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ABSTRACT

The formal language recogni tion capabil ities of
bottom-up pyramid cellular acceptors are examined .
The main result establishes that deterministic bottc~m—up pyramid acceptors are weaker than deterministic
bounded cellular array acceptors, in both one and two
dimensions.
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1. Introduction

Cellular pyramids were introduced by Rosenfeld and Dyer

[1,2] as parallel pattern recognition devices. Bottom-up

pyramid acceptors have been defined as cellular pyramids re-

stricted in information transmission, and their properties

and capabilities were extensively studied in [1-5]. In this

paper, we examine the formal language recognition capabilities

of bottom-up cellular pyramids. That is, we compare the lan-

guage-accepting power of pyramid acceptors, bottom-up pyramid

acceptors , and bounded cellular acceptors. The main result,

4 which is shown in both one and two dimensions , is that deter-

ministic bounded cellular acceptors are stronger in language-

accepting power than deterministic bottom-up pyramid acceptors.

In the nondeterminis tic case , it is proved that the two classes

of languages are equivalent.
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2. Definitions and notation

A bounded cellular array acceptor (CA) is a finite,

rectangular array of identical fini te state machines (FSM ’s),

or cells. Each of these cells is a quadruple M = (Q,Q 1,~~,A),

where Q is a nonempty, finite set of states, c Q is a

finite set of input states, A 
~~.. 
Q is a set of accepting states,

and 5: -, Q is a state transition function , mapping the

current state of M and its four horizontal and vertical

neighbors into M ’s next state. If the mapping is into sets

of states , i.e., 6: Q5 -~ 2~~~~
, then the CA is nondeterministic.

In addition, there exists a special boundary state # E Q1. The

state transition function is restricted so that the boundary

state can never be exited or entered. A step of computation

consists of a state transition of each cell; the states of

all the cells at any time step define the CA’s configuration.

The conf iguration before the first step is called the initial

configuration and must be of the form: all border cells are

in state #, every other cell is in some state in Q1 - {#}.

The upper-left corner non— # cell is the accepting cell.

A pyramid cellular acceptor (PCA) is a pyramidal stack of

CA’S, where the bottom array has size 2n by 2~ , the next lowest

2~~
1 by 2~~

1, and so forth, the (n+l)st layer consisting of a

single cell, called the root. Each cell is an identical

FSM = (Q,Q 1,8,A). Q, Q~
, and A are defined as before. Each

cell now has nine neighbors -- four son cells in a 2-by-2 block



in the level below, four brother cells in the current level,

and one father cell in the level above. The transition func-

tion S maps lO—tuples of states into states -— or sets of
states , in the nondeterministic case. An input array is

stored as initial states of the bottom array; the upper-level

cells are initialized to a quiescent state. The whole pyramid

is surrounded by the boundary state # as before. The root

is the accepting cell.

A bottom-up pyramid acceptor (UPCA) is a PCA whose state

transition function is modified to be 5: -
~ 
Q in the deter-

ministic case , 6: -. in the nondeterministic case.

That is, the next state of a cell depends only on the cur rent

state of that cell and its four sons. Otherwise, the def ini-

tions associated with PCA ’s extend directly to UPCA ’s.

The one-dimensional analogs of CA’s, PCA ’s, and UPCA ’s

are easily defined by making the appropriate changes in each

cell’s transition function. A one-dimensional bounded cellu-

lar acceptor (CA) contains a state transition function which

maps the states of a cell and its left and right neighbors into

its own next state or set of states. A triangle cellular

acceptor (TCA) is the one-dimensional version of a PCA ; a

TCA cell’ s next state depends on two eons ’ states , two brothers ’

states, and its father ’s state. A bottom-up triangle cellular

acceptor (UTCA) restricts a cell’s neighbors to its two scns

only.



3. Bottom-up triangle acceptors are weaker than CA’S

In this subsection we establish that restricting

TCA’ s, so that each cell has only its two sons as neighbors ,

diminishes their acceptance power. That is , we show that

deterministic UTCA ’s are strictly weaker than deterministic

CA’S. On the other hand , we prove that nondeterministic UTCA ’s

are equivalent to nondeterministic CA’s. It follows that the

class of languages accepted by nondeterministic UTCA ’s strictly

contains the class of deterministc UTCA languages.

Theorem 3.1 There exists a language which is accepted by

a deterministic CA , but not accepted by any deterministic

UTCA .

Proof: It is known [ 6) that there exists a language L

which is accepted by an n2—tape bounded Turing acceptor , but

not by any n-tape bounded Turing acceptor . Let L’=

(db~
0I
~~~~

0
~~~otL),where b is a special symbol not in the tape

alphabet of L. L’ is accepted by an n-tape bounded Turing

acceptor since it can simulate an n2-tape bounded Turing ac-

ceptor on input string o, and also verify that the proper

number of b ’s is present.

Suppose L’ were accepted by a UTCA M. We now show that

because most of its input consists of b’s, M can be simulated

by a I~i-tape bounded Turing acceptor. Since Ioj=/ii , this

implies that if L’ is accepted by M , then L is accepted by

an n-tape bounded Turing acceptor--a contradiction .



Let be the smallest power of 2 greater than or equal

to 1 0 1 .  In the initial conf iguration of M, the input string

o defines the initial states of at most the first 2” cells

of the base , and the remaining 22n_2n cells are in state b.

Since M is deterministic , any two cells at the same level

having identical initial subtree configurations must have

identical state sequences. For example , at level 0 there are

at least 22~_2~ cells with the initial subtree configuration

Since all of these cells have identical state sequences,

there are at most 2r
~+l distinct level 0 cells , namely 2~

non-b cells and one b-cell. (Actually , there are at most

distinct non-b cells, but because their ancestor cells

may have distinct subtrees , we must save these cells in order

to compute higher level cells ’ state sequences.) At level k,

0~k~n , there are 2
2n-k cells , 2n k  of which have non-b’ s in

their bases , while the others have identical all—b bases.

Thus there are at most 2’~~~+l distinct cells at level k. At

each of levels n+l through 2n there is exactly one cell with

non-b’s in its base; hence there are just two distinct state

sequences for cells at any one of these levels. Summing , we

find that there are at most 2n1~~+3~ _1 distinct cell types in

M. Thus while M has O (22T~) cells, only O(2’~) of them have

distinct state sequences.

Based on this, we now construct a 2n_tape bounded Turing

acceptor T which simulates M.



n+lOrder the 2 —l cells from levels 0 through n having non-b

bases breadth-first and map their input states into the

tape positions of T, two per cell. The remainder of M’s

cells to be saved are of two types: 2n cells with all-b bases ,

one each from l evels 0 through 2n-l; and n cells with non-b

bases at levels n+l through 2n. Map the 2n all-b cells ’

states into the leftmost 2n positions of T’s tape , and the

n non-b cells ’ states into positions n+l through 2n of the

tape.

Given such an initial configuration , T acts as follows.

First , T marks off tape positions n and 2n by counting the

number of tape positions. Using these marks, T can easily

find those sections of tape that contain the extra 3n cells ’

states. T simulates a transition of M by sequentially acces-

sing the states of the sons for each of M’s ~~~~~~~~~~ cells.

The 2n+l+1 cells ’ states are changed using the technique

described in [2]. The states of both Sons of an

all-b cell are the same , and are stored one position to the

left of the given cell’s state. The states of each of the

other r~ non-b cells ’ sons are both stored in the position to

the left of the given cell’s state. (There is one exception :

the cell at position n+l has as its left son the root of the

subtree containing the input string a, and this cell’s state

is stored in position 1.) The state of the root cell of M is

stored in position 2n; thus after T completes each simulation

* 

step, it checks whether or not it is an accepting state. If it

is , then T accepts.!!
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Theorem 3.2 The class of languages accepted by determin-

istic UTCA ’s is strictly contained in the class of languages

accepted by deterministic CA ’S.

Proof: In [2) it was shown how a CA can simulate a TCA .

That result is easily modified to pr’”e that a one—dimensional

CA can simulate a UTCA. Together with Theorem 3.1, this result

immediately follows.!!

Since TCA ’s and CA’s are known to accept the same class of

languages [ 3 ], we also immediately have

Corollary 3.1 The class of languages accepted by deter-

ministic UTCA ’s is strictly contained in the class of languages

accepted by deterministic TCA ’s.

In the nondeterministIc case, we now show that nondeter-

ministic UTCA ’s (for brevity : NUTCA’s) are equivalent in

language-accepting power to nondeterininistic CA ’s (for brevity :

NCA ’s). First, any language accepted by an NUTCA can also be

accepted by an NCA since an NCA can simulate an NUTCA by the

method described in [2]. The following

theorem proves the converse , and thus the relationship is

established.

Theorem 3.3 If a language L is accepted by a nondeter-

rninistic or deterministic CA , then L is accepted by a nondet-

erministic UTCA.

Proof: Given a CA A ,

we describe how an NUTCA M is constructed which simulates A in

real time (following a startup delay). Let 2’’ be the t~ma11est

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  
_________ 
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power of 2 greater than or equal to the length of the input

string 0. In M’s initial configuration , a defines the input

states of the leftmost l o t cells of the base, and the remain-

ing base cells are initialized to the boundary state *. The

generalization to the nondeterministic case is straightforward .

Each b~~e cell in M nondeterministically chooses at each

time step a state from the state set Q of A , while also

remembering its previously chosen state. Thus at the end of

time step t, each cell c stores a pair of states (p,q) from

Q, where p and q are the states chosen by c at times t-l and

t, respectively. To check whether or not the new configuration

legally follows from the previous one according to A’s tran-

sition function 6, M must verify that qES (r,p,s), where r and

s are the states chosen by c’s left and right neighbors at t-1.

This involves verifying that (r,u) (p,q) (s,v) is one of a

finite number (<1Q1 6) of legal patterns , where u and v are

arbitrary.

We now show how the non-base cells in M can determinist-

ically check that the base ’s configuration at time t follows

from the previous configuration in n time steps . Specifically,

at time step t+1 cells at level 1 copy the state pairs from

their two sons. At time t+2 cells at level 2 copy their sons ’

pair of state pairs; so each cell stores a quadruple of state

pairs ((p1,q1),(p2,q2),(p3,q3),(p4,q4
)). At the end of this

step each level 2 cell detects whether or not their second and

third base cells ’ new states are legal , i.e., if q2E6(p11p 21p 3)

and q3~ ó(p2,p 31p 4). If both of these tests are true , then

L _ _ _ _ _ _ _ _ _ _ _ _  _ _



the cell enters state t, otherwise , it enters state f. In

addition each cell checks its end conditions , i.e., whether or

not q1E6 (*,p1,p2) and q4€6 (p3,p4,#), and stores the results in

two state variables, e and r.
At time step t+3 each cell at level 3 acts as follows.

If either son is in state f, then the current cell enters

state f. Otherwise , the cell copies the third and fourth

pairs from its left son, and first and second pairs from its

right son to form its own quadruple of state pairs. These are

just the state pairs from the middle four cells in its base.

Thus this cell next verifies whether or not the two middle

cells’ new states are legal, entering state t if they are,

and state f otherwise. In addition , the cell copies the state

variable .e from its left son and r from its right son.

Cells at levels 4 through n act at time steps t+4 through

t+n , respectively, in the same way as the cells at level 3.

Thus if at the end of time step t+n the root is in state t

and £ and r are both true, then the base ’s configuration at

time t was a legal successor to the previous configuration.

Since this verification procedure is accomplished by a single

unit speed “wave ” of activity moving up the tree involving only

a single level of cells at each time step, the non-base cells

can verify in real time the succession of configurations non-

deterministically entered by the base cells at each time step.

In addition , the root can check at each step whether or

not the leftmost base cell was in an accepting state . Hence



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

if A goes through a sequence of configurations leading to

acceptance , M can nondeterministical] .y guess the sequence ,

check its legality, and determine that an accepting state
was entered. Furthermore, the simulation is real time follow-

ing a log diameter time start up delay.!!

—-~~~~~~~~ - -



4. Bottom-up pyramid acceptors are weaker than CA’s

Theorem 3.2, which proved that one-dimensional CA’s are

stronger than UTCA ’s, can be generalized to two dimensions.

In this case a UPCA with base size 22n by 22n and all blank

input except in the top row, can be simulated by a 22’’-tape

2n+2bounded Turing acceptor since the UPCA has at most 2 /3

+ 3n distinct state sequences for its cells. We show below

that a two-dimensional CA can simulate a PCA or UPCA; the

4ndesired result now follows from the fact that a 2 —tape

bounded Turing acceptor is strictly stronger than a

tape bounded Turing acceptor.

A CA of size 2’’~~ by ~~~~~ or equivalently, one of size

2’’ by 2 n1 with each cell storing a 2 by 2 block of states , can

simulate a PCA with base size 2’’ by 2” as follows. Map the

PCA cells into the CA cells as shown in the following diagram .

0 2n+l_1
0 -

2n14 1_l — 1/41



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

In this mapping a cell at coordinates (i,3) has its brothers

in positions (i—l ,j), (i+l ,j),(i,j—l), and (i,j+l); its father

is in position (Li !2J,Lj/2J), and its sons ’s coordinates are

(2i,2j), (2i+l ,2j), (2i ,2j+l), and (2i+l,2j+l).

To simulate a single step of a given PCA , each CA cell

must access the states of its corresponding PCA cell’s

brothers , father , and sons (if they exist). Its brothers ’

states are stored by its four neighbors, so this information

is immediately available . Each cell sends its state to its

father cell by a generalization of the technique used for

the one dimensional simulation. That is, first a cell at

position (i , j )  sends two signals leftward , one travelling at

three times the speed of the other. The fast signal bounces

off the left border of the CA and moves rightward until it

meets the slow signal at cell (ti/21,j). This cell then starts

two signals moving upward , again one moving at three times

the speed of the other. These signals meet at cell (ti/2J ,

[j/2J), the father cell of cell (i ,j). It can be readily

verified that every cell can simultaneously use this procedure

to send its state to its father cell.

Similarly, each cell can send its state to its son cells.

The time required for this state propagation process is the

time necessary to send state information between the cells at

coordinates (2n+l..1 2n+1 1) and (2”~ l, 2
”—l ), i.e., the lcwer-

right corner cells in levels 0 and 1 of the PCA . To determine



each coordinate requires 3 .2 ’’ time steps , hence 6 .2~t 
= O (dia-

meter) time is needed by the CA to simulate a single

PCA time step.

We now show that nondeterministic UPCA ’s are equivalent

to nondeterministica CA ’s, correcting the proof given in [4].

For simplici ty, we describe how a nondeterministic UPCA M

can simulate a deterministic CA A with state set Q and

transition function 5. The extension to the case where A

is nondeterministic is immediate.

Each base cell in M nondeterministically enters a state

from Q, while also remembering its previously chosen state.

The non-base cells of M then deterministically check whether

or not the new con f iguration legally follows from the previous

one, by verifying that the new state (q) of each cell c is

in the range of 6 given the previous states (p ’ s) of c and its

four neighbors. That is , we must verify for each block of

cells

ce

that qEó (pip~ ip~ ip~ ip g). This involves checking that

(p~~,q~ )

(P~~ q~ ) (p, q) ~~~~~~~
(p 5,q5)

_  _ _  _ _



is one of a finite number of legal patterns (in which ~~~~~~

and q5 are arbitrary).

In one dimension , the non-base cells performed this veri-

fication in log diameter time, since each cell had to check

just the two blocks of three consecutive pairs of states which

crossed between its sons’ bases. In two dimensions , each cell

in level k must verify that 2
k42 local patterns follow according

to A’ s transition function, since there ar e ~iow this many

patterns which cross the borders between its bone ’ bases. In

[3] it was shown that local property detection requires O (dia-

meter) time, and so the real time algorithm used in one dimensicn

is not appropriate here . Alternatively, let the base cells of

M nondeterministically enter new states from Q at nondeter-

ministically chosen time steps; the non—base cells deterministi-

cally check that all base cells chose their new states synchro-

nously and at intervals no less than diameter time steps. There

is now sufficient time for the non—base cells to deterministically

verify whether or not the base ’s current configuration is a legal

successor to the previous configuration.

In addition, the root can check at each step whether or not

the upper—left corner base cell was in an accepting state. Hence

if A goes through a sequence of configurations leading to accep—

tance, M can nondeterministically guess the sequence with a

delay of diameter time steps between each new configuration,

check its legality, and determine that an accepting state was

entered .

_ _



Finally, these results immediately imply that the class

of languages accepted by UPCA’S is strictly contained in the

class of languages accepted by NUPCA ’s.
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