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Abstract

In this note a variant of the classical perturbation theorem for
singular values is given. The bound explain why perturbations will
tend to increase rather than decrease singular values of the same orde:
of magnitude as the perturbation.
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In this note we shall be concerned with a sharpening of the usual
perturbation bounds for the singular values of a general rectangular matrix.

Specifically let X be an nxp matrix. Then the singular values

\
(1) olzozz...acp

of X may be defined as the nonnegative square roots of the eigenvalues of

XTX. If X=X+E is a perturbation of X and the singular values

61 2 82, $ e 20 OF XTx are ordered so that

p

(2) Gyedyr e,

then

(3) lU.' - 6,' s "E" (i = lazs'“’p)a

where WE|l denotes the spectral norm of E (for definitions and proofs
see, e.g., [2)).
Although the perturbation bound (3) is satisfactory in most applications,

it does not give a complete description of how the singular values, eépecially
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L the small ones, actually behave under perturbations in X. The following

theorem provides a somewhat clearer picture.

Theorem. Let the-singular values of X be ordered as in (1) and
those of X =X+ E as in (2). Let P denote the orthogonal projection

onto the column space of X. Then

(a) 55 = (og + £)% + n} (F = 1s2,...0)
where
(5) | Eil < IPEI
\
and

inf [(1-P)EY s ny s N(I - P
Here

inf(E) = inf WEx|I.
Ihxn=1

Proof. We use the classical min-max characterization

1 E ' 0$ = min max xT(xTx)x.
(6) dim(X)=p-i+1 xe X ;
xi=1

Let X be a subspace for which equality is attained in (6). Then from the

min-max characterization of 5%, we have
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58 < max x [(x+E)T(x+€]] x
xe X
0 xi=1
= max [ X" + £Tpx + XTpE + ETP%E + ET(1-P)2E ] x,
Xe ¥
=1

where we have made extensive use of the usual properties of projections

in passing from the first to the second form of the bound. Now since

of = max xT(XTX)x = max W XxI\,
Xe % Xe X
Ixu=1 hxn=1

it follows that

a‘} § of + 20, IPEN + nPENE + K{1-P)EN?

(7) : :
= (or1 + IPEN)C + )|(I-P)EN
For a lower bound we use the dual characterization
of = max min xT(xTX)x.
(8) dim(X)=1 xe%

x =1
Again let X be a subspace for which equality is attained in (8).

Proceeding as above, we get

o2 » min xT[xTx + ETPX + XTpE + ETP%E] x + min x'E" (1-P)Ex

Xe X xXe X
xu=1 wxn=1

(9)

2 min x' [XTx + E7PX + XTPE + E'P2%E] x + inf [(1-P)ED2

Xe X
wxi=1
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Let x be a vector for which the minimum in the last expression of

(9) is attained. Calling this minimum yu, we have

IXxxh + 2(x'X7)(PEx) + WPEx!I® .

=
n

Wxxi - PEx )2,

w

Since WXxll 2 of, we have

(0; - WPEW?  if o, 2 WPEN
(10) u

v

0 if o; s NPEN
The theorem now follows on combining (7), (9), and (10).

We make three observations on this theorem. First, there is a
trivial variant in which PE 1is replaced by ER, where R is the
orthogonal projection onto the row space of X.

Second, when o5 is reasonably larger than (IEV , say oy > SnEl,

the first term in the bound (4) dominates and we have

G I% T
where &, satisfies (5). The classical perturbation result cited at
the beginning of this note would give |l s HEW. Since WPEN < IE)
our result is sharper; and in fact when n>>p we may expect PE to

be significantly smaller than |IE|l, so that (5) represents a true

improvement over the classical result.
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The third and perhaps most interesting observation is that when
o 1s of order IEN , the term ny will tend to dominate. Now n,
always represents an increase in the singular value, and when n>>p
this increase can be significant, depending as it does on (I-P)E
To put the matter in other words, if one takes a matrix with a small
singular value and perturbs it by quantities of the same size as that
singular value, then one can expect the singular value to increase, not
decrease. This tendency toward better conditioned matrices with larger
o. has been observed in practice in connection with a regression prob-

p
lem in which simulated random perturbations in the data seriously biased

the regression coefficients [1,3] .
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