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DIFFUSION LIMIT FOR THE TRANSPORT OF
QUASIFREE ELECTRONS IN LIQUIDS
P. J. Paes Leme*
Department of Chemistry, New York University
4 Washington Place, New York, NY 10003

Abstract
A model of phctoelectron emission by liquids is treated in terms of a
transport problem. Its asymptotic behavior is studied in the 1limit when
the mean free path becomes small and the geminetric recombination is
neglected. This solution is then shown to be in agreement with that

previously assumed in the Nemec theory.

1. INTRODUCTION

dl’2 involves three

The model of photoelectron emission by liquids studie
steps: generation of quasifree electrons in the bulk of the Tliquid, their
transport towards the liquid-vacuum interface, and the overcoming of the
barrier at the 1liquid-vacuum interface. The probability distribution of
finding a quasifree electron generated at a certain point ?o with kinetic
energy Eg’ in a volume element d¥ about ¥ with kinetic energy dE about E,
plays a central role in the study of the energy distribution curves (EDC) of
photoelectrons emitted by solutions. Such probability distributions can be

obtained from the solution of a steady linear transport equation. We study

*Present address: Departmento de Matematica, Pontificia Universidade Catolica
de R. J., R. Marques de S. Vicente 225, 22453 - Rio de Janeiro - R. J., Brasil




2
the asymptotic behavior of such solution in the 1imit when the mean free path
between collisions of the electron with the 1liquid molecules is small
(diffusion theory limit) and the Coulombic interaction between the electron
and its parent is not considered. Here we make use of known results from the
neutron theory of slowing down problems (Fermi-age theory).3 The solution
we then obtain agrees in form with the solution assumed by Nemec.2 In our
case the law of energy loss in the process can be derived once we know the
form of the electronic collision cross-section. The problem treated here, but
with the added complication of geminate recombination, is presently being

investigated by adapting different techniques.®~®

2. FORMULATION

We assume:

(al) the electrons are classical point particles of mass m, moving about a
medium consisting of host particles of mass M, with m << M;

(a2) the density of the electrons is sufficiently small so that the effect
and frequency of electron-electron collisions are negligible;

(a3) the solute molecules are sufficiently dilute in such a way that
electron-ion interactions are negligible;

(a4) the liquid is isotropic and homogeneous;

(a5) there is no absorption (of electrons);

(a6) the coulombic interaction between the electron and its parent is not
considered;

(a7) the scattering between electrons and the 1qu1d mo1ecu1es is

/

isotropic.
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e
v Ch P va(v). N(r,v) = j vig(v')f(v's VIN(F, V' )dV' + S(F,V) (2.1)

where N/¥ V)drdv denotes the number of electrons in the element of volume drdv
about (¥,V); vo(v) denotes the probability per unit time of collision of an
electron whose speed is v; f(v's v)dv the probability that an electron with
speed v' before collision achieves a spsed in the element dv about v; and S is
a source term. Note because of (a5) 'fo f(v'= v)dv = 1.

We are interested in the solution of (2.1) when an isotropic source is
positioned at a point ?0, which we can take to be the origin. Here we
assume electrons disappear once their kinetic energy is below a certain
specified value. This value can be its thermal energy or any other related to
the interface barrier (liquid-vacuum) which is assumed to be constant.

Let v = vi. The transport equation (2.1) can be rewritten as an integral
equation for the electron density
alF,v) = fN(F,vﬁ)d?‘. (2.2)
To do this, first integrate (2.1) along its characteristic curve in the
following way. Denote the right-hand side of (2.1) by Q(F,v), since - $r
is simply the derivative taken along the direction of E, if we replace - by
¥ - R& in (2.1) we can write it in the following form
(- d/dR + o(v) IN(T-R,v@) = v IQ(r-Ri,v) (2.3)
after dividing both sides by v. If Q(r-Ri,v) is supposed known, integration
of (2.3) leads to
N(F,vil) = N(?—Roﬁ,vﬁ)exp {-a(v)Ro} +

a1 Ro 2o
v f Q(r-Ra,v)exp {-o(v)R'}dR" (2.4)
0
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after setting R = 0. Because there are no electrons coming directly from
infinity we have

lim  N(F-Ro3,v3)exp { =a(v)Ry} = 0.

Ro*.

Therefore we can write (2.4) as

N(r vn) = v I Q(r-Rn v)exp { -=c(v)R}dR (2.5)
If we 1ntegrate (2.5) over all @, put r-R3 = r' and notice that dRdd = dR/R2
= dr'/|v- r"z, we find for (2.2)

n(Fo) = v @ FF 2 e C-o(v)[FF )

or in terms of the flux #(r,v) = vn(¥,v)
s(F,v) = (an)° 1 G R " 2exp ¢ o(v) IF-R1 )Y -

{ {w dv'o(v')f(v'> v)o(r',v') + 4xS(¥',v)) (2.6)
Equation (2.6) cgn be written in terms of energy dependent qualities by
changing variables, E = mv2/2. We get
o(F,E) = (an)"L [dF 77| Zexp ( ~o(E)|F-7']) -

{ r dE'o(E')f(E'> E) (F',E') + 4rS(+',E)} (2.7)
1/2

0
where f(v'= v) = (2mE')""“f(E'> E).

3. DIFFUSION WITH MODERATION APPROXIMATION

Assume the energy after each collision 1is, with equal probability,
anywhere between (1-a)E' and E', for some fixed value of @ > 0, i.e.,
f(E'+E) = (1/@ for (1-a)E' < E ¢ E'
0 otherwise
Then we can write (2.7) as
oF.E) = (4m)1 [aF IF-F |-2exp € -o(E) [F-F" |} -

E/(l-ﬂ) -> -
{ L dE' (o' )=1a(E')o(r',E') + 45(r',E)} (3.1)

I - | i



O IS SOV P AT S

e A L Y S A A T B AN

5

In terms of the lethargy u = ln(EO/E), where Eo is so chosen that the
lethargy would be positive for practically all the electrons which play a role
in the theory, for example, Eo = 100 eV, and the collision density F(r,u) =
Eo(E)o(F,E), eq. (3.1) becomes

F(Fou) = (4m)-Lotu) [d" [F-7" |-2exp (-o(u) [F-7" |3 -

u = i
{a'l.f du'eV'-UF(r',u') + 4mS,(r',u)} (3.2)
u-3%

where ¢ = -In(l- a) and Su(F,u) = ES(:,E) is the number of electrons
liberated per unit volume and unit time and per unit lethargy.

Equation (3.2) can be transformed by Taylor's expansion, into a
differential equation if we assume S and F do not vary much within a mean free

path 1/0. Expand F in powers of (u'-u), then

F(Fu') = F(F',u) - (u-u')(3/5u)F(¥',u) + higher order terms (3.3)
Because
u '
c:.-1 f du'e! Y =1
u-g§
and

u '

ol _jn du' (u-u')e¥ Y = ol g% 1l
u-g

=1+ a}(1-a)In(1-a) = &

(& = average increase in u), from (3.3) we obtain
al [ du'el “UF(F',ut) = F(F',u) - (3/3u)EF(F'u) (3.4)
if weuagélect the higher order terms. The variation of F with respect to u is
caused by its variation with r and it will be small if the latter is also
small. This is a condition for the validity of this development.

Expand F(;',u) in powers of (;-F'),
F(F'ou) = F(ru) + 3 (F-r')§(3/3r)F (F,u)

i=1

+ 2-1 % % (;-;')1(;-;')j(az/ariarj)F(?.U)
i=1 j=1

+ higher order terms (3.5)




6

where the subscript i stands for the i-th component. Because of the factor

-> .

exp { -o(u)|7-F'|} in (3.2), only the contribution for small values of |v-r'i ,
up to the order of a few mean free paths 1/ c(u), will be significant.
Therefore we replace F(?',u) in the first term of (3.4) by the first three
terms of the series (3.5), S (¥',u) and (3/3u)zF(¥',u) by their values at r'

= ¥. Since
(41:)-11de' B |‘2(F-?'),-exp {=a{f<F'[3 a0 (1= 1,2,3)

(am)7s faft [F-F [T2F-F)  (F-F) jexp C-a[F- 11 = (2/36%)5

we get from (3.2)
(3/3u)€F (F,u) = (1/36°(u)) 8, F(F,u) + S (F,u) (3.6)

4. COMPARISON WITH NEMEC'S APPROXIMATION

Introduce a new variable t, referred to as the age of the electron,

u £

= du3seu) = [ des3ses?(e) (4.1)
u E
0

The diffusion equation (3.6) then becomes

(3/37)(5F) = 8.(&F) + S _(F,7) (4.2)
where Sr(F,r) = 3502(u)5u(;,u) is the number of electrons produced by the
source per unit time and unit t interval.

For a point source of monoenergetic electrons and unit strength, equation
(4.2) gives the distribution
q = 6F = (an(z-x )17 2exp C-r/a(ez ) (4.3)
where t_ is the age of the electrons emitted by the source. If the source

9
is not monochromatic, the solution of (4.2) is obtained by integrating (4.3)
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against the distribution function of the energies or ages of the generated
electrons.

2 if we identify the

The solution (4.3) here obtained agrees with Nemec's
quantity he calls R = (nx/s)l/z, where 2 is the total length of the random

walk and A is its mean free path, with the square root of r-rg, i@l Af

R? = < - T j’Eg dE/35E0%(E) (4.4)
If we assume a(E§ . where % is a constant, then from (4.4) we get

R = (3832) "2 0an(e sE) 112

If o(E) = ooE_n/Z, n # 0, then

R = (3EO§)'1/Z(E8 = En)1/2

The laws of energy loss considered by Nemec can be recovered from the above

for n=3/2, 2 and 1
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