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Abstra

In this note a variant of the classical perturbation theorem for
singular values is given . The bound explain why perturbations will
tend to increase rather than decrease singular val ues of the same orde~
of magnitude as the perturbation .
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In this note we shall be concerned with a sharpening of the usual

perturbation bounds for the singular values of a general rectangular matrix.

Specifically let X be an nxp matrix. Then the singular values

(1) ...
of X may be defined as the nonnegative square roots of the elgenvalues of

XTX. If ~ = X + E is a perturbation of X and the singular values

a1 ~ a2, ~ ~ 
ap of XTX are ordered so that

(2) a2 ~
then

(3) I a
~ 

— I ~ $1 (1 =

where II E II denotes the spectral norm of E (for definitions and proofs

see , e.g., r21 ).

Although the perturbation bound (3) Is satisfactory in most applications ,

It does not give a complete description of how the singular values, especially
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the small ones , actually behave under perturbations in X. The following

theorem provides a somewhat clearer picture .

Theorem. Let the-singular values of X be ordered as in (1) and

those of ~ = X + E as in (2). Let P denote the orthogonal projection

onto the column space of X. Then

(
~

) = (a~ + + n~ (I = 1,2,...,p)

where

(5) I~~~I ~ I~P Eli

and

inf [(I — P)E) � Il (I —

Here

inf(E) = inf il Exil.

IIxII=1

Proof. We use the classical mm -max characterization

a2 
= mm max ~

T xTx~~.

• dim(%)—p—i+1 xc ’X
Iixfl l

Let X be a subspace for which equality is attained in (6). Then from the

mm -max characterization of ~~~~, we have
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~ max xT[(x+E)T(x+E$)x
xc~Ii xM=1

= max 
I [xix + ETPX + XTPE + ETP2E + ET(I_P)2E]

xc~
• *xii=1

where we have made extensive use of the usual properties of projections

in passing from the first to the second form of the bound. Now since

= max xT(xTx)x = max flXx fl
X€~~ x€ :k.

IIxi%~1 Iixf l l

it follows that

~ 4 + 2a,~ IIPE~ + IIPEII2 + li(I-P)E~
2

(7)
= (a .~ + UPEII )2 + Il(I-P)E$2

For a lower bound we use the dual character ization

a2 max mm xT(xlx)x.
(8) ~ dim(~)I xc%

x=1

Again let X be a subspace for which equality is attained in (8).

Proceeding as above, we get

>~, mm xTtxTx + ETPX + XTPE + ETP2E) x + mm xTET(I-P2)Ex

~xn~1 lixH=1
(9)

~ mm x
T [x Tx + ETPX + XTPE + ETP2EI x + inf ((I—P)E~~.
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Let x be a vector for which the minimum in the last expression of

(9) is attained. Calling this minimum ~.i , we have

= IIXxlI2 + 2(xTXT)(PEx) + IlPExtI2

~ (IIXx lI - H PExH )
2.

Since HXx II 
~ 
4, we have

- hPEI~)
2 if aj > NPE II

(10)
0 if a1 ~ UPEIl

The theorem now follows on combining (7), (9), and (10). S

We make three observations on this theorem. First, there is a

trivial variant in which PE is repl aced by ER, where R is the

orthogonal projection onto the row space of x.
Second, when a

~ 
is reasonably larger than IIEW , say a1 > 5f~E1,

the first term in the bound (4) dominates and we have

where satisfies (5). The classical perturbation result cited at

the beginning of this note would give ~~ ~ HE ll. Since i$PE lI~ lIEU

our result Is sharper; and in fact when n>>p we may expect PE to

be significantly smaller than IIE II , so that (5) represents a true

Improvement over the classical result.
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The third and perhaps most interesting observation is that when
L 

a,~ is of order lIE II , the term will tend to dominate. Now

always represents an Increase in the singular value, and when n>’p

this increase can be significant, depending as it does on (I-P)E

f To put the matter in other words, If one takes a matrix with a smal l

singular value and perturbs It by quantities of the same size as that

singular value, then one can expect the singular value to increase, not

decrease. This tendency toward better conditioned matrices with larger

has been observed in practice in connection with a regression prob-

lem in which simulated random perturbations in the data seriously biased

the regression coefficients (1,31
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