — explikp cos(&-9)dg P 2 Vi - c— |
K (n cos n -cos &) (n sin n- sin |
G G

(%)

(220"
where in the last integral, as pointed out by them correctly, the order of
integration is interchanged in accordance with a corollary to the Poincard-
Bertrand formula [34].

Their contention,scemingly, is that when l"l is closed at infinity and
F_, is detormed into G the first double integral in (2.12b) gives risc to

two residues at the poles n cos n = cos § and n sinn = sin § and the second

double integral gives rise to a residue at the pole n sin n sin foand a

singular double integral which is the second term in (2.20). The first integral

*
The negative sign in front of 4n is missing in their paper, which we

believe is a typographical error.




> e

in (2.20) corresponds to the residue of the pole n cos n = cos §. Appar-

ently they conclude that the residues due to poles at n sin n = sin § in

the first and the second terms of (2.12b) cancel each other. lowever a

careful analysis, given later, shows that this is not true. Further, since

G is a singular path (cos & = n cos n when ne G‘ and £ € G) one has to give
U
due regard, to the pole cos & = n cos n, when deforming F, onto G. In

point of fact one must add a term corresponding to half a residue, due to
this pole, so that the remaining singular double integral may be legiti-
mately interpreted as a Cauchy principal value integral.

In the next section, after obtaining the correct expression for Sl,
we go on to consider the above mentioned points in detail and show that
the expression for S: as given by (2.20) is incorrect. The correct expres-
sion for S, will be shown to contain additional terms one of which corres-
ponds to half a residue, due to the pole cos £ = n cos n, and the rest of
the terms arising duce to the non-cancellation of the residues corresponding

to the poles sin £ = * n sin n in the first integral and the pole

sin & = n sin n in the second integral in (2.12b).
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4.3 CORRECTED EVALUATION QF THE VOLUME INTEGRAI |

Consider the volume integral (2.8a) which is reproduced here for conven

ience.

( ‘ik?f—f'i (3.1)
| E(z') & e g = 8. % 5.
oA i l =
\ ‘1‘41' l
where V is the volume of the dielectric wedge and E(r) = 1-'\\':‘—) is given by
(Z2.5a}). .\'1 and S, represent the contributions to the integral from the

first and second terms of IZ\ in (2.5a). Hence

i(k,y'+k,z') _ik|E-T']
51 = A [ e - Ly A | (5.2a)
Vv |1-‘"—";
and
I( k‘lt\'H\" \
= | = - =3 } T
h: f]J = ‘\I)\l[} di (-1)
V \a

Now, we will consider S

| and S: separately.

1.5.1 Derivation of an expression for 51 containing the correct refracted
and the extinction waves
Keeping the discussion in the previous section in mind let us reaffirm
that, with an assumed time dependence of the form exp [-iwt], and with
IEO(I;] and I’..\(x:) being given by (2.2a) and (2.5a) respectively, the constants

K, K

y Kons K, and k., must satisfv equations (2.18) and (2.19) which are
20 50 4 & -

reproduced here,




k:O = -K cos ;U (3.33)
RSU = -k sin o £35-3b)
k: = -nk cos (3.4a)
RS = -nk sin (3.4b)

where A and  are related to ¢) through (2.17), and with the implication that
L
¢ as shown in Fig.4l is in the fourth quadrant (3m/2 < ¢ < 2m).

Now, we write S, as

1

e i 1k.y'+iki;'I\“clkiT—f'! '
Sl = A J dy' J dz et ’ )J ——— X
R
0 Q oo ‘ l
o w0 il\‘\"*il\,:' ( ' - -
= A J dy' J dz e {mi H (k/(y-y ) *(2-2)7)
. b {3.5)
which may be split into the following sum,
%1 = S50 * Sy b’
where
5 \\'\ ll\\\’*il\ii' (l‘ -~ : - : —
\w~\[d\'J dz’ & : {pi H ™/ (kd(y=-y") "+( ) )
= 0 (3.0b)
and
T ' kv ik, e - =
- -A f dy’ f dz" ¢ * ? ini Htl)(k‘<} y 3% lz=2"3%) ]
- 0 (3.0¢)

B DAL bt it e et P

/




( !
S] , == -l_.:‘,‘,__4 e »o""‘" "“'\-'\".“‘Nn) & A C_l“‘\" SOSK~w) 3 (3.7a)
; ot 1 a7 ) R
X
PR o e o WS j e s (3.70)
5 ALk -0 ) k=) !
11 | A\J‘, U\‘_u,)“\“;“\“_k“] E \\l_j “\.1 \

Let us note the physical significance of decomposing S, into two parts namely

1
Sm and Sll' The term SlO represents the integral over the half space
(z' > 0) and Sll represents the negative of the integral over the quarter
space (y' < 0, z' > 0). If we were to consider the problem of plane wave
incidence on a dielectric filled half space the integral equation for the

fields in the dielectric half space would still be the same as given by

(2.3) with the range of integration, now, being the entire half space

z' > 0). Since we know that the fields inside the dielectric are completely

given by the MnMotcmonM\Uk¢'+ik;],wnhk‘,krsh;mdwlwhm
- J <

4

given by (3.4) and (2.17), we expect that the following equation must hold.

ik, v#ik. 2 X
2 3 & ko cos($-9,)

A e = B
0
&) N C L S 1 ot
K™ (o =1 ‘kl} *‘RS“ olk|1 T
# — A e . T di
dn }l‘—l' {
z>0
o —‘il\“ cos(d-9,) ,l\,NUI_' 1) « :
= LQ [ 07 # A 510 {3,

me— O ey TP e e g e




It is a trivial matter to verify this if we substitute for .\'m from (3.7a)

and note that

Thus by decomposing .\'1 we have simply separated the scattered fields corres-

ponding to the half space problem.
Let us now consider Sll as given by (3.7b). The first integral on the

right hand side may be evaluated by closing the w-contour with a large semi

circle in the upper half plane. In the second integral we may deform the
w-contour into a branch cut contour, o« as shown in Fig..5, with due consid-

eration to the pole locations. The poles at W, = K, = -K c¢os ¢ and
- 8

)

=
= =k N ()} -n )+ cos™ ‘v") lie below the real axis and do not contribute
u

; / 2 2 . :
to the integrals. The pole at w. = +kY (1-n") + cos™ ¢ gives rise to eq
B, ) '

\

and opposite residues and hence does not make any net contribution to S”.

Hence \'“ nay be simply written as

¢ iwy +ivz
- 2 (%)
S = =i n—— —
1 = v(K,-0) (K;-v)

a

dw

which after transforming into the {-plane becomes

(n cos ¢ cos &)(n sin Y +sin
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One may as well transform the w-integrals in (3.7b) into the &-plane and

then make proper contour deformations and arrvive at the same result. In any

event S, may tfinally be written as

“1
i )
| | \
'\‘1 - ;‘.“.-_; \l-l-'\ " ikp cos(9-¢, % C»Hll\.‘ cos ($-v)
K =1y | J
(5.2
cx W ikp cos (§-¢)
i | gt A :
2] (mcos ¥ + cos &)(n sin Y + sin &) ds
K ( :

4.3.2 Reduction of the volume integral .\': and the derivation of the
singular integral equation

In sectiond,3.1 we obtained an expression for Sl which contained the
correct form of refracted wave and the extinction wave. First we noted
that l\: and k‘.‘ nust be given by (3.4) so that the first term,
A exp {il\_,)' + Ll\:‘_'], in (2.5a) would represent the correct refracted wave.
Since k_. as given by (3.4a) violates a necessary condition (2.%a) for
obtaining (2.8b) we had to go through a different rvoute which involved the

decomposition of Sy into two parts. This not only resolved the above

difficulty but also resulted in the correct forms of refracted wave and

the extinction wave. However the expression (2.8¢) for S, is still correct
|

as it stands (Appendix IV) because the a-contour is in the upper half plane

of the complex variable t and hence the requirement lmt > 0 is always met.

After transforming the integrations into &- and n-planes S, is given by

(3. 12b,¢) which may be rewritten as




S, = 85 *S,, (S hon)
where
< B inko sinn sind [ expliko cosfcos d |sin £dE
Sy ™ | £()dn e s ] FRICH S RetR g J N S L
5 G }  (ncos n-cos &) (n"sin™M -sin7E)
) 4
o Fy (3.13b)
s i f & [ axpliko cos(E-¢)]dE Y. ;
S,, = —= fmdn | —explikp cos(E-¢)}dE o el
R S i (n cos i ~cos £} sin 0 ~ sin &)
\|\‘ :
~ N
f(n) = £{t) = £(nk cos n) (51343
However a careful consideration of the loci of the poles cos § = n cos n

and sin £ = £ n sin n, as n is varied on G_ (=G + G ), shows that the
Q o+ 0=

expression (2.22) for S, is incorrect. In Fig.4.3b, u+ and ¢  denote

respectively the parts of G that lie in the upper and lower half planes of

£. The contours Go* and U‘ in Fig.d4 have similar meaning with regard to
U

Go in the n-plane.

Let us first consider S,

. When ne G_. the locus of the pole
23 o+

sin § = n sin n is given by Y+ + 2 in Fig..3a while for ne G it is given
o-

3

by T+ 2m. Since '+ 21 is outside the contour Fy the only contribution

to S‘l’ trom the pole sin & = n sin n, comes when ne G‘*. In a similar
- L
manner we note that the pole sin § = -n sin n contributes to S‘l only ftor

r]&t}) . Hence the total contribution to S‘l from the term (sin” § - n” sin™ n)
9-

is given by
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o ] exp|ikp cn,\‘k',l‘w‘ )] £(n)dn e [ explikp C\‘S‘.'I*‘ )£ (n)dn
2 ) (oS T n cos mIgos &, T 2 3; (Eos T, cos Mees T,
: ) (3.14)
where by = Sin C (nosinn)

1

tHowever the pole cos § = n cos n lies within F! for all ”C\I). Hence when
L

El is closed we obtain the following result

— | exp[inkp cos(m-d)]f(n)dn

ol " f(n)exp[ike CU.\'L'.I -0) |

- = _— dn

K™ J (cos jl—n cos n)cos

X.LYHC\}‘[ ikp cos (.'Al*‘n?) Jdn

(cos T.l—n COs n)cos .'.l

G
L9 A
(3.15)
fo consider S,, let us revert to Fig.y3b. The locus of the pole
sin £ = n sin n is given by [' (= T+ * I' ) for W-‘GO and for the pole
€os § = n cos n it is given by G (= G, + G ). When Fy is deformed onto G

only the lower segment I' is crossed. Hence the contribution due to the

pole sin § = n sin n is given by

143
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" explikp cosk‘.l—,‘)lf(m\ln

-t Cos njcos

21 :[

K L. cas
1

where o is again given by (3.14).

Since G is the locus of the pole cos § = n cos n we cannot bring F, into
coincidence with G without considering this pole. We may first write S

as
exp[ikp cos(z -9)]£(n)
s = { — dn
o S G (cos Zl-n cos n)cos 11
0=
i sxnliko coe(E-d
B -.l‘ J' £(n)dn E exp[iko cos(E-9)] BT
K~ G GiA (cos € -n cos n)(sin & -n sin n)
s (3. 16)

where A is a very small but finite quantity. To convert the last term in

3.16) into a "Cauchy principal value" integral we must add a term equal
4 v o
®

to half a residue due to the pole c¢os & = n cos n resulting in

*

This was related to Aleksandrova and Khizhnyak in a private communication.

To date there has been no response from them.
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£(n)dn

e expliko cos(Z l—‘)ItU )Jdn
Rog = ;f 3 ITGZV"E-h'11Cf7_TCS:_TI’
= f exp[ike cos(G,-¢)]f(n)dn
7| SInt.GInE,-nsinn)
K G 2 2
(0}
B B e b (
= I\—_‘J €X} [l}\\ cos ( ]]\l (LO\
G (b
, = cos  (n cos n)
where, in the last term, we have changed

is permissible
The n-integral, in the
prett
we

arrive at the followi

s |
5 €
2

G

c\p[x

according

ed as a "Cauchy pri

g to a corollary
last texrm of (3.1
incipal value'" integral.

Ing expression for b

¢
J exp[inkp cos(n-9)]£(n)dn

the order of

7a), may

E-n cos n)(sin £ -n sin n)

(3.17b)

integration which

. £ ~
to the Poincaré-Bertrand formula.

now be correctly inter-

Combining (3.15) and (3.17)

f(n)d

xpliko cos(&-¢)]dE

ko -p) 1 f(M)dn

cosLil

(<

(
(8}

0s ;l-n Cos njcos

exp{ikp cos(:l—é)lf(n\dn

(cos :l-n COSs njcos

& 1

(cos &-

n cos n)(sin &-n sin n)

exp[ikop coskll+¢)]an)dn

”lm ;?-[ (cos ;i;n COS N)cos :1

explike cos(,-9)]1f(n)

sin Z,(sin £, ~n sinnp

b]

&1!]




which has four additional terms as compared with the expression (\K]3)

obtained by Aleksandrova and Khi thnyak for S.. 1f we

substitute for :%, and S,, which determine the volume integral in (2.3), from
(3.12) and (3.18) we obtain the following integral equation for f(n).
)
[ 5 . J \ [ £(n)dr
explikp cos (& -¢) |dE —— - - - - \ - ’
T‘“S E+n cos P)(sin & +n sin ) (cos £E-n cosn)(=ins-n sinn)f
G G
O
\‘\i‘l 1kp C\\:i('.l ) ] £(n)dn “-\Pl iko \'\“'\'.l + ) | t(n)dn
+ 2ni - : s+ i -
LEOS G, =R €08 Njcos § (cos O n cos N) cos &
: 1 1 N 1 1
G (8
O+ O
¢ explikp cur;(:,l $G) | EMm)dn
- 2M1i -
J (cos ['l I E 3 ) :_1
G
O=-
explikp cos(g,-p)]£n)dn
oui[ = 0 .
(‘ SN & (SUn G-=n Sdn f
i 2 2
3
(3.19)

where l"l and are defined by (3.14) and (3.17b). If the last four terms
were not present in (3.19) the resulting equation could be solved exactly,
by using standard techniques [34,35], as has been done by Aleksandrova and

Khizhnyak. We see no way of avoiding the presence of these additional terms

and hence conclude that Aleksandrova and Khizhnvak's method fails to lead

to a tractable integral cugation for the weighting tunction £(n).




4.4 FORMULATION USING A MODTEIED CONTOUR

Aleksandrova and Khizhnyak seek
in the form of an integral over a branch cut contour
such a representation of the diffracted fields might not be complete.
integral over the rcal axis seemed to be more appropriate.

in mind we could seek a solution in the following form

i (k. y+k.2)

B (3) = A ©
‘\l
(i
where, as in previous sections
Y 3y 3y y
RS & ko = kK
2 3
Y Al al
b &8 =k
K, = -nk cos ¥
k., = -nk sin ¢
S
cos Y = (cos ¢ )/n
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the

itv+isz
5 ;

solution

1.{( )dt

di ffracted

that

\n

fields

idea

(4.

(4.3

(4.

(4.
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da)
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It is assumed that the incident wave is in the fourth quadrant as given by

(2.2) while Kk g & i K = (ATre defined by (3.3), and as shown in Figg4 .6 the
- 5| <
- o = AL . . ; ; |
contour of integration C ( . § +) in the t-plane is chosen to lie just
- " i\
above the real axis (A > 0). In the limit we let A >~ 0 with the under-

standing that any poles of £(t) that lie on the real axis of t are indented

with clockwise semi-circles. We split the volume integral appearing in

(2.3) into the sum \;l + S, where .\'l. S, are given by (5.2). In the sum
S S koL the expressions for S and S are given by (3.7) which
! 10 * 11 PERSRLS 10 1 8 ¥ L
a1
are reproduced here
\ |
P | |
g 4 ' -L-\lk,‘ cos (¢-9,) \ c—lnkp cos (d-P) > (4.5) |
10 PAI ) 0 ]
K (n -1) {
|
|
|
iwv+ik<z iwy + iv ]
" : , LR J e - |
\Il LA S 2 —— (i = v TR ; dw (4.0) |
(k,-w) (W -k~+k3) AL el (
- oo V5 % 3

The first integral in .\111 may be evaluated by closing the w-contour with a
large semi-circle in the upper half plane and in the second integral the

path of the integral may be shifted slightly above the real axis with the

following result.

—

In writing (4.7) we note that the pole w = k, is below the real axis and

hence does not contribute any residue. We choose A sufficiently close to

:oro such that the above deformation in the scecond integral is possible

Y

f Y =
without crossing the poles at w V k© k> . This is always possible
o )

except for the special case when ¢ 31/2 which we may exclude from
O

consideration here.
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Fig. 4.0 The contour of integration € in the plane of the
complex variable t.
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Proceeding in a

following expression for §

[ Ee I 2e]
5, =i [ ) e —
3 J, N b (tew) (s
( .-\)

subject to the conditions

Imt > 0

Im(s

manner

+ v) > 0

4

similar

Wy + 182
5 ?

-v7)

30

to

that

in Appendix I we obtain the

} \'(t:\n) (s-Vv)

N
|
------ 1? (1.8)

(4.9a)

(4.9b)

which are satisfied for any arbitrarily small A > 0.

he first w-integral in (4.8) may be evaluated by closing the contour

with a large semicircle and the second integral may be converted into a

"Cauchy principle value integral' by properly accounting for a half residue

corresponding to the pole at ©

Ik -s > 0

= Ea

is to

be

When this is done S, is given by

\ X l\-U )dt
) s(t-w) (5-v)
G
(4.
interpreted such that
(4.11)

10)
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If we substitute for Sl and §, in (2.3) we obtain the following integral

cquation for f(t).

5

e S S _Bgeyae 4
A b (k,mxnki-v) S(t-w)(s-v) |

: J
G ;

=

/

ivk=-ks y +ik.z ! i/k"=s" y +isz
P 9 % ) -~
2ik e s f(tle
Tl e ——————— = [ ] e ——— e (| £
(k, -s‘]\--k‘:]vll\hJ\; si(t=vk“=s )k -5~
& <¥ <

Y

s
. s Al 2
; Lty #ivk™-t" z
% i =y
mi J E{E)e e dt = 0
S(s-vk™-t")vk"-t~

(4.12)

Because of the presence of the last three terms, which are not self-cancell-
ing, it is not possible to solve (4. 12) for the weighting function t\'U\ by
using the standard technique that was employed by Aleksandrova and Khizhnyak
to solve eqn (AK13). Thus, choosing the contour of integration along the

real axis does not secem to avoid the difficultics underlying the method of

Aleksandrova and Khizhnyvak.




4.5 CONCLUSIONS

In this report we have made a detailed examination of Aleksandrova and
Khizhnyak's method [32] of obtaining a solution to the problem of electro-
magnetic plane wave diffraction by a rectangular dielectric wedge. By
carrying out the spatial integrals, involved in the problem in tull detail
and by a careful look at the subscquent contour deformations, we have
shown that Aleksandrova and Khizhnyak, besides mixing up the sign convention
in the time variation, omit some terms which, it properly accounted for,
would lead to an integral equation that is not only different from what
they have finally solved, but is also not amenable to solution by presently
known techniques. We have attempted a formulation using a modificd contour
of integration in the t-plane but failed to obtain an integral equation that
can be solved. We conclude that not only is the solution given by
Aleksandrova and Khizhnyak incorrect but also that their method as presented
is not capable of leading to a tractable integral equation for the unknown
weighting function. Thus the problem of wave diffraction by a diclectric
wedge remains, as yet, unsolved, even for the special case of a rectangular
wedge, but for the solution of Radlow [19] which has been questioned by
gthers [20,21].

The solution, of Alcksandrova and Khizhnyak, to the problem of

diffraction by an arbitrary angled dielectric wedge [33], is also open to

debate since the results are said to be based on a method identical to the

one used in their carlier paper [32] which we have discussed in this report.
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is given by

APPENDIX I

EVALUATION OF THE VOLUME INTEGRAL (2.8a)

Ve write

where

Vv sl-n<x<a, yw3> 0, = >0).

Making use of (2.06) we write

@

W . 1 . 1 . 1 . 1
s ik ¥ +1k;: + iw|y-y | + 1v]:—: |
. L - -~
o iap 2T
l ,
-0 \\ .)
w o " ~t ' % 1
ik.,y +iwfy-y'y ik.2 +Lv{:-_ |
. !’ dw ' & ol ' o
= iA] — |dy e dz e
1% J
-0 (o] 0

< -~ 3 s - . \
We split the rvange of integration ftor y' into y'<y and y' >y

. - Al . .
(correspondingly for = into z' <2 and z' > 2) and write

oo
e . 1 . 1
= I . ' IRV +i0(y ~y)
J i lk‘\"+|u)(\'-\' ) - = A
’ dw 2° - dy " * ] d
i\ 3 e X "

M R ko2 viv(z-2") k2’ +iv(z’-2) 1
X J % dz' + { dz |
5 2

. . 1 .
For the integrand to vanish as y'+o and 2+ we require that

Im k, >0 (Al.4a)

and

lm(k; +v) > 0 (Al.4D)

when w is real.




Under these conditions S, may be simplified to

1
s 1w |(V ,\11\:)' CiL‘).\' ]l a\,\]ksz ‘i\’: L
S, = 1;\} ‘—‘j—\'"“, — - IR — = (AL-5)
VT AR Sal W R g o8y W
: [ iR, Bl

which reduces to (2.8b) if we note that the terms in the integrand,
that are odd functions of w, give zero after integration over the real
axis.

Proceeding in a similar manner we may obtain the expression (2.8c¢)

for S, subject to the following condition:

Imt >0 (Al.6a)

Im(s +v) > 0 when t € o, and w € real axis {(Al.0Db)

However since s takes on different signs on two sides of the branch
cut the inequality (Al.ob) is violated on part of the contour o . To
avoid this difficulty we do the following:

We deform « into another contour &« where. as shown in ElgeB 4l
the latter ceincides with  on the right side of the branch cut and on

0 ;

the left side it is defined by the equation t't'" = Sn-k; where t =t' +it"
and kK = kn(l + i§). We may now carry out the spatial integration since
the conditions (Al.6a,b) are satisfied for t e 'L After carrying out

the spatial integration the contour o' may be replaced by a provided

\
the weighting function f£(t) meets certain requirements as discussed

in Appendix IV.




APPENDIX II

THE CONTOUR G

DISCUSSTION ON THE CHOICE OF

.

As indicated in section 1.2 the contours of integration o and G
- ¥
U

in t- and n-planes are determined py the choice of the contour of

i
1

integration G in £-plane through the following relations:

-1 _cos §
cos (—)
n

=N e (}) when & € G (A2.1a)

nk cosn =t g q when n € Gw (A2:1b

Aleksandrova and Khiznyak do not explicitly state what G 1is except

i . S /2 + i i = :
indicating that G is ( %}, iv) which only specifies the end points

of G. In their later paper [33] on diffraction by an arbitrary dielec-

tric wedge they explicitly define G) in the n-plane (not the contour G
U

. N /2 +$ +1iw
-plane) to be a Sommerfeld contour ( &

in & 172 26 - i Je This is quite

different from choosing G as they have done in [32], to be a fixed

; 4 -m/2 +1i® ; 5 ;
(independent of ¢) contour ( t/2 )} which means that e will have
-/ 2 ¢

- jco

two disjoint segments in the upper and the lower half planes of n with

the end points as shown in Fig.dd. Also GO is independent of ¢.

Since the contours of integration in their two papers contradict each
-M/2 +i®

n/’_j = JON

) with

other we disregard their later paper and take G to be (

the exact shape yet to be determined. We first consider G to be

given by (2.15a) which leads to vertical branch cuts in the t-plane as

shown in Fig.1.2. This necessitates some manipulations (Appendix IV)

in obtaining the expression (2.8¢) for S, so that the necessary conver-

gence criteria are met and also places some restrictions on the singu-

larities of f(t). If G is taken to consist of straight line segments




4-45

and pass through the points (-m/2 + i®), (-m/2 + i0), (m/2 + 10) and
(r/2 - i®), then the corresponding contour @ in t-plane would be such
that Ims=0 for tea and Ims > 0 in the entire Riemann sheet.
This necessitates a modification of the shape of branch cuts in the t-
plane. Even though such a choice of branch cuts seems more natural for
our problem our attempts at using such a modified contour also failed to

give a desired singular integral equation for the weighting function

£o).




\PPENDIN 111

EVALUATION OF INTEGRALS '\;lﬂ and “:H

In this appendix we reduce the expressions for '\.1\\ and .\'H. which

are given by (3.6}, to the form (3.7).

We make use of the following tform for the Hankel function

. l R 2 : sxpliwfz-z'] #iv|yv-yv' .
i II( ‘U\.(\‘ Ve e Sy = J expliv] l J “ dw (A3, 1)
8] = g v
‘o
and, after changine the order of integration, write Sl() as
w o i v < S s . Lt . Puil
i T S L ) iv|y-y"'| +ik,y
S i L ' e : ly' e n A5, 2
o l.\[ \‘J’ dz & J dy ¢ (&5, 2)
-0 O -0

1 . . . ~ e v ' . 1
Now divide the region of integration over b Into two ranges (y <y

' i o " ' = . .
and y > y ) and similarly for the z -integration and write

) J “ fwi(z=-2" Y wik.2" ; i\n[.'.'—:t)"i}\,."l
Q & \l‘.‘ t Q o o
O 1\ d: e 4 dz” e
10 v -
- O i =
2 . (A3.3)
V . 1 < ' 3 . 1 s 1 |‘
[' L=y )Y ( Ly =~y srkays
N /J\h" e . + J \l\" L B I
-0 \ 2
Fhe exponential integrals may now be evaluated to give
| ! !
w ' ik.z ‘_\'
ot x [ dw ) e ° g 1% 3 .
6 T N v : o Lk -w) | \’ | Dt
. P - *l | §e
L ‘1“\5 W) i U(k‘ v |
rovided that the tfollowing inequalities are satistied for rveal o
| ! l
Iin I\i >0 (A3.5a)
Im (k, =v) <€ @ (A3.5hH)

Im (k, +v) > 0 (AS. 5¢)




Since Kk has a small positive imaginary part and ¢ is in the fourth
quadrant k. as given by (3.4b) will have a positive imaginary part and
S

K, will have a negative imaginary part. Further, as mentioned in

section 4.2, Im v > 0. Thus conditions (A3.5a) and (A3.5b) are clearly

satistficd. Using the binomial expansion for v we note that

Sk
2 Q 3 i
Im v = — USSR \\l\‘ (A3.6a)
[1-8 "~ (wik )= E
‘l (l/ o
and
Im Ky, = -0k n cos ¢ =-8k_ cos ¢ > -8k (A3.0Dh)
- (8} (8] SO (¢]

Hence (A3.5¢) is also met.

Noting that the part of the integrand which is an odd function of

w does not contribute to the integral we write

w dwz +ik.y
26 -

S, = iA ——  dw (A3.7)
) )
e _\“\l\;ﬂ.«‘) (K5-v™)

In view of (3.4) and (2.17) we note that

hl »
ky, =~ v7 =w - k“sill“\{\o (A3.8)
which allows us to write

o iwz + ll\,\
dw

g = =fA TR 2 R S b T MO
10 J (w+nk sin ) (w +k sin ¢ J(w -k sin ¢ )
O O

-00

(A3.9)
Since z > 0 the w-integral may now be evaluated, by c¢losing the
contour with a large semi-circle in the upper half plane, as the sum
of two residues corresponding to the poles at w -nk sin ¥ and w -k sin ¢
QO
both of which lie just above the real axis. Hence, S 18 now ygiven by

10
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g HInY -inkp cos ($-y)
S E - - e
10 2 2
K (n -1)
-ikp C\‘.‘l(\;-~-0)
o & i
K™sin ;)(n sin sin ;‘)
j : (A3.10)
which in view of (2.17) may be put into the form (3.7a).
o evaluate SH we make use of the following form for the Hankel
function,
B P AN e R A T L e
wi H (kv'(y=y )} * (2-2 )}7) = i| e R L dw
Q ol | Y
: (A3.11)
and write
RS} &5 . x (0] ’ \
[ 4 ivlz=2'| +ik.z'; w|y-y'| +ik,y
2 ) 3 L - ) .
S = —l,\J : dz'e ( dv' e (A3.12)
11 v ‘
- 0 S

. Al . . . - 1 .
Since y >0 and y < 0, we need only to divide the region of =z'-inte-

gration into two parts with the result

(‘"h f . iv(z-z')eike' i\'\.z'—:)oiki.:'l
S =~ = \[ dz' e ) + dz' e = ‘
11 ] v {
-0 QO :
Q < ' X 1
W (y-=y J+ik,y
[ dy' e - (A3.13)

The exponential integrals may now be evaluated to wvive

Y o ! 2v F - ¢ .
S = SRR ] AN \3. 14
11 J’ \ ] S ”!\i'\')‘ i(K,~w) e )
{ . -
subject to the following conditions

llll(l’\;'\’) > 0 (A3, 15a)

im ke <0 (A5.15b)

)

which are clearly satisfied. Equation (A3.14) is the same as (3.7h).




APPENDIX TV

EVALUATION OF THE INTEGRAL S,

In this appendix we derive the expression (2.8¢) for S, which is

given by

A 1

. | ¥
R e f(t) ity'sisz'
: | e i » ty sz . =t
S, = | — e dty dr (A4.1)
SRS SR B |
v [ o
where V € (-®<x<e, y>0, z>0) and o is shown in Fig. Bd4.1l.
We note that, with the choice of ® as shown in Fig. B4.1, s 1is
complex and has opposite signs on the two sides of the branch cut. Hence
» . Al » Al . . '
the exponential term exp[ity + isz ] will diverge, as z >%, on one
side of the branch cut if it is convergent on the other side and vice
" . o gy e 1 o
versa. To overcome this difficulty we replace a by « on which
Im s > 0. This is permissible if the following conditions are satisfied.
. s . - x 1
i) f(t) has no singularities between a and a
i1) E£(t) takes a finite limit as t + &,
The second condition is nceded to ensure that the t-integral over the
' . » vie . i R
segment  AA is zero. Thus the final solution for f(t) must be
checked against these conditions. It may be worth noting here that cven
though we believe and show in this report that the function f(t) t(n)

given in Aleksandrova and Khizhnvak's paper is obtained by solving a
§ ) pat ) ¢

wrong integral equation, it does indeed meet the above two requirements.

Keeping the previous discussion in mind we deform the contour

Y ' ~ . -~ . .
(B4.1) into « and after changing the order of integration, write

Toan

S, as
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.
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|

|
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|
|
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\

\
X
N
\\§_ nk

Bi.

1

I'he

contours

0

and

in the plance of

the complex variable t.

Re




e J fgt) dt [ ex
2 , S
o Vv
.J%m [dw
= i dt J —
|S U

[iklr -7 eity'+is:' ot
It -1'|
fe o] @K

J

[o]

( dy’ eity'+iw[y~y'| [ dz" cis:'+iv|:-:'

0]

(Ad.

where we have made use of the Hankel function representation (2.6).

Now we may carry out the y' and z'

of y' into y'< y

provided

The conditions (A4.4a,b) are obviously satisfied now.

Zz 2% and o
; e
= i J (t) dt
S
{
o
Bt g >0

Im (s +v) >0

terms in the integrand that are odd functions of

integration over the real axis and hence

]

o

#: ( 3 5 AWy +1572
-———df(t) t‘;J = — dw - f
0o e (t=w)(s"-v7)

S, may

o0

- 00

iwy +ivz
Bl

v(t-®) (s-v)

integrals by splitting the range
and y' >y and correspondingly the range of z' into
btain
© s i g ]
J i Zmelty e1My i J’VCISZ elVZ |
v T o ( P D " dls—v)
fes i(tz-w’) 1(t-w)) |i(s™-v") }
(A
(A4
for t€a' and w real (A4

We note that the
w , give zero after

be written as

dw

l
,;

. P - ~ - '
Now by a reasoning similar to that used before we may now deform o

into @ and obtain

(2 8e)

SO S ——

.4a) i

(A4,

2)

.4b)

3)




