
;

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Stanford Artificial Intelligence Laboratory December 1978
Memo AIM-315

QO Computer Science Department

C??)

~~~~~
PROLEGOMENA TO A THEORY OF FORMAL REASONING

by

Richard Weyhrauch

~ C)

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University 

~ o c
U G5~U?i~flEL1F

Q

~~~~~~~~~~~
1919

U

~~~ !I .’Ni-~. ________

/ ~~~~~
•• ~ I ~

i
~~~~~~~~~Efl

~~~~~~~ ~~ . 
Appro vecj fo~ pubJk ~- L Distzjbutj o~ Unh: :~~,~ d

~~ 4 N 7 ~~~~~~~~
q 03 08  012



r~ 
—-

~~~~~~~~~~~~~~~~~~~~~~~

- •
~~~~~~

Y 

UNCLASS I FIED

SE CURITY CLASSIFICATION OF THIS PAGE (WJI. n O.ta Ent.r.d)

(
~

) REPORT DOCUMENTATION PAGE REF 
D~~~~~~~~~~~~~S

I.\ I-T HIJ U~~~ FI - --- - --
~~~~~~~~~~~~~ j2 ;/GOVT ACCESSION NO 3. R EC I P I ENT S C A TA I_ O G  NUMBER

$TAN-cS-78-687~
~~~~~~~~ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

L.

~

Ty PE OF REPORT S PERIOD COVEREO

Prolegomena to a Theory of Formal Reasoning 17 / ~~ ~~~~~~~

— -- -

(
~ 

I~. ,~~ TechniCa 1 
~~~ / L~~~4PoO~~~~1I~~ flR~~- BY MIJIaBW R

___ Afl4-315 ,.-~~~~~~

7. AUTHOR(s) S. CONTRACT OR GRAN I NUMBER(s)

~~~~~~~~iWe hrauch I .  (i~ )MA 9O3-76-C-O2O6~~ -~~~
~V ,4f ~4 O~~d t~r~~

j ’+7J
~
‘
~~~~ERFORMING ORGANIZATION NAM E AND ADDRESS 1.~~~ROCRAM £L.EMIN T. P E ~~t.1AS~(.—--
Art i f icial InteLligence Laboratory A R E A S WORK UNIT NUMBERS

Stanford University ARPA Order 2l~9~iStan f ord , CA. 9~i.305
II. CONTROLLING OFFICE NAME AND ADDRESS -

~~~~ REr RT BAT E — .
Eugene Stubbs Dec —4978 /
ARPA/PM - . i’~ MU

111-00 Wilson Blvd., Arlington, VA 22209 1tO
IS. MONITORING AGENCY N A M E  & AODRESS (SS dSU.t.nt from Controllinj OWe .) IS. SECURITY CLASS. ~oI RH. r.poat)
Philip Surra, ONR Representative
Duran4Aeronautics Building , Em 165 15
Stanford Univertty ISa. OECLASSIFICA TION /OOWN GRAO ING
Stanford , CA 9l~305 

SCHEDULE

16. DISTRIBUTION STATEMENT (of thd. R.port)

D1STRfl3Tj T~ON STATEMENT A
Releasable without limitation on dissemination Approved fox public release

~~~~~~~~ 
-

—
Distribution Unlimited

Il. DISTR IBuTION STATEMENT (of Rh. abstract ,nt.rad In Block 20. 11 dItl.r.øt lion, R.port)

IS. SUPPLEMENTARY NOTES -

Abstract: This paper is an introduction to the mechanization of a theory of reasoning. Currently formal
systems are out of fa vor with the Al community. The aim of this paper Is explain how formal systems can be

—
used in Al by explaining how tr~ditionaI Ideas of logic can be mechanized in a practical way. The paper

—

presents sevcral new ideas. iach of these is illustrated by giving simple examples of how this idea Is
mechanized in the reasoning system Fat.. That is this is not Just theory but there is an existing running
Implementation of these Ideas. -

In this paper: 1) we show how to niechanize the notion of model using the idea of a simulation structure and
explain why (hi.; is particuiiarly important to Al, 2) we show how to mechanize the notion of satisfaction, 3) —

2$
we present a very general evaluator for Itrst order expressions , which subsumes FROLOG and we ~ropose as a
natural way of thinking .ibout logic programming, 4) we show how to formalize metatheory, 5) We describe
reflection principles , which connect theories to their metatheor les in a Way 0ev; to Al, 6) we show how these
ideas can be used to dynamically extend the strength of FOL by “impiernentlng’ subs idiary deduction rules, and

how this in turn can be extended to provide a method of describing and proving theorems about heuristics for
using these rules , 7) we discuss one notion of what it could mean for a computer to learn and give an examp le ,
8) we describe a new kind of formal system tha ha.; the property that it can reason about its own properties , 9)

A t l ?i ~- -
, we give examples of all of the above. U 7 7 _•

DD ~~~~ ~473 EDITION OF I NOV 651$ OB SOLETE UNC LA S S I F I E D
S/N 0102-014- 660 1 —

SECUR ITY CLASSIF ICAT ION OF THIS PAGE (I~7,.n Oat. Entst•d)

- - ~~

Stanford Artificial Intelligence Laboratory December 1978
Memo AIM-315

Computer Science Department
Report No. STAN-CS-78-687

PROLEGOMENA TO A THEORY OF FORMAL REASOMNG

by

-
Richard Weyhrauch

This paper is an introduction to the mechanization of a theory of reasoning. Currently formal
systems are out of favor with the Al community. The aim of this paper is to explain how
formal Systems can be used in A! by explaining how traditional ideas of logic can be mechanized
in a practical way. The paper presents several new Ideas~ Each of1these is illustrated by giving
simple examples of how~this ldea is mechanized in the reasoning system FOL. .\That is, this is
not just theory but there is an existing running implementation of these ideas. -)

In this paper: ‘1) we show how to mechanize the notion of model using the idea of a simulation
structure and explain why this Is particularly important to Al; 2) we show how to mechanize the
notion of satisfactioni 3). we ptesent a very general evaluator for first order expressions, which
subsumes P~ OLOG and we propose as a natural way of thinking about logic programming, 4)
we show how to formalize metatheory, 5) we describe reftection principles, which connect theories
to their metatheories in a way new to Al;(6) we show how these ideas can be used to dynamically
extend the strength of FOL by 4implementing’ subsidiary deduction rules, and how this in turn
can be extended to provide a method of describing and proving theorems about heuristics for
using these rules~ 7) we discuss one notion of what it could mean for a computer to learn and
give an example,~8) we describe a new kind of formal system that has the property that it can
reason about Its ~ vn properties. 9) we give examples of all of the above.

Sp onsored 1~ Me Advanced Researc h Projects Agency of the Department of D efense under ARPA
Order No. 2494 , Contract MDA9O -76.C.0206. The views and conclusions contained in this
document are those of th. authors and should not be interpreted as necessarily representing the
official po licus, either expressed or Implied , of Stanford University. or any agency of the U. S.
Government. -

I

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ ~~~~: :~~~~:



~ - .  —-—~~- -—--— ~~~~~~~~~~~~~~~~~ ~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

Richard Weyhrauch Prolegomena Page I

CONTENTS

1 introduction 1

2 FOL as a conversational program 3

3 The Io~ic used by FOl 5

4 Simulation structures arid semantic attachment 6

5 Syntactic simplifier

6 A general first order logic expression evaluator 10

7 Systems of languages and simulation structures 11

8 Metatheory 13

9 Reflection 16

9.1 Can a program learn 19

9.2 Using metam.tath.ory 23

10 Self reflection 25

11 Conclusion 26

11.1 Summary of important r•sults 26

11.2 Concluding remarks history and thanks 27

BIBLIOGRAPHY 29

Appendix A An axiomatization of natural numbers 31

Appendix B An axlomatizatlon of s-expression 32

Appendix C Art axiomat ization of will formed formulas 33

Appendix D Examples of semantic evaluations 34

Appendix E An example of syntatic simplification 35

Appendix FM..s~am&. otis luatlon 39

~~~~
- ~~~1~~ 

~~ 

~ ?~~~iI AT5lLflILIfl caø
. 4 : . ..~ - U .  asd,’a ~?UI*

_ _

•
_ _  -



Richard Weyhrauch Prolegomena Page 1

Section 1 Introduction

The title of this paper contains both the words “mechanized ” and “tAeo?y ”. I want to make the point
that the ideas presented here are not only of interest to theoreticians. I believe that any theory of
interest to artificial intelligence must be realizable on a computer.

I am going to describe a working computer program, FOL , that embodies the mechanization of the
ideas of logicians about theories of reasoning. This system converses with users in some first order
language. I will also explain how to build a new structure in which theory and metatheory interact
in a particularly natural way. This structure has the additional property that it can be designed to
reason about itself . This kind of self reflexive logical structure is new and a discussion of the full
extent of Its power will appear En another paper.

The purpose of this paper is to set down the main ideas underlying the system . Each example in
this paper was chosen to illustrate an idea and each idea is developed by showing how the
corresponding FOL feature works. I will not present difficult exam ples. More extensive examples
and discussions of the limits of these features will be described in other places . The real power of
this theory (and FOL) comes from an understanding of the interaction of these separate features.
This means that after this paper is read it still requires some work to see how all of these features
can be used. Complex examples will only confuse the issues at this point. Before these can be
exp lained the logical system must be fully understood.

The FOL project can be thought of in several different ways:

1) Most important, FOL is an environment for studying epistemological questions. I look on logic as
an empirical, applied science. It is like physics. The data we have is the actual reasoning activity of
people. We try to build a theory of what that’s like, I try to look at the traditional work on logic
from this point of view. The important question is: in what way does logic adequately represent the
actual practice of reasoning? In addition, its usefulness to artificial intelligence requires a stronger
form of adequacy. Such a theory must be mechanizable. My notion of mechanizable is informal . I
hope by the end of thi5 note it will be clearer. Below, I outline the mechanizable analogues of the
usual notions of model, interpretation, satisfaction , theory, and reflection principle.

2) FOL is a conversational machine. We use it by having a conversation with it . The importance
of this idea cannot be underestimated . One of the recuring themes of this paper is the question:
what is the nature of the conversation we wish to have with an expert in reasoning? In Al we talk
about expert systems. FOL can be thought of as a system whose expertise is reasoning. We have
tried to exp lore the question: what properties does art expert conversational reasoning machine
have to have, independent of its domain of expertise? I believe that we will begin to call machines
intelligent when we can have the kinds of discussions with them that we have with our friends. Let
me elaborate on this a little. Humans are not ever likely to come to depend on the advice of a
computer which has a simplistic one bit output. Imagine that you are asking it to make decisions
about what stocks you should buy. Suppose it says, “I have reviewed all the data you gave me. Sell
everything you own and buy stock in FOL Incorporated.” Most reasonable people would like to ask
some additional questions! Why did you make that choice. What theory of price behavior did you

~

. — - --

~

.-

~ 

-.~~~~~~~~~~ - - -~~~- - --



Page 2 Prolegomena Richard Weyhrauch

use. Wh y is that better than using a dartboard. And so forth. These questions require a system
that knows about more things than the stock market. For example, it needs to know how to reason
about its theories of price movement. In FOL we have begged the question of natural language.
The only important thing is having a sufficiently rich language for carrying out the above kinds of
conversations. This paper should be looked at from this point of view.

This work has direct application in several areas . The details are referenced below.

I) Artificial Intelligence. I propose that the languagel simulatlon structure pairs described below are
important building blocks in a viable and mechanizable theory of knowled ge representation for Al.
The central idea Is that FOL makes systematic use of the distinction between a language and the
objects that this language describes. This distinction allows us to deal with the questions of how to
manipulate theories of theory building, how to deal with modalities, how to reason about possibly
inconsistent theories, how to treat “non-monotonic ” reasoning and how to build a mechanizable
theor y of perception. By perception I mean the question of how It is possible for us to go from sense
impressions to theories about what our exterior is like.

2) Mathematical Theory of Computation. FOL is an environment that can deal effectively both
with a theory and its metatheory. Many aspects of program semantics are nicely expressab le when
this is viewed as a reasoning system. For a long time I have wanted to have a system in which I
could develop the theory of LISP, following the Ideas of Kleene[19521 when he developed recursion
theory. The recent work of Cartwri ght[1977). and McCarthy(1978) have made this even more
practicable. One main feature of this system is that it can incorporate both computation induction
and the inductive assertion method in the same system. We can do this because both of these
met hodologies can be expressed as theorems of the metatheory. This is an example of the
ex pressive power of the FOL system. If as above we claim that we want to be able to have
discussions with FOL about anything, then programs are an interesting subject . We are currently
building an “expert ” system for discussing LISP programs.

3) Logic. The FOL system is not a formal system in the popular sense of the word. Logicians have
used formal systems mamly to describe the sentences that are used in mathematical reasoning. I
have tried on the other hand to build a structure which embodies the logicians theories of these
theories and thus have a system capable of reasoning about theory building. There are several
novel things about the logic of FOL that may be of interest to logicians and workers in Al. First A s
t he way in which many sorted logic is treated. Second is the notion that simulation structures (i.e.
partial models) should be represented explicitly. Third is the idea of the general purpose evaluator
described below . Fourth is the use of reflection principles to connect a theory with its meratheory.
Fifth is to notice that reflection and evaluation with respec t to the metatheory is the technical
realization of the procedural/declarative discussions which appear in the A l literature. Sixth is the
discovery of META. a self reflective structure with a “locally” Tarakian semantics. This theory META
is new and it has already produced some insight into the nature of meta reasoning that 1 will wr ite
about elsewhere.

As I reread this introduction it seems to contain a lot of promises. If they seem exaggerated to you
t hen imagine me as a hopeless romantic , but at least read the rest of this paper. The things I
describe here already exist.



______________________ -

Richard Weyhrauch Prolegomena Page S

Section 2 FOL as a conversational program

FOL has previously been advertised as a proof.checker. This sometimes brings to mind the idea
that the way you use it is to type out a complicated formal proof . then FOL reads it and says yes or
no. This picture is all wrong, and is founded on the theorem proving idea that simply stating a
problem is all that a reasoning system should need to know. What FOL actually does is to have a
dialogue with a user about some subject. The first step in this conversation is to establish what
language we will speak to each other by establish what words we will use for what parts of speech.
In FOL the establishment of this agreement about language is done by making declaration -s. This
will be described below.

We can then discuss (in the agreed upon language) what facts (axioms) are to be considered true,
and then finally we can chat about the consequences of these facts.

Let me illustrate this by giving a simple FOL proof. We will begin where logic began, with
Aristotle(-395). Even a person who has never had a course in formal logic understands the
syllogism:

Socrates is a man
and

All men are mortal
thus

Socrates is mortal

Before we actually give a dialogue with FOL we need to thAnk informally about how we express
these assertions as well formed formulas, WFFs of first order logic. For this purpose we need an
individual constant (INDCQNST), Socrates , two predicate constants (PREOCONSTs), MAN and MORTAL ,
each of one argument, and an individual variable (INOVAR), x, to ex press the all men part of the
second line. The usual rules for forming WFFs apply (see Kleene(1967]. pp 7, 78). The three
statements above are represented as

tIAN (Socra te e )
Yx. (t1AN (x)~11ORTAL (x))MORTAL (Socra tes)

Our goal is to prove

(h AN (Socrates)AVX, (MAN (x)  ~11ORTAL (x)) ),(IORTAL (Socrates)

As explained above the first thing we do when initiating a discussion with FOL is to make an
agreement about language we will use. We do this by making declarations. These have the form

*****DECLARE INOCONST Socrates;

*****OECLARE PREDCONST MORTAL MAN 1;



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 4 Prolegomena Richard Weyhrauch

~****DEcLARE INOVAR x;

The FOL program types out five stars when it expects input. The above lines are exactly wh at you
would type to the FOL system.

FOL knows all of the natural deduction rules of inference (Prawitz[1965)) and many more. In the —

usual natural deduction style proofs are trees and the leaves of these trees are called assumptions .
The assume command looks like

*****ASSUIIE I1AN (Socr ates)AVX. (t1AN (x)~ t 1O RTAL (x)) ;

1 MAN(Socrates)AVX.(MAPl(x)DMORTAL (x)) (1)

The first line above is typed by the user the second is typed by FOL. For each node in the proof
tree there is a set of open assumptions. These are printed in parentheses after the proofstep. Notice
that assum ptions depend on themselves.

We want to instantiate the second half of line one to the particular MAN, Socrates. Fir~ we must
get this W FF onto a line of its own. FOL can be used to decide tautologies. We type TAUT
followed by the WFF we want , and then the line numbers of those lines from which we think i~
fol lows.

*****TAUT Yx . (MA N (xY ~h 1O RTA L(x)) 1;

2 Vx .(MAN(x)~MO R T A L (x)) (1)

This line also has the open assumption of line I. We then use the V-elimination rule to conclude

****eYE 2 Socrates ;

3 MAN(Soc rates)~ MORTA L(Socra tes) (1)

It now follows . taucologically, from lines one and three, that Socrates must be MORTAL. Using the
TAUT command again gets this result. More than one line can be given in the reason part of the
TAUT command.

*****TA UT hlORTAL tSocra tes) 1,3:

4 MORTA L (Soc ra tes) (1)

This is almost the desired result, but we are not finished yet, this line still depends upon the original
assumption. We close this assumption by creating an Implication of the first line implying the
fourth. This is done using the deduction theorem. In the natural deduction terminology this Is
called imp!ica :i on (D) in tr oducr ion.

L ~~~ ~~~~~~~~~~~~~ . . ~~~~~~~ ~~~~~~~~~~~~~~~~~~

~ ~

—, —~~~~~~ ---~~
--. - -.--, -.--. .-.

~~~~
. —

Richard Weyhrauch Prolegomena Page 5

*****~I 1~4;

5 (MAN(Socrates)AVx.(MAN(x)DMORTAL(x)))DtIORTAL(SOCrateS)

This is the WFF we wanted to prove. Since it has no dependencies; it is a theorem. It is rou ghl y
equivalent to the English sentence, If Socrates Is a man, and for all x if x is a man, then x is mortal,
then Socrates is mortal.

This example was also used in Filman and Weyhrauch[1976] and illustrates the sense in which FOL
is an interactive proof constructor , not simply a proof checker.

Section 3 The Jogic used by FOL

The logic used by FOL is an extension of the system of ~rst order predicate calculus described in
Prawitz[ 1965). The most important change is that FOL languages contain equality and allow for
sorted variables where there is a partial order on the sorts. This latter facility is extremely
important for making discussions with FOL more natural. The properties of this extension of
ord inary logic together with with detailed examples appear in Weyhrauch[1979). In addition there
are several features which are primarily syntactic improvements. A somewhat old description of
how to use FOL is found in Weyhrauch[1977].

Prawitz distinguishes between individual variables and individual parameters. In FOL individual
variables may appear both free and bound in WFF5. As In Prawitz individual parameters must
always appear free. Natural numbers are automatically declared individual constants of sort NATNUM.
This is one of the few defaults in FOL. The only kind of numbers understood by FOL are are
natural numbers, i.e. non-negative integers. -3 should be thought of not as an individual constant ,
but rather as the prefix operator — applied to the individual constant 3.

A user may specify that binary predicate and operation symbols are to be used as infixes. The
declaration of a unary application symbol to be prefix makes the parentheses around its argument
optional. The number of arguments of an application term is called its ar ity.

FOL always considers two WFFs to be equal if they can both be changed into the same WFF by
making allowable changes of bound variables. Thus, for example, the TAUT rule will accept
Vx. P(x)DVy. P(~

) as a tau tology if x and ~ are of the same sort.

We have also introduced the use of conditional expressions for both WF’Fs and TERMs. These
ex pressions are not used in standard descriptions of predicate calculus because they complicate the
definition of satisfaction by making the value of a TERM and the truth value of a WFF mutually
recursive. Hilbert and BernaysE 1934] proved that these additions were a conservative extensions of
ordinary predicate calculus so, in some sense, they are not needed. McCarthy[1963] stressed ,
however , that the increased naturalness when using conditional expressions to describe functions, is
more than adequate compensation for the additional complexity.



Page 6 Prolegomena Richard Wey lirauch

Simple derivations in FOL are generated by using the natural deduction rules described in
Prawitz ( 1965) together with some well.known decision procedures. These include TAUT for
deciding tautologies, TAUTEQ for deciding the propositional theory of equality and MONADIC
which decides formulas of the monadic predicate calculus. In actual fact MONADIC decides the
case of Y3 formulas. These features are not ex plained in this paper. This is probably a good place
to mention that the first two decision procedures were designed and coded by Ashok Chandra and
the last by William Glassmire. The important additions to the deductive mechanisms of first order
logic are the syntactic and semantic simplification routines, the convenient use of metatheory and a
not yet completed goal structure (Juan BulnesEI979]). It is these later features that are described
below.

Section 4 Simulation structures and semantic attachment

Here I introduce one of the most important ideas in this paper. i.e., simulat ion structures. Simulation
str uctures are intended to be the ineclian izab le analogue of the notion of model. We can intuitively
understand them as the computable part of some model. It has been suggested that I call them
effective pa rtia l interp retations , but I have reserved that slogan for a somewhat more general notion.
A full mathematical description of these ideas is beyond the scope of this paper but appears in
Wey hrauch[NOTEL5]. In this paper I will give an operational description, mostly by means of some
examples.

Consider the first order language L, and a model hi.

L — ( P,F,C)

t1— ( D,P,F,C)

As usual , L is determ ined by a collection , P. of predicate symbols, a collection, F, of function symbols,
and a collection, C, of constant symbols (Kleenet 1952) pp. 83.93). hI is a structure which contains a
dom?In D, and the predicates , functions and objects which correspond to the symbols in L.

S- W,P,F,C)

Loosely speaking, a simulation structure , S. also has a domain, D, a set of “predicates ”, P, a set of
“functions”, F , and a distinguished subset , C, of its domain However , they have strong restrictions.
Since we are imagining simulation structures as the mechanizable analogues of models we want to be
able to actually implement them on a computer. To facilitate this we imagine that we intend to use
a computer language In which there is some reasonable collection of data structures. In FOL we use
LISP. The domain of a simulation structure is presented as an algorithm that acts as the
characteristic function of some subset of the data struct ures. For example , if we want to construct a
simulation structure for Peano arithmetic the domain is specified by a LISP function which returns
T (for true) on natural numbers and NIL (for false) on all other s-expressions. Each “predicate ” is
represented by an algorithm that decides for each collection of arguments if the predicate is true or



Richard Weyhrauch Prolegomena P.~.e ~

false or if it doesn ’t know. This a%oruhm is also total. Notice that it can tell you what is fal~~ as

well as what true. Each “function ” i s an algorithm that computes for each set of arguments either a
value or retu rns the fact that it doesn ’t know the answer. it too is total. The dist in guished subs et of
the dom ain must also be given by its characteristic function . These restri ctions are best illus:ra:ecl
by an exany l”. A possible simulation structure for Peano arithmetic together wi t h a relation symbol
for ~

‘less than ” is

S— ~natura l numbers , ~t2<~.— 5<2}) , 
(plus) , {2.:~

)

I have not presented this simulation structure by actually giving algorithms but they can eas ily be
supplied. This simulation structure contains only two facts about “less than ” - tw o is k~s than three.
and it ’s false that five is less than two. As mentioned above , sinc e this d iscussion is informal
{2<~ .—5< 2} should be taken as the descr iption of an algorithm that answers correct ly the tw o
questions it knows about and in all other cases returns the fact that it cannot decide. “p lus ” is the
name of an algorithm that computes the sum of two natural numbers. The only numerals that hav e
inter pretations are two and three. These have their usual meaning.

Intuitive ly , if we ask is “2<3” (where here ‘2 ” and “ ?‘“ are numerals in L) we get the answer yes. if
we ask is “5<2” it says , “I don ’t know ”! This is because there is no interpretation in the simulat ion
structure of the numeral “5”. Curiously, if you ask is “2.3<2” it will say false. The reason is that  the
simulation structure has an inter pretation of “.

~~ as the algorithm ~plus ” and 5 is in the domain even
though it is not known to be the interpretation of any numeral in L.

A more reasonable simulation structure for Peano arithmetic might be

S— ( natura l  numbers , (lessthan) , (suc ,pred ,plus ,times) , natu; al numbers)

Simulation structures are not models. One difference is that there are no d,)sure conditions requi~ec

of the function fragments. Thus we could know that three times two is s ix without knowing about
the multiplicative properties of two and six.

Just as in the case of a model, we get a natural interpretation of a ian~uage with respect t c ~ a

simulation structure This allows us to introduce the idea of a sentence of L being satisfiable with
res t~ect to a simulati on structure. Because of the lack of closure conditions an~ the partialness of the
“predicates ”, etc. , (unlike ordinary satisfaction ) this routine will somet imes return “I don ’t kno~ ”.
There are several reasons for this. Our mechaniied satisfaction cannot compute the truth or fals ity
of quantified formulas. This in general requires an infinite amount of computing. It should be
remarked that this is exactly why we have logic at all. It facilitates our reasoning about the result of
an infinite amount of computation with a single sentence.

It is also important to understand that we are not introducing a th~ce valued logic or partial
functions. We simply acknowled ge that , with res pect to some simulation structures , we don’t have
any information about certain ex pressions in our ‘anguage.

Below is an example of the FOL commands that would define this language . assert some axioms and
build this simulation structure. As mentioned above , in the FOL system one of the few defaults is 

—.-‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~—



Page 8 Prolegomena Richard Wey hrauch

that numer4ls automaucally come declared as individual constants and are attached to the expected
i,ite~ers Thus the following axioma uzation includes the numcrals and their attachments by default.

DECL A RE ~~DV ~ R n • p q c
DECLA RE OPCONST .~ c p’ .d (NATM.iM ) . NATP ~U)1 1
DECLARE OPCOP.ST . A T N j ~1 , T~,UI1).NATNUfl (R.450,L’.E551 1
DECLARE OPCONST s (H M ,NAT ~~ M).N ATNJM (R.SS0 ,L..5553 1
DEC .AR E PR EDCONST A~~ATP~UM ,MR TNUM ) tthF) p
DECLARE PREOPAR P (NAT~~ );

AXIQII C :
C~’EQN Ei Yn rn (s~,c (n). rn , ,ct . ) ,n. rn ) 1
SU CCA , Vn . — ) 0.~~,c ( n ) ) ;
S~ CC 2,  ~n. (..0.n,3u. )n.~~ c ( . ) ) ) )
PLU S, Vn. n* 3.n

Yn m.n ,s u c ( rn) .s , , c (n,b)
liliES: V n.n,O.8

Va rn .ns rnuc (a ). insrn ) .m;

AX IOM i ’ .O jC T u  P10 ) . Vn . (P(n),P(,u~~
(n) ) )  , Va. P(n ) 1

REPR ESENT INCINUI1 I AS P~~TNUMR EP ;
a T T ~ C~ ~~c — (LAIIBCA (XI IRDOI X)) ;
A TTACH ~~~~ — (LAII BOX (Xi (COND ((GRERIERP A 0)(5UBI Xi ) IT On) 1
A T T ~ CA * . ( LC ~.~ C~ IX Y) (PLUS X V i ) ;
A~T~C~’ * — (LCI1BC ~ IX VI (TIMES X VI )
A TTACH < • (LATBOR IX Vi (LESSP X VI ) ;

T he first group of commands creates the language. The second group are Robinson ’s axioms Q
wi thout the equality axioms (Robinson[1950J). The next is the induction axiom. The fourth group
makes the seman tic attachments that build the simulation structure. The expressions containing the
word “LAM BDA ” are LISP programs. I will not exp lain the REPRESENT command as it is unimportant
here. The parts of the declarations in square brackets specify binding power information to the
FOL parser.

Using these commands we can ask questions like

~~~~~~~~~~~ 2+3’cpred (7);

*~***S1MPLlFY 4*sucl2)+pred (3)’pred (pred (8));

Of course semantic simp lification only works on ground terms. i.e. only on those quantifier free
expressions whose onl y individual symbols are individual constants. Furthermore , such an
expression will not evaluate unless all the constants have attachments, and there is a constant in the
language for value of the expression. Thus a command like

***x*S INPLIFY n*~<3:

where n is a variable will not simplify.

This facility may seem weak as we usually don ’t have ground expressions to evaluate. Below I will

~~~~~~~~ ~~~~~~~~~~~~~~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Richard Wey hrauch Prolegomena Page 9

show that when we use the metatheory and the metametatheory we frequently do have ground terms
to ev aluate, thus making this a very useful tool.

Section 5 Syn tactic simplifier

FOL also contains ~. ~yntactic simplifier, called REt.1R I~~. This facility allows a user to specif y a
particular set of universally quantified equations or equivalences as rewriting rules. We call such a
collection a simplif icat ion set. The simplifier uses them by replacing the left hand side of an equation
by its right hand side after making the appropriate substitut ions for the universal variables.

For ex ample , Vx
~~
. car (cons (x , y)) -x will rewrite any expression of the form car (cons (t , , t2))

to t 1, where t1 and t2 are arbitrary terms.

When given an expression to simplify, REI4RITE uses its entire col!ection of rewrite rules over and
over again until it is no longer possible to apply any. Unfortunately, if you give it a rule like

Yx ~j.x+y-y+x

it will simply go on switching the two arguments to “
+

“ forever. This is because the rewritten term
again matches the rule. This is actually a desired property of this system. First , it is impossible in
general to decide if a given collection of rewrite rules will lead to a non-terminating sequence of
replacements. Second any simple wa y of guaranteeing termination will exclude a lot of things that
you really want to use. For example , suppose you had the restriction that no sub-expression of the
right hand side should match the left hand side of a rewrite rule. Then you could not include the
definition of a recursive function even if you know that it will not rewrite itself forever in the
particular case you are considering. This case occurs quite frequently.

This simp lifier is quite complicated and I will not describe its details here. There are three distinct
subparts.

1) A matching part. This determines when a left hand side matches a particular formula.

2) An action part. This determines what action to take when a match is found. At present the only
thing that the simplifier can do under the control of a user is the replacement of the matched
ex pression by Its right hand side.

3) The threading part. That is, given an expression in what order should the sub-expressions be
matched.

The details of these parts are found in Weyhrauc h[NOTE6). This simplifier behaves much like a
PROLOG interpreter(Warren [197’fl), but treates a more extensive collection of sentences. I will say
more about first order logic as a programming language (Kowalskiti9’74)) below.

In appendix [E) here is a detailed example which illustrates the control structure of the simplifier.

-.. _ _ _ _ _

Page 10 Prolegomena Richard Weyhrauch

Section 6 A general first order logic expression evaluator

Unfortunately, neither of the above simplifiers will do enough for our purposes. This section
describes an evaluator for arbitrar y first order expressions which is adequate for our needs. I
believe that the evaluator presented below is the only natural way of considering first order logic as
a programming language.

Consider adding the definition of the factorial function to the axioms above.

DECLARE OPCONST fact (NATN(J ll) .NATNUM~
AXIOII FACT: Vn,fact (n)-IF n-O THEN 1 ELSE n *fact (pred {n)) ;;

Suppose we ask the semantic simplifier to

*****S IIIPLIFY fact (3) ;

Quite justifiably it will say, “no simplifications”. There are no attachments to fact.

Now consider what the syntactic simplifier will do to fact (3) j ust given the definition of factorial.

f ac t (3).IF 3.0 THEN 1 ELSE 3sfact (p r . d (3))
•IF 3.0 THEN 1

ELSE 3*(IF pr .d(3).0 THEN 1 ELSE pr .d (3)*fact(pr .d (pr.d (3))))

The rewriting will never terminate because the syntactic simplifier doesn’t know anything about 3—0
or pred (3) .0, etc. Thus it will blindly replace fact by its definition forever.

The above computation could be made to stop In several ways. For example, it would stop if

(3-0).FALSE
YX Y.(IF FALSE THEN X ELSE ‘1)-V
pred(~)—2
fact(2)-2
3~2.6

were all in the simplification set.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Richard Weyhrauch Prolegomena Page 11

Or if we stopped after the first step and the semantic attachment mechanism knew about - on
Integers and pred then we would get

sy n f ac t  13).IF 3.8 THEN 1 ELSE 3s1ac1 ( pr .d (3))
.3 , fac t (2 )
.3* 1W 2.8 THEN 1 ELSE 2 . f a c t ( p rsd ( 2 ) ) )

s•m .3s (2 . tact (1) )
.3s (2 .( I~ 1.0 THEN 1 ELSE i*fac t (pr.d(1))))
.3s(2.(1.fact(0)))

Syn .3*(2.(1.(IF 8.0 THEN i ELSE Osfa ct(prsd (0)))))

ism .3.12~ 11.1))
ha It

This “looks better ”. The interesting thing to note is that if we had a semsnuc attachment to * this
would have computed fully. On the other hand if we had added the definition of * in terms of +

then it would have reduced to some expression in terms of addition. In tlus case if we didn’t have a
semantic attachment to * but only to + this expression would have also “computed” 6.

Notice that this combination of semantic plus syntactic simplification acts very much like an ordinary
interpreter. We have implemented such an intepreter and it has the following properties.

1) It will compute any function whose definition is hereditaril y built up, in a quantifier free way , out
of functions that have attachments , on domains t hat have attachments .

2) Every step is a logical consequence of the function definitions and the semantic attachments. This
imp lies that as a programming system this evaluator cannot produce an incorrect result. Thus the
correctness of the ex pression as a “program” is free.

This evaluator will be used extensively below, I would like to remark that this evaluator is
completely general in that it takes an arbitrary set of first order sentences and an arbitrar y
simulation stru cture and does both semantic evaluation and syntactic eva luat ion until it no longer
knows what to do. You should observe that the expressions you give it arc any first order sentences
you like. In this sense it is a substantial extension of PROLOC (Warrer i[1977)) that is not tied
down to clause form and skolemization. In the examples below those familiar with PROLOC can
see the naturalness that this kind of evaluation of first order sentences allows. Just look at the above
definition of factorial. We allow for functions to have their natural definitions as terms. The
introduction of semantic simplifications also gives arbitrary interpretations to particular predicates
and functions.

SectIon 7 Systems of languages and simulation structures

As mentioned In the Introduction, one of the important things about the FOL system is its ability to
deal with metatheory. In order to do this effectively we need to conceptualize on what objects FOL is
manipulating. As I have described It above, FOL can be thought of as always having its attention
directed at a object consisting of a language, L, a simulation structure , SS, attach ments between the
two, and a set of facts, F, I. e., the finite set of facts that have asserted or proved.

— — --
~~~ — - -


. —. -

Page 12 Prolegomena Richard We yhrauch

We can view this as the picture.

— L I
FOL F

4— Ss ___1

Below I wil l sometimes represent these 3.tuples schematically as

<L,SS,F>

1 will abuse language in two ways. Most of the time I will call these structures LS pairs. to emphasize
the i mportance of having exp l icit representations as data structures for languages, the objects
mentioned and the correspondence between the two. At other times 1 will call this kind of stru Ltul e ’
a Meor9 .

The importance of LS pairs cannot be overestimated. I believe they fill a gap in the kinds of
structures that have previously used to formalize reasoning. Informally their introduction
corresponds to the recognition that we reason about objects , and that our reason ing makes use of our
understanding of the things we reason about .

Let me g ive a mathematical examp le and a more traditional Al example .

Consider the following theorem of real analysis (Royden[19&3]).

THEOREM Let cF~> be a sequence of nonernpty closed intervals on the real line with Fn,lcFn.
then , if one of the F~ is bounded, t he intersection of the F~ is nonempty.

The goal I would like you to consider is: Give an example to show that this conclusion may be false
if we do not require one of these sets to be bounded.

The usual counterexample expected is the set of closed intervals (n,o~3 of real numbers. Cte.i r lv none
of these are bounded and their intersection is empty. The Idea of describing a counterexamp k’
simply cannot be made sense of if we do not have some knowledge of the models of our theories
That is, we need some idea of what objects we are reasoning about. The actualization of object s in
the form of simulation structures is aimed in part at this kind of question.

As an Al exam ple I will to use is the missionaries and canniba ls puzzle. As the problem is usually
posed we a re asked toe Imagine three missionaries , three cannibals , a river , its two banks and a boat.
We then build a theory about those objects. The point here is that we have have explicitly
distinguished between the objects mentioned and our theory of these objects. That is, we have tin
our minds, so to speak) an explicit image of the objects we are reasoning about. This is a simulation
structure as defined above.

Richard Wey hrauch Prolegomena Page IS

One could argue that simulation structures are just linguistic objects anyway and we should think of
them as part of the theory. I believe this is fundamentally wrong. In the examp les below we make
essential use of this distinction between an object and the words we use to mention It.

In addition to the practical usefulness that simulation structures have, they allow us, in a mechanized
way, to make sense out of the traditional philosophic questions of sense and denotation. That is,
they allow us to mention in a completely formal and natural way the relation between the the objects
we are reasonin g about and the words we are using to mention them. This basic distinction is
exactly what we have realized by making models of a language into exp licit data structures. This is
more completely discussed in WeyhrauchtNOlE2] and Weyhrauch[NOTE17].

One way of describing what we have done is that we have built a data structure that embodies the
idea that when we reason we need a language to carry out our discussions , some information about
the object this language talks about , and some facts about the objects expressed in the language.
This structure can be thought of as a the mechanizable analogue of a theory. Since It is a data
str ucture like any other we can reason about this theory by cosidering it as an object described by
some other theory. Thus we give up the idea of a univeral language about all objects to gain the
ability to formall y discuss our various theories of these objects .

Currently FOL has the facility to simultaneously handle as many LS pairs as you want. It also
provides a facility for changing ones attention from one pair to another. We use this feature for
changing attention from theory to metatheory as explained be~ow.

Section 8 Metatheory

I have already used the word metatheory ” many times and since it is an important part of what
follows I want to be a little more careful about what I mean by it. In this note I am not concerned
wit h the philosophical questions logicians raise in discussions of consistcncy, etc. I am interested in
how metatheory can be used to facilitate reasoning using computers. One of the main contributions
of this paper is the way in which I use ref lection frvinci/zles (Feferman[1962)) to connect theories and
metatheori es. Re~ection principles are described in the next section.

In this section I do not want to justify the use of metatheory. In ordinary reasoning it is used all the
time. Some common exam ples of metatheory are presented in the next section. Here I will present
exam ples taken from logic itself, as they require no additional explanation.

In its simplest form metatheory is used in the following way. Imagine that you want to prove some
theorem of the theory, i.e. to extend the facts part , f, of some LS to F. One way of doing this is by
using FOL in the ordinary theorem constructing way to generate a new fact about the objects
mentioned by the theory. An alternative way of doing It may be to use some metatheorem which
shortens” the proof by stating that the result of some complicated theorem generation scheme is

valid. Such shortcuts are sometimes called subsld1a~y deduction rules (Kleene[1952) p. 86).

Page 14 Prolegomena Richard Wey hrauch

We represent this schematically by the following diagram.

tnt iMT

1 .1
Consider the metatheorem: if you have a propositional WFF whose only sentential connective is the
equivalence sign, then the WFF is a theorem If each sentential symbol occurs an even number of
times. In FOL this could be expressed by the metatheory sentence

Yw. (PRUPWFF (w) ACONTAINSONLY_EQUI VALENCES (w) D
(Ye. (SENTSYM(e)A CCURS(e,w)DEVEN (count (e,w)))DTHEOREM(i.i)))

The idea of this theorem is that since it is easier to count than to construct the proofs of complicated
theorems, this metatheorem can save you the work of generating a proof. In FOLs metatheory this
t heorem can be either be proved or simply asserted as axiom.

We use this theorem by directing our attention to the metatheory and instantiating It to some WFF
and proving that THEOREM (w). Since we are assuming that our axiomatization of the metatheory is
sound, we are then justified In asserting w In the theory. The reflection principles stated below
should be looked at as the reason that we are justified In asserting w. More detailed examples will be
given in the next section.

Zn FOL we introduce a spec ial LS pair META. it is intended that META is a general theory of LS
pa irs. When we start , it con t ains fac t s about only those things that are common to all LS pairs.
Since META behaves like any other first order LS pair additional axioms, etc., can be added to it.
This allows a user to assert many other things about a particular theory. Several examples will be
given below,

An example of how we axiomatize the notion of well formed formulas is

V ie expr . (l.JFF(expr , ls)uPROPWFF(expr , ie)vQUANTWFF (expr , I s))

An expression Is a WFF (relative to a particular LS pair) If it is either a propositional WFF or a
quantifier WFF .

Vie •xpr , (PROPWFF(.i’cpr , lu).APPLPWFF(sxpr , Is)vAWFF (sxpr . is))

A propositional WFF is eIther an application propositional WFF or an atomic WFF.

Richard Weyhrauch Prolegomena Page 15

Vi e expr , (APPLPLJFF(expr , Ie).PROPCONN (mains~m (expr)) AVt,. (ø<riArisa rit u(ma ineW rn(ex pr) ,ls)~ l4FF(arg(n ,ex pr) , i s)))

An application propositional WFF is an expression whose main symbol is a propositional connective,
and if n is between 0 and the arity of the propositional connective then the n-th argument of the
expression must be a WFF. Notice that this definition Is mutually recursive with that of PROPWFF
and 14FF.

V i e expr .(QUAt~JTL4FF(expr ,ie)
QUANT(main s ~m(expr)) A INDVAR(bvar (expr), Ie) A I4FF(matrix (ex pr) ,ie)

A quantifier WFF is an expression whose main symbol is a quantifier, whose bound variable is an
individual variable and whos matrix is a WFF.

V ie expr. (Al.JFF(expr , is).SENTSYM(expr , is)vAPPLAWFF(expr , is)

Art atomic WFF is either a sentential symbol or a application atomic WFF.

Vie expr . (APPLAI4FF(expr , ie).PREOSYM (rnainsym (expr), is)A
Yn. (ø’cnAn sar ity (ma insym (ex pr) ,is)~ TERM(arg (n,e) ,l e)))

An atomic application WFF is an expression whose main symbol is a predicate symbol and each
argument of this expression in the appropriate range is a TERM.

Yls expr . (TERII(expr,is).INDSYM (expr ,is)vAPPLTERII(expr ,Is))

Vie expr. (APPLTERtI(expr , ls).OPSYI1 (mairis~m (expr), i s) A
Yn. (øcnAn~ar itW (ma i ns~m(expr ,is))

~ TERM(arg(n ,expr) ,ls)))

A TERM is either an individual symbol or an application TERM, etc.

This is by no means a complete description of LS pairs but it does give some idea of what sentences
in META look like. These axioms are collected together in appendix C. The extent of META isn’t
critical and this paper is not an appropriate place to discuss Its details as implemented in FOL. Of
course, in addition to the descriptions of the objects contained in the LS pair, it also has axioms
about what it means to be a “theorem”, etc.

Thus META contains the proof theory and some of the model theory of an LS pair. As with any first
order t heory Its language is built up of predicate constants, function symbols and Individual constant
symbols. What are these? There are constants for WFFs , TERMs, derivations, simulation structures ,
models, etc. It contains functions for doing “and Introductions”, for substituting TERMs into WFFs,
constructors and selectors on data structures. It has predicates “is a well formed formula”, “is a term”,
“equality of expressions except for change of bound variables”, “is a model”, “Is a sImulation
structure”, “is a proof”, etc.

Suppose that we are considering the metatheory of some particular LS pair, LSO.cL,SS,F>. At this
point we need to ask a critical question.

Page 16 Prolegom.na Richard Weyhrauch

What Is the natursl simulation structure for META?

The answer Is: I) we actually have in hand the object we are trying to axiomatize , LSO , and 2) the
code of FOL itself contains algori thms for the predicates and functions mentioned above.

This leads to the following picture.

• ML

FOL — MF

_I
_• ~

FOL F—. Ss

It is this picture that leads to the first hint of how to construct a system of logic that can look at itself.
The trick is that when we carry out the above construction on a computer, the two boxes labeled
FOL are physically the same ob ject. I will expand on this in the section on self reflection.

Section 9 ReflectIon

A ref lection p r inc ip le is a statement of a relation between a theory and its meta t heory . Although
logicians use considerably stronger principles (see Feferman(1962]), we will only use some simple
examples, i.e., statements of the soundness of the axiomatizatlon in the metatheory of the theory. An
example of a reflection principle is

(in 1)
w

(in MI) Prf (”\j/” ,”w”)

In natural deduction formulations of logic proofs are represented as trees. In the above diagram let
‘
~.l/’ be a proof and ‘w’ be the well formed formula which it proves. Let Prf be a predicate constant
in the metatheory, with Pr f (p, x) true if and only if p is a proof, x is a wff , and p is a proof of ~

..

A lso, let “\
~~

/ ‘ and “w ” be the the Individual constants in the metatheory that are the names of ‘\l/’
and ‘w’, respectively. Then the above reflection princip le can be read as: if ‘\l/’ is a proof of w’ In
the theory we are allowed to assert Prf (“ ‘.j / ” , “w”) in the metatheory and vice versa.

It

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~

- ---

~~~~~~~~

- .-
~~~~~~~~~~~~~~~~

Richard Weyhrauc h Prolegomena Page 1’)

A special case of this rule is if ‘w’ has no dependencies, i.e. it is a theorem.

(in I) w w ith no dependencies

(in META) THEOREM V’w”)

A simpler exam ple is

(i n T) an individua l var iab le x

(i n I1ETA) J NOVAR (”x”)

Suppose we have the mecacheorem

ANDI; V thml thm2 .THEOAEM(mka nd (wffof (thml),wffof (thm2)))

This (meta)theorem says that if we have any two theorems of the theory, then we get a theorem by
taking the conjunction of the two wffs associated with these theorems. I need to remark about what
I mean by the WFF associated with a theorem. Theorems should be thought of as particular kinds
of facts. Facts are more complicated objects than only sentences. They also contain other
information. For example, they include the reason we are willing to assert them and what other
facts their assertion depends on. Facts also have names. Thus the above line Is an incomplete
representation of the metatheoretic fact whose name is ANDI. The WFF associated with this fact is
just

Ythml thm2.THEOREM (mkand (wffof (thmfl ,w ffof (thlii2) fl

Remember the reflection principle associated with THEOREM is

(in I) w with no dependencies

(in META) IHEOREM (’w”)

Thus we can imagine the following scenario.

Suppose we have two theorems called Ii and 12 in the theory. These facts are represented as FOL
data structures. Now suppose we want to assert the conjunction of these two in the theory. One way

Page 18 Prolegomena Richard Weyhrauch

to do this is to use the and Introduction rule of FOL. This example, however , Is going to do it the
hard way. First we switch to the metatheory carrying with us the data structures for Ti and T2. We
then declare some individual constants ti and t2 to be of sort theorem in the metatheory, and use
the semantic attachment mechanism at the mecatheory level to attach the data structures for Ti and
T2 to the indiv idual constants ti and t2 respectively. We then instantiate the metatheorem ANDI
to ti and t2. Note that the resulting formula is a ground instance of a sentence without quantifiers.
This means that If we have attachments to all the symbols in the formula we can evaluate this
formula. In this theorem we have the predicate constant THEOREM. In META it is the only constant
in this sentence that is not likely to have an attachment. This is because being a theorem is not in
general decidable. Fortunately, we can still use the reflection princip le, because we understand the
intended interpretation of the metatheory. So if we use the evaluator on

mkand (wffof (ti).wffof (t2)),

we can pick up the data structure computed in the model, instead of the term. Then since we know
that it is a theorem we can make it into one In the theory.

This idea has been implemented In a very nice way. In FOL we have the following command.

*****REFLECT ANOI T1,T2;

The reflect command understands some fixed list of reflection principles, which includes those above.
When FOL sees the word “REFLECT” it expects the next thing In the input stream to be the name of
a fact In the metatheory of the current theory. So it switches to the metatheory and scans for a fact.
It then finds that this fact is universally quantified with two variables ranging over facts in the
theory. It switches back to the theory and and scans for two facts in the theory. In holds on to the
data structures that it gets in that way and switches back to the metatheory. Once there it makes the
attachments of these structures to two newly created individual constants , first checking whether or
not it already has an attachment for either of these structures . We then instantiate the theorem to
the relevant constants and evaluate the result. When we look at the result we notice that it will
probably simply evaluate to

THEOREr1(mkand w ffof tl),wffof (t2))

This is because we don’t have an attachment to THEOREM and we also don’t have a individual
constant which names mkar id(wffof(tl),wffof (t2)). But what we do notice is that we have
reduced the theorem to the form THEOREr1(—) , and we know about reflection principles involving
THEOREM. Thus we go back and evaluate its argument, ,nkand (wffof (ti) ,wffo~ (t2~

), and see if it
has a value in the model. In this case since it does we can reflect it back into the theory, by
returning to the theory and constructing the appropriate theorem.

This exam ple is a particularly simple one, but the feature described is very general. I will give some
more exam ples below. One thing I want to emphasis here is that what we have done is to cAange
tAeore m proving In Me theory into ~valuatl on in Me metatheory . I claim that this idea of using reflection
with evaluation is the most general case of this and that this feature is not only an extremely useful
operation but a fundamental one as well. It is the correct technical realization of how we can use

— — —— -
~~~~~~~ 

— . .- -. ‘

Richard Weyhrauch Prolegomena Page 19

declarative information. That is, the only thing you expext a sentence to do is to take its intended
inter pretation seriously.

The metatheorem we use in reflection does not need to be of the form T HEOREM (— ) . This is the
reason for needing the evaluater rather than simply either the syntatic or the semantic simplification
mechanisms alone. Consider the following general metatheorems abota the theory of natural
numbers. If you find it hard to read it is explained in detail in the next subsection.

Yv I x, (LINEAREQ (wffof (vi ) ,x) ~ THEOREM (mkequa l (x ,soive (w ffof (vl ) ,x))));

x .  (L INEAREQ (w ,’x ) .
rna ins~ m ( w) .Equa l A
(rnainsym (lhs (w ))— Sum v ma ins~

m (lhs (w )).Diff) A
arg (lhs(w)).x A

NUMER AL (rarg (ihs (w))) A

NUI1ERAL(rhs(w))) A
( rnain s~ m ( l h s (w )) ” ’ Sum ~ mknum (rhs (w))>mknum (rarg (Ihs (w)))};

Yw x ,tsolve (w ,x).IF mains~m (lhs (w ))— Sum
THEN mknumera l (mknum (rhs (w ))—mknum (rarg (lhs (w )))}
ELSE mknumeral (mknum (rhs (w))+niknum (rarg (lhs (w)))) I;;

These axioms together with the reflection mechanism extend FOL, so that it can solve equations of
the form x.a-b or x-a—b , when there is a solution in natural numbers. We could have given a
solution in integers or for ii simultaneous equations in n unknowns. Each of these requires a
different collection of theorems in the metatheory.

This axiomatization may look inefficient but let me point out that so l ve is exactl y the same amount
of writing that you would need to write code to solve the same equation. The definition of
L INEAREO is divided into two parts. The first five conjunctions are to do type checking, the sixth
conjunct checks for the existence of a solution before you try to use so l ve to find it. The above
example actually does a lot. It type checks the argument, guarantees a solution and then finds it.

Section 9.1 Can a program learn

In this section I want to digress from the stated intent of the paper and speak a little more generally
about Al. It is my feeling that it is the task of Al to explain how it might be possible to build a
computer individual that we can interact with as a partner in some problem solving area. This
leads to the question of what kinds of conversations we want to have with such an individual and
what the nature of our interactions with him should be.

Below I describe a conversati on with FOL about solving linear equations. As an example it has two
purposes. First it is to illustrate the sense in which FOL is a conversational machine that can have
rich discussions (even if not in natural language). And second to exp lore my ideas of what kinds of
dialogues we can have with machines that might be construed as the computer individual learning.
I believe that after the discuuton presented below we could reasonably say that FOL had learned to



~~~~~~~~~~~~~~~~~~ - — - -

Page 20 Prolegomena Richard We) brauch

solve linear equations. That is, by having this conversation with FOL wc have taught FOL some
elementary algebra.

Imagine that we have told FOL about Peano arithmetic . We could do this b\ reading in the axioms
presented in appendix B. We can then have a discussion about nu~nbcrs . For example , we might
say

*****A SSUME n+ -7:

1 (n.2)~ 7 (I)

and we might want to know what is the value of n. Since we are talking about numbers in the
language of Peano arithmetic the only way we have of discussing this problem is by using facts
about numbers. Suppose that we already know the theorems

~
p q ii. (p— q D p—m .q— m)

T t ~~ 2 : ~ P q ~ (p +q)—r .p + (q— r)
TH~i3: yp. tp+ø).p

Then we can prove that n— 5

*****YE T t-iMl n+ ,7,2;

2 (n .2)~ 7~ ((n ” 2) - 2) . (7 - 2)

*****EV AL BY (THI2 ,THtI3I ;

3 (n + 2) z 7 ~ n i 5

*****DE 1,3:

4 i•i=5 (1)

In this case what we have done is proved that n.5 by using facts about ~~~~~~ To put it in the
perspective of conversation , we are having a discussion about numbers.

If we were expecting to discuss with FOL many such facts , rather than repeating the above
conversation many times we might choose to have a single discussion about al~4’ni. This would be
carried out by introducing the notion of e~~ ::~n and a description of how to ~.?ve t hem. What is an
equation? Well, it simply turns out to be a special kind of ato~r.i.~ f~ir ~n:.L of the theor y of arithmetic.
That is. we can discuss the solution to equations by using metatheory.

_________ ______ — —-—----- -------———--- -- -----—--— --.----—--——---—--———-.--, .—~--—-—--

,~ -r~~~~~~-- -r~~~~~~~~~~~~-- -

Rich ard Weybrauch Prolegomena Page 21

In FOL we switch to the metatheary. We make some declarations and then define what it means to
be a linear equation with a solution by stat ing the axiom

Vu x . (L INEA REQ (w ,~
)

m a i ns ~ m(u) . Equai A
(mains ~Jm (IhsU4).Sum v marns~ m (lp,e (w)).O j ff) A
l a r g (l h s (w)) . x A
NUtIERAL (rargtlhs (w))) A
NUMERAL (rh~~(w))) -\

(ma ins~ m (l h s (w)) . Sum ~ mknum(rP~s (w)) >mknum (r a r g (l h s 1 w))))

Here w is a (me a)var iable ranging over WFFs , and x is a (meta)variable ranging over individual
variables. Spelled out in english t his sentence says that a well formed formula is a linear equation if
and only if i~ it is an equality. it) its left hand side is either a sum or a difference, i i i) the left hand
argument of the left hand side of the equality is x , lv) then right hand argument of the left hand
side of the equality is a numeral , v) the right hand side of the equality is a numeral and vi) if the
left hand side is a sum then the number denoted by the numeral on the right hand side is greater
than the number denoted by the numeral appearing in the left hand side.

In more mathematical terminology it is: that the well formed formula must be either of the form
x+ 3 — t ~ or s - a — i) where ,i and b are numerals and x is an individual variable. Since here we are
only interested in the natu ral numbers , the last restriction in the definition of LINEAREQ is needed to
guarantee the existence of a solution.

We also describe how to find out what is the solution to an equation.

Vu x. (so~ve (w ,x).lF nI a in sW rnilhs (w))~ Surn
THEN mk nurneraltnlknu m (rhe (w))—mknum (rarg(lhs (u })))
ELSE mknu rneral (mknum(rhetw))+rnknum (rarg (I hs (w))))

This is a function definiti on in the meta theory. Finally we assert that if we have an equation in the
theory then the numeral constructed by the solver can be asserted to be the answer.

V v l ~.{L NEA~EQ(uf~of (vl) ,x) ~ THEUREM(mke~ua l (x ,eolve (w ffof(vI) ,x)))) ;

We then tell FOL to remember these facts in a way that is convenient to be used by FOL’s
evaluator.

This th en is the conversation we have with FOL about equations. Now we are ready to see how
FOL can use that information , so we switch FOL’s attention back to the theory. Now, whenever we
want to solve a linear equation, we simply remark, us ing the reflect command, that he should
remember our discussion about solving equations.

We can now get the effect of the small proof above by saying

*****REFLECT SOLVE 1;

5 n ~ 5 (1)

L _ _ _ .~~~~~~~~~~ _ _ _ _ _ _

— -, ~~~~~~~ W~~~~W

Page 22 Prolegomena Richard Weyhrauch

In ert ect FOL has learned to solve simple linear equations.

We could go on to ask FOL to prove that the function so l ve actually provides a solution to the
equation , rather than our j ust telling FOL that it does, but this is simply a matter of sophistication.
It has to do with the question of what you are willing to accept as a justif ication.

One reasonable j ustification is that the teacher told me. This is exactl y the state we are in above.
On the other hand if that is not satisfactory then it is possible to discuss with FOL the jus tification
of the solution. This could be accom plished by explaining to FOL (in the metatheory) not to assert
the solution of t he equations in the theory. but rather to construct a proof of the correctness of the
solution as we did when we started. Clearly this can be done using same machinery that was used
here. Th is is important because it means that our reasoning system does not need to be expanded.
We only have to tell it more information.

¶ A muc h more reasonable alternative is to tell FOL (again in the metatheory) two things. One is
what we have above , i.e., to assert the solution of the equation. Second is that if asked to justif y the
solution , then to produce that proof. This combines the advantages each of the above possibilities.
I want to point out that this is very close to the kinds of discussions that you want to be able to have
wit h peop le about simple algebra.

Informall y we always spea t. about solving equat ions. That is, ~e think of them as syntact ic and
learn how to manipulate them. This is not thinking about them as relations , which is their usual
first order interpretation. In tb’s sense going to the metatheory and treating them as syntactic objects
is very close to our informal use of these notions.

I believe that th is is exactly what we want in an Al system dealing with the question of teach~ng.
~~ot~ce tha t we have the best of both worlds. On the one hand, at the theory level, we can “execute ”
this learnin g, i e use it , and on the other hand , at the metatheory level , we can reason about what
we have learned about mani pulating equations. In addition the correct distinction between
equati ons as facts and equations as syntactic ob jects has been maintained. The division between
theory and metatheory has allowed us to view the same objec t in both these ways without
contradiction or the possibility of confusion.

A s is ev~~e r t from the above descri ption, one c~ ~ne things we have here is a very general purpose
programming s’,ste m In addition it is extendable. Above we have showed how to introduce any
new subsidiary deduction rule that you chose , “simply ” by te lling FOL what you would like it to do.
This satisfies rhe desires of Davis and Schw artz [1977J but in a setting not restricted to the theory of
hereditarily finit e sets. As I said above: we are using f irst order logic in what I believe is its most
general and natural setting .

There a te hundreds of exam p les of this kind where their natural description is in the metatheory.
In a later paper I will discuss just how much of the intent of natural language can only be
understood if you realize that a lot of what we say is about our use of language, not about objects in
the world. This kind of conversation is most natur all y carried out in the metatheory with the use of

-
-

the kind of self-re~ective structures hinted about below.

--.. .-~~~- . - .- -— - --

—~ - -~~-.- —-- - . . I

Richard Wey brauch Prolegomena Page 25

Sect ion 9,2 Using metametatheory

We can take another leap by allowing ourselves to Iterate the above procedure and using
metametatheor y. This section is quite sketchy but would require a full paper to write out the details. -

‘

We can use the metametatheor y to describe declaratively what we generally call heuristics. Consider
an idealized version of the Boyer and Moore(1979] theorem prover for recursive functions. This
prover looks at a function definition and tries to decide whether or not to try to prove some property
of the function using either CAR-induction or CDR-irtduction, depending on the form of the
function defInition.

CAR and CDR inductions are axiom schemas, w hich depend on the form of the function definition
and the WFF being proved. Imagine that these had already told to FOL in the metatheory. Suppose
we had called them CARIND and CORIND. Then using the facilities described above we could use
these facts by reflection. For example,

*****ASSUtIE Vu .counta (u)—if atom (u) then u else counta (car (u));

1 Vu .counta(u):if atom(u) then u e’se counta(car(u)) (1)

*****REFLECT CARIND 1 Vu,ATOFI (counta (u))t

2 Vu .ATOM(counta(u)) (1)

****ASSUrIE Vu .countd (u)-if null (u) then ‘NIL else countd(cdr (u));

3 Vu .countd(u) :lf null (u) then ‘NIL else countd(cdr(u)) (3)

*****REFLECT CDRIND 3 Vu,countd (u)-’NIL ;

4 Yu.count d(u):’N I L (3)

The use of this kind of command can be discussed in the metametatheory. We introduce a function,
T_ref I ect , in the metametatheory, which we attach using semantic attachment to the FOL code that
implements the above reflect command. Thus T_reflect takes a fact, v i and a list of arguments,
and if it succeeds returns a new proof whose last step is the newly asserted fact and if it fails returns
some error. Suppose also that Car irid and Cdr ind are the metametatheory’s name for CARIND and -
COR I NO respecUvel’i. Then suppose iti the metametatheory we let

I4FF1’.mkforal I (T,.u,mkapp l wl (T_ATOII, (mkappltl (T _counta ,T_u))))

14FF2.mkf ora li C T_u , mkequa I (mkapp ti (T_countd , 1_u) , mksexp C’ NIL))

that is, Vu,ATOII (counta (u)) and Vu,countd (u)— ’NIL, respectively. We prefix things refering to
the theory by “T_”. The effect of the above commands (withhout actually asserting anything) is
gotten by using the FOL evaluator on

T_reflect (Cdr i nd,<T_fact (1),WFF1>) and

~

-— ~~~~~~~~~~~~~~
.——~ ~~~~~~~~~~~~~~ ~~~~~~~~~

. —. -— - — -

-rfl -- - — -—--—. -.—~~~
. - ---fl- ---~~ — - ~~-- -~~~~~~ —~~~~~ -~~~~~~~~ - . . ~~~~~~~~~ -

Page 24 Prolegomera Richard Weyhrauch

1_ref lect (Cdr I nd ,.cT fact(3) ,WFF1>),

Now suppose that v I ranges over facts in the theory, f ranges over function symbols, and w ranges
over WFFs. The micro Boyer and Moore theorem prover can be expressed by

Yv i f w,
(IS_T_FUNOEF (~ i ,f) D

(CONTAINS _ONL Y_CAR_RECURSION (v i , f) n NOERROR (1 REFLECT (Car l nd , <vi , w>)) ~T_THEOREII(Iast_T _step (T_REFLECT(Car ind ,<v i ,w >)))) A
(CONTAINS _ONLY _COR_RECURSION (vi , f) A NOERROR (1_REFLECT (Cdr I rid, cvi , w>)

T_THEOREM (last _I_step (1_REFLECT (Cdr m d , <vi , w>)))) I

in the metamecatheory we call this fact BUYER_and_MOORE. It i~ read as follows: if in the theory, v i
is a function definition of the function symbol f , then if this function definition only contains
recursions on car , and if when you apply ref lection from the theory level to the metatheorem called
Car I rid you don’t get an error, then the result of this reflection is a theorem at the theory level,
similarly for cdr induction.

As ex plained in the previous sections, asserting this in the metametatheory allows it to be used at the
theory level by using the same reflection device as before.

When our attention is directed to the theory we can say

*****IIREFLECT BOYER_and_FIOORE 1 ,courita ,Vu.ATOII (counta (u));

5 Vu .ATOM(c oun ta(u)) (1)

*****tIREFLECT BUYER_and_MOORE 3, couritd , Yu,countd (u)-’NIL;

6 V u.countd(u)= ’NIL (3)

Here IREFLECT simply means reflect into the metametatheory.

This example shows how the metametacheory, together with reflection, can be used to drive the
proof checker itself. Thus we have the ability to declaratively state heuristics and have them

- ; effe ctivel y used. The ability to reason about heuristics and prove additional theorems about them
provides us with an enormous extra power. Notice that we have once again changed theorem
proving at the theory level into computation at the metametatheory level. This is part of the
leverage that we get by having all of this machinery around simultaneously.

This examp le, as it is described above has not yet been run in FOL. It ~s the only examp le in this
paper which has not actually been done using the FOL system, but it is clear that it will work simply
given the current features.

A good way of looking at all of this is that the same kind of language that we use to carry on
ordinary conversations with FOL can be used to discuss the control structures of FOL itself. Thus
it can be used to discuss its own actions.

- -- ---—
—- — -~ . - - .~~~~~~~ . -—‘- .— ~~~~~~~ - - . - - - -.- - -- —.-----~~ -- .-- - --~~~

Richard Weyhrauch Prolegomena Page 25

Section 10 Self reflection

In the traditional view of metatheor y we start with a theory and we axiomatize that theory. This
gives us metatheory. Later we may axiomat ize that theory. That gives us metametatheory. If you
believe that most reasoning ii at some meta level (a; I do) then this vlcw o~ toweri of metatheorie~leads to many questions. For example, how is it that human memory space doesn’t overflow . Each
theory in the tower seems to contain a complete description of the theory below thus ex ponentiating
the amount of space needed!

In the section on metatheory, I introduced the LS pair, META. Since it is a first order theor y just like
any other, FOL can deal with it just like any other. Since META is the general theory of LS pairs
and META is an LS pair this might suggest that META is also a theory that contains facts about itself.
That is, by introducing the individual constant Meta into the theory META and by using semantic
attachment to attach the theory (i. e., the actual machine data structure) META to Meta we can give
META its own name. The rest of this section is somewhat va gue. We have just begun to work out
the consequences of this observation.

FOL handles many LS pairs simultaneously. I have already showed how given any LS pair we can
direct FOL’s attention to META using reflection. Once META has an individual constant which is a
name for Itself and we have attached MET,A to this constant , then META is FOL’s theory of i tsel f.
Notice several things: I) If META has names for all of the LS pairs known to FOL then It has the
entire FOL system as its simulation structure; 2) Since META is a theory about any LS pair . we can
use it to reason about itself.

We can illustrate ~iis in FOL by switching to META and executing the following co~nmand.

*****REFLECI ANDI ANOI ANO I;

1 Ythml t riin2 ,T 1-I EOA EM(rnlca nci (wf fof (t hml) ,w f f o f (t h m 2))) A
Ythmj thm2 ,THEOREM (mkand (&.Jffof (thml),wffof (thm2)))

The effect we have achieved is that when FOL’s attention is directed at itself , then when we reflect
into its own metatheory we have a system that is capable of reasoning about itself.

When looking at human reasoning I am struck by two facts. First , we seem to be able to apply the
meta facts that we know to any problems that we are trying to solve, and second, even though it is
possible to construct simple examples of use/mention conflicts, most people arrive at correct answers
to questions without even knowing there is a problem. Namely, although natural language is filled
with apparent puns that arise out of use/mention confusions, the people speaking do no t confuse the
names of things with the things. That is, the mean ing Is clear to them.

The above command sugg ests one possible technical wa y in which both of these problems can be
addressed . The structure of FOL knew that the first occurrence of AND ! in the above command was
a “use” and that the second and third were “mentions”. Furthermore, the same routines that dealt
effectively with the ordinary non self reflective way of looking at theory/metatheory relations also
dealt with this case of self reflection without difficulty.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 26 Prolegomena Richard Weyhrauch

Notice that I said, “this case”. It is possible with the structure that I have described above to ask
META embarrassing questions. For example, If you ask META twice In a row what the la gest step
number In its proof is you will get two different answers. This would seem to lead to a
contradiction.

The source of this problem Is In what I believe is in our traditional idea of what it means to be a
rule of inference. Self reflective systems have properties that are different from ordinary systems. In
particular , whenever you “apply a rule of inference” to the facts of this system you change the
structure of META itself and as a result you change the attachment to Meta . This process of having
a rule of inference chan ge the models of a theory as well as the already proven facts simply does not
happen in traditional logics. This change of point of view requires a new idea of what is a valid
rule of inference for such systems.

The extent of the soundness of the structure that I propose here is well beyond the scope of this
elementary paper. Also FOL was built largely before I understood anything about this more general
idea of rul e of inference , thus the current FOL code cannot adequately implement these Ideas . Some
of the techn ical details of what I know appear in Weyhrauch (NOTE15]. One of my main current
research interests is in working out the consequences of these self reflective structures .

META has many strange properties which I have just begun to appreciate and Is a large top ic for
further research.

Sect Ion 11 Conclusion

Section 11.1 Summary of Important result s

I want to review what I consider to be the important results of this paper.

One is the observation that, when we reason, we use representations of the objects we are reasoning
about as well as a representation of the facts about these objects. This is technically realized by
FOL’s manipulation of LS pairs using semantic attachment. It is incorrect to view this as a
procedural representation of facts. Instead we should look at it as an ability to explicitly represent
procedures. That is, simulation structures give us an opportunity to have a machine representation
of the obj ects we want to reason about as well as the sentences we use to mention them.

Second , the evaluator I described above is an important object . When used by itself it represents a
math ematical way of describing algorithms together with the assurance that they are correctly
implemented. This is a conse quence of the fact t hat the evaluator only performs logically valid
transformations on the function definitions. In this way we could use the evaluator to actually
generate a proof that the com puted answer is correct. In these cases evaluation and deduction
become the same thing. This Is similar In spirit to the work of Kowalski[1971], but does not rely on
any normalization of formulas. It considers the usual logical function definitions and takes their
intended interpretation seriously. This evaluator works on any expression with respect to any LS
pair and its implementation has proved to be only two to three times slower than a lisp interpreter. 

--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .-

~~~
-- -

~~~~~~~~~~~~
- -_ -

~

Richard Weyhrauch Prolegomena Page 27

Third is the observation that the FOL proof checker is itself the natural simulation structure for the
theory META of L$ pairs. This gives us a clean way of saying what the intended interpretation of
META is. This observation makes evaluation in META a very powerfu l tool. It is also the seed of a
theory of self reflective logic structures that , like humans, can reason about th mselv es.

Fourth is the use of reflection principles to connect an LS pair with META. This, together with the
REFLECT command, is a technical ex planation of what has been called the declarative/procedur al
controversy . Consider the META theorem AND! described above. When we use the REFLECT
command to point at it from some LS pair, ANDI is viewed procedurally. We want It to do an and
introduction. On the other hand when we are reasoning in META . it is a sentence like any other .
Whether a sentence is looked at declaratively or procedurally depends on your point of view, that is.
it depends where you are standing when you look at it.

I have presented here a general description of a working reasoning system that includes not only
theories but also metatheories of arbitrarily high level. I have given several examples of how these
features, together with reflection can be used to dynamically extend the reasoning power of the
workin g FOL system . I have made some references to the way in which one can use the self
reflective parts of this system. I have given examples of how heuristics for using subsidiary
deduction rules can be described using these structures. In additIon, since everything you type to
FOL refers to some LS pair, all of the above things can be reasoned about using the same
machinery.

Section 11.2 ConcludIng remarks, history and thanks

I have tried in this paper to give a summq~y of the Ideas which motivate the current FOL system.
Unfortunately this leaves little room for complex examples so I should say a little about history, the
kinds of things that have been done and what is being done now.

FOL was started in 1972 and the basic ideas for this system were already known in the summer of
1973. Many of the ideas of this system come directly out of taking seriously John McCarthy ’s idea
that before we can ever expect to do interesting problem solving we need a device that can represent
the Ideas involved in the problem. I started by attempting to use ordinary first order logic and set
theory to represent the Ideas of mathematics. My discovery of the explicit use of computable p.u :ial
models (i. e. simulation structures) came out of thinking about a general form for wh.~:McCarthy(1973] called a “computation rule” for logic, together with thinking about problems like the
one about real numbers mentioned above. The first implementation of semnntic evaluation was in
1971 by me. Since then it has been worked on by Arthur Thomas , Chris Goad, Juan Bulnes, and
most recently by Andrew Robinson. The first aggressive use of semantic attachment was by Bob
Filman (1978] in his thesis.

This idea of attaching algorithms to function and predicate letters is not new to A l. It appears first
in Oreen(1969] I believe, but since then in too many places to cite them all. What is new here is
that we have done it uniformly, in such a way that the process can be reasoned about. We have
also arran ged it so that there can be no confusion between what parts of our data structure is code
and what parts are sentences of logic.

—--

~

--— ~~~~~~ - - -- . - -.=-
=- —-~~~~~~~ --- ~~ - - -- ~ ~~~~~~~~~~ -- — ~~~- - - --- ----

- ._ _- _~ —.~ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ --—- - _ _ _ -~~~~~_ - - - -

Page 28 Prolegomena Richard Weyhrauch

The real push for metatheory came from several directions. One was the realization that most of
mathematical reasoning in practice was metacheoretic. This conflicted ~‘iith most current theorem
proving ideas of carrmg out the reasoning in the theory Itself. Second was my desire to be able to
do the proofs In Kleene[1952) about the correctness of programs. In the near future we are
planning to carry out this dream. Carolyn Talcott and I plan to completel y formalize LISP using all
the power of the FOL system described above. In addition there will be p~.ople working on programtransformations in the style of Burstall and Darlington(l977]. The third push for metatheory was a
desire to address the question of common sense reasoning. This more than anything needs the
ability to be able to reason about our theories of the world. One step in this direction has been
taken by Carolyn Talcott and myself. We have worked out D. Michie’s Keys abd boxes problem
using this way of thinking and are currently writing it up.

The desire to deal with metatheory led to the invention of the FOL reflection command. Metatheory
is pretty useless without a way of connecting it to the theory. I believe that I am the first to use
reflection in this way.

All of the above ideas were presented at the informal session at IJCAI 1973. This panel was
composed of Carl Hewitt , Allen Newell, Alan Kay, and myself.

The idea of self reflection grew out of thinking about the picture in the section on metatheory.

It has taken several years to make these routines aft work together. They first all worked in June
1977 when Dan Biom finished the coding of the evaluator. I gave some informal demos of the
examples in this paper at IJCAI 1977.

I suppose that here is as good a place as any to thank all the people that helped this effort.
Particular ly John McCarthy for his vision and for supporting FOL all these years. I would not have
had as much fun doing it alone. Thanks.

I hope to write detailed papers on each of these features with substantial examples. In the meantime
I hope this gives a reasonable Idea of how FOL works.

- 
-

-.‘ -~~~-- -~~~~~~ --~~~~~~~~~~~ _ -



-
~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Richard Weyhrauch Prolegomena Page 29

Bibliograp.~y

Aristotle (-350) Organan

Boyer, R. S. and Moore, J S. (1979) A Computational Logic, to be published in the ACM
Monograph Series, Academic Press.

Bulnes, J. (1978) GOAL: A Goal Oriented Command Language for Interactive Proof Construction
Forthcoming Ph.D. thesis, Stanford University, Stanford.

Burstall, R.M. and Darlington, J. (1977) 4 transformation sys tem for developing recursive programs ,
JACM, vol 24, no 1, pp.44-67.

Cartwright, R. (1977) Practical Formal Semantic Defintion and Verification Systems’, Ph.D. thesis,
Stanford University, Stanford.

Davis, M. and Schwartz , J.T. (1977) Correct-Program TechnologylExter.sibillty of Verifiers , Two
Papers on Program Verification, Courant Computer Science Report .12, New York University.

Diffie, W . (1912k) PCHECK: operation of The proof checker, unpublished.

Feferman, S. (1962) 7”ramsfinite recursive progressions of axiomatix Meories , Journal of Symbolic Logic,
vol. 27, pp. 259-3 16.

Filman, R.E. and Weybrauch , R.W. (1976) A FOL Primer, Stanford Artificial Intelligence
Laboratory Memo AIM-228, Stanford University, Stanford.

Filman, R.E. (1978) The Interaction of Observation and Inference, fourthcoming Ph.D. Thesis,
Stanford University, Stanford.

Green, C. (1969) The Application of Theorem Proving to Question-Answering Systems, Ph. D.
thesis, Stanford University, Stanford.

Kelley, J.L. (1955) General Topology, D. Van Nostrand Company, Inc., Princeton, 298 pp.

Kleene, S.c. (1952) IntroductIon to metamathematics, D. Van Nostrand Company, Inc., Princeton,
550 pp.

Kleene, S.C. (1967) Mathematical Logic, John Wiley & Sons, Inc., New York , 398 pp.

Kowalski, R. (1974) Predicate logic a.s a programming language, Proc. IFIP Congress 1974.

Kreisel, C. (1971a) Five notes on the application of proof theory to computer science, Stanford
University: IMSSS Technical Report 182, Stanford.



Page 30 Prolegomena Richard Weyhrauch

Kreisel, C. (197lb) A survey of proof theory,!! in (J.E.Fenstad.ed.) Proceedings of the Second
Scand inavian  Logic Symposium. North-Holland, Amsterdam.

— McCarthy, J. (1963) 4 basLs for a mathematical theory of computation . in Computer Programming and
Formal Systems , North-Holland, Amsterdam .

McCarthy, J. and Hayes. P.J. (1969) Some Plsilosoft’4ical Problems from Me Viewpoint of Arti ficial
Intel4igence, in (D.Michie,ed.) Machine Intelligence,7, Edinburgh UP., Edinburgh.

McCarthy, J. (1973) appendix to PCHECK: operation of the proof checker by W. Diffie,
unpublished.

McCarthy, J. (1978) Representation of Recursive Programs in First Order L’~i~. In Proceedings the
International Conference on Mathematica l Studies of Information Processing, Kyoto. Japan.

Prawita , D. (1965) Natural Deduction - a proof-theoretical study, Almqvist & Wikseil, Stockholm.

Robinson, R. M. (1950) An essentially undecidable axiom system In Proc. m t .  Cong. Math., Cambridge,
Mass., vol I, pp.729-730.

Royden, H. L. (1963) Real Analysis, Macmillan Company, New York.

Warren , D. (1977) Implementing PROLOG - compiling predicate logic progrcm.c. vol I and vol 2, DAI
Research Report No. 39 and 40, Edinburgh.

Weyhrauch , Richard W. (1977) FOL: A Proof Checker for First-order Logic, Stanford Artif icial
Intelligence Laboratory Memo AIM-235.1, Stanford University, Stanford .

Weyhrauch , Richard W. (1978) Lecture notes on the use of logic in artiacial Intelligence and
mathematical theory of computation, Summer school on the foundations of artificial
intelligence and computer science (FAICS), Pisa.

This series of notes refers to my work iing papers which are sometiimes available from me. This Al
memo is Informal Note 8.

Weyhrauch , Richard W. (NOTE2) The physiology of a computer Individual, Informal Note 2,
unpvbhshed.

Weyhrauch , Richard W. (NOTE6) FOL: a reasoning system, Informal Note 6, unpublIshed.

Wey hrauch , Richard W. (NOTE15) The logic of FOL, Informal Note IS, unpublished.

Weyhrauch, Richard W. (NOTE17] What Is real?, Informal Note 17, unpublished.



Richard Weybrauch Prolegomena Page SI

Appendix A An axi omatl ut ion of natura l numbers

The commands below repeat those given in sectIon 4. They will be us~~ in the exam ples below.
One shou ld keep In mind that th is Is an axiomacizaUon of th. natural numbers (IncludIng 0), not an
axiomatizat lon of the inte gers.

DE CLAR E INOVAR n • p i NA TNUM I
DECLARE OPcONST suc p. .d(NA TNUM ) .NATNUII ;
DECLARE OPCONST • (NATNUM,NATNUM.NATNUII LR.4SI,L.45S1
DECLARE OPCONST e (NATNUIt , NATNUIt) uNA TNUI tR4U , L4S$3~DECLARE PREOCONS I C(NATNUIt ,NATWUIn ClNfl
DECLARE PREOPAR P(NATNI.Ni) 1

AXIOII 0,
ONEONE i Vn •. (suc(n) .s~ c(~~))~.~~) l
SiJcCii Vn. — ( I i~~c (ri )) 1
SUCC 2~ Vn. (—I.i~~3 .( i~ui~c(*)) i ;
PLUS , V,i.n.I.,,

Vi, •.n.s~ac (.).sv ~~(fl I) I
T IMES, Yn.nsI.I

V~ •.Assucia).(i~~s).S; I I

AX IOM INDUCT, P C I )  A V~ . (P (,~)~ P(igc (,~) ))  ~ ~~~~,P(p,) 1 p

REPRESENT INATNUMI AS NATNUNREPI
ATT ACH suc — (LAIIIDA IX ) (ADO l X ) ) ;
ATTACH pr.d • (LANIDA CX ) (COND ( (GREATEAP S I) (SUIt 5)) CT I))) )
ATTACH . — LAII5DA (5 Y) (PLUS X V ) ) 1
ATTACK * • (LAMBDA IX Y) (TIME S S V )) p
ATTACH • CLAMIDA (S Y) (L(SSP S V )) 1



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~-~~~. - ~~~~~~~~—— - 
~~~~~~~~~

Page 32 Prolegomena Richard Wey brauch

Appendix B An axi omat iutl on of s.express ions

These commands describe to FOL a simp le theory of s-ex pressions. In addition it contains the
definitions on the functions I, for appending two lists, and rev, for reversing a list .

DECLARE INOVAR * ~ z ( SIKp;
DECLARE INOVA R u V ~ ( L i st;
DECLARE INOCONST n i l  ( Nu l i p

DEC LARE OPCO NST car cdr A p
DECLARE OPCONST cons ($sxp ,L ls t) .L istp
DE CLA RE OPCONST rev I;
DECLARE OPCONST I 2 ti ,~f3;

DECLA RE SIM,~SE’ Bas ic ;DECLARE SIMPSET Fun. ;

MOREGENERAL Ss~p ~ IL ist , A to., Nul l ) ;
PIOREGENERAL List ~ INui l l ;

REPRESENT l$eKpI AS SEXPREP 1

AXIOM CA Ri Vx y. car (cons (x ,V )) . x; l

AXIOM CDRi Yx ~ . cdr (con,(x ,~~)).~~;;
AXIOM CONS, Yx ~~. -.Nu ll (cons (x ,~ ) ) p ;

Bas ic x ICAR ,CDR , CONSI 1

AXIOM REV S Vu. (rsv (u) • IF NulI ( u) THEN u ELSE rav (cdr t u)) I c.n~(c ar(u) ,n h l ) ) ; ;
A XIOM APPEND I Vu v. (u*V • IF Nwll (w) THEN v ELSE soneCcar (u),cdr(w)Sv);;

F~np • IREV I APPENDI;

— -
~~~~~~~ ‘-~~

- - - - -
~~: —.--~-~~~~---

- —~~~~~ —— —w’ .-
~
—----

~
-— .-.-—

Richard Weyhrauch Prolegomeria Page 33

Appendix C An axiomat izati on of well formed formulas

Th is is an examp le of how WFFs are axiomatized in META, It simply collects together the formulas
of sectIon 8

V is expr, (I4FF(expr , le).PROPWFF(expr, le)vQUANTWFF(expr , I s))

Vi. expr . (PROPUFF(expr , I.).APPLPI4FF(expr , ls)vAWFF (expr , Is))

V i. •xpr. (APPLPWFF(expr , l.).PR0PC0NN (mains~m (expr)} A
Vt,, (ø’cnAnsaritW (maineWm (expr) ,is)~44FF(arg1n ,

.xpr), 1 8)))

Vie .xpr. (OUANTWFF (expr , Is) a
QUANT (mainsym (expr)) A INDVAR (ovar (expr), is) A L4FF ’matri x (expr), Is)

V i s expr . (AL.JFF(expr, Is)sS ENTSYtI(expr, ls)vAPP LAW FF(expr . Is)

Vie expr , (APPLAL.JFF(expr , ie)aPREDSYM (mainst~m (expr), lo)AYri, (8<nAn�arit~ (mains~m (expr), Is)DTERII(arg (n,e), Is))
)

VI. expr . (TERM(expr, ie).IND$Yf1(expr , le)vAPPLTERtI (sxpr , Is))

Vi. expr . (APPLTER ’l(expr , i.).0PSYt1(mains~m (expr), is)A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

t 5) ) )

L -~ 
- __________________



- —~ _ - -- - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ —~~ ~ . - .-.— --.. — -_  ~~~~~~~~~~~~~~~~~~ —-—- _~~ --~~~~ --.~~-

Page 34 Prolegomena R ichard Weyhrauch

Appendix D Examples of semantIc evaluations

We give two sets of exam ples of semantIc evaluation.

In the theory of s-expressions

... s.DECLARE OPCONST ;s ngt h(Ssxp )•Ssxp;

.....ATTACII .nqtfl • LENGTH ;

lsng t h a t tac h ad to LENGTH

.....SIMPLIFY l snq t h ( ’ (R 3) ) ;
I l . ngth ( ’ (P 8)) .. ’2

..*.sSI?iPLIFV l . nq t h ( ’ (A B)) .2 ;

2 l s n g t h ( ’ ( A  B ) ) . 2 u ’2•2

assas SIMPLIFY ‘2•2;
Can ’ t s i m p i i i ~

s*sssSII1PLIFY ‘2.’4;

3 -. ( ‘2s ’4 )

In the theory of natural numbers

ZS,..ssSIIIPLIFY 2,3~pr.d (7) ;

1 2,3 pr .d (7)

..*.sSIMPLIFY 4..uo(2).pred (3)~p.’sd (pr.d (5)) p

2 —4*s uC (2) .pr.d (3) <prs d (pr.~ (I)
)

...s. S IMPL IFY n*I.c3p

no s iapWi c a t ions



- _~~-~~.- - -~~ - _ -~~~~~~~~~~~~ .~~ _ _~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ - ---, ,-- - .- ~~~~ ---~~~~~ 
_

Richard Weyhrauch Prolegomena Page 35

Appendix E An example of syntatic simplIfication

After

*****simpIif~ Nu I$ (ri i i ) s

I Nu 11~ n f l )

The command

REWR I TE rev cone (x ,ni I ) BY Ba.ic U Fun. U 11) U LOGICTREEt

produces the result

2 rev (co ns(x ,niifl.con.(x ,rt i l )

by a single syntatic simplification. The exact details of what the simplifier did are recorded below.
The numbers on the left refer to notes below the example.

Trying to s i m p l i f y
I r*v (consCx ,n hi))

succiadad us ing REV yia l d l nq
I IF Nu U(c o n s (x ,n l l ) )
I THEN con. Ix ,n l l )
I ELSE (rsv (cdr (cons(x ,nil ))) * cons (car (cons (x ,nii) ) ,nlI) )

Trying to s i mp l i f y
I IF N u l l ( c o n s (x ,n i l ) )

THEN cons (x,n i l )
I ELSE (r.v(cdr (cons (x ,ni l)) ) * cons (car (cons (x,nil)) ,nU) )

fa i lad
..4.Tryl ng to s i m p l i f y t ha c on dit io n

I Null(c on s (x ,n li ))

sucsadad us i ng CONS yi slding
I F ALSE

Doping U~
Try ing to s i m p l i f y

IF FALSE
I THEN co ns (x ,ni l )
I ELSE (r.v(c dr (eons (x ,n hl))) * cons (car (con. (x ,niW ,nh i ) )

sucus did using LOGICTREE yl.l ding
i (r.v (cdr (cons (x ,nil )) ) * cons(car (cons (x,nil) ),niI))

Try ing to s i m p l i f y
I (r.v (cd r(con. (x ,n i J ) ) )  * cons(car(cons(x,ni;)),nll))

1 khlls try ing to match a, SORT .crup ;s. do not p .raIt ma to bi nd u
I to r.v(cdr (co ns (x ,nW))

•.4Trying to s i m plif y aI gumsn t 1
I rav (cd r Ccon s (x ,n i i ) ) )  

_ -



Page 36 Prolegomena Richard Weyhrauch

‘ m u .  tr ying to match rev , SORT scrup les do not per m It a. to bind u

I to cdr (cons (x ,nii ) )

...Try u n g argument I
c dr (cons (x ,nu I)

succeeded using COR yie ldi ng
I n u i

pop u ng up
Try ing to si mplif y

2 I r sv ( n i i )

succeeded us ing REV y i elding
I IF N u l l ( n u l )  THEN nil ELSE (rav(cd r (nll)) e c on s (car (n i l ) , r , l i ) )

popp ing up
Trying to s i m p l i f y

• I (IF Nu t .’ (nil) THEN i,ii ELSE (r ,v (cdr(nil)) * cons(ca r(nhi) ,n i l ) )  *
I cons (ca r lc or (x ,n ll) ,n ii)) )

3 I~ h i i e  t ry ing to match e, SORT scruples do not per li t me to bind u

I to IF N u l l ( n i l )  THEN i ,Ii ELSE rev (cdr (nil)scon .(clr(flhl) ,hi l )

...Trying to s i m p l i f y  argument I
I IF Nu i i( n il )  THEN nil ELSE r ,v(cdr (nii).cons( Car (nil)!flhl )

f a i l e d
...Try irug to simplif y condition

Nul l  (n i l)

succeeded using line 1 y ie lding
TRU E

po pung up
Trying to s i m p l i f y
I IF TRUE THEN ni l  ELSE r ,v(cdr (nhl) scons (car (nii) ,fl h i )

sucueded us ing  LOGICTREE yielding
I n i l

popping up
Try ing to s i m p l i f y

n i l  e cons (car(cons(x ,ni l ) ),n l i )

I~~~ia t ry ing to match e , SORT scrUp les do not perm it ma to bind V
to cons (car (conu (x ,ni l) ) ,ni i)

•..Tryin g to s i m p l i f y argument 1
I f l u

5 t ai le d but ue ai-, at a h a l: argument 1 comp letel y s i mplified
popping up
.....Trying to simp lif y argumen t 2

I cons (c~r (con.(x ,nil )) ,n il )

failed
..44Trying to s i m p l i f y argument 1

I car (cons (x ,nll ))

succeeded usi ng CAR yieldi ng
I x

poping up

L -~~~~~~~~~~~~~~ ~~~~
-- -

~~~~~ --- - -~~ -~~~~~~~ --• ~~~~~~-


•—- -~~~~~~~~~ -~~~~~~~~~~~~ -~~~~~

Richard Weyhrauch P’olegomena Page 37

Trying to s imp l i f y
cons (x ,n il)

fa i led
..~.Tr yi ng to s i mp l I f y argum ent 1

I x

failed but we are at a leaf , argument 1 co m plete ly si m pl i f ied
popping up
.....Trg ing to s i m p l i f y argument 2

I n i l

• I
f a i l e d but we are at a lea f , argument 2 comp lete ly si m plified

popp i ng up
argumen t 2 compl e tely simplified

popping up
Tryi ng to simp l i f y
1 nIl * cons (x ,ni i)

succee ded us i ng APPEND y i e ld ing
I IF N u l l (n i l) THEN cons (x ,n il) ELSE cons (car (nh i) ,(cdr (nii)scons (x ,nil)))

TryIng to s i m p l i f y
I IF N u l l (n i l) THEN cons (x ,n i l) ELSE ~onsI ’ r(ni I) ,(cdr (nli)*COns (K ,n il)))

fa i l e d
.....Trylng to s i m p l i f y condition

V I N u l l (n i l)

s ucceeded u s ing line 1 yielding

•
TRUE

poping up
Try Ing to simplif y
I IF TRUE THEN cons (ic ,nll) ELSE coris (car (nil) ,(cdr (nii)scons (x ,nIl)))

suceeded using LOG I CTREE yielding
I co ns (x , n i i)

Trying to simp l i f y
I cons (x ,n i i)

6 thIs nods alread y ma xImall y si m p il f i ad
re turn cons (x,n il)

11 substItutions were made
26 calls were made to SIMPLIFY

Note 1: This is the FOL sort checking mechanism at work. FOL. knows that x is an Sexp (by
declaration) and that ru I Is a List because ni l Is of sort Null and L is ts are moregeneral than
Nulls. This means that It knows by declaration that cons (x ,ni I) is a List. Unfortunately, It
knows nothing about the cdi- of a Li st. Thus since the the definition of rev requires that u be
instantiated to a L I a ts, this attempted replacement falls, and we try to simplify its arguments.

Note 2: Notice that the argument to rev actually simplifies to something that FOL can recognize as
• a Li .t. This means that sort scruples do not prohibit the Instantiation of the definition of rev.

Note 3: Unfortunately we have the same problem as In Note 1.

- - - •
—-- .---- -

• ~sge 38 Prolegomana Richard Weyhrauch

Note 4: This time the first argument to * Is ok , but the second is not. Again we try to simplify the
arguments.

Note 5: This time when we try to simplify n I I nothing happens. In this case as a subterm It is
completely simplified and gets marked In such a way that the simplifier never tries to do this again.

Note 6: It is very clever and remembers that it saw this before and since it is at the top level with a
maximally simplified formula it stops.

.H1

- —----------- -~~~~~—- • -----—----~-- -~~~~ ----—---•-- • -. -~~------—• ~~~~~~~~~~~~~~ • • .-- -~
- - -

~~
-
~~~.-.



Richard Weyhrauch Prolegornena Page 39

Appendix F An example of evaluat ion

ThIs Is an abbreviated trace of the evaluation of fact (2),

eva I
I fact(2 )

Inter pr et ing
fact

falls

.44Syntactic sim plification succeeds , y ielding
I IF 2.0 THEN I ELSE Zsfact (peed (2))

eval
IF 2.0 THEN 1 ELSE 2sf act (pred (2))

I 2.0
semantic evaluation succeeds , yielding
I FALSE

pep i ng up
seman tic evaluation succ•eds, y ie ldi n g
I 2efac t (pred (2))

interpret in g
• I s

succeeds evaluating args• I evaI
2

• semantic evaluation succeeds , y ielding

2 sv*l
fa c t (pred (2))

• Interpreting
• I fact

fails

Syntactic sI .piilica tlon succeeds, yielding
• I IF pred (2).S THEN 1 ELSE pred(2)Sfact (pred (peed (2)))

44xeva I
pr.d 12).I

semantic evaluation succ eeds , yielding
I FALSE

poping up
semantic simplif i catIon succeeda , yielding
I pred(2 )efact (pred (pred (2)))
eva I
I pr.d(2)efact (peed (pred (2)))
interpretin g
I s
succeeeds eva l ua ting arqs

1 eva l
I pred (2)
sea.ntio si m pli f i c ati on suc .ede , yieldi n g
Ii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -—-- . T~~~~~~ .~~~~~~


Page 40 Prolegomena Richard Weybrauch

2 •vai
I f ac t (pr ed (p red (2)))

in terpreti n g
I fac t
fa i is

Sy ntactic si m p l i f i c a t i o n succeeds , y ield ing

I IF pred (p redC2fl .I
THEN 1 ELSE pred (pred(2))sfact (pred (Pred(pred (2))))

eva I
I IF pred (pr.d(2)).0
I THEN 1 ELSE pred (pred (2))sfact (pred (pred (pred(2)>))

eva I
I pred (pred (2)).0
semantic evaluating succeeds , yielding
I TRUE

semant ic eva lua t ion succe ed* , y ielding
Il

Evaiu .t Ing 1 gIve . 1
Evaluat ing IF pred (pr ed (2)) .0 THEN 1 ELSE pred(pred (2))*faCt(pred (pred (Pred (2))fl gi ves 1

Evaluat i ng fact (pred (pred (2))) gives 1
Eva luat ing pred (2)sfact (pred(pred (2))) g i ves 1

• Evalua ti ng IF pred (2).0 THEN 1 ELSE pred (2>.fact (pred (pred (2))) gives 1
Evaluating fact (pred (2)) gives 1

Evaluating 2sfact (pred (2)) gives 2
Eval uating IF 2.0 THEN 1 ELSE 2efac t (prsd (2)) gives 2

~ Evai u .ting fact (2) gives 2

I fact (2) .2

