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ABSTRACT

We study~~1gorithms1~for approximating Sf where S is a linear operator

_________ 
-‘~~ ~~~~Mq~~~~~

and f  is an element of a set. W~ i~t~~dn~~ ~he concept of spline algorithms~
aM ~~~~~~~~~ -~~~~~~‘~~~~~ -

and satab-1ii~~~optimality properties of these algorithms~ This unifies and

generalizes many known results.
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1.1

1. INTRODUCTION

We wish to approximate Sf where S is a linear operator and f belongs

to a set ~~. Assume we are given ~tf where ~t is a finite dimensional linear

operator. We say ~t is an information operator and that ~f is the information

on f. We approximate Sf by p(~tf) where cp is an operator which is called an

algor ithm.

There are many papers dealing with optimal algorithms, i.e., algorithms

ip for which the global error e(cp) = sup 
~~ 

Sf-~p(~f) f E is minimized.

The optimal algorithms produce the best possible approximations for “worst”

elements f. By a worst f we mean that 
~ 

Sf-cp(~tf) ~j e(cp). However it may

happen that an optimal algorithm p does not produce a best possible approxi-

mation for “easyt’ elements f. (By an easy f we mean 
~ 
Sf-~ (~ f) f~ << e(q~).)

For the user who may want to solve the problem for just such an easy £ this

is a very undesirable property. Therefore in this paper we study algorithms

which are not only optimal (or nearly optimal) but for which the local error

~ Sf— p(~ f) j~ is almost as small as possible for every f from 3~
.

The algorithms which have the smallest possible local error f or every f

are called central and were introduced by Traub and Woz
#
niakowski f 77]. We

introduce the concept of deviation dev(cp) of an algorithm CD. This is the

ratio, for the worst case f, between the local error of cp and the error of

a central algorithm. Thus, dev(q) € [l ,-i-~]. We are interested in algorithms

with small deviation.

In general, optimal algorithms have large coinbinatory coun lexity, i.e.,

the computation of ç(y) given y — ~tf requires much more work than the compu-

tation of ~f. There exists a class of algorithms with small combinatory

- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
- - ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~. --
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1.2

complexity. This is the class of linear algorithms cp ( i .e.,  p is a linear

operator). Since we want to assure small coinbinatory complexity we shall

study linear algorithms in this paper.

These twin desiderata of small deviation and linearity suggest the fol-

lowing questions:

(1.1) Do there exist linear algorithms with small deviation?

(1.2) Do there exist linear algorithms with small deviation which

are optimal?

We introduce the concept of a spline algorithm and show that spline algo-

rithms permit us to answer (1.1) and (1.2).

Splines are extensively used in numerical mathematics and in the theory

of approximation. There are enormous numbers of papers dealing with many

theoretical and practical aspects of splines. Many optimal properties of

splines are known. Probably Schoenberg [64a] was the first one who realized

the close connection between splines and optimal algorithms in the sense of

Sard.

Splines were used to establish optimal algorithms (sometimes in the

sense of Sard) for many problems. For instance, see Coman [72], Karlin [71],

Kornej~uk and Lu~paj [63], Kornej~uk [74], Lee [77] ,  Ligun f 76], Lipow [73),

Schoenberg [64 b , 65, 69 , 70) and Secrest (65b ] who considered the integra-

tion problem, Bojanov [75], Forst [77], Gaffney and Powell [76], Gaffney [77a ,

77b] who considered the interpolation problem, de Boor [77] ,  Golonib [77],

Mel1~ ian [77] ,  Micehelli , Rivlin and Winograd [76], Micchelli and Pinku s [77]

who considered the approximation problem, Ahlberg and Nilson [66], Mangasarian

- -  1~~ T~~1T .~~ . --
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and Schumaker (733, Mansfield [72), Nielson (73), Reinsch [74], Ritter [70),

Schoenberg [64a] and Secrest (65a] who considered approximation of linear

functionals, Grebennikov and Morozov [77] and Micchelli and Rivlin [77] who

considered approximation of linear operators, and Grebennikov [78] who con-

sidered approximation of nonlinear operators. Also a classic paper of

Golomb and Weinberger (59] dealing with approximation of linear functionals

implicitly made use of optimal properties of splines.

This paper unifies and generalizes many known results and develops new

optimality properties of spline algorithms.

We sunmarize the results of the paper. In Section 2 we briefly state

the problem, the notation, and fundamental known results. We introduce the

concept of deviation which plays a fundamental role in the paper. In Sec-

tion 3 we recall the definition of splines in a linear normed space. We

give a general definition of a spline algorithm in Section 4. Spline algo-

rithms are homogenous and not necessarily linear. We prove their deviation

is no greater than two. Assuming the uniqueness of the spline algorithm we

prove that any linear (in fact, even any hoinogenous~ non-spline algorithm has

infinite deviation. This yields the answer to (1.1). Namely, the class of

linear algorithms with finite deviation consists only of linear spline algo-

• rithms. So, this class is empty if f spline algorithms are nonlinear. In

Section 5 we specialize to spline algorithms in a Hilbert case. We show that

then the spline algorithm is linear and central. This means that its devia-

tion is equal to unity and its combinatory complexity is proportional to the

“amount” of information. Section 6 returns to the general case. We give

necessary and sufficient conditions for a spline algorithm to be central or
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1.4

optimal. This answers (1.2). We illustrate the analysis by several examples

which shows the sharpness of our lemmas and theorems. In Section 7 we briefly

discuss a relation between the Kolmogorov n-width and the radius of informa-

tion. Section 8 contains a summary of the paper.

This paper is closely related to Traub and Wo~niakowski [77]. Although

we define all concepts required here, it would probably be helpful to the

reader to be familiar with the concepts introduced in that paper.

p 

.-~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - • .
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2.1

2. BAS IC CONC E PTS AND DEF IN IT IONS

We recall and slightly extend the basic notation and some results of

Traub and Wo~niakowski (77].

Let S and T be linear operators such that

• S:3~, -’~~2,
(2.1)

T:

where 
~~ 

is a linear space and 
~2’~4 

= T(~~) are linear and normed spaces

over the real or complex field. Our aim is to approximate an element a = S(f)

for any f E where

(2.2) 3~ = Cf . E ~~ J~ 
Tf JJ � 1).

To approximate a we assume we know the information operator

[L1(f) ,L2(f),...,L (f) ] where L1,L2,...,L are linearly independent

linear functionals. The number n is called the cardinality of the informa-

tion operator ~ and is denoted by n = card(~t).

By an algorithm cp we mean an operator which approximates a S(f) knowing

only y — ~t(f) E cL~, i.e., ~: D ~ 
~~ Note that q,(y) has to approxi-

mate all elements S(f) for any f E such that ~L(f) — y. Define two sets

(2.3) V(y) — ~f E ~~: ~L(f) —

(2.4) 13(y) — CSf: f E V(y)).

Then an algorithm p cannot recognize which element Sf E U(y) is actually

approximated. The local error e(q,,y) of the algorithm p for y E ~t(3.,~) is

~~~~• ~~~~~~~~~ ~~~~~~-— ~~~~~~

_

~~~~~~~~~~~~~~~~ _- -  _- 
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(2.5) e(cp ,y) — sup 
~ 

W (y) — S f I~fEV(y )

By the global error we mean

(2.6) e(cp) = sup e(p,y) = sup 
~ 

cp(~l ( f ) ) — S f  
~y~~(~J0). E3~

Let ~ = ~~ l,S ,T) be the class of all algorithms which use the information

operator . ~2 for the problem defined by S and T. Traub and Woz~niakowski [77]

proved

Theorem 2. 1

(2.7) iaf e (cp ,y) = rml U(y) , lIy E

(2.8) inf e(~ ) r (~ ,S ,T)

where tad U(y) denotes the radius of the set U(y),

(2.9) tad 13(y) = inf sup H x-sf 
~

(
xE32 fEV(y)

and -

(2.10) r(~,S,T) 
= sup rad U(y) c sup ~jhEker ~it

is called the radius of information ~t for the problem S,T, and c is a constant

from [1.23.

See also Micchelli and Rivlin [77] where some related results may be

found . We shall assume that r (~t,S ,T) < +  ~~~. As in Traub and Woz#niakowski

(77 )  observe that if ker !~2 fl ker T ,~t ker S then there exists an element

h E ker Dt fl ker T , Sb ~ 0 and Sf + cSh E U(y)  for any y and any constant c

— - -  ——

- ~~~~~~~ —~
— 

- ~~~~~~~~~~~~~~ 
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2.3

where ~L(f) y and f € ~~ Hence ker ~% fl ker T ~ ker S implies

tad U(y) -i-~~ Vy E ~t(~~) Therefore we shall assume throughout the paper

that

(2.11) ker ~t fl ker T C ker S

which is a necessary condition for r(~,S,T) < -i-a .

From (2.8) it follows that an algorithm p is optimal iff e(cp) = r(~R,S,T).

As we mentioned in the Introduction we are primarily interested in algorithms

which produce a nearly optimal approximation for every f. Theorem 2.1 states

that the radius rad U(y) is the sharp lower bound on the local error of an algo-

rithm for every y E ~(f). Since we want to assure that the local error of an algo-

rithm p is nearly as small as possible, we compare e(p,y) with rad U(y).

This leads us to the concept of deviation defined as follows.

Definition 2.1

We shall say dev(cp) is the deviation of the algorithm c,~ p E ~~ t,5,T),  if f

(2.12) dev(p) = 

yE~~30
) rad U(y) 

(y€ ~~~ 0~ 
fE y) 

H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Of course, dev(cp) � 1 i.or any p.

We mention two classes of algorithms for which the deviation is small.

The first one is the class of central algorithms ~C 
defined by Traub and

Woz’niakowski [77). An algorithm p is central if cp(y) is a center (if it

exists) of the set 13(y) , 
~‘
y E !Jt(30). The center, p(y) , is defined by

(2.13) sup x—cp(y) 
~ 

— rad U(y).
xQJ (y)

~~~ ~~~~~~- - ~~ - - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~T-~~~~~ ~~~~~~~~~~~~~~~~~~ 

—

~~~~
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2.4

Obviously dev(cp) I iff p is a central algorithm. A central algorithm is

optimal but an optimal algorithm is not , in general , central.

The second class is the class of interpolatory algorithms ~~. By p E

we mean -

(2.14) p(y) SG(y)

where G: D~ 30 and ~t(G(y)) = y. Note that G is a right inverse of ~t and the

element G(y) belongs to 30. Therefore, G(y) E V(y) and cp(y) E U(y). Then

e(p,y) ~ diam U(y) ~ 2 rad 13(y) for any p E where diani U(y) sup H a-b fl
a,b~ J(y)

is the diameter of U(y). From th is we conclude that dev(cp) � 2, Vp € ~1.

We summarize the properties of centra l and interpolatory algorithms .

Theorem 2.2

For any y €

e(p,y) = rad U(y) ,
~~~ c

(2.15) ) 
Vp E ~

dev(p) = 1, J
and

tad 13(y) ~ e(cp,y) � 2 tad 13(y),
(2.16) ~

dev(p) � 2 , J I

As we mentioned in the Introduction we are also interested in algorithms

with small ~ombinatory complexity. There exists a class of algorithms for

which the combinatory complexity is nearly minimal. This is the class of

linear algorithms ~~~~~~
. By p E we mean a linear operator ~p, i.e.,

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• ---

~~~~~
- -~~ 

•— - 
~~~~~~~

- 
~~~~~~ ------ . - 
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(2.17) cp(y) 
~ 

L1
(f) g~~ y = ~1(f) = [L1(f) ,L2(f),...,L~(f)3,

i—i

where g. g~(~,S,T) E ~~ 
Since g1,g21...,g are independent of f, they

can be precomputed. Knowing gj, we perform at most n multiplications of an

element from 
~2 

by a scalar and (n-l) additions of elements from to com-

pute p(y). Taking the cost of one such multiplication and one such addition

as unity and neglecting the cost of precomputing g1
,g2,. ..,g we conclude

that the combinatory complexity of a linear algorithm is at most 2n-l•

The problem of linear algorithms with small deviation is closely related

to spline algorithms which will be introduced in Section 4. Before that we

remind the reader of the definition of splines in a linear normed space.

_____________________________ ~~~~~
_ -r~=~~— - - -
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-3. SPLINES

We remind the reader of the definition and some basic properties of

splines in linear normed spaces and introduce notation we will use in this

paper. See among others Anselone and Laurent [68], Atteia (65) and I(olmes

[72).

Let y E ct~ . Define

(3.1) A(y) = Cf E 
~~ 

~l(f) = y3.

Note that for an; y, the set A (y) is nonempty since ~l is defined by n linearly

independent linear functionals , i.e., D%(~~1
) = ~ n See Section 2.

Definition 3.1

An element a (y) E A(y) is called a spline interpolating y (briefly a is
a ~p1ine) 1ff

(3.2) H Ta(y) H mm 
~ 

Tf 
~ I

f EA (y)

Let z E 34 . Define

(3.3) P(z) [h E ker ~t: Th-z lI = dtst(T(ker ~
) , z)).

Thus, every element of T(P(z)) is a best approximation of the element z from

the set T(ker 9~). It is easy to observe that the concepts of splines and

best approximation are closely connected. Namely, the following relations

hold:

(3.4) There exists a spline a (y) interpolating y iff the set P(Tf) is

nonempty :or some f E A(y). 

— ——~—~~~~~~-
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~‘-~~~~~~~~~~~: i ~~~~~~ 
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(3.5) An element a E A(y) is a spline interpolating y iff f-~ E P(Tf) for

every f E A (y).

(3.6) There exists a unique spline a(y) if f ker D% t~ ker T — CO~ and P(Tf)

is a singleton set (i.e., P(Tf) has exactly one element), Vf EA (y).

Splines are homogenous, i.e., if a(y) is a spline interpolating y,then

ca(y) is a spline interpolating cy for any constant c E t. This means that

a(cy) = ca(y) whenever the spline a(y) is uniquely defined.

Suppose that = T(31) is a hubert space. Then P(Tf) is nonempty for

any f E if f T(ker ~ ) is closed . Furthermore, a(y) is a spline if f

a(y) E A(y) and (Ta(y) ,Th) 0, Vh E ker ~l. A spline a depends linearly on

y, i.e., if splines a(y1) and a(y2
) interpolate y

1 
and y

2 
respectively then

c1a(y
1
)- + c2a(y2) is a spline interpolating c1y1 + c2y2 for any constants

E ~t. The splines a(y) are uniquely defined if f ker ~t f l  ker r — to) .

~ 

~~~~~~~~~~~~~~~ . — - - . 
- ~~~~ 

-
~~~~~~~~ - —

-

-~~~~~~~~~~~~~~~~~~~ . ~~~ -~~-
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4.1

4. SPL INE ALGORITHMS

In this section we introduce the concept of spline algorithms and

prove their optimality properties in the class of homogenous and inter-

pola . ry algorithms. To assure the existence of splines we shall assume

throughout the rest of this paper that P(Tf) is a nonempty set for any

f E 3~.

Definition 4.1

5We shall say p is a spline algorithm, p E ~ , iff

(4.1) p(y) = Sa(y), Vy E
~~
(
~o
),

where a(y) is a spline interpolating y. I

Note that a spline algorithm is interpolatory which implies that

e(p,y) ~ diem U(y) � 2 rad 13(y), and dev(p) � 2. Since splines are homog-

enous, it is obvious that a spline algorithm is also homogenous.

Remark 4.1

To compute p(y) given y, in general we need to know a spline 
~ (y), i.e.,

to solve the optimization problem (3.2). The complexity of solving (3.2)

can be high. However if a spline algorithm is linear, i.e.,

then we need to compute only elements

i—i

Since the elements g
1
,g2,...,g are independent of ~(f), the idea of pre-

computing can be used. This means that in many cases we have to solve the

optimization problem (3.2) only once. For nonlinear spline algorithms the

idea of precomputing cannot in general be used and the combmnatory complexity

of such algorithms can be very high. I

- --i - ~~~~~~~~~~~~~~~~ -~~~~ ~~ - _ . ~~~~~~~~~~~~~~~~~~~ - -~~
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We establish the optimality properties of spline algorithms in the

class ~

Lemma 4 • 1

Let p,cp E ~~, be a homogenous algorithm and y E ~t(30) .  If e(p) <+~ and

a(y) E ker T then

(4.2) p(y) = Sa(y). a
Proof

Since 
~(y) E ker T then ca(y) E 30 for any c € 

~t. and ~(ca(y)) cy.

Consider cp(cy)-S(ca(y) ) c(p(y)-Sa(y)). Observe that id p(y)-Sa(y)~ 
�

(cp) < + ~, Wc E ~E. This implies p(y) = S a(y) which proves (4 .2) .

etnma4.2

Let cp,cp E ~, be a homogenous algorithm which is interpolatory .

Then p is a spline algorithm. I

Proof

Since p is interpolatory then e (cp) ~ 2r (~~,S ,T) < + .  Take an

arbitrary y from and consider a spline a(y) . If a(y) E ker T then

Lemma 4.1 yields p(y) Sa(y) . Thus we can assume that Ta(y) ~ 0. Let

— y/ II Ta(y) ~ and a(~ ) be a spline which interpolates j~. Note that

~ 
Ta(~7) 

~f 
— 1 which implies that a(~) E 30 and ~t(a(y)) — ~~~ . Consider the

set V( y) — Cf E ~~~ ~ (f) — 5~, J~ T f J J  � i). Since o(j~) E V(y) and

1 — 
~ 

To(~) 
~ ~J Tf 

~ 
for any f E V(y) , every element of V(~) is a spline

interpolating ~~~ .

- ~~~~~ - -
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The algorithm p is interpolatory . Thus cp (q) E u(~) = SV(~ ) wh ich mean s

that cD(~) = Sa(~) for a spline a(y). Since p is also homogenous,

9(y) = 

~ 
Ta(y) fi p(~) = 

~ 
Ta(y) Sa(y) = Sa(y) where a(y) is a spline which

interpolates y. This proves that p is a spline algorithm. U

We wish to examine when there exists a unique spline algorithm. It is

easy to prove the following lemma.

Lemma 4.3

There exists a unique spline algorithm if f SP(Tf) is a singleton set

for any f E

Proof

Let f E 30 and y ~%(f). Consider the splines a
1

(y) and a
2(y). From

Section 3 we know that f -a1(y) h~ E P(Tf) for i 1,2. Then

Sa1(y)—Sa2(y) — Sh
2—Sh 1

.

Thus SP(Tf) is singleton iff Sa
1(y) 

= Sc2
(y) , Vy E m(30). This proves

Leimna4.3.

We are ready to consider the deviation of homogenous algorithms belonging

to ~.

Theorem 4 • 1

Let SP(Tf) be a singleton set for any f E 30. Let cp,p E ~, be a homog-

enous algorithm. Then

� 2 if p is a spline algorithm,
(4.3) dev(cp) — ç

otherwise.

-~~~ -~~~ ~~~~~~~~
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Proof

The inequality dev(p) ~ 2 for a spline algorithm p was already proven.

If e(cp) = + then dev(cp) = + since tad U(y) � r(~l,S,T) <+~~. Thus with-

out loss of generality we can assume p is a nonspline algorithm with

e (p) +~~. This means there exists y € ~%(30) such that p(y) ~ Sa(y) where
a(y) is the unique spline interpolating y. Lemma 4.1 guarantees that

~ 0. As in the proof of Lemma 4.2 define 
~ y/ 

~ 
Ta(y) ~ and consider

the singleton set 1J(~) Csa S~)) .  Of course, rad 1J(~) 0. Since p is

homogenous ,

p(y)/~~Ta(y)J~~ Sa(y)/II Ta(y)11 Sa(~).

Thus e(p,~) ~ 0 and dev(cp) 
� e(cp,y)/rad U(~) — +. This completes the

proof.

The assumption that SP(Tf) is singleton for any f E 30 is essential.

To see that consider the following example.

Example 4.1

Let 
~ 

— ~[0,1] be the class of continuous functions on [0,1]

with the sup norm 
~ ~~~ 

max If (x)l. Let S — T I be the identity operator
0�x�].

and y — ~ (f) — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

for some distinct points x~ E [0,1].

Thus we want to recover the function f knowing its n values at x~ and the

bound 
~ll 

� 1. It is easy to show that

rad 13(y) — 1, Vy E ~(30) — 1_ 1 ,13
n
,

and the unique center of 13(y) is the zero function . Note that the center of

13(y) does not belong to 13(y) for y ~ 0. Furthermore, every func tion a,

a E 3,~, which agrees with f at x~~, i.e., a(x~) — f ( x i) — y~, i — l,2,...,n,

- ~~~~~ ~~-~~~J -_~ --- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.
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4.5

and H all ~ max lf (x 1) J = 
~J yJ~ is a spline. Thus if f ,~ ker ~fl, i.e., y ~ 0,

then there exist infinitely many splines and of course SP(Tf) P(f) —

th E ker ~: II h—f fi ~ yfl~,
) is not a singleton set.

Consider the central linear algorithm p(y) 0. Of course dev(cp) — 1.

Since p(y) 0 is not interpolatory, p is not a spline algorithm. Furthermore

it can be shown that any interpolatory algorithm p has the local error

e(cs,y) 2 for any y E ~t(30), II ylL — 1, and dev(cp) = 2. I

Remark 4.2

Theorem 4.1 states that among homogenous algorithms only the spline algo-

rithm has finite deviation. This provides the answer to question (1.1).

When the spline algorithm is nonlinear the class of linear algorithms with

finite deviation is empty. When the spline algorithm is linear, the class of

linear algorithms with finite deviation consists of exactly one element;

namely the unique linear spline algorithm. I

Therefore it is important to know when a spline algorithm is linear.

Although we defined a spline algorithm p only for y E ~(30)~ it is obvious
that p(y) Sa(y) where C’(y) is a spline interpolating y for y E ~~~ is the

needed extension. Assume that SP(Tf) is a singelton set for f E 3
0~ Note

that the set P(z) defined by (3.3) is homogenous. Thus, since SP(z) is a

singleton set for any z E T(30), SP(z) (a(z) ) is also singleton for any

z E T(31) 
— 3~. Therefore we can define an operator R: -. such that

(4.4) R(z) a(z). 
-

The spl.ine algorithm can be represented by R as

(4.5) So(y) Sf — R(Tf), Wy —
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4.6

Indeed , since a(y) is a spline then f - a(y) E P(Tf) for any f such that

~t(f) — y. Then s(f-a(y)) E SP(Tf) = [a(Tf)) and Sa(y) = Sf - S(f-a(y)) =

Sf - R(Tf) which proves (4.5). From (4.5) we immediately get

Lemma 4.4

Let SP(z) be a singleton set for any z E ~~~~~~. Then the spline algorithm

is linear if f R is a linear operator. Q

Elsewhere in this paper we give examples for which a linear spline algo-

rithm exists. We now illustrate Leimna 4.4 by an example of a unique spline

algorithm which is nonlinear.

Example 4.2

Let 
~l 

~~ 34 be the space of polynomials of one variable of degree

~ n. Define ~ f J ~ max ~f ( t )  and let S T I. The information operator
0�t~l

is given by

f” 0) f~~ ) 0)y ~t(f)  [f ’( O ) , 2’. ‘
~~~

•
~~~
‘ n~

Thus h E ker ~t implies h( t )  a const. Then

P(f) [h(t) h0 
: sup If(t)—h01 = inf sup If ( t ) — cV j ,
0~t�1. e~~ 0~t�l

i.e., h E P(f) iff h is a constant function and h is the best approximation

of f among all zeroth degree polynomials. It is well known that P(f) — [a(f))

is singleton and

a( f)  (~+f)/2

where ~ — max f ( t )  and f — mm f(t). Of course, R is nonlinear which means
O~t�I 0�t�l

~~~~~~~~~~~~~~~~ 
~~ 

-
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that the unique spline algorithm is also nonlinear. Define g(y) = L Y
i
t
~~

where y~ 
a 

~~~~~~~~~ 

. From (4.5) we get k.

cp5 (y) a Sa(y) = f - R (f) g (y) + f (0) - (?+f)/2 =

g (y) + f(0)  - (
~+2f(O)—&) = g(y) - (

~+I)/2
. —

It can be shown that the spline algorithm is central and

e (cp5,y) a 1 - (~-~)/2 � r(~fl,5,T) — 1. 
- 

I

- - - 

——
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5.1

5.  SPL INE ALGOR ITHMS IN A H ILBER T CASE

In this section we assume that the operator T maps onto a Rilbert space

a T(31
) and T(ker 

~ ) is closed. Observe that the set SP(Tf) is singleton

for any f E Indeed let a
1(y) and a

2(y) be splines which interpolate

y = ~ (f) . Then Ta~ (y) is orthogonal to T (ker ~). Let h = a
1

(y) - o2 (y) .

Then h E ker !B and H Ta
1
112 = II Ta2~~ — J~ Ta

1-Th~~ 
— j J Ta1J~ + J~ mJf~. This

implies that Th = 0. Thus h E ker ~t fl ker T and (2 .11) yields h E ker S,

i.e., Sa1
(y) = Sa2(y).

The unique spline algorithm may be derived as follows . Let

e
i [O ,...,l,...,0] E ~~~ denote the ith unit vector , i 1 ,2 ,...,n. Find

a1 E such that ~t(a~) = e~ and Tai is orthogonal to T(ker !R) . Of course

c~ is a spline interpolating e~. Then o-(y) — L~ (f)a~ is also orthogonal
i l  -

to T(ker ~ ) and therefore a(y) is a spline interpolating y tL 1(f)~ L2 (f)~~...~ L~ (f) ].

The unique spline algorithm p
~ 

is of the form

(5.1) p5(y) a Sa(y) — 
~~

Li (f) Sai

for y — ~(f). This shows that the spline algorithm is linear.

Theorem 5.1

If is a Hu bert space and T (ker .~~) is closed then the spline algorithm

p \i~ central and

(5.2) e(p5 ,y) - rad 13(y) — ~~~
- ~ Ta(y) f~ 

r (~~,S ,T)

where the radius of information is equal to



r~-~ 
- - -

5.2 -

(5.3) r(~ ,S ,T) — Sup 
~h Qe r  ~

Proof

Let f E v(y) . Then f — a ( y )  +h v h e r e h € ker~~t a nd

I � 
~~~~~ ll Ta(Y) l~ + ilmlF. Thus

V (y) — (o(y) + h  : h E ker ~R and iimlF ‘1- II Ta&) IF).

We now show that U(y) — SV(y) is symmetric with respect to Sa(y). Indeed,

let Sa(y) + Sh E 13(y). Then h E ker ~t and J~ Th IJ~ � I - ~ Ta(y) 
~~~

. The

element So- (y) - Sh also belongs to 13(y) since ~t(a(y)-h) = y and

~ 
T(C_ (y)-h) — U Ta(y) + II Th~~ ~ I.

From this it easily follows that a — Sc, (y) is a center of 13(y) . To show

this assume that a is not a center , i.e., there exist elements b EU (y) and

a E32 
such that

(5.4) sup 
~ 

s— ui) < II b— a ll
uQJ(y)

Since 13(y) is symmetric with respect to a and a E U(y) then 2a-b also belongs

to 13(y) and (5.4) yields JJ s-(2a—b) }.J < J~ b—a ll 
. But

2 11 b— a ll — II s- (2a-b)+b—s � H s- (2a—b) II + (f S-b ~
( < 211 b-a ll

which is a contradiction.

Hence , p5 (y) Sa(y) is a central algorithm and

e(cp5 ,y) tad 13(y) — sup(jj S(a(y)+h)-SC_(y)~ : a(y) + h E V(y)) —

sup [ll  Sh il : h E ker ~l, m ff  ~ Al- Il Ta(y) 3 a

- Jl-~ Ta(y) ~ sup(( I  Sh il Ill Th il : h E ker si).
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5.3

I’

Observe that r(~t,S,T) — sup rad 13(y) — tad U(0) which completes they
proof.

Theorem 5.1 states that the spline algorithm is central. It is also

linear. These are very desirable and useful properties. This affirmatively

ans wer s our questions from Section 1 for any linear ope rato rs 5 , T and ~

(assuming that is a Hu bert space and T(ker ~l) is closed) . We i l lustrate

Theorem 5.1 by two examples.

Example 5.1

Suppose that — 34 is a Hilbert space with an orthonoruia l basis

Let T be an orthogonal operator, i.e., T T  — TT I. Let f E

i.e., ~ ~ ~~~~~~~~ Define the information operator ~t as

i—I -

— — ~~~~~~~~~~~~~~~~~~~~~~~~ —

n

Then a(y) 
~ ~ ~~~~~~~ satisfies ~l(a(y) ) = y and for any h E ker ~ —

th : (h,ç) ~~O, ial,2,...,n3 we get (Ta(y),Th) (a,h) ~ ~~~~~~~~~~~ — 0.

i—I-
This shows that a truncated Fourier series a(y) is a spline. Thus for any

linear operator S : -. the spline algorithm

n

~.. ‘~~i~~~ i
i—I

is central and r(~l,S,T) a fi SILer ~ sup C U Sh il : h E ker ~l and fi hU � 1). I

Example 5.2

- Let — wk~
2[o 1] be a Sobolev space, i.e., the space of functions for

wh ich the (k-].)-st derivative is absolutely continuous and the k-th deriva-

tive belong s to L2 [0 ,t ) .  Let T Dk , i.e., Tt a f (k) , and

— - - 
~- —--- _

,_

~~~~~ ~~‘_ -_- - 
- . 

_ _i_’____ ~~~~~ ~~~~~~~~~~~~~~~~~ - —
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U —1) (J —1)

~t ( f)  a [f (x 1) , .. ., f I (x 1) , . . . , f ( x ) , . . . , f r ( x ) ]

for distinct x~ E [0 ,1] and max < k. Then the cardinality of ~ is equal
- l�i~r

to n j1+j2+~~~
+Jr• Assuming that n � k , it is well-known that the spline

a(y) is the natural spline function of degree 2n-l with respect to the knots

~~~~~~~~~~~~~~~~~~ 
with multiplicity 3l’32’” ’3r 

respectively.

Many authors dealt with this information operator with different

~1’~ 2’” ’~ r for different linear operators S. See the Introduction for the

Ireference list. For instance if S = I or S(f)  = J ’ f (x) dx it is known that
_ 0

r(m ,S,T) ~ +~~ for n < k and r(~l,S,T) = 0(~..k) for n ~ k. Theorem 5.1 states

that for any linear operator S the algorithm obtained through natural spline

is central. I

4 

- 
-- ~~~~~~~~~~~~~~~ ~~~ T~~~± : z ~~~~~~~ 

. .. -
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6.1

6. SPLINE ALGOR iTHMS IN A NON-HILBERT CASE

In this section we deal with spline algorithms where is not neces-

sarily a Hilbert space. We give necessary and sufficient conditions on a
- 

spline algorithm to be a central or optimal algorithm. We also show examp les

for wh ich spline algorithms are neither central nor optimal. We begin with

the centrality of spline algorithms . It is intuitively obvious that a splin e

algorithm is central iff the centers of 13(y) belong to 13(y) and enjoy the

same homogenous property. A formal proof is provided by

Lezmua 6.1

There exists a central spline algorithm pC if f there exists a function

c : ~t(30) 
~2 

such that

(i) c(y) E 13(y) and c(y) is a center of 13(y), wy E

(ii) c is homogenous, i.e., tc(y) EU (ty) and is a center of U(ty),

~ I t l ~~l4 vy E~~(30).

Proof

Suppose that is a central spline algorithm. Define c(y) ~C
(
~~) — Sa (y).

Since P
C 
is interpolatory, central and a(y) is homogenous then c has the

desired properites.

Assume now that c satisfies (i) and (ii) which means c(y) is a homogenous

algorithm which is interpolatory. From Lemma 4.2 it follows that c(y) is a

spline algorithm.

We now show an example where the unique linear spline algorithm is

optimal but not central .

-I
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6.2

Example 6.1

Let — 3~ 
W”~i0,l) be the space of functions which are absolutely

continuous and f’ E L_[O ,1]. Consider S = I, Tf f ’  and ~(f) [f(0),f(l)].

perfect spline P
1

/ 
central algorithm ~C

f ( l) y
2 ~~

- - - -

spline~ a1gorithm p~
f ( 0) — y

1 perfect spline P
2

~~ y
1-y~÷~ y2-y1+l 

1 x
- 2 2 F

Pig. 6.1

It is easy to verify that there exists a unique spline algorithm

p
5 (y) (x) = y

1 
+

e(p
5
) — .~~ — r(~t,S,T).

But the central algorithm is equal to

P
C (y) (x) — (p 1(x)+p2(x))/2

where p1 
and p2 are perfec t splines ,

y
2
-y

1
+l

(x +y1 for x �—
2 

,

~~~ + y2 + 1 otherwise,

y
1
-y +1

( - x + y~ f o r x �  2
p
2

(x) — ç 2
Lx + - 1 otherwise

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~ - ~~~ —-~~~~ _ -
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and p ~~~~~~

We turn to the question when a spline algorithm is optimal. Note that

we now dear. with nonunique spline algorithms since we do not assume that

SP(Tf) is a singleton set.

Lemma 6.2

There exists an optimal spline algorithm if f there exists a function

a : ~(3~
) -. such that

(i) a(y) is a spline interpolating y, Wy,

(it) for any f E ~~, y —

fi Tf-Ta(y) ~~> 1 implies jj Sf-Sa(y) 
~ ~ 

r(~l,S,T).

Proof -

Suppose that is an optimal spline algorithm, ~~ (y) — S~ (y) , where

c(y) is a spline interpolating y. Then 
~ 
sf-S&(y) II ~ r(~t,S,T) for any

f E ~~, y — ~(f). Hence we can put a(y) &(y) which satisfies (i) and (ii).

Assume now that a satisfies the conditions (i) and (ii). Define an

algorithm cp(y) a Sa(y). Due to (i), p is a spline algorithm. Consider

~J Sf—cp(y) Jj for y — ~(f). If J~ 
Tf-Ta(y) JJ >  I then ‘ii) implies

II Sf-p(y)~ ~ r (~1,S,T). If 
~ 

Tf— Ta(y) )I � 1 then setting h = f —

h E ker ~fl, we have II Sf-p(y) ~j — J~ 
ShJ~ and ~ 

Th~ £ 1. Thus 
~ 
Sf-cp(y) 

~

� fi ShJ~/~ Th u  ~ r (~t,S,T), due to (2.10). This means that p is an optimal

spline algorithm which completes the proof. I

Lemma 6.2 states that a spline algorithm p
5
(y) — Sa(y) is optimal if

the elements h — f - 0(y) of the large T-norm , J~ ~~~~~ 1, are correlated with
the operator S in such a way that 

~ 
Shfl is small, i.e., j~ Sti ll � r(tR,S,T).

— ~~~~~~~~ I~~~~-1_A ~~~~~~ - ~‘- 
-
~~~~~---------- ---_
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Note that if is a Hu bert space we have a unique spline algorithm for

wh ich II Th~f ~JL( Tff~ -II Ta(y)~~ 
� 

~ Tf II ~ I and condition (ii) is automatically

satisfied. Note that Lemma 6.2 provides the answer to question (1.2). Namely,

the class of linear algorithms with finite deviation which are optimal is

nonempty if f there exists a function a satisfying (i) and (ii) of Lemma 6.1.

Example 6.1 provides a problem in a non-Hu bert space for which con-

dition (ii) holds. We now consider an example for which an unique spline algo-

rithm is not optimal and its deviation is arbitrary close to two.

Example 6.2 -

Let — a 1(2 — ((f1, f2) : f~ are real) with the l2-norm fi f l i a iJf~+f~.

Let — ~2 be equipped with the norm ~ f II max(lf1J ,.~ lf2I) where a parameter

a E(I,+). Define Sf f, Tf f and ~ (f) f 1+f 2. Thus knowing the sum

of components of f we want to recover f where f E a [f : II Tff =

— max(lfi I,!1f21) ~ 1).

Figure 6.2 shows the central a’~d spline algorithms. The central algo-

c
rithm p is equal to

[(Y+~
_a
, 
Y_ I+a) for a-i ~ y ~ a+l,

~C (y) — (0,y) f or ly l ~ a-],

L(~~
a , ~+~_a) for 1-a � y ~

and (

c for fy ( ~~a-l
e(p ,y) a

(~
4(1+a_ IyI) otherwise.

Hence r(tR,S,T) — A/i. The unique spline algorithm p
5 is given by

~~~~~~~~~~ 
(i. ~-L:~\~ 

y y 
\l+a’ l+a)

. _______

— —..~- — -  — —  ~~-- ~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~ ~~~ -
~~~, ~~~~~e~~~~~~—---
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—

a 

::::::: :

4::
- 

Fig. 6.2

The local error of p8 is

— ~i~a 
(y+a+I) for fyf £ a—I,

e(p ,y) a

- 

t~~~a a(I+a_~ y ( )  otherwise,

and e(q 5
) ~ e(p51a-1) ~ a r(~t,S,T). This means that 

~ S is not

optimal. Furthermore

hEh.A .~~~~~~~~~~ - ~~~~~ - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _________ .
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6.6 
-

dev(P
S
) !(~P~,a-l) — 

2a
rad U(a-1) l+a

Thus for large a, dev(p
5
) can be arbitrary close to 2.

We want also to stress that for this problem there exists a unique

optimal linear algorithm ~L ~L(~) (O ,y), which is not an interpolatory -

algorithm and whose deviation is infinity.

I

L 
-—-------- - - 

__ _ _  _
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7 . RELATION TO THE KOMOGOROV n-WIDTH

We briefly note that there is a relationship between the concept of

- 
the radius of information and the Kolmogorov n-width. For the definition of

Kolmogorov n-width see, for instance, Lorentz (66J. Namely, suppose tnere exists

a linear optimal error algorithm p. Thus Sf, for any f E is approximated by

an element cp(y) — ~~L~ (f) g~ E G = lin(g13g2,...,g~). Note that dim G � a and

i l

(7 .1) r (~l,S ,T) = e (p) � sup inf 11 Sf— g ~ �

fE30 gG

inf sup inf (~ Sf-gI’ 
a d (S(~~),32

)
G fE~j0 gG~

GC~~,dimG~n

where d~ (S(~~),32) is the Kolmogorov n-width of the set S(30) in the space

Furthermore if 34 is a Hu bert space then it can be shown that

inf r (~ ,S,T) — d (S(Z30
) ,~~)

card (~t)~~t

which means that for a suitably chosen information operator the radius is

equal to the Kolmogorov n-widths. These and other relations with the Gelf and

and linear Kolmogorov n-widths and entropy for linear problems in general

linear spaces will be reported in a research monograph (Traub and Woz”niakowski

[79]).

- 

J 
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8. SUMMARY

We summarize the results of the paper. Assuming the uniqueness of

- the spline algorithm p
5
, the answer to question (1.1) is that the class of

linear algorithms with finite deviation is empty if p
5 
is nonlinear. This

class consists of one element, namely p
8
, if p

S is linear. The answer to

question (1.2) is that the class of linear algorithms with finite deviation

which are optimal is empty if q~ is nonlinear or nonoptimal. This class

consists of one element,.namely q,
S 

jf 
~,
S 
is linear and optimal. We give

necessary and sufficiently conditions for cp~ to be linear, central, and

optimal.

If T(ker 
~) is closed in a Hilbert space, there exists a unique spline

algorithm p
~ 
which is central and linear. Due to centrality it yields the

best possible approximation for every f. Due to linearity, its combinatory

complexity is small since the idea of precomputing can be used. We stress

again that in general the combinatory complexity of a nonlinear spline algo-

rithm is high and that precomputing cannot be used.

L~. i~-~
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