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NEW CONCEPTS IN NONLINEAR INFINITE-HORIZON STOCHASTIC ESTIMATION AND CONTROL:
THE FINITE ELEMENT CASE

Loren K.

Bell Telephone Laboratories
Naperville, IL 60540

Abstract

A finite probabilistic system (FPS) is a
discrete-time controlled stochastic process hav-
ing finite input, output, and (internal) state
sets. (A partially-observed Markov decision pro-
cess is an example of an FPS). It may be viewed
as the simplest formulation of a nonlinear esti-
mation and control problem.

Under conditions similar to observability
and controllability in linear systems, the prob-
lem of selecting inputs, on the basis of past
inputs and outputs (with perfect recall), so as
fo maximize a time-averaged expected reward, is
shown to be meaningful as the horizon increases
without bound or as a discount approaches unity:
an optimal strategy exists; it may be realized
by a (strategy-independent) state estimator along
with a stationary policy on the state estimate;
and its performance does not depend on the ini-
tial scate of information.

Dual control aspects of the problem, and
potentisi axtention of the results to more general
svareas are briefly discussed.

1. INTRODUCTION

The deceptive simplicity of the linear-quadra-
tic-Gaussian problem formulation and solution has
been articulated by Witsenhausen (18], among oth-
ers. This paper describes recent work (much of
which was originally reported in the author's doc-
toral dissertation (11]) aimed at understanding
the relationship between estimation and control in
a more general setting. Specifically, it examines
a class of discrete-time undiscounted infinite-
horizon stochastic control problems in which the
input, output, and state sets are all finite. Con-
ditions similar to controllability and observabil-
ity are introduced and shown to imply well-posed-
ness of the problem in the following sense: The
optimal performance converges to that of a sta~
tionary policy on the sufficient scatistic, as the
horizon grows without bound or the discount ap-
proaches unity.

This approach clarifies the concept of "dual
control" {7, 3, 17) {m» undiscounted infinite-hori-
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zon stochastic control. Any '"dual control" prob-
lem can be slightly modified so that the conditions
described above are satisfied. On the other hand,
some unmodified "dual control" problems are mean-
ingless unless a finite horizon or discount rate

is specified.

Consider, for example, a fair coin that is
tossed at times k=0,1, ... The outcome of toss
k is denoted s(k)=H or T. Immediately after toss
k>0, an experimenter observes v(k) where

‘o, 1f s(k-1=s(k) |
y(k) = .
|1, if s(k-l)#s(k)‘

The experimenter then selects an input from the
set {H,T,B). The object is to maximize the limit-
ing frequency of correct guesses u(k)=s(k). State
information is gained by selecting u(k)=B, which
causes a biased coin (e.g. Pr{s(k+l) is H}=.6) to
be used in toss k+l.

If the horizon is finite or a discount 3 is
used, then the problem is well-posed; the biased
coin is used during a finite interval, and the
most likely state is selected thereafter. As the
horizon grows without bound or 8t1, the limiting
strategy becomes: u(k)=B, indefinitely. Since
there will be no guesses, and hence no correct
guesses, this is the worst possible strategy.

An optimal strategy is:

‘B. if k is a power of 2
u(k) = "

lthe most likely state, otherwise

The limiting proportion of correct guesses is now
1. This strategy suffers the aesthetic drawback
of being nonstationary. And it clearly is not
approached as the horizon grows without bound or
the discount approaches unity. For these reasons,
the problem is considered to be ill-posed in the
conventional undiscounted infinite horizon formu-
lation.

The problem becomes more tractible if we add
to the plant model a mechanism whereby observa-

Approved for ‘public release:
distribution unlimited.
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tion dynamics fail (in a specifically described
manner, e.g. equally likely observation of 0 or 1)
with probability €, with 0 < € << 1. This ver-
sion of the problem has a solution that agrees
with LQG-induced intuition. The optimal strategy
is stationary, and alternates between measurement
and guessing with an average period that grows
without bound as €+0. Because the system is fal-
lible, the mathematics of optimization will not
reach into the arbitrarily distant past for in-
formacion that in practice would surely have be-
come noise-corrupted. %

This paper will describe conditions that
imply desirable structural properties of the type
discussed above. Results are stated without
proof; for details, see (11,12,13]. Our presen-
tation follows a standard plan:

*Problem Formulation: Give the plant
model and performance criteriom.

*State Estimation: Derive a recursive

form for the sufficient statistic
and specify a condition for sta-
bility of the state estimation
process.

*Dyn. 4 ng F ation: De-
fine an operator whose fixed
point is the solution to the
infinite horizon problem.

*Fixed Point Theorem: Prove that the
dynamic programming operator
has a unique fixed point.

*Computational Considerations: Show
how an e-optimal solution can

be obtained on a digital computer.
II. PROBLEM FORMULATION

a) The plant model

(2.1) Definition. A finite probabilistic (dyna-
mical) system (FPS) is a 4-tuple (U, Y, S,
{P(y/u) : yeY, ueU}) where:

(1) U i3 a finite nonempty set of
input values (or decisions);

(11) Y i{s a finite nonempty set of
output values (or observations);

(i11) S = {1, ..., N} 1s a finite
nonempty set of (internal)
state values;

(iv) Each P(y|u) is an NxN substochastic
matrix of state transition prob-
abilicies, and

(2.2) plu) = zy:Y P(y|u)

————

is a stochastic matrix, WueU.

The dynamic evolution of an FPS is described
in the following terminology:

1. When a decision-maker specifies input u(k),
that input is said to be accepted by the FPS.
Output y(k+l) is subsequently emitted by the FPS.

2. Given that an FPS in state s(k)=i accepts in-
put u(k)=u, it will undergo a transition to state
s(k+l)=j and emit output y(k+l)=y, with (condi-
tional) probability Pyy(y{u), (conditionally) in-
dcpendent1¥ of the "past" {s(k'), u(k'),

y(k'+1) M7l

3. The Markov decision process (MDP) consisting
of the internal state and input processes of an
FPS is called the underlying process (of that FPS).
It %a described by the stochastic matrices {P(u):
uel}.

4. The time set is {0, ..., K}. The terminal time
K is called the horizon.

Remark. This notation is due to Paz [10].
b) The probability spaces
An FPS is studied in conjunction with an ini-

tial state probability (ISP) and a control strat-
egy (CS).

The ISP, denoted by 7, is a stochastic N-vec-
tor having the interpretation my = Pr{s(0)=i}.
The set of ISP's (i.e. the set of horizomtal sto-
chastic N-vectors) is denoted by II.

The CS, denoted by Y, is a mapping Y: Z. -u,
where Z* represents the free monoid generated by
UxY, i.e. the set of finite strings of I/O pairs.
A decision-maker acting according to Y selects
inputs

(2.3) u(k) = y[z(k)]
where z(k) is the information vector

(2.4) z(k) = (u(0),y(1)) (u(1),y(2)) *°*
(u(k=1),y(k)).

*
The set of CS's (i.e. the set of mappings from 2
to U) is denoted by T.

We may view {s(k),u(k),y(k)} as random var-
iables on a probability space P[m,y] = (R, F,
Pr, y) where: Q is the infinite product set of
SxUxY; F is the U-algebra generated by the finite
cylinders; and Pry y is determined in a straight=-
forward manner from the transition probabilities
described above.

Er y will denote the expectation operator
associated with Pr, ..
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c) The performance indices

Consider a bounded real-valued function R on
SxUxYxS, and define

(2.5) (k) = R{s(k)," u(k), y(k+l), s(k+l)]

1

(2.6) g®) = K L0 r ()

2.7) @) = 1-8)71 Ty B (&) 8<1

We call r(k) an incremental reward; g(K) is the
time-averaged reward, and g(8) is the discount-
averaged reward. Each is a random variable on

B[m,Y].

d) Statement of the problem

The problem is to demonstrate the existence
of strategies that "optimize" the infinite-horizon
performance indices limgso 8(K) and limgs; g(B).
Specifically, we determine conditions that assure
the existence of an optimal performance g, and a
family {Y"} of optimal CS's such that, for all
ISP's 7™ and all CS's v,

(2.8) 1 E {(8K)} = 14m_,. B _{B(B)} = g
hK-.. ".Yﬁ B+1 "vYﬂ

(2.9) Um sup E (g0} <38
(2.10) 1lim supa*liw’yfi(s)} <8

e) Bibliographic notes

Standard references on the role of MDP's in
stochastic control theory are Bertsekas (4] and
Kushner [9]. The Partially Observed MDP was in-
dependently conceived by Drake (6] and Astrom
[1,2]. Computational algorithms that solve fi-
nite-horizon and discounted POMDP's have been
given by Smallwood and Sondik [15] and Sondik [16].
A more extensive bibliography may be found in (11,
12,13].

III. THE STATE ESTIMATOR FOR FPS's

a) The recursive formula
Let us introduce some terminology:
(3.1) For z-(ul.yl)(uz,yz) Ll (uk.yk)ez*. define
the matrix product P(:)-P(yllu‘) .
P(yzluz) Sius® P(ykluk).

(3.2) Define the vertical N-vector
ve (1, s:ve » 1)S,

(3.3) Define T(W,z) = mP(z) / WP(z)v,
when mP(z) # 0.

(3.4) Define random variables on P[T,Y]:
n"(k) = T (m, z(k)
Now n"(k) is the vector of conditional state
probabilities at time k, given inputs and outputs
that have evolved up to that time. It may be com-

puted by the (strategy-independent) recursive
formula

(3.5) n"(k) =

L if k=0 }
{ T (k-1), (ulk-1),5(K))), otherwise |

b) A metric on Il

(3.6) Definition (Bayes' operator). For mwell,
weRy, with wy>0 ¥i€eS and ™w>0, let Tow
denote the vector in [l having entries

(ﬂow)i - "i'i/"v'

(3.7) Definition. For w,m'cll, define

@ jr-m) =2, Im -mls
(b) §[(nm,m'] = Ziesnax('rr1 - ni, 0)

(c) A[m,m'] = gup{§[mew, T'ow]:

wERy, w, >0 ¥ies, ™0, w'w>0l}.

(3.8) Lemma. |[* - ¢|, § and A are metrics on
T, and

0<g|m=m'| =4mn'] <afm,n'] < 1.

(3.9) Theorem (evaluation of A). For
w,m'ell, define:

- ' . .
e, -1n(w1/1rt : w1>0}.

= . '
c, min{ﬂiln; : n1>0).

Then
) ve,c,
Afm,n'] @ ———
1+ /e,

The metric §, also known as the Hajnal mea-
sure, has many applications in the theory of
ergodic Markov chains [8]). Informally, S[w,7']

| e
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is the (minimal) "quantity of probability" that (3.15) Corollary.

would have to be 'reagsigned" in order to trans~

form probability distribution T into probability a[P] = sup {A[T(n,P), T(n',P)]

distribution v'. Similarly, 4(7w,7'] is the least P90, n'Pe0}
b upper bound on the quan tity of conditional prob- n + N'PPO}.

abilicty by which 7 and 7' might differ if they

re itioned ‘{dentical 3 .
we conditioned on 'identic observations (3.16) Corollary. a[PQ] <afp] alq).
The distinction between § and J is also illu-

minated by an examination of the topologies they

induce on M: the topology induced by § is conc d) Another metric on I

ected, but A causes ]I to be sepprated into 2N-1

-l it e N RS- With c ,c, as in (3.9), define

¢) The contraction property of T

It is well known that if P is a stochastic
matrix and

(3.17) D(m,n'] =1 - nin[c‘.c‘l.

Now D is a metric on M and (1/4) D(7,m'] <
Afw,m*] < p(m,m'] < 1. It has the following re-
6{¢1P .JP] <1 markable property (required in Theorem (5.2)): If
.
v is a convex function on T and [v| = supq ‘el
{v(M=v(T')} then |v(M)-v(r")| < |v| - D[" n'].
then, for any m,m'ell, This occurs because the discontinuities™ of A (dis-
cussed in section 3b) coincide with the potential
discontinuities of a convex function on II.

(3.10) a(P] = m'xi.jes

3.11) S[7®, n'P] < a(P] S(m,n’
{ S Rl 28R Str.ntl, e) The condition on observation dynamics

i.e., the transformation f(T] = 7P is a contrac- As in (3.12) define
tion in iI. One consequence of this property of P
is that {7(P)"} approaches a unique limit as nw.

; i J .
The rate of covergence a(P] is called the ergodic (3.18) a(P] = max{D(T(e",P), T(e ,P)]:
coefficient of the stochastic matrix P. .1P¢0, eIrgo}
(3.12) Definition: If P is a nonzero substo-
chastic matrix, then define Now consider the following condition
a(P] = max{a(T(e!,P), T(ed,P)] : (3.19) Condition (detectability). There is an
aiPio. QJP¢0) a<l and an integer I such that, for every

ISP 7 and every CS y:

Remark: The evaluation of a[P) by (3.9) requires
N3 operations. This is comparable to E".Y {a(P(z(z)]} < a.
the effort expended when nultiplying two
NXN matrices.
Assuming (3.19) holds, there exists an a < a
The generalized ergodic coefficient a{P] has ek thet
the following properties:

(3.13) Lemma. (a) 0 < a[P] < 1 for all substo- (3.200 k| {a(Pz@N]} < a.
chastic matrices Py0.
(b) a[P] € 1 <wm==> P {g subrec- Using the recursion (3.5) and the contraction
tangular*. (3.14), ve obtain

b b e b (3:21)  lim b,y {In"(k)-n"'(k)l) -0

(3.14) Theorem. (Contraction Property of T) ¢ n,x'%l, yel.
AlT(n,P), T(n'.?)‘ _<_ G(P] A("\-n']-
'Py0. This is analogous to convergence of the condition-
i i al state distribution (and not simply the con-
ditional mean) to an {nitial-value~independent

[n a subrectangular matrix, rlj~o and Pg >0 -
imply Py,>0 and Pyu>0. with respect to conventional metrics on 7.

e = =
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trajectory in the Kalman filter.

An FPS may be trivially modified so that Con-
dition (3.19) is satisfied. For 0 < ¢ << 1, mul~-
tiply each P(y/u) by l-c and then add €/ (#S*#Y) to
each entry of each P(y u). This quantity may be
interpreted as the probability of model failure,
as discussed in Section I[.

IV. DYNAMIC PROGRAMMING FORMULATION

Define:

(4.1) ol s the "unit vector” in [ whose i-th
entry equals unity.

(4.2) V is the vector space of real-valued
bounded continuous functions om I1.

(4.3) ¥V = {vev : v(.“)-oi.: v.

(+.4) BeV is the "zero function' 8(m)=0,
vrell.

(4.5) q(u) is the expected incremental reward
vector, a vertical N-vector with entries

- ) T \
q (W) Lies Lyey P‘J(y‘u) R(i,u,y,)).

(4.6) f3 : V=~V is the discounted dvnamic
programming operator

(?Svl (1) = max {mrq(u) +

€

3 5vcy(ﬂP(ylu)v) v(T(7, (u,y) N}

(4.7) £ : V =+ V is the undiscounted d!B!!ic
programming operator, given by f = L

(4.8) £ : V=V is the normalized (undiscounted)
dynamic programming operator given by

(Fv] (M = [Ev] (1) - (fv] (V).

Remark: This operator corresponds to a value-
iteration algorithm of D. J. White (19].

(4.9) fy : V=V is the damped normalized (un-

discounted) dynamic programming operator
given by

?\G sl fv+ (1= Vv

Remark: This operator corresponds to a value-
fteration algorithm of P. J. Schweitzer
(14].

Following Astrom (1966),
. -1 K
(4.10) GK(W) - max E"'Y {(g(K)} =K © (£78] (m).

Similarly, using the contraction property of
discounted dynamic programming operators, we see
that f, has a unique fixed point G;. satisfying

.1 V= um  (ES Vvev
and

& - o - - "-
(4.12)  Gg(m) max, z“.y {(g(B)} = (1-8) Vs(”'

This last equation is justified as outlined in
Chapter 6 of [4].

Both G, and Ge are known to be convex and
continuous En .

V. THE FIXED POINT THEOREM

We now require a second condition:

(5.1) Condition (reachability). There is a o<1

and an i{nteger £ such that, for every mell,
JES, a sequence of inputs Ups coey U
exists, satisfying ¥

1 - E‘ES "1(P(ul) SRS P(us)]11 < 0.

Also define

Quax * "% o™X oy (W)

Q* Uy = Yin

E+ d
Qi = M0 gmin o, (u) €= a%iti=a)

The following theorem is the main result of this
research.

(5.2) Theorem. Assume Conditions (3.19) and
(5.1). Now, for any 0<A<1, the sequence

z\ke. k=1,2, ... , converges uniformly to
a function v* in V having the following
properties:

(1) ey

(1') (equivalent to (i)) There is a
constant g, called the gain or

optimal performance, such that
(fvt=vr](m) = g, ¥ 7w e T

(11) v" 1s convex




(113) |v*] < ¢
(v) v'(m +K g - uax”.en{v'(ﬂ')} £
(X o1m <v'm vk g -

BFranin
win_, n{v (')}

€

» *
() vi(m +g/(1-8) - max , p{v (v)} <
WM < vim + g/Q-8) -

* L]
nin“.cn{v (r")}.

Now (2.8), (2.9), (2.10) are immediate consequences
of (4.10), (4.12), and (5.2).

VI. COMPUTATION OF AN €~OPTIMAL CONTROLLER

Condition (3.19) implies that the state esti~
mator can be arbitrarily closely approximated, for
M sufficiently large, by a finite~state automaton
that retains only the most recent M input-output
pairs. (Compare this with a similar property of
the stable Kalman filter).

c-optimal finite-memory strategies may be com-
puted by a method, called perceptive dynamic pro-
graoming, based on this property of the state esti-
mator. Suppose that the controller is able, at
time k, to exactly measure the internal state at
time k-M(k), and suppose moreover that the process
M(k) is such that z(k) = [s(k-M(k)); (u(k-M(k)),
y(k+1-M(k)), ... , (u(k-1), y(k))] is a sufficient
stacistic*. Then the problem can be expressed as
an MDP having state process z(k); this is a simple
generalization of {5]. Of course the resulting
policy depends on information that is not avail-
able in practice, and so it cannot be considered
a solution to the original problem. But the per-
formance obtained is clearly an upper bound on
feasible performance, since it assumes the avail-
ability of more information. Now the delayed
state can be guessed and substituted into this
policy. The resulting controller is feasible
(«hen the guess s(k-M(k)) is a function of the
1/0 pairs in z(k)) and the closed loop system is
now a Markov chain whose performance is readily
evaluated. This performance is a lower bound on
optimal feasible performance. It can be shown
[11) that the difference between these bounds
approaches zero as a lower bound on M(k) is in-
creased. This algorichm will be discussed in de-
tail in a later publication.

¥For example, M(k) might be a constant. More
sdenerally, it suffices that M(k+l) be expressed
as a (deterministic) function of z(k), u(k) and
¥(k+1) alone, and that M(k+l) < M(k) + 1.

VII. CONCLUSIONS

A finite-element plant model has been con-
sidered and controllability/observability-like
conditions have been shown to imply well-posedness
of the problem in the infinite-horizon case. A
key concept in obtaining these results was a me-
tric with respect to which the state estimator is
a contraction. The author is currently interested
in generalizing this metric to distributions on
infinite state sets such as Euclidean space or the
unit sphere. In the case of a Kalman filter, the
contraction, in order to be analogous with what
is presented here, must account not only for con-
vergence of the conditional mean, but for conver-
gence of the entire distribution to a normal dis-
tribution with appropriate covariance as well.
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